Surface plasmon enhanced Brillouin scattering from metal films

Surface plasmon enhanced Brillouin scattering from metal films

S o l i d S t a t e Communications, Vol.36, p p . 9 9 5 - I 0 0 0 . Pergamon P r e s s L t d . 1980. P r i n t e d i n G r e a t B r i t a i n . Sb~F...

298KB Sizes 0 Downloads 31 Views

S o l i d S t a t e Communications, Vol.36, p p . 9 9 5 - I 0 0 0 . Pergamon P r e s s L t d . 1980. P r i n t e d i n G r e a t B r i t a i n .

Sb~FACE PLASHDN ENHANCED 8RILLOUIH SCATTERING FROH HETAL FILHS H. Fukui and O. Toda Department o f E l e c t r o n i c E n g i n e e r i n g U n i v e r s i t y o f Tokushima Tokusblma, J a p a n 770 V . C . ¥ . So and Department University Toronto, Canada

G . I . Stegeman* of Physics of Toronto Ontario HSS 1AT

( R e c e i v e d 26 June 1980 by A. A. Haradudln)

The theory o f B r t l l o u i n s c a t t e r i n g i n a p r i s m - m e t a l f i l e , - a i r (Kretschmenn) geometry i s a n a l y z e d and n u m e r i c a l e s t i m a t e s a r e g i v e n f o r a LaSF9 p r l s m - A g f i l m - e l f c o n f i g u r a t i o n . S i g n a l enhancement o f s e v e r a l o r d e r s o f magnitude i s p r e d i c t e d under c o n d i t i o n s o f c o u p l l n g to s u r f a c e p l a s m e n - l l k e f i e l d s .

1.

a c o u s t i c boundary c o n d i t i o n s a t b o t h f i l m interfaces. The s c a t t e r i n g f o r m a l i s m i n c l u d e s the e l A a t o o p t l c e f f e c t i n b o t h media a s w e l l as the c o r r u g a t i o n e f f e c t at both boundaries. C o n s i d e r t h e geometry i n F i g . I . The "p"-polarlzed incident fields (appropriate for coupling to s u r f a c e plasmons) are w r i t t e n as

Introduction

S e v e r a l i n v e s t i g a t o r s have r e c e n t l y d e v e l o p e d new t h e o r i e s f o r g r i l l o u l n s c a t t e r l n g a t t h e s u r f a c e s of opaque L-5 and t r a n s p a r e n t 6-7 m e d i a . A c c o r d i n g to t h e s e , t h e r e a r e two s c a t t e r i n g mechanisms, the vell-knoun e l a s t o o p t l c e f f e c t , as w e l l a s t h e c o r r u g a t i o n e f f e c t due t o acoustlcally-created surface ripple. Although the surface corrugation effect is a relatively weak s c a t t e r i n g mechanism, i t can p l a y a domin a n t r o l e I ' 1 2 i n opaque medla c h a r a c t e r i z e d by l a r g e v a l u e s o f d i e l e c t r i c c o n s t a n t , f o r example, in metals. I t can be e n h a n c e d by i n c r e a s i n g t h e amplltude of the incident or scattered light f l e l d s , t h e a c o u s t i c d i s p l a c e m e n t normal t o t h e s u r f a c e , or a combination of b o t h . I t i s y e l l - k n o w n 13 t h a t s u r f a c e plasmen p o l a r l t o n s can be e x c i t e d a t t h e a l r - m e t a l i n t e r f a c e o f a p r l s m - m e t a l f i l m - a l r sample u s i n g attenuated-total-reflectlon (ATR) m e t h o d s . The electric fields associated wlth these p o l a r l t o n s I~ can be much l a r g e r t h a n t h e I n c l d e n t f i e l d s used t o e x c i t e them. These p r o p e r t i e s have a l r e a d y b e e n u t i l i z e d i n e n h a n c i n g n o n l i n15_16P e a r hen°mane i n v o l v i n g s u r f a c e pl~mmons. In t h i s p a p e r we show t h a t c o u p l i n g t o s u r f a c e - p l a s m o n - l l k e modes c a n a l s o l e a d to l a r g e enhancements of B r i l l o u i n s c a t t e r i n g i n m e t a l l i c media.

2.

k,

i [~t-klX+kz(Z-h) ]

.&

E i - E0(~ + ~ - ~)e

(I)

Z

f o r the l i g h t

Er "

Er(i

i n c i d e n t through the prism,

k. " ~-- i ) e

i[wt-k, x-k (z-h) ] z

(2)

Z

for light

reflected

_ , = Eml(~ ÷ i - -

back i n t o the p r i s m , end

i[~t-k.x]

+ az

i(~t-~xl

-

i)e (3)

i_~_ + v-=2(~ for the l i g h t 0, 2

=

oz

i)e i n t h e m e t a l f i l m where

k,,2-cm(~0)~2/c2

and

kz2 = rp(~j)~2/c2-kll 2.

( H e n c e f o r t h t h e s u b s c r i p t s and s u p e r s c r i p t s p and m r e f e r to t h e p r i s m end metal r e s p e c tively.) The e l e c t r i c f i e l d a m p l i t u d e s Er, E 1 and ¥m2' n o r m a l l z e d to E0 a r e d l s p l a y e d as a

Theoretical Analysis

f u n c t i o n o f t h e i n c i d e n t a n g l e ¢0 i n F i g . 2 f o r The a p p r o a c h used i n t h e p r e s e n t work i s identical to that reported previously in r e f e r e n c e s 2 and 7. Normal phonou modes a r e f o u n d which s a t i s f y ( I ) t h e a c o u s t i c wave e q u a t i o n i n b o t h t h e film end t h e p r i s m , end (2) t h e "Present Address:

t h e m a t e r i a l p a r a m e t e r s l i s t e d i n Table I . The l a r g e enhancement i n Em2 , the f i e l d which is a

maximum at t h e m e t a l - a l r i n t e r f a c e ,

corresponds t o t h e c r e a t i o n o f s u r f a c e p l u m o n - l l k e modes a t t h a t boundary f o r i n c i d e n t a n g l e s n e a r 8 . Hence P B r i l l o u l n s c a c t e r l n ~ from t h e r m a l phonons n e a r t h a t i n t e r f a c e (0c E ~ ) s h o u l d be e n h a n c e d by up

Optical Sciences Center University of Arizona Tucson, A r i z o n a 85721

U.S.A. 995

Vol. 36, No. 12

BRILLOUIN SCATTERING FROM METAL FILMS

996

to f o u r o r d e r s o f magnitude. The phonon modes which p a r t i c i p a t e i n the scattering process are those of a film deposited on a s e e L t - l n f i n i t e s u b s t r a t e , and have been t r e a t e d p r e v i o u s l y by Rowell. 7 T h e i r s t r u c t u r e depends upon the f r e q u e n c y regimo of i n t e r e s t and

-Z

AIR

C

r

L

the relative shear and longitudinal wave velocities in the prism and film. Here we shall restrict our attention to the "x-z" polarized bulk modes (and hence to "p"-polarlzed s c a t t e r e d l i g h t )

characterized

METAL

by t h e f r e q u e n c y (~) range

~LP>fl>~Lm w i t h flLp = qlvL p and f l j p r i s m and m e t a l l o n g i t u d i n a l d e f i n e d by VLP and v j

h

= qmvLm.

The

wave v e l o c i t i e s

are

respectively,

and qm i s

the (x-) component o f the phonon w a v e v e c t o r p a r a l l e l to the s u r f a c e s . (Other frequency regions will be considered in a subsequent, mere detailed publication.) In general, the phonon displacement field density in O* - R space, i.e. in a volume element do. dR centred at qs, R is of the form

+2

-

i

m i [ R t - q u x ] ~ ~ ( V e ) e i q ~ m ( v ' ) z + cc

u = N0

Fig. i

Schematic diagram for the a n a l y s i s .

in

e

~

v'=l

(4)

m

t h e m e t a l and

i =~u

P i[~t-%x] ~ 0 e

iq p ( v ' ) z

v'

~ ~(

)e

~

+co

(5)

v'=l p

16

in the prism.

Here u0 is the mode amplitude

d e n s i t y , the p a r a m e t e r s ~ ( v ' ) d e s c r i b e the mode p o l a r l z a t l o n and the summation v ' i s taken o v e r a l l s o l u t i o n s to the a c o u s t i c wave e q u a t l o n c h a r a c t e r i z e d by a g i v e n v a l u e of ql and ft. S i n c e R
ld

the p r i s m (fl>flTP=q v ? )

XsT

.

b

4PP G(2a)3vTp(fl2-Gpz ~ T"

(6)

whereKB, T andpp are Boltzmann's constant,

tu 16

Fig. 2

and

The i n c i d e n t

electric field amplitudes

the

t e m p e r a t u r e and the p r i s m d e n s i t y r e s p e c t i v e l y . The c o m p l e t e e x p r e s s i o n s f o r t h e p a r a m e t e r s i n e q u a t i o n s 4-10 a r e c o m p l i c a t e d , can be d e r i v e d from r e f e r e n c e 7, and w i l l be g i v e n i n d e t a i l in a subsequent paper. The s c a t t e r e d f i e l d s were e v a l u a t e d by c a l c u l a t i n g the p o l a r i z a t i o n s o u r c e s c r e a t e d by the e l a s t o o p t l c e f f e c t and s o l v i n g the p o l a r l z a t i o n - d r i v e n wave e q u a t i o n s u b j e c t to the e l e c t r o m a g n e t i c boundary c o n d i t i o n s a c r o s s the acouettcally-corrugated interfaces. As o u t l i n e d i n r e f e r e n c e s 2 and 7, a p a r t i c u l a r s o l u t i o n to the Inhomogeneous wave e q u a t i o n was found i n each medium and t h e t a n g e n t i a l f i e l d s

Er, Eml and Bs2, n o r m a l i z e d to E0 v e r s u s

Em'P(z=0,h) and Hm'P(z=0,h) were c a l c u l a t e d on

the i n c i d e n t

each s i d e o f t h e f i l m

a n g l e ~0"

x

y

boundaries

( a t z=O and

Vol.

36,

scattering (Fig. 1). For l i g h t t h e p r i s m a t t h e a n g l e ~s

Table I Ag

LaSF9

1.76 x 103 m/s

3.O4 x 103 m/s

vL

3.79 x 103 m/s

5.54 x 103 m/s

o

1.O64 x 104 Kgm/m 3

4.53 x 103 Kgm/m 3

~S

E

-16.34 - i0.144

3.46

Cll

1.527 x 1011 N/m 2

1.39 x 1011 N/m 2

c44

3.287 x iO IO N/m 2

4.18 x IO IO N/m 2

Pll

(Cm-l)/¢m 2 = Pll

O.24

P44

O

O.O15

T

300 °K

m

3.66 x 1015 r a d / s

(~=O.5145 ~m)

List of material param:ters the numerical calculations.

used i n

z-h). The B r i l l o u i n s c a t t e r e d f i e l d s c o r r e s p o n d to s o l u t i o n s o f t h e homogeneous wave e q u a t i o n with a m p l l t u d e s a d j u s t e d t o e n s u r e t h a t t h e t o t a l fields satisfy the usual electromagnetic boundary conditions across the rippled surfaces. ~ l e r e s u l t a n t f i e l d a m p l l t u d e due t o t h e e l a s t o o p t l c e f f e c t can be w r i t t e n as Ee " I & ~ A I [ E / ( h ) - E x P ( h ) ] + A2Exm(O) + A3[Hym(h)-HyP(h) ] + A4Hym(O) } where the p a r a m e t e r s A i d e s c r i b e

(7)

the coupling

b e t w e e n t h e homogeneous and inhomogeneous solutions at the boundaries, l.e. the scattering g e o m e t r y , and & i s a f i l m r e s o n a n c e t e r m . The s c a t t e r e d f i e l d due t o t h e s p a t i a l and t e m p o r a l m o d u l a t i o n o f t h e i n c i d e n t l i g h t f i e l d s by t h e acoustically-created surface ripple is Ec = 4-~AB(h,Cp)Sm(h) - B(0,1)~m(O) } Uom

(8)

where 5m(h) and ~m(0) a r e t h e normal s u r f a c e displacements at the film boundaries. The t e r m s B(z,c) deter~ne the strength of the corrugation mechanism, and a r e p r o p o r t i o n a l 2 , 6 - 7 t o t h e optical field amplitudes at the interfaces, to £-¢ where c - 1 a t z=O and ¢ - ¢ a t z - h , and t o m p v a r i o u s o t h e r o p t i c a l , a c o u s t i c a l and g e o m e t r i c factors. Due t o t h e l a r g e i n c i d e n t f i e l d e n h a n c e m : n t ( F i g . 2) a t t h e s u r f a c e p l a s : o n coupling angle, large enhancements in the Exm(O), Hym(O) and B(O,I) t e r ~

(9)

2)e

where c~ - kQS+ksin+0 , Es - Ee+Ec, u s = w±R,

incident light intensity

are also

expected. The d i r e c t i o n s c h o s e n f o r o b s e r v i n g t h e Brillouin spectrum correspond closely to back-

(I 0) as

l(ms)

ms2¢ I~sl

3.

Numerical Calculations

0.27

PI2

+k-~ z

out of

Introducing the kl a - ksin~ s and k zs , kcos~s concept of the frequency spectrum, 2,17 we finally obtain the Brillouln spectrum per unit s o l i d a n g l e (ARs)-Unit f r e q u e n c y (~s)-unit

4o0

Table I.

" ES(~

radiated

i[mst+ktSx-kzS(z-h)]

kms vT

h

997

BRILLOUIN SCATTERING FROM METAL FILMS

No. 12

(10)

and D i s c u s s i o n

N u m e r i c a l c a l c u l a t i o n s were - : d e f o r a s i l v e r f i l m d e p o s i t e d on a LaSF9 g l a s s p r i s m w i t h i n c i d e n t O.5145 ~m r a d i a t i o n . The v a l u e s of the material constants used are presented in Table I. Since the elastooptic constants of LaSF9 g l a s s a r e n o t known, t h o s e o f dense f l i n t

g l a s s t8 were used i n s t e a d : this is reasonable since the elastooptic constants of different glasses are of comparable value. Two s c a t t e r i n g g e o m e t r i e s were e x a m i n e d , b o t h of which l e d t o t h e same v a l u e o f ql and h e n c e i n v o l v e d s c a t t e r i n g from t h e sam: phonon fields. In the first, the directions of the i n c i d e n t and s c a t t e r e d l i g h t were c h o s e n to c o r r e s p o n d to c o u p l i n g to s u r f a c e plasmon modes In t h e s e c o n d , n e i t h e r o p t i c a l f i e l d c o u p l e s s t r o n g l y t o s u r f a c e plasmon : o d e s . The c a l c u l a t e d B r t l l o u t n s p e c t r u m f o r b o t h g e o m : t r l e s i s shown i n F i g . 3. When t h e i n c i d e n t and s c a t t e r e d f i e l d s a r e c o u p l e d to s u r f a c e p i s s : o n modes, an e n h a n c e m e n t o f two t o three orders of magnitude Is predicted. The calculated signal strength is several orders of m a g n i t u d e l a r g e r t h a n t h a t m e a s u r e d by S a n d e r c o c k 1! i n h i s e x p e r i m : n t s on B r i l l o u i n s c a t t e r i n g on r e f l e c t i o n from m : t a l s u r f a c e s and h e n c e s h o u l d b e r e a d i l y o b s e r v a b l e . The spectrum in the frequency region considered is b r o a d and r e l a t i v e l y f e a t u r e l e s s , a characteri s t i c t y p i c a l of B r i l l o u i n s c a t t e r i n g from m : t a l l t c media. 1-10 S t r u c t u r e a p p e a r s n e a r = quvLP(RL p) a t w h i c h f r e q u e n c y t h e Bragg condition for scattering of the incident r e f l e c t e d l i g h t by l o n g i t u d i n a l waves i n the prism is satisfied. The s p e c t r u m i s f u r t h e r c o m p l i c a t e d t h e r e by a change i n the d e n s i t y o f s t a t e s 2 , ? ( = l / q P) when the l o n g i t u d i n a l waves i n t h e p r i s m change from an e v a n e s c e n t t o a

propagating character, grillo~Ln scattering from R a y l e i g h and Sezava 19 waves s h o u l d a l s o be e n h a n c e d i n t h i s s u r f a c e plasmon g e o m : t r y , and t h i s a s p e c t w i l l be r e p o r t e d l a t e r . The r e g i o n o f t h e sample which d o m i n a t e s t h e s c a t t e r i n g was i n v e s t i g a t e d i n o r d e r t o v e r i f y t h e r o l e o f t h e s u r f a c e p l a s m : n s . The f i e l d s a s s o c i a t e d w i t h e a c h i n t e r f a c e were calculated,

i.e.

998

BRILLOUIN SCATTEEING FROM METAL FILMS

(p.--- (Po: Oo[:~z'] lo'

i

=3724"

~T ( 10" ~o/s~c) FIB. 3

The s c a t t e r i n g

cross-sectlon

l(Ws)/

lO&~sA~e as a [ u n c t l o n of f r e q u e n c y shift

~s-~O - ~ f o r t~ao s c a t t e r i n g

geometrles.

V o l . 36, No. 12

Vol. 36, No. 12

BKI.LLOUI.N SCATTERING FRON F~TAL F ILI4S

999

1o+

E~o~ lci

J

9u.t t.&-

O ILl n.-

la

J o~

tt5

ld (D+ =3724"

([)o=3O53"

9

1of

o~

1.35

.Q [ld' ~,=c] Pt.g. 4

The s c a t t e r e d

[ZT(h)l and shift

~T.

field

IzZ(o)l

contributions ver,,-

(a) $O,~m - Op,

(b) 4~0,* s It 0p.

frequency

BRILLOUIN SCATTERING FROM METAL FILMS

I000

ET(0) -~A2Exm(0)

~=RLP and

+ A4Hym(0)

_ !4B(O'i)~m(°)uoml

(ii)

which is dominated by scattering at and near the metal-air interface and ET(h) = ~Al[Exm(h)-ExP(h)] + A3[Hym(h)-HyP(h)] + 41B(h,~p)~m(h)u0 m}

(12)

which arises from scattering in the prism and metal, at and near the metal-prism boundary. As indicated in Fig. 4, the alr-metal interfaces dominate the scattering when surface plasmons are excited; otherwise the prism and the prism-metal interface region is principally responsible for the Brillouln spectrum. This result verifies that the excitation of surface plasmons is the cause for the large enhancements in the Brillouln signal. The dominant scattering mechanism, elastooptlc versus corrugation was also examined. With the exception of the frequency regions

f~Lm, t h e s u r f a c e r i p p l e

Vol. 36, No. 12 mechanism

dominates the scattering cross-section. This is in a g r e e m e n t w i t h p r e v i o u s c a l c u l a t i o n s I-5 f o r s e m l - l n f i n i t e m e t a l s c h a r a c t e r i z e d by o p t i c a l s k i n d e p t h s much l e s s t h a n a w a v e l e n g t h . In s,,m~=ry, we have shown t h a t B r i l l o u i n s c a t t e r i n g from m e t a l f i l m s i n a n ATR geometry i s e n h a n c e d when t h e o p t i c a l f i e l d s c o u p l e to surface plasmon-like excitations at the metal-alr boundary. The p r e d i c t e d s i g n a l l e v e l s a r e comparable to that of Brillouin scattering from bulk media and experiments to verify these calculations a r e in progress. Acknowledgements - We would l l k e t o t h a n k Dr. N. Rowell f o r u s e f u l d i s c u s s i o n s and a l s o acknowledge Mr. K. Muguruma f o r h i s h e l p i n t h e numerical calculations. One o f us ( G . I . S . ) thanks his colleagues at Stanford for their hospitality d u r i n g p a r t o f t h i s work. The financial support of the Canadian Natural Sciences a n d E n g i n e e r i n g R e s e a r c h Counc11 i s g r a t e f u l l y acknowledged.

References

IR. Loudon, P h y s . Rev. L e t t . 40, 581 ( 1 9 7 8 ) . 2N.L. Rowell and G . l . Stegemen, S o l i d S t a t e Comm. 2 6 , 809 ( 1 9 7 8 ) ; P h y s . Rev. BI8, 2598

3(1978).

K.R. Subbaswamy and A.A. N a r a d u d l n , Phys. Rev. B18, 4181 ( 1 9 7 8 ) . ~V. B o r t o l a n i , F. N i z z o l i and G. S a n c o r o , Phys. Rev. Lett. 4 1 , 39 ( 1 9 7 8 ) . 5A. Derv£sch a n d R. Loudon, J . Phys. C: S o l i d S t a t e Phys. 11, L291 ( 1 9 7 8 ) . 6G.I. Stegeman, J . Appl. P h y s . ~ , 5624 ( 1 9 7 8 ) . 7N.L. Rowell, 1978, Ph.D. T h e s i s , U n i v e r s i t y o f Toronto (unpublished). 8J.G. D i l and E.M. Brody, P h y s . Rev. B14, 5218 (1976). 9S. ~ttshra and R. B r a y , P h y s . Rev. L e t t . 3__99, 222 ( 1 9 7 7 ) ; S o l i d S t a t e Comm. 32, 621 ( 1 9 7 9 ) ; I b i d 33, 281 ( 1 9 8 0 ) . IOv. B o r t o l a n i , F. N i z z o l i , G. SanCoro, A . M a r v i n

and J . R . S a n d e r c o c k , Phys. Rev. L e t t . 4 3 , 224 (1979). l l J . R . S a n d e r c o c k , Solid State Comm. 26, 547

(1978).

12R. T. H a r l e y and P.A. F l e u r y , J . Phys. C: S o l i d S t a t e P h y s . 12, L863 ( 1 9 7 9 ) . 13For e x a m p l e , s e e E. B u r s t e i n , W.P. Chen, Y . J . Chen and A. H a r t s t e i n , J . Vac. S c i . T e c h n o l . 11, 1OO4 ( 1 9 7 4 ) . I ~ H . J . Simon, D.E. ~Lttche11 and J . G . Watson, Amer. J . Phys. 43, 630 ( 1 9 7 5 ) . 15H.j. Simon, R.E. Benner and J . G . Rako, Opt. Comm. 23, 245 ( 1 9 7 7 ) . t 6 y . j . Chen and E. B u r s t e i n , Nuovo Cimento 39B, 807 ( 1 9 7 7 ) . 17G.B. Benedek and K. F r l t s e h , Phys. Rev. 149, 647 ( 1 9 6 6 ) . ISR.J. P r e s s l e y , 1971 CRC Handbook o f L a s e r s (The Chemical Rubber Co.) p . 481.