PATRAS LOGIC SYMPOSION GMetakidex (ed.) @North-Holland Publishing Cornpony. 1982
159
SYMMETRIC GROUPS AND THE OPEN SENTENCE PROBLEM Verena Huber-Dyson U n i v e r s i t y o f Calgary Calgary, A l b e r t a Canada
1.
INTRODUCTION The elementary t h e o r y o f a c l a s s
w
w i l l be denoted by TK.
and
K
o f structures o f f i x e d s i m i l a r i t y type
w i l l stand f o r the sets o f q u a n t i f i e r f r e e
3K
formulas whose u n i v e r s a l o r e x i s t e n t i a l c l o s u r e s b e l o n g t o
IQ
TK,
w h i l e we w r i t e
f o r t h e s e t o f t h o s e t h a t a r e s a t i s f i a b l e i n some K - s t r u c t u r e .
problem f o r
VK
i s what T a r s k i c a l l s t h e open sentence problem f o r
e q u i v a l e n t t o t h e d e c i s i o n problem f o r
The'decision
K.
t h e e q u a t i o n problem f o r
K3,
K, i n
Macintyre's terminology.
If
all finite
t h e n b o t h 'dK and Kf 3 a r e r e c u r s i v e l y enumerable, and
K-structures,
TI(
i s f i n i t e l y a x i o m a t i z a b l e and Kf
It i s
Xf 3 i s d i s j o i n t f r o m t h e s e t
consists o f
o f a l l n e g a t i o n s o f WK-formulas.
If K
is
closed under d i r e c t p r o d u c t s i t s e q u a t i o n problem reduces t o simultaneous s a t i s f i a b i l i t y of f i n i t e systems o f e q u a t i o n s t o g e t h e r w i t h one i n e q u a t i o n . Let
6, F
and B
s t a n d f o r t h e c l a s s e s o f a l l groups, o f a l l f i n i t e groups
and of a l l f i n i t e symmetric groups,
Sn, n
E
N,
denote t h e group of a l l permuta-
t i o n s o f f i n i t e s u p p o r t on a c o u n t a b l y i n f i n i t e s e t by c l a s s o f a l l i n f i n i t e models o f lem
TK.
Su,
and w r i t e
K,
for the
The u n d e c i d a b i l i t y o f t h e open sentence prob-
f o l l o w s f r o m t h e u n s o l v a b i l i t y o f t h e word problem f o r group t h e o r y .
In
1961, 111, Cobham proved t h e h e r e d i t a r y u n d e c i d a b i l i t y o f t h e t h e o r y o f f i n i t e symnetric groups and w i t h i t t h e u n d e c i d a b i l i t y o f f i r s t o r d e r f i n i t e group t h e o r y . I have been i n t r i g u e d by t h e open sentence problem f o r t h a t t h e o r y s i n c e 1963, [21. Since e v e r y f i n i t e group i s embeddable i n a s u f f i c i e n t l y l a r g e s y m n e t r i c one and
Su i s t h e u n i o n o f an ascending c h a i n o f c o p i e s o f t h e Sn's
we have
V. HUBERDYSON
160
More u s e f u l t h a n
So
i s i t s e x t e n s i o n by an automorphism t h a t c y c l i c a l l y p e r -
mutes a g e n e r a t i n g s e t o f t r a n s p o s i t i o n s . t r a n s p o s i t i o n and an i n f i n i t e c y c l e .
T h i s group
S
i s generated by a s i n g l e
T h a t i t s open t h e o r y c o i n c i d e s w i t h
\If: was
Here I s h a l l show how elementary a r i t h m e t i c can be d e f i n e d i n
proved i n [ 3 1 .
S
u s i n g e x i s t e n t i a l p r e d i c a t e s o f t h e language o f group t h e o r y e n r i c h e d by two constants for the generators.
From t h e u n s o l v a b i l i t y o f H i l b e r t ' s t e n t h problem, [51,
follows t h e u n d e c i d a b i l i t y o f t h e open sentence problem f o r S i n t h e extended language.
The f i r s t group t o which t h i s t y p e o f argument was a p p l i e d was t h e two [6].
g e n e r a t o r r e l a t i v e l y f r e e group o f n i l p o t e n c y c l a s s two,
Observe however t h a t
t h e open t h e o r y o f t h a t group i s a p r o p e r e x t e n s i o n o f t h e open t h e o r y o f n i l p o t e n t groups o f c l a s s two, which i s i n f a c t d e c i d a b l e , s i n c e i t i s a x i o m a t i z a b l e and n i l p o t e n t groups a r e r e s i d u a l l y f i n i t e .
The open sentence problem f o r t h e c l a s s o f
a l l n i l p o t e n t groups on t h e o t h e r hand i s s t i l l open t o o . Although I have n o t been a b l e t o e l i m i n a t e t h e two c o n s t a n t s w i t h o u t s p o i l i n g t h e s i m p l i c i t y o f t h e i n t e r p r e t a t i o n , t h e r e a r e a few i n t e r e s t i n g c o r o l l a r i e s , and a r e c o n s t r u c t i o n o f Cobham's r e s u l t , structure o f
S
[ l ] .I hope t h a t a deeper a n a l y s i s o f t h e
and of how i t encodes a r i t h m e t i c and t h e t h e o r y o f f i n i t e symmetric
groups w i l l improve t h e r e s u l t s below.
2.
THE GROUPS I t i s w i s e here t o d e a l w i t h c o n c r e t e groups r a t h e r t h a n w i t h isomorphism
types.
Our p e r m u t a t i o n s range o v e r t h e group
of t h e i n t e g e r s and
fi o f a l l b i j e c t i o n s on t h e s e t
stands f o r t h e subgroup o f
We s h a l l need t h e t r a n s p o s i t i o n
T =
(O,l),
for
i
E
2,
the basic cycles o f order
for
n
E
N,
t h e successor
p:i
H
n+l
generated by t h e s e t
i t s s p e c i a l conjugates 5, = (0,1,
i+land t h e groups
....n ) ,
c-,
T~
Z UC 0.
= (i,i+l),
= (0,-1.
...,-n),
161
Symmetric Groups and the Open Sentence Problem
The p e r t i n e n t p r o p e r t i e s o f these groups and permutations a r e c o l l e c t e d in the next t h r e e lemnas in an o r d e r t h a t leads r i g h t u p t o t h e lemnas of the next s e c t i o n . They a r e easy t o prove, [ 3 ] , by d i r e c t c a l c u l a t i o n s and inspection of diagrams. We use t h e abbreviation [x,y] f o r t h e commutator x-'y-'xy, the derived subgroup of c e n t r a l i z e r of
x
write U '
U generated by i t s commutators and w r i t e Z(G,x) W e c a l l an extension R '
in t h e group G.
for for the
o f a presentation
by a s e t of negations of equations complete i f t h e diagram o f th8 group
gp c o n s i s t s of consequences of
R'.
For b r e v i t y we indulge i n t h e abomination
o f concatenating equations. LEMMA 1.
(i)
S
i s the extension of
phism induced by the cyclic permutation (ii) S'
= S ,;
S' =
-
Su 'li
by its outer automorT
{[x,y] ]x,ycS}, S u = S ' U T S ' , and
normal subgroup of Sw (iii) z(s,p) = < p > , Z(S,pcil)
=
o f ~the generators,
~
+
S'
and of S, xSn, and Z(S,pkr)
(iv)
z(sn+l,c.n) = , Z(Sn+l,
(v)
every permutation in
=
is a mhimal = < PkT >
for k # 0,
< ckn ~ > ,for O
S has finite o r cofinite support and
finitely many orbits.
LEMMA 3. The following presentations hold for
T,
p,
a,b,c: S = gp, Sn+l
=
gp
5, interprerhg
,..., [a,cn-1I2,cn+l~t,)-n>.
V. HUBER-DYSON
162
The addition of the inequation [ a , b ] # l or [a,cl#l t o t h e above sets of relations makes the presentations complete.
3.
THE PREDICATES Extending t h e language
and
b
L
o f group t h e o r y by adding two c o n s t a n t symbols
t o t h e p r i m i t i v e s 1, * and
-'
we o b t a i n a language
L'
a
i n which we s h a l l
use t h e f o l l o w i n g terms and p r e d i c a t e s x'=b-'xba,
'x=bxa-lb-',
vO(x,y)'1, vk+l(x>Y)'(vk(x,y))' k=vk(a,b)=b- k (ba) k ,
I
vk,1(x3Y)"(vk(x>Y))
-
D(x,y) : [x,bl =[xy,bal= [ y , ~ - ~ a x ~[y,(xb)]= 1a x b l = l , C(x): (3z)D(z,x),
N(x) : (3z)D(x,z),
E(x ,y) : (3 z)(D(z,x)
& [y,x'b-ll = [ ~ , z - ~ a z ~ l = l ) ,
( 3 u ) ( 3 v ) ( D ( u S x ) & D(v,Y) & D(uv,z)),
Z(X,Y.Z):
: (3u) (3 v ) (3w) ( 3 r ) ( 3 s ) (3 t ) ( ( x = z = l ) v ( y = z = l )V(D(u ,x) & D(v,y)
n(x,y,z)
& D(w,z)
& D ( v 2 , r o ) & E ( r , s ) & t r , s l = [ v w t - 1s t , u b a l = l ) . The r e s t o f t h e p r e d i c a t e s belong t o
L
itself:
T ( x ) : x 2 =1 & ( W Z ) ( [ x , z ] = ~ ~ [ x , z ] ~ = ~ ~ [ x , z ] ~ = ~ ) , S(x,y):
T ( x ) & [x,y] 3 =1 & [ x , y ] # l & (Wz)( [ z , y l = l
G(x,Y):
S(X,Y) & ( W t ) - S ( t , y t ) ,
I(x,y):
(3t)(S(t,x)
D(x,Y):
I(Y,xY-'),
& S ( t i Y t ) & (Ws)(S(s,ts)
=> z=yVZ=y- 1V [ x , Z I 2 = l ) ,
& -S(s,ys)
& t s , y l # l => S(S,XS))),
Sm(x,y,z):
( 3 r ) ( 3 s ) ( 3 g ) ( I ( r - 1xr,s- 1y s ) & z - l = g - l z g = r - 1x r s - 1y s ) ,
Pr(x,y,z):
( 3 t ) ( 3 g ) ( 3 r ) ( 3 ~ ) ( 3 ~ ) ( 3 ~ ) ( 3 hk ))((S3( t , z ) & S(t,r-'xr)
8 S(t,s-'ys)
& O(z,r-'xr)
& z-'=g-lzg & o(z,s-'ys)
& [u,z] =[v,z]= [ u x ' , z t I = [ v y ' , z t ] = [ u x ' t , z - ' k - ' v y '
R2(x,y): Rn+l(x,Y):
2 3 x =1 & [x,yl =1 & I x , y l # l , Rn(x,y)
'where x '
, y'
k ] = [ v y ' t , z - l h - ' u x ' h ] =1) 1
are short f o r
r - l x r , s- 1y s .
& tX,Y n 1 2
A s t r a i g h t f o r w a r d a p p l i c a t i o n o f t h e lemmas o f 12 e x p l a i n s t h e meaning of t h e s p r e d i c a t e s f o r t h e groups
Sa, where
t e g e r s l a r g e r than 6, and
s,=~.
CY
ranges o v e r
w, w + l
and a l l p o s i t i v e i n -
163
Symmetric Groups and the Open Sentence Problem
I f the constants
LEMMA 4. t,,,
a
and
b
a r e i n t e r p r e t e d by
and
T
t h e n , i n t h e g r o u p S a + l , t h e e l e m e n t s 5 , 0 and 5
6 < a 5 w,
satisfy the predicate D(x,y)
iff
E = c 9 and
C(X)
iff
E=cq,
E(x,y)
iff
c=< 9
C(x,y,z)
iff
5=cp,
n=cq
5=cP,
9
f o r some qcN w i t h 2 q < a , 9' f o r s o m e qcN w i t h 2 q < a , rl=<
and r l ~ S ~ + f o~r ,some qcN w i t h Zqca, and c = <
and II(x,y,z)
iff
f o r some p , q ~ Nw i t h 2 p , 2 q < a ,
P+9'
and < = < P'9'
f o r some p , q ~ Nw i t h 2 p , 2 q < a .
The next two lemmas deal with the language
of a permutation
IT
o f groups.
The support
consists of a l l points t h a t are moved by i t .
a single o r b i t o f cardinality larger than one. i s a subset of
L
151 on which the action of
A cycle
The o r b i t o f a sub cyc1e;rl coincides with t h a t of
rl
for a t the single point in which the supports o f
rl
and
En-'
,€
5 has of
5
5 except
intersect.
of length one has t r i v i a l action, the length of a non t r i v i a l cycle
In[
A cycle
coincides
with the cardinality of i t s support and with i t s order, the predecessor of which we denote by LEMMA 5.
v(E).
For 6 < a 5 o + l :
(i)
S a I= T ( S )
(ii)
Sa b S ( c , r l )
€,ES is a transposition, i.e.,
iff
iff
=s
B+1'
€, i s c o n j u g a t e t o
f o r some B < a , by a n i n n e r a u t o m o r -
phism i n c a s e B
Sa C I ( € , , r l )
iff
=Sa+l,
( i i i ' ) So k (WX)(WY)-G(X,Y),
iff
t h e s u p p o r t s o f t h e c y c l e s 5 and
iff
rl
i n one p o i n t , (v)
Sa C O(€,,rl)
LEMMA 6.
5= 1
iff
If 6 < a
5
i s a sub c y c l e of t h e c y c l e w + l and c,q,c
E
Sa+l,
€, i s a f i n i t e c y c l e w i t h v(€,)=O,
( I t ) ( 3 g ) (3h) ( S ( t , t ( )
& n=g-'t€,g=h-'n-'h)
then
5.
n intersect
V. HUBER-DYSON
164
4.
COBHAM'S THEOREM Lemma 6 shows how t o define predicates
for ncN, Sc, Sm*, Pr* and O* in Cn, the language of groups so t h a t the axioms of the fragment Ro of arithmetic become true in every i n f i n i t e model of the theory of f i n i t e symmetric groups.
Ro
encodes
the diagram of the arithmetic of the natural numbers under successor, addition, multiplication and the natural ordering, using predicates rather t h a n terms and has the additional axioms
(Vx)
- O*(x,l)
and
(Wx)(Yy)(Vz)(Cn(x)& Sc(x,z) & O*(y,z) => Cn(y)VO*(y,x)), f o r Every f i n i t e subset of
i s undecidable.
Ro
has f i n i t e models, b u t every theory compatible
embeds a copy o f
S
Using the f a c t t h a t every s u f f i c i e n t l y large alternating group
n v i a . t h e diagonal Sn
nating groups where the cycles
<,
with Ro
For a discussion and a proof yielding stronger r e s u l t s the reader
i s referred t o [8].
of
ncN.
+
SnxS,
Lemma 6 can be proved f o r a l t e r -
a r e replaced by products of two d i s j o i n t copies
and we arrive a t
THEOREM 1 (Cobham). Every c l a s s o f g r o u p s t h a t c o n t a i n s i n f i n i t e l y many f i n i t e s y m m e t r i c o r a l t e r n a t i n g g r o u p s h a s a n u n d e c i d a b l e element a r y theory. I t follows t h a t the theories of f i n i t e groups, simple groups, many more.
of monotlithic
of complete groups,
of f i n i t e
and o f periodic groups are a l l undecidable, and so are
Note however t h a t Mal'cev's r e s u l t [4] of the hereditary undecidability
o f the theory of f i n i t e groups of exponent p , f o r prime p > 2 , and of nilpotency
Symmetric Groups and the Open Sentence Problem
165
class 2 i s not covered by Cobham's theorem.
5.
THE UNDECIDABILITY OF Neither of t h e groups
AND
S
Sw.
In
i s a model f o r t h e theory of f i n i t e groups.
S , Sw
f a c t t h e i r t h e o r i e s a r e compatible with t h e f i n i t e l y axiomatizable e s s e n t i a l l y undecidable fragment Q
of a r i t h m e t i c .
Thus t h e u n d e c i d a b i l i t y of t h e i r elementary
theories follow by t h e c l a s s i c a l methods o f [ 7 ] . relativize t o the predicate N
For
S
i t i s most convenient t o
and use Lemma 4 t o obtain an i n t e p r e t a t i o n of
in the i n e s s e n t i a l extension of the theory TS by t h e constants Sw
relativize t o the predicate
Lemma 6.
a
Q
and b.
For
( 3 z ) S ( z , x ) and use t h e predicates introduced in
The c r u c i a l d i f f e r e n c e between i n f i n i t e models of t h e theory of f i n i t e
symnetric groups and
lies i n Lemma 5 ( i i i ) , ( i i i ' ) .
Sw
i n t e r p r e t a t i o n s of the axioms of f i n i t e group theory and
Ro
Q
The conjunction of the
i s of course t h e negation of a theorem of
has t o be used f o r Cobham's proof, but i n
So
every
cycle has a "successor", and a l l "sums" and "products" e x i s t .
THEOREM 2.
The e l e m e n t a r y t h e o r i e s o f b o t h t h e g r o u p o f a l l p e r -
m u t a t i o n s o f f i n i t e s u p p o r t o n an i n f i n i t e s e t a n d i t s e x t e n s i o n b y a f i x p o i n t f r e e cycle are h e r e d i t a r i l y u n d e c i d a b l e .
6.
THE EQUATION PROBLEM FOR SYMMETRIC GROUPS WITH A DISTINGUISHED PAIR OF GENERATORS Lemma 4 shows how t o a s s o c i a t e w i t h every polynomial equation
integral c o e f f i c i e n t s and v a r i a b l e s $ ( a , b ) of t h e language
L'
f r e e v a r i a b l e s x1 ,...,xk,yl
nl
,...,n k
and only i f
S = Su+l.
t h e equation
x1 ,. . . ,xk,y,
,. . . ,yh
an e x i s t e n t i a l formula
of groups enriched by two constants
,...,y h
P(nl
a, b
and w i t h
such t h a t , f o r every choice o f natural numbers
,..., nk,yl ,...y h )
$(nl,...,n+,yl ,...,y h )
P w i t h positive
has a n o n t r i v i a l s o l u t i o n i n
N
if
i s s a t i s f i a b l e i n t h e permutation group
The u n s o l v a b i l i t y of H i l b e r t ' s t e n t h problem, [51, thus e n t a i l s t h e un-
d e c i d a b i l i t y of t h e equation problem f o r
S
in terms of the generators
T
and
B u t a b i t more can be s a i d upon s c r u t i n y of the language introduced i n 53. All
p.
166
V. HUBER-DYSON
terms t h a t occur in I) will be of t o t a l exponent zero in words of the form v(a,b) s a t i s f i a b l e in
S
t h a t in f a c t belong t o Sw,
so t h a t our formula i s
iff
Sw+l k ~ ( n , ( a , b ),...,~ , ( a , b ) q, ( a , b ) f o r some ml, ...,m h
and the solutions are
b
E
N.
,..., rn+(a,b))
B u t then, there i s an integer
q
(d
such t h a t
Sq+l k I ) ( q ( a , c ),. . . , s ( a , c ) , q ( a , c ) ,. . . ,rn+(a,c)).
q
(9)
d i l l be a p a r t i a l recursive function of the n ' s with the property t h a t i f
(w)
holds then the sentence on the r i g h t will be a logical consequence of the f i r s t q
if
defining relations of
(9)
r > q,
[a,b] # 1 .
and the inequation
So+l
holds f o r a formula of the form indicated, then so will including
w.
On the other hand, (r)
for a l l
Noting the recursiveness of the presentations involved and
modifying the notation of I1 by writing
W', 3'
where the language
i s con-
L'
cerned and attaching a subscript 0 i f we mean r e s t r i c t i o n t o formulas in which only terms of t o t a l exponent 0 i n b
occur we find t h a t
5 30' = 5m3O' = 3$
m
= 3;
s
and t h a t a l l these s e t s are recursively enumerable b u t n o t recursive.
I t follows
t h a t the s e t s 53', 3'5, and 3's a r e recursively enumerable b u t n o t recursive and
t h a t none of the s e t s in the following sequence i s recursive S3' 3 Sm3'
2
3 ' S m 3 3'S3 3 '
V ' g c V'SmC W'S
To see t h a t the inclusions are proper note t h a t b
b9 = 1
in only f i n i t e l y many
Sn's,
i s a commutator in i n f i n i t e l y many b u t n o t in almost a l l of them, for fixed
n , m , c(n,m,y) b
.
s
i s s a t i s f i a b l e i n almost a l l symmetric groups b u t n o t in a l l , and
i s conjugate t o i t s inverse in a l l f i n i t e symmetric groups b u t n o t in
S.
THEOREM 3. The s e t s o f q u a n t i f i e r f r e e f o r m u l a s o f t h e l a n g u a g e o f
g r o u p t h e o r y e n r i c h e d by t w o c o n s t a n t s - - i n t e r p r e t e d by a t r a n s p o s i t i o n and a maximal c y c l e
--
t h a t a r e s a t i s f i a b l e i n some, i n a r b i t r a r -
i l y l a r g e o r i n almost a l l f i n i t e symmetric groups a r e u n d e c i d a b l e , and so i s t h e e q u a t i o n p r o b l e m f o r t h e g r o u p S,
S.
The o p e n t h e o r i e s o f
o f a l m o s t a l l f i n i t e s y m m e t r i c g r o u p s and o f a l l f i n i t e s y m m e t r i c
Symmetric Groups and the Open Sentence Problem
167
groups in the extended language are not recursive. The p r e d i c a t e
E
o f 53 a l l o w s a r e l a t i v e i n t e r p r e t a t i o n o f t h e t h e o r i e s o f
a l l f i n i t e symmetric groups, o f a l l f i n i t e a l t e r n a t i n g groups and o f almost a l l f i n i t e symmetric groups i n t h e t h e o r y o f t h e group
A p p l i c a t i o n s w i l l be i n v e s -
S.
t i g a t e d elsewhere,
7.
REDUCTION TO THE LANGUAGE OF GROUP THEORY I t should be p o s s i b l e t o sharpen theorems 1, 2 and 3, b u t a t t h i s p o i n t t h e
f o l l o w i n g remarks w i l l have t o s u f f i c e .
U s i n g Lemna 5 ( i i i ) and t h e a s s o c i a t i o n o f
86 between p o l y n o m i a l e q u a t i o n s and f o r m u l a s b u i l t up from t h e p r e d i c a t e s and terms
o f 83 one f i n d s t h a t t h e s a t i s f i a b i l i t y i n some f i n i t e symmetric group of t h e 3W3formula
(3a)(3b)(G(a,b)
,... ,n+.y ,,... ,yh))
i s equivalent t o t h & s o l v a b i l i t y
& $J(~I~
of t h e corresponding d i o p h a n t i n e problem.
Moreover, due t o t h e form of
$J.
the
formula i s s a t i s f i a b l e i n some f i n i t e symmetric group i f and o n l y i f i t i s so i n almost a l l o f them and a l s o i n t h e group
THEOREM 4.
S.
The W3W-theories of finite symmetric groups, of almost
all finite symmetric groups and o f the group
S
of permutations gen-
erated by a transposition and a fixpoint free cycle on an infinite set are not axiomatizable. o f 83 and t h e f a c t t h a t 9 t h e u n i v e r s a l t h e o r y o f a l l f i n i t e groups c o i n c i d e s w i t h t h a t o f 5, [3], one o b t a i n s
W i t h t h e p r e s e n t a t i o n s o f Lemma 3, t h e p r e d i c a t e s
R
THEOREM 5. For any quantifier f r e e formula
H
groups let
of the language of
abbreviate the W3-sentence 9 (Vx)(Vy)(Rq(x,y) =' ( 3 2 1 ) ...(3zk)H(x,y,zl,...,zk))'
(i)
H
For each positive integers
q , either
symmetric group of degree greater than of group theory for all
q,
H
9
fails in some finite
or e l s e
Hr
is a theorem
r 2 q.
(ii) The set of quantifier free formulas
H
for which
H is, for 4
V. HUBER-DYSON
168
q, a theorem o f finite group theory is recursively enumerable
some
but not recursive. Finally, the presentation f o r
S
on
exponent z e r o i s an elementary p r o p e r t y o f troducing the predicate (WZ)(X
2
and
T
and t h e f a c t t h a t b e i n g o f
p,
as an element o f
p
S
justifies in-
A(x,y):
2 2 1 = l & [ x ,y13=1& [x ,y1 f l & y f z & ( [ z ,y1 = l & z = l = > z = l ) & ( [z, y1=1=>z=yz=y- v [ z , x l 2 = 1 ) f .
Any two elements o f a group isomorphic t o
S
and
G
that satisfy
A
in
G
w i l l generate a subgroup
A ( T , ~ ) holds i n the f r e e product o f
S
w i t h any group.
From 56 and Theorem 2 o f [3] one o b t a i n s a theorem t h a t , amusingly, has t h e undec i d a b i 1 it y o f Wsgrouptheory as a c o r o l l a r y . THEOREM 6.
by the axiom arithmetic.
The extension (3x)(3y)A(x,y)
T
of the elementary theory of g r o u p s
is compatible with the fragment
Q
of
Its universal theory coincides with that of all groups
and is undecidable while the existential closures of exactly those quantifier f r e e formulas that are finitely satisfiable are theorems of
T.
The set of quantifier free formulas
(Wx) (Wy) (A(x,y) = > (3 zl).
,
H
for which
. (3zk)H(x,y,zl,. . . ,zk))
grouptheory is not recursive.
is a theorem o f
Symmetric Groups and the Open Sentence Problem
169
REFERENCES
A . Cobham, Undecidability in group theory, AMS Notices, vol 9 (1962), 406. V. Huber-Dyson, The word problem and r e s i d u a l l y f i n i t e groups, AMS Notices, vol 11 (1964), 743. V. Huber-Dyson, A reduction of the open sentence problem f o r f i n i t e groups, t o appear in t h e B u l l e t i n of t h e LMS, vol. 13.
A. I . Mal'cev, The u n d e c i d a b i l i t y of t h e elementary theory of f i n i t e groups,
Dokl. _ _ Akad. Nauk, SSSR 138 (1961), 771-774.
Y.
v.
Dokl. Akad. Matiyasevich, Enumerable s e t s a r e Diophantine, - Mauk. -
SSSR 191 (1970), 279-282.
C . F. M i l l e r 111, Some connections between H i l b e r t ' s 10th problem and t h e theory of groups, i n m p r o b l e m s , ed. W . W . Boone, F. 8. Cannonito and R . C . Lyndon, North Holland Co. 1973. A . T a r s k i , A . Mostowski and R. M . Robinson, Undecidable Theories, North Holland Co. 1953. R . L . Vauaht. On a theorem o f Cobham concernina undecidable t h e o r k s . i n t h e Philosophy of Science, ed. E . Nagel, P . Suppes and A. T a r s k i , Stanford Univ. Press 1962.
w ,Methodology and