Accepted Manuscript Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An Indication for collision between Arabian and Eurasian plates
Mustafa Açlan, Yusuf Altun PII:
S1464-343X(18)30051-7
DOI:
10.1016/j.jafrearsci.2018.02.019
Reference:
AES 3151
To appear in:
Journal of African Earth Sciences
Received Date:
19 September 2017
Revised Date:
21 February 2018
Accepted Date:
22 February 2018
Please cite this article as: Mustafa Açlan, Yusuf Altun, Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An Indication for collision between Arabian and Eurasian plates, Journal of African Earth Sciences (2018), doi: 10.1016/j.jafrearsci.2018.02.019
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An Indication for collision between Arabian and Eurasian plates Mustafa Açlana,* and Yusuf Altuna aVan
Yüzüncü Yıl University, Department of Geological Engineering, Van, Turkey
ABSTRACT The Esenköy pluton which is situated in the East Anatolian Accretionary Complex (EACC) is represented by I-type, metalumino, calc-alkaline, VAG+syn-COLG, gabbro, diorite, quartz diorite, tonalite and granodiorite type rocks. This paper presents the characteristics of the above granitoids on their major, trace, rare earth elements (REE) and their zircon U–Pb dating. Zircon U-Pb crystallisation ages for gabbro, tonalite and granodiorite are 22.3 ± 0.2 Ma, 21.7 ± 0.2 Ma and 21.8 ± 0.2 Ma respectively. Esenköy granitoids show medium and high-K calc-alkaline character, with six exceptional K-poor sample plot in tholeiitic series field. The Rb/Y-Nb/Y diagram for Esenköy granitoids display subduction zone enrichment trend. The data which obtained from major, trace and REE geochemical characteristics and 206Pb/238U
ages indicate that the collision which is take place between Arabian and Eurasian
plates along the Bitlis-Zagros suture zone has begun in the Early Miocene (Aquitanian) or before from Early Miocene. Keywords: Esenköy pluton, Syn-COLG, I-type, U-Pb dating, Accretionary Complex, East Anatolia
*Corresponding author. E-mail address:
[email protected] (M.Açlan).
ACCEPTED MANUSCRIPT 1. Introduction The Eastern Anatolia is a very exceptional area with volcanic and magmatic activity. These activities are the result of the collision between Arabian and Eurasian plates. The last part of the ocean floor of the southern branch of the Neotethyan ocean was extinguished along the Bitlis-Zagros suture zone during by Late Miocene (e.g. Şengör and Kidd, 1979; Şengör and Yılmaz, 1981; Şengör et al., 2008; Dewey et al., 1986). The collision between Arabian and Eurasian plates has started in Serravalian (~13-11 Ma; Middle-Late Miocene) (Şengör and Kidd, 1979; Şengör and Yılmaz, 1981; Dewey et al., 1986). Although there are many studies on collision related volcanism in Eastern Anatolia region (e.g. McKenzie, 1972; Innocenti et al., 1976, 1980, 1982; Yılmaz et al., 1987; Pearce et al., 1990; Ercan et al., 1990; Yılmaz, 1990; Keskin, 1994; Westaway, 1994; Keskin et al., 1998; Buket and Temel, 1998; Yılmaz et al., 1998; Gök et al., 2000, 2003; Al Lazki et al., 2003; Keskin, 2003, 2007; Şengör et al., 2003; Özdemir et al., 2006, Barazangi et al., 2006; Keskin et al., 2006; Şengör et al., 2008; Çolakoğlu et al., 2014; Oyan et al., 2016; Rolland, 2017), the study on magmatism is limited. The K-Ar ages of the post-collisional Sarıçimen pluton in East Anatolian Accretionary Complex (EAAC) (Şengör et al., 2003) range from 12.6 to 11.9 Ma (Çolakoğlu and Arehart, 2010). Apatite fission track ages of the meta-sediments from Bitlis-Pütürge metamorphics imply to Early-Middle Miocene (13-18 Ma) for the collision between the Taurides and the Arabian platforms (Okay et al., 2010). In the Southeast Anatolia, the apatite fission track data show that the continent-continent collision between the Tauride and the Arabian platform has begun in Oligocene (Earliest Miocene?) and the breakoff the subducted slab and the delamination process caused fast uplift of the Eastern Anatolia during Middle to Late Miocene (Karaoğlan et al., 2016). Similarly, the Ar-Ar ages from the Mescitli granitoid in East Anatolian Accretionary Complex indicate that initiation of the collision between the
ACCEPTED MANUSCRIPT Arabian and Eurasian plates should be took place before/around ~23 Ma (Aquitanian-Early Miocene) (Oyan, 2017). This all indicate a very fast uplift of the Eastern Anatolia. This paper is focused to find out petrographical and geochemical properties of granitoid rocks from the Esenköy pluton. Additionally, it aims to contribute to understanding tectonomagmatic evolution of the Eastern Anatolian region. 2. Geological background The Area which is located east of Karlıova triple junction is called East Anatolian Accretionary Complex (EACC) (Şengör et al., 2003). The N-S compressional tectonic regime dominates in this region (Bozkurt., 2001) (Fig 1). Paleozoic-Lower Mesozoic metamorphic rocks form the basement in Eastern Anatolian Region (Perinçek, 1980; Yılmaz et al.,1993). The EAAC contains Upper Cretaceous-Oligocene ophiolitic melange (Ketin, 1977; Yılmaz et al.,1993) and flysch. These units are produced by depletion of southern branch of Tethyan oceanic litosphere (Şengör and Yılmaz, 1981). This complex also contains Eocene-Lower Miocene oceanic sedimentary rocks (Şaroğlu and Yılmaz, 1986; Şengör and Yılmaz, 1981; Şengör et al., 2008) together with Middle-Miocene and younger calc-alkaline to alkaline volcanic rocks (Innocenti et al., 1980; Yılmaz et al., 1987; Keskin, 2003; Şengör et al., 2008). In addition Pliocene-Quaternary volcanic products are widespread in this region (Keskin, 2003; Özdemir et al., 2006; Şengör et al., 2008; Oyan et al., 2016). The Esenköy pluton crops out in EAAC. The length and width of the pluton are approximately 5 km and 2 km respectively. Upper Cretaceous Kağızman complex form basement in the study area. This unit is cut by Lower Miocene aged Esenköy granitoids. Esenköy pluton comprise gabbro, diorite, quartz diorite, tonalite and granodiorite. The contact relations of granitoids to each other are usually compatible. Gabbro, diorite and quartz diorites are situated south of the pluton. Toalite and granodiorites took place north of the pluton (Fig. 1). The Esenköy granitoids are overlain unconformably by Pliocene aged Oğlaklı
ACCEPTED MANUSCRIPT conglomerate. This unit is overlain concordantly by Pliocene-Quaternary Gözucu volcanics which contain basalt, andesite trachyandesite and dacite. This unit is overlain concordantly by Pliocene-Quaternary Yukarıdumanlı pyroclastics which comprise vitric tuff and ignimbrite. The youngest lithology in the study area is alluvium. 3. Material and analytical technique Twenty five samples of the different granitoid rocks from Esenköy pluton were selected for geochemical analysis. These samples were analyzed at ACME Analytical Laboratories (Canada). Major and trace element analyses were carried out with ICP-ES method and REE analysis was made with ICP-MS. Element concentrations were determined with respect to STD GS 311, STD GS910-4, STD OREAS45EA, STD DS10, STD SO 18 standards. Zircon U–Pb dating and trace element analysis of three samples (Y-30, Y-82, Y-90) were conducted at the Mineral Laser Microprobe Analysis Laboratory (Milma Lab.), China University of Geosciences, Beijing. Laser sampling was implemented using a NewWave 193UC type excimer laser ablation system. The ablated material was transported in carrier gas into the plasma source of an Agilent 7900 ICP-MS. The standard silicate glass NIST SRM610 was used as an exterior standard of elemental abundance. Zircon 91500 (Wiedenbeck et al., 2004) was used as an exterior standard for particle separation and elemental fractionation correction for U-Pb dating. Zircon standard GJ-1 (Jackson et al., 2004) and Plesovice (Slama et al., 2008) were analyzed as unknown samples. Off-line excerption and consummation of background and analyte pulses, time-drift confirmation and perceptible calibration for trace element analyses and U-Pb dating were executed by ICPMSDataCal software (Hu et al., 2012; Liu et al., 2008, 2010a, 2010b). Common Pb corrections were computed using ComPbCorr#3.17 (Andersen, 2002) and concordia diagrams and plots were made applying Isoplot (Ludwig, 2001).
206Pb/238U
nominal mean
ACCEPTED MANUSCRIPT 4. Petrography Esenköy pluton mainly contains diorite, gabbro, quartz diorite, tonalite and granodiorite type rocks. Gabbro is fine grained and has a hypidimorphic
granuler texture. It contain
plagioclase, clinopyroxene, generally with traces of hornblend, chlorite, serisite and calcite (Fig. 2a). Diorite is medium grained with hypidiomorphic granuler texture. The rock consists of mainly plagioclase and hornblend. Accesory minerals include chlorite, titanite and opaque (Fig. 2b). Quarzt diorite is medium grained with hypidiomorphic granuler texture, esentially quartz, plagioclase and mafic minerals. It contains hornblend or both hornblend and biotite as mafic minerals. Titanite and opaque are accesory minerals (Fig. 2c). Granodiorites contain plagioclase, quartz, alkali feldspars and mafic minerals. Mafic minerals are hornblend and biotite. Accesory minerals include titanite and opaque (Fig. 2d). Tonalite is medium grained with hypidiomorphic granuler and micrographic textures. The rock consist of mainly plagioclase, quartz, K-feldspar, and hornblend. Accesory minerals consist of epidote, chlorite and titanite (Fig. 2e). These rocks also contain mafic microgranular enclaves (MMEs). The mafic microgranular enclaves generally are ellipsoidal shaped and their sizes range from a few centimetres to 20 cm. The compound of the MMEs are microdiorite and quartz microdiorite (Fig. 2f). 5. Geochemistry The major, trace and REE contents of the granitoids are listed in Table 1. The Esenköy pluton ingenerate a compositionally wide series of rocks with SiO2 contents between 48.27 and 69.68 wt.% (Table 1). The Esenköy granitoid samples plot into diorite, gabbro, quartz diorite, granodiorite and tonalite fields in the chemical nomenclature Q-P diagram (Debon and Le Fort, 1983) (Fig. 3). In Total Alkali Silica diagram (TAS) (Fig. 4), all except one is clearly subalkaline field (Y-24, which has high K and Na contents due to sericitization and albitization, is located in the alkaline field in the TAS diagram). All samples are calc-alkaline
ACCEPTED MANUSCRIPT field in the AFM diagram (A = Na2O+K2O, F = FeOt, M = MgO) (Fig. 5). The rock samples of the Esenköy pluton are located in metaluminous area in the Shand's classification diagram (Shand, 1947; Maniar and Piccoli, 1989) (Fig. 6). Similarly, the rock samples from Esenköy pluton are in 4th and 5th fields (metaluminous) Debon Le Fort’s (1982) A-B characteristic minerals diagram (Fig. 7). This is consequent with mafic mineral assemblages of the Esenköy plutonic rocks. The content of Al2O3, MgO, Fe2O3, CaO, TiO2, MnO and P2O5 sistematically decrease with increasing SiO2; K2O and Na2O content expressive of clearly magmatic differantiation (Fig. 8). According to their K2O and SiO2 contents, Esenköy granitoids show medium and high-K calc-alkaline feature, except six K-poor samples (Y-63, Y-85, Y-90, tonalite; Y-10, Y-83, Y-96, quartz diorite) plot in tholeiitic series field (Fig. 9). It is seen enrichment prominently in light rare earth elements (LREE) compared to heavy rare earth elements in the condrite-normalized REE spider diagram (Fig. 10). In the primitive mantle normalized diagram, High Field Strenght Element (HFSE) ratios of the arc magmas are similar to mid ocean ridge basalt (MORB) and so are not substantially depleted (McCullough and Gamble, 1991; and McCullough, 1993). In opposition the oxidizing environment due to the inclusion of water to the mantle edge minerals like hornblende, ilmenite, rutile and titanite that involve high amount of high field strenght elements such as Zr, Ti, Nb, Hf, Ta stabilizes (e.g. Saunders and Tarney, 1984; Saunders et al., 1991). These minerals prefer to stay in residual instead of the melt during the partial melting. Therefore, high field strenght elements are depleted in arc magmas. Low high field strenght element ratio indicate contamination with continental crust. The primitive mantle normalized multi-element spider diagram patterns reflect enrichment in large ion litophile elements, high field strenght elements and light rare earth elements compared with heavy rare earth elements (Fig.11). Lower continental crust has average 2,2 Rb/Nb ratio (Rudnick and Gao, 2003, 2014). The Esenköy granitoid rocks have close to or higher Rb/Nb content than the average Rb/Nb rate of lower continental crust
ACCEPTED MANUSCRIPT (Y107: 5.33-granodiorite; Y27: 3.15-quartz diorite; Y30: 2.91-gabbro; Y24: 2.33-diorite; Y81: 2.26-tonalite) (Table 1). The Rb/Y-Nb/Y diagram is particularly important in clarifying the origin of the calc-alkaline rocks. The high Rb/Y ratio of the rocks suggest crustal contribution are largely effective in the formation of these rocks (Leeman and Hawkesworth, 1986). The Rb/Y-Nb/Y diagram for Esenköy granitoids display subduction zone enrichment trend (Fig. 12). The rock samples plots mainly take place in volcanic arc granites (VAG) (Fig. 13a, c, d) and volcanic arc granites+syn-collisional granites (VAG+syn-COLG) (Fig. 13b) in the tectonic setting discrimination diagram by Pearce et al. (1984). According to these geochemical data, it can be concluded that the magma forming the Esenköy granitoid is being derived from upper mantle by partial metling and contaminated by the continental crust. 6. Zircon U-Pb geochronology Three granitoid samples were selected for zircon U-Pb dating. The results of analyses are given in Table 2. These results are plotted on concordia diagrams (Fig. 14a, b, c). Fifteen zircon grains dated from sample Y-30. The uranium, thorium concentrations and Th/U ratio range from 82.02 to 499.71 ppm, 63.84 to 715.06 ppm and 0.44 to 1.62 ppm respectively. Fifteen concordant analysis constitute compact assamblage on the concordia curve, and give a weighted average 206Pb/238U age of 22.3 ± 0.2 Ma (MSWD = 0.51) (Fig. 14a). Fifteen analysis for 15 zircon grains from sample Y-90 of the Esenköy granitoid were attained and dated. The uranium, thorium concentrations and Th/U ratio range from 194 to 511 ppm, 106 to 396 ppm and 0.49 to 0.82 ppm respectively. Fifteen concordant analysis constitute compact assamblage on the concordia curve, and give a weighted average 206Pb/238U age of 21.8 ± 0.2 Ma (MSWD = 1.6) (Fig. 14b). Twenty analysis for 20 zircon grains from sample Y-82 of the Esenköy granitoid were attained and dated. The uranium, thorium concentrations and Th/U ratio range from 189 to 680 ppm, 129 to 1349
ppm and 0.50 to 1.98 ppm respectively. Twenty
ACCEPTED MANUSCRIPT concordant analysis constitute compact assamblage on the concordia curve, and give a weighted average 206Pb/238U age of 21.7 ± 0.2 Ma (MSWD = 1.4) (Fig. 14c). 6. Geodynamic model The southern branch of the Neotethyan ocean opened during Triassic–Jurassic (Permian?) (Yılmaz and Clift, 1990; Yılmaz, 1993; Yılmaz et al., 1993; Robertson et al., 2012). The last part of the ocean floor which belongs to the southern branch of the Neotethyan ocean was depleted along the Bitlis-Zagros suture zone during Late Oligocene (Fig. 15a). The Arabian and Eurasian plates have been collided along the Bitlis-Zagros suture zone in Middle Miocene. The Eastern Anatolian Region has been under the influence of the N-S direction compressional regime. Eventually, this region has been elevated (e.g., Şengör and Kidd, 1979; Şengör and Yılmaz, 1981; Şengör et al., 2008; Dewey et al., 1986; Bozkurt, 2001; Keskin, 2003). The hypotheses and papers that are about the closing of the southern section of the Neotethyan ocean in the Eastern Anatolia are mostly related to collision-related volcanism (e.g. McKenzie, 1972; Innocenti et al., 1976, 1980, 1982; Yılmaz et al., 1987; Pearce et al., 1990; Ercan et al., 1990; Yılmaz, 1990; Keskin, 1994; Westaway, 1994; Buket and Temel, 1998; Keskin et al., 1998; Yılmaz et al., 1998; Gök et al., 2000, 2003; Şengör et al., 2003; Al Lazki et al., 2003; Keskin, 2003, 2007; Barazangi et al., 2006; Angus et al., 2006; Özdemir et al., 2006; Keskin et al., 2006; Şengör et al., 2008; Çolakoğlu et al., 2014; Oyan et al., 2016; Rolland, 2017). In the studies carried out to date, the starting age of the collision between Arabian and Eurasian plates is given as Middle Miocene (e.g. Şengör and Kidd, 1979; Şengör and Yılmaz, 1981; Şengör et al., 2008; Dewey et al., 1986; Bozkurt., 2001; Keskin., 2003; Keskin et al., 2006). The continent-continent collision should be started during Late Oligocene-Early Miocene (Aquitanian). The crustal thickening has occured in Eastern Anatolia due to this collision.
ACCEPTED MANUSCRIPT Meanwhile, slab steepening and slab breakoff occured underneath a large subduction accretion complex (EAAC) (Fig. 15b). The hybrid magma is formed with mixing of the mafic magma that was formed by partial melting of the subcontinental litospheric mantle and felsic magma which was formed by partial melting of the lower continental crust in volcanic environment. The granitoid rocks of the Esenköy pluton created by fractional crystallisation of the hybrid magma. The region has been under intense volcanic activity in Quaternary and still continues to upwelling. (Fig. 15c). According to major, trace and REE geochemical data the Esenköy granitoids consist of I type, metaluminous, syn-COLG rocks.
206Pb/238U
crystallisation ages which obtained from
samples Y-30 (gabbro), Y-82 (tonalite) and Y-90 (granodiorite) are 22.3 Ma, 21,7 Ma and 21,8 Ma (Lower Miocene-Aquitanian) respectively. These crystallisation ages of the syncollision Esenköy granitoids can assessable an evidence for the starting time of the collision between the Arabian and Eurasian plates. In all data which obtained from major, trace and REE geochemical characteristics and 206Pb/238U
crystallisation ages indicate that the collision between Arabian and Eurasian plates
along the Bitlis-Zagros suture zone has begun in the Lower Miocene (Aquitanian) or before from Lower Miocene. 7. Conclusions The Esenköy pluton take place in the EAAC which was formed by the collision along the Arabian and Eurasian plate boundaries in the Early Miocene. This collision occurred along the Bitlis-Zagros suture zone. The Esenköy pluton can be devided five granitoids facies take measures to mineralogical-petrographic compositions and geochemical characteristics. These are diorite, gabbro, quartz diorite, granodiorite and tonalite. The Esenköy granitoid rocks exhibit I-type, calc-alkaline, metaluminous and VAG+syn-COLG features. These granitoid rocks are Aquitanian (Lower Miocene) aged. The magma source of these pluton is thought to
ACCEPTED MANUSCRIPT be derived from upper mantle by partial melting material in a syn-collisional environment during the compressional regime. This magma source has also contaminated by the additive from the lowermost parts of continental crust. In all data which obtained from major, trace and REE geochemical characteristics and
206Pb/238U
ages indicate that the collision that
resulted in the converging of the Arabian and the Eurasian plates along the Bitlis-Zagros suture zone has begun in the Lower Miocene (Aquitanian) or before from Lower Miocene.
Acknowledgements The authors want to thank to Tamer Rızaoğlu and Ze Liu for their help in the zircon U-Pb dating analysis. This investigation has been funded by Scientific Research Projects Office of Van Yüzüncü Yıl University (YYU-BAP, Project No: 2010-YL 145).
References Al Lazki, A., Seber, D., Sandvol, E., Turkelli, N., Mohamad, R., Barazangi, M., 2003. Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern Turkey)
and
the
surrounding
regions.
Geophysics
Research
Letter
24,
8043.
doi:10.1029/2003GL017391. Andersen, T., 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 59–79. Barazangi, M., Sandvol, E., Seber, D., 2006. Structure and tectonic evolution of the Anatolian Plateau in eastern Turkey. In: Dilek, Y., Pavlides, S. (Eds.), Geological Society of America Special Paper, 409, pp. 463–473. Bozkurt, E., 2001. Neotectonics of Turkey - a synthesis. Geodin. Acta 14 (1–3), 3–30. http://dx.doi.org/10.1016/S0985-3111(01)01066-X. Brodsky, E.E., Prejean, S.G., 2005. New constraint on mechanisms.
ACCEPTED MANUSCRIPT Buket, E., Temel, A., 1998. Major-element, trace-element, and Sr–Nd isotopic geochemistry and genesis of Varto Mus volcanic rocks, Eastern Turkey. Journal of Volcanology Geothermal Research 85, 405–422. Çolakoğlu, A. R. and Arehart, G. B. 2010; The petrogenesis of Sarıçimen (Çaldıran-Van) quartz monzodiorite: Implication for initiation of magmatism (Late Medial Miocene) in the east Anatolian collision zone, Turkey, Lithos, v. 119, 3-4, p. 607-620. Çolakoglu, A.R., Günay, K., Göoncüoglu, M.C., Oyan, V., Erdogan, K., 2014. Geochemical evaluation of the late Maastrichtian subduction-related volcanism in the southern Neotethys in Van area, and a correlation across the Turkish-Iranian border. Ofioliti 39 (2), 51e65. Debon, F., Le Fort, P., 1983. A chemical–mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh Earth Sciences 73, 135–149. Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Şaroğlu, F., Şengör, A.M.C., 1986. Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone. In: Coward, M.P., Riea, A.C. (Eds.), Collision Tectonics: Geological Society of London, Special Publication, 19, pp. 3–36. Ercan, T., Fujitani, T., Madsuda, J.I., Notsu, K., Tokel, S., Tadahide, U.I., 1990. Doğu ve güneydoğu Anadolu Neojen–Kuvaterner volkanitlerine ilişkin yeni jeokimyasal, radyometrik ve izotopik verilerin yorumu. Maden Tetkik ve Arama Dergisi 110, 143–164 (in Turkish). Gök, R., Turkelli, N., Sandvol, E., Seber, D., Barazangi, M., 2000. Regional wave propogation in Turkey and surrounding regions. Geophysics Research Letter 3, 429–432. Gök, R., Sandvol, E., Türkelli, N., Seber, D., Barazangi, M., 2003. Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. Geophysics Research Letter 24, 8042. doi:10.1029/2003GL018020.
ACCEPTED MANUSCRIPT Hu, Z.C., Liu, Y.S., Gao, S., Liu, W.G., Zhang, W., Tong, X.R., Lin, L., Zong, K.Q., Li, M., Chen, H.H., 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 27 (9), 1391e1399. Innocenti, F., Mazzuoli, R., Pasquare, G., Radicati di Brozolo, F., Villari, L., 1976. Evolution of volcanism in the area of interaction between the Arabian, Anatolian and Iranian plates Lake Van, Eastern Turkey. Journal of Volcanology and Geothermal Research 1, 103–112. Innocenti, F., Mazzuoli, R., Pasquare, G., Serri, G., Villari, L., 1980. Geology of the volcanic area north of Lake Van, Turkey. Geologische Rundschau 69, 292–322. Innocenti, F., Manetti, P., Mazzuoli, R., Pasquare, Villari, L., 1982. Anatolia and northwestern Iran. In: Thorpe, R.S. (Ed.), Andesites: Orogenic Andesites and Related Rocks. Wiley, New York, pp. 327–349. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian J. Earth Science 8, 523–548. Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively
coupled
plasma-mass
spectrometry
to
in
situ
U–Pb
zircon
geochronology. Chemical Geology, 211, 47–69. Karaoğlan, F., Parlak, O., Hejl, E., Neubauer, F., Klötzli, U., 2016. The temporal evolution of the active margin along the Sooutheast Anatolian orogenic belt (SE Turkey): Evidence from U-PB, Ar-Ar and fission track chronology. Gondwana Research 33(2016)190-208. Keskin, M., 1994, Genesis of collision related volcanism on the Erzurum–Kars Plateau, Northeastern Turkey: Unpublished PhD thesis, University of Durham, U.K. 358p. Keskin, M., Pearce, J.A., Mitchell, J.G., 1998. Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum–Kars Plateau, North Eastern Turkey. Journal of Volcanology and Geothermal Research 85, 355–404.
ACCEPTED MANUSCRIPT Keskin,M., 2003.Magma generation by slab steepening and breakoff beneath a subduction accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters 30, 8046–8050. Keskin, M., Pearce, J.A., Kempton, P.D., Greenwood, P., 2006. Magma–crust interactions and magma plumbing in a post-collision setting: geochemical evidence from the Erzurum– Kars Volcanic Plateau, Eastern Turkey. In: Dilek, Y., Pavlides, S. (Eds.), Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia: Geological Society of America Special Paper, 409, pp. 475–505. Keskin, M., 2007. Eastern Anatolia: a hot spot in a collision zone without a mantle pluma. In: Foulger, G.R., Jurdy, D. (Eds.), Plates, Plumes and Planetary Processes. Geological Society of America, Special papers Vol. 430, pp. 693–722. Ketin, İ., 1977. Van Gölü ile Iran sınırı arasındaki bölgede yapılan jeoloji gözlemlerinin sonuçları hakkında kısa bir açıklama. Türkiye Jeoloji Kurumu Bülteni 20, 79–85 (in Turkish). Leeman, W.P., and Hawkesworth, C.J. (1986) Open magmatic systems - some isotopic and trace element constraints. Jour. Geophys. Res. 91, 5901-5912. Liu, Y.S., Hu, Z.C., Gao, S., Gu¨nther, D., Xu, J., Gao, C.G., Chen, H.H., 2008. In situ analysis of major and trace elements of anhydrous minerals by LAICP-MS without applying an internal standard. Chem. Geol. 257 (1), 34e43. Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 51 (1e2), 537e571. Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J., Chen, H.H., 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LAICP-MS. Chin. Sci. Bull. 55 (15), 1535e1546.
ACCEPTED MANUSCRIPT Ludwig K R. A User’s Manual. Berkely: Berkely Geochronology Center, Special Publication, 2001: 1–35. Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 636–643. McCulloch, M.T., Gamble, J.A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358e374. McKenzie, D.P., 1972. Active tectonics of the Mediterranean. Geophysical Journal of the Astronomical Society 30, 109–185. Oyan V., Keskin M., Lebedev V.A., Chugaev A.V., Sharkov E.V., "Magmatic evolution of the Early Pliocene Etrüsk stratovolcano, Eastern Anatolian Collision Zone, Turkey", LITHOS, vol.256-257, pp.88-108, 2016 Oyan, V. (2017). Petrogenesis and Ar-Ar dating of Early Miocene Mecitli granitoid in Eastern Anatolian Region, Turkey: Evidence for lower crust-mantle interaction and fractionation from mmes to host rocks on the basis of petrological modelling. World Multidiciplinary Earth Sciences Symposium. 11-15 september, 2017-Prague (Czech Republic). Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A.Ü., Güleç, N., 2006. Volcano stratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent postcollisional volcanism in Turkey. Chem. Geol. 226 (3–4), 189–211. http://dx.doi. org/10.1016/j.chemgeo.2005.09.020 Pearce, J.A., Harris, N.B.W., Tindle, A.G.W., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–983. Pearce, J.A., Bender, J.F., De Long, S.E., Kidd, W.S.F., Low, P.J., Guner, Y., Şaroğlu, F., Yılmaz, Y., Moorbath, S., Mitchell, J.G., 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 44, 189–229.
ACCEPTED MANUSCRIPT Perinçek, D., 1980. Bitlis metamorfitlerinde volkanitli Triyas. TJK Bulteni 23, 201–211 (in Turkish). Robertson, A.H.F., Parlak, O., Ustaomer, T., 2012. Overview of the Palaeozoic–Neogene evolution of neotethys in the Eastern Mediterranean region (Southern Turkey, Cyprus, Syria). Petroleum Geoscience 18, 381–404. Rolland, Y. (2017). Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Research. doi: 10.1016/j.gr.2017.05.005 Rudnick RL, Gao S. 2003. Composition of the continental crust. See Holland & Turekian 2003, pp. 1–64 Rudnick RL, Gao S. 2014. Composition of the continental crust. See Holland & Turekian 2014, pp. 1–51 Saunders, A. D. and Tarney, J. (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. In Marginal basin geology (B. P. Kokelaar and M. F. Hovells, eds.) Spec. Publ. Geol. Soc. London, 16, 59-76. Saunders CPR, Keith WD, Mitzeva RP. 1991. The effect of liquid water on thunderstorm charging. J. Geophys. Res. 96: 11007–11017. E.S. Schandl, M.P. Gorton, 202.,Application of high field strength elements to discriminate tectonic settings in VMS environments Economic Geology, 97 (2002), pp. 629-642 Shand, S. J., 1947. Eruptive Rocks, Their Genesis, Composition, Classification, and Their Relation to Ore Deposits, With A Chapter on Meteorites. Thomas Murby, London, 3rd. Ed. 488 p. Slama, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., et al., 2008. Plesovice zircon - a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249 (1–2), 1–35.
ACCEPTED MANUSCRIPT Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in Ocean Basins. Geol. Soc. London Spec. Publ. 42, 313-345. Şaroğlu, F., Yılmaz, Y., 1986. Geological evolution and basin models during the neotectonic episode in the eastern Anatolia. Bulletin Mineral Research Exploration 107, 61–83. Şengör, A.M.C., Kidd, W.S.F., 1979. The post-collisional tectonics of the Turkish-Iranian Plateau and a comparison with Tibet. Tectonophysics 55, 361–376. Şengör A.M.C., Yılmaz Y.,1981. Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics 75 (1981) 181–241. Şengör, A.M.C., Özeren, S., Genc, T., Zor, E., 2003. East Anatolian high plateau as a mantlesupported, north–south shortened domal structure. Geophysical Research Letters 30 (24), 8045. doi:10.1029/2003GL0117858. Şengör, A.M.C., Özeren, M.S., Keskin, M., Sakınç, M., Özbakır, A.D., Kayan, I., 2008. Eastern Turkish high plateau as a small Turkic-type orogen: implications for post-collisional crust-forming processes in Turkic-type orogens. Earth Science Reviews 90, 1–48. Westaway, R., 1994. Present-day kinematics of the Middle East and eastern Mediterranean. Journal of Geophysical Research B99, 12071–12090. Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli., P.M. , Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, Ø., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q. and Zheng, Y.-F. (2004). Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28, 9-39. Yılmaz, Y., Şaroğlu, F., Güner, Y., 1987. Initiation of the neomagmatism in East Anatolia. Tectonophysics 134, 177–199.
ACCEPTED MANUSCRIPT Yılmaz, Y., 1990. Comparisons of the young volcanic associations of the west and the east Anatolia under the compressional regime: a review. Journal of Volcanology and Geothermal Research 44, 69–87. Yılmaz, Y., Clift, P.D., 1990. Allochthonous terranes in the tethyan Middle East: Anatolia and the surrounding regions [and discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 331, 611–624. Yılmaz, Y., Yiğitbaş, E., Genc¸, S.C., 1993. Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics 12, 1280–1297. Yılmaz, Y., 1993. New evidence and model on the evolution of the Southeast Anatolian Orogen. Geological Society of America Bulletin 105, 251–271 Yılmaz, Y., Güner, Y., Şaroğlu, F., 1998. Geology of the Quaternary volcanic centers of the east Anatolia. Journal of Volcanology and Geothermal Research 85, 173–210.
ACCEPTED MANUSCRIPT
Fig. 1. Geological map of the study area and the inset location map modified from Bozkurt (2001).
ACCEPTED MANUSCRIPT
Fig. 2. Photomicrographs of the granitoids in Esenköy pluton. (a) gabbro; (b) diorite; (c) quartz diorite; (d) granodiorite; (e) tonalite; (f) contact between host rock and mme. Note: Q:quartz; Kf: K-feldspar; Hb: hornblend; Pl: plagioclase; Cpx; clinopyroxene; Bi: biotite;
ACCEPTED MANUSCRIPT
Fig. 3. The plot of rock samples from the Esenköy pluton in the chemical nomenclature diagram of Debon and Le Fort (1983). Note: go/di: gabbro or diorite, mzd: monzodiorite, mz: monzonite, s: syenite, qd: quartz diorite, qmzd: quartz monzodiorite, qmz: quartz monzonite, qs: quartz syenite, to: tonalite, gd: granodiorite, ad: adamellite, gr: granite. Table 1. Major and trace element composition of Esenköy granitoids (Note: go: gabbro; di: diorite; qd: quartz diorite; to: tonalite; gd: granodiorite). Rock qd di Name Sample Y-10 Y-21 No Major Oxides (%) SiO2 64,14 57,12 TiO2 0,58 1,06 Al2O3 16,25 17,56 Fe2O3 1,02 2,87 Mno 0,02 0,04 MgO 2,19 4,44 CaO 3,5 8,36 Na2O 7,44 5,41 K2O 0,28 1,26 P2O5 0,13 0,39 LOI 4,4 1,2 Total 99,9 99,74 Rb/Nb 0,58 2,05 Trace Elements (ppm) Ba 30 338 Be 4 <1 Co 3,9 7,7 Sc 12 17 Cs 0,2 0,8 Ga 16,6 17,1 Hf 5,4 5,3 Nb 13,4 15,5 Rb 7,8 31,8 Sn 2 3 Sr 163,5 552,5 Ta 1 0,9 Th 14,4 10,4 U 3,3 3,5
di
di
gd
go
qd
go
qd
gd
gd
to
to
Y-22
Y-24
Y-27
Y-30
Y-31
Y-36
Y-49
Y-60
Y-61
Y-63
Y-81
56,4 0,93 17,35 6,43 0,06 3,67 5,9 5,01 1,22 0,35 2,4 99,77 2,12
54,39 0,91 17,02 7,52 0,05 4,61 4,7 6,26 1,06 0,19 3,1 99,8 2,33
57,99 0,88 17,51 5,81 0,05 3,5 5,57 5,13 1,52 0,33 1,5 99,78 3,16
48,27 0,64 12,36 8,73 0,12 13,38 10,84 1,68 0,57 0,06 2,9 99,68 2,91
61,6 0,74 16,62 5,21 0,02 2,54 4,04 6,03 0,92 0,16 1,9 99,83 2,14
49,74 1,42 16,97 6,59 0,11 7,8 9,52 3,63 0,45 0,28 3,2 99,71 0,52
55,78 0,84 16,7 6,63 0,05 4,62 6,53 4,55 0,68 0,17 3,3 99,82 1,77
64,82 0,55 15,97 3,67 0,04 2,2 4,81 3,95 2,59 0,12 1,1 99,79 4,11
64,46 0,55 16,32 3,94 0,04 2,2 4,8 3,87 2,88 0,12 0,6 99,78 3,97
65,31 0,55 15,87 1,49 0,02 1,8 4,73 5,71 0,7 0,12 3,6 99,86 1,26
62,32 0,64 16,5 5,55 0,04 2,71 4,3 4,63 1 0,16 2 99,85 2,27
310 3 13,2 15 1,8 16,9 6,2 22,1 46,9 2 441,3 1,3 11,6 3,3
260 2 12,7 19 0,3 17,6 4,5 15,4 35,9 2 337,6 1,4 6,8 3
343 <1 12,5 15 2,2 17,4 6,6 21,3 67,3 3 404,4 1,1 14 2,3
104 2 39,3 35 4,1 11,3 1,9 4,6 13,4 2 289,9 0,3 3 0,6
232 4 5,9 14 1,4 14,4 4,5 13,8 29,6 2 445,2 1,1 10,3 3,7
129 3 17,1 35 1,6 18,4 4,3 14,9 7,7 2 523,9 1 3,3 1,3
117 <1 13,6 19 0,6 15,2 3,6 10,5 18,6 1 334,9 0,8 6,2 2
667 3 6,6 10 0,6 15,5 4,3 13,1 53,8 2 345,3 1,2 13,4 4,5
755 <1 6,7 10 0,4 15,3 5 14,6 57,9 2 361,9 1,3 15,2 5
334 <1 3,6 10 0,7 15 4,1 15 18,9 4 303,7 1,4 14,4 4,1
158 2 9,5 13 3,7 15,5 4,9 13,8 31,3 2 306,5 1,2 12,7 3
ACCEPTED MANUSCRIPT V W Zr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
96 1 195,1 18,1 9,8 23,3 2,9 12,2 2,74 0,49 2,97 0,49 2,77 0,58 1,72 0,27 1,81 0,3
167 0,6 223,1 25,2 44,1 88,1 9,65 36,4 6,59 1,83 5,96 0,89 5,27 0,97 2,59 0,42 2,65 0,4
153 0,7 255,9 26,1 45,5 87,2 9,68 36,1 6,62 1,55 5,86 0,84 4,69 0,95 2,86 0,41 2,69 0,44
178 0,9 165,2 23,6 24,8 46,3 5,61 21,2 4,39 1,05 4,31 0,73 4,09 0,88 2,8 0,38 2,64 0,4
136 0,9 266,1 28 49,4 95,8 10,78 39,7 6,88 1,49 6,11 0,96 5,4 1,03 2,96 0,44 2,85 0,43
184 <0.5 64,4 15,1 14,7 28,4 3,32 14,4 3,25 0,96 3,13 0,51 2,86 0,55 1,49 0,22 1,3 0,2
139 1,5 167,7 24,2 42,3 72,2 7,2 25,7 4,51 1,18 4,33 0,7 4,35 0,85 2,59 0,38 2,48 0,38
295 0,6 155,2 29,6 31,6 66,5 8,37 34,7 7,21 1,91 6,66 1 5,45 1,07 2,9 0,44 2,75 0,42
166 0,5 136,7 19,1 22,1 42,1 4,55 17,9 4,09 1,05 3,66 0,62 3,79 0,71 2,24 0,34 2,1 0,34
106 0,6 157,2 17,8 24,2 45,9 5,16 18,7 3,68 0,86 3,16 0,52 3 0,63 1,89 0,29 1,87 0,33
99 <0.5 176,6 17,8 28 52,2 5,67 20,4 3,64 0,92 3,32 0,54 3,3 0,64 1,94 0,3 2,12 0,33
83 <0.5 159,9 28,8 34,3 69,3 7,6 27,2 5,4 1,25 5,02 0,85 5,14 0,97 3,13 0,49 3,21 0,52
119 0,8 183,4 18,1 31,8 54,7 6,13 21,5 3,99 0,98 3,56 0,56 3,1 0,7 1,88 0,31 2,2 0,32
continued on next page Rock Name gd Sample No Y-82 Major Oxides (%) SiO2 65,91 TiO2 0,51 Al2O3 15,8 Fee2O3 3,7 Mno 0,04 MgO 1,91 CaO 3,81 Na2O 4,16 K2O 3,02 P2O5 0,11 LOI 0,9 Total 99,83 Rb/Nb 2,27 Trace Elements (ppm) Ba 158 Be 2 Co 9,5 Sc 13 Cs 3,7 Ga 15,5 Hf 4,9 Nb 13,8 Rb 31,3 Sn 2 Sr 306,5 Ta 1,2 Th 12,7 U 3 V 119 W 0,8 Zr 183,4 Y 18,1 La 31,8 Ce 54,7 Pr 6,13 Nd 21,5 Sm 3,99 Eu 0,98 Gd 3,56 Tb 0,56 Dy 3,1 Ho 0,7 Er 1,88
qd Y-83
to Y-85
qd Y-87
qd Y-88
gd Y-89
to Y-90
gd Y-93
qd Y-96
qd Y-101
gd Y-103
gd Y-107
66,46 0,5 15,84 0,7 0,02 1,51 4,16 7,7 0,24 0,12 2,7 99,91 5,66
69,68 0,44 15,62 1,64 0,03 1,21 2,72 6,56 0,42 0,1 1,5 99,88 0,40
60,4 0,68 17,48 3,61 0,04 3,14 6,27 5,56 0,87 0,16 1,6 99,81 0,78
57,42 0,82 16,92 6,12 0,06 3,29 6,89 4,74 0,75 0,23 2,6 99,81 1,22
68,06 0,39 14,85 3,14 0,04 1,4 3,31 3,87 3,43 0,09 1,2 99,83 0,89
69,2 0,41 15,25 2,85 0,03 1,42 3,29 5,5 0,58 0,1 1,2 99,87 6,18
68,23 0,43 15,36 2,43 0,04 1,53 3,12 4,62 2,94 0,1 1 99,82 1,15
57,79 0,75 16,36 5,64 0,08 3,66 6,89 5,08 0,52 0,18 2,8 99,81 3,73
60,81 0,81 16,68 5,25 0,07 2,62 4,91 5,2 1,62 0,21 1,6 99,78 0,72
63,33 0,65 15,8 4,75 0,06 2,41 4,56 4,03 2,69 0,16 1,4 99,8 2,66
67,06 0,46 15,1 3,76 0,06 1,77 3,45 3,39 3,85 0,09 0,8 99,81 5,34
532 3 6,7 9 2,2 14,7 4,2 12,6 71,3 1 307,8 1,1 12,8 2,8 90 <0.5 152,3 14,2 24,7 46,8 4,89 17,7 2,8 0,78 2,9 0,44 2,68 0,51 1,53
81 2 0,9 8 1 15,4 3,5 13,9 5,5 2 212,6 1,3 15,8 1,9 77 1,8 136,4 14,2 15,6 32,9 3,54 13,4 2,74 0,48 2,66 0,44 2,57 0,51 1,6
137 4 4,1 7 0,5 14,9 4,8 11,5 9 2 332,5 1,3 16,7 3,5 71 <0.5 195,4 16,8 27 48,9 5,38 19,2 3,41 0,79 3,17 0,51 2,86 0,58 1,71
334 4 7,5 12 1,4 16 3,2 10,3 12,6 2 452,2 0,8 9,9 2,2 137 0,5 118,1 16,9 24,3 45,8 5,04 19,1 3,64 0,99 3,38 0,55 3,11 0,57 1,79
314 2 14,3 15 1,5 16,2 3,4 11,8 10,5 2 418,2 0,9 10,9 2,6 195 <0.5 126,7 20 33 62,3 6,78 24,5 4,78 1,27 4,15 0,66 3,71 0,74 2,03
664 4 6,5 6 0,9 14,1 5,1 13,9 85,9 1 276,9 1,8 21,3 3,9 64 <0.5 167,9 13,5 32,3 51,2 4,86 15,7 2,72 0,67 2,4 0,38 2,33 0,48 1,37
222 4 4,9 6 0,5 13,3 3,9 12,5 14,4 2 345,4 1,2 16 4,4 66 1,8 137,8 12,4 26,6 47,8 4,36 15,2 2,44 0,62 2,35 0,37 2,29 0,48 1,47
726 <1 5,1 7 0,4 14,2 4,4 13,8 51,5 1 293,8 1,5 17,2 2,7 77 0,9 162 14,9 20,2 36,2 3,91 15,3 2,74 0,72 2,69 0,42 2,55 0,51 1,6
152 2 12,3 17 0,4 16,9 3,6 14,2 10,2 2 420,8 0,9 9,9 2,8 146 1,1 124,1 21,7 31,8 59,4 6,28 24,7 4,53 0,98 4,16 0,71 4,03 0,79 2,43
474 2 8,8 11 2 16,8 5,7 15,8 42,1 2 409,1 1,1 13,6 3,9 110 1,4 236 23,6 39,9 69,7 7,37 27,6 4,95 1,15 4,59 0,72 4,32 0,84 2,53
559 3 10 11 1,7 16,2 4,3 12,5 66,7 2 339,8 1,1 13 3,6 111 1,2 171 17,9 30,7 54 5,54 20,2 3,48 0,95 3,44 0,54 3,26 0,66 1,87
ACCEPTED MANUSCRIPT Tm Yb Lu
0,31 2,2 0,32
0,24 1,64 0,28
0,25 1,84 0,26
0,27 1,88 0,29
0,27 1,83 0,28
0,32 1,99 0,31
0,21 1,67 0,26
0,21 1,57 0,25
0,25 1,66 0,29
0,36 2,39 0,35
0,38 2,65 0,42
0,27 1,93 0,3
Fig. 4. Total alkalis vs. silica diagram for the Esenköy granitoids (after Irvine and Baragar 1971).
Fig. 5. AFM diagram for the Esenköy granitoids (A=Na2O+K2O, F=FeOt, M=MgO) (after Irvine and Baragar 1971).
ACCEPTED MANUSCRIPT
Fig. 6. The plot of rock samples from the Esenköy pluton in Shand's index diagram (Maniar and Piccoli, 1989). A=Al2O3, N=Na2O, K=K2O, C=CaO (all in molar proportion). Symbols are as in Fig. 3.
Fig. 7. Classification of the Esenköy pluton on B–A diagram of Debon and Le Fort (1983). I, II and III fields represent the peraluminous, and IV, V and VI fields display the metaluminous domains. mu: muscovite, bi: biotite, hb: hornblende, cpx: clinopyroxene, px: pyroxene.
ACCEPTED MANUSCRIPT
Fig. 8. Harker diagrams for the Esenköy granitoids.
Fig. 9. Classification of the Esenköy pluton rocks on the K2O versus SiO2 diagram, (after Peccerillo and Taylor, 1976).
ACCEPTED MANUSCRIPT
Fig. 10. Chondrite-normalized REE patterns for the Esenköy granitoid rocks. Chondrite normalizing values are from Sun and McDonough 1989.
Fig. 11. Primitive mantle-normalized multi-elements variation diagrams for the Esenköy granitoids. Primitive Mantle normalizing values are from Sun and McDonough 1989.
Fig. 12. Rb/Y-Nb/Y variation diagram of Esenköy granitoids.
ACCEPTED MANUSCRIPT
Fig. 13. The discrimination diagrams of tectonic setting, showing the samples plotting almost exclusively within VAG and VAG+syn-COLG. (a) Rb vs. Y + Nb (b) Nb vs. Y, (c) Rb vs. Ta + Yb, (d) Ta vs. Yb (Pearce et al., 1984) for the Esenköy granitoid samples. Concentrations of elements are in ppm. Note: WPG – within-plate granite; VAG – volcanic-arc granite; synCOLG– syn-collisional granite; post-COLG – post-collision granite; ORG – ocean-ridge granite.
ACCEPTED MANUSCRIPT Table 2. U-Pb dating results for zircons from the Esenköy granitoids. Spot
Th/U
207Pb/206Pb
207Pb/235U
206Pb/238U
207Pb/206Pb
207Pb/235U
206Pb/238U
Y-30 01 0,44
Ratio 0,0475
1σ Ratio 0,0037 0,024
1σ 0,002
Ratio 1σ Age (Ma) 1σ Age (Ma) 1σ 0,0036 0,0001 72,0 115,0 24,0 2,0
Age (Ma) 1σ 23,4 0,5
Y-30 02 0,78
0,0509
0,0062
0,023
0,003
0,0036
0,0001
235,0
202,0
23,0
3,0
22,9
0,6
Y-30 03 1,25
0,0502
0,0025
0,024
0,001
0,0036
0,0001
203,0
83,0
24,0
1,0
23,0
0,4
Y-30 04 0,86
0,0505
0,0032
0,024
0,001
0,0036
0,0001
217,0
100,0
24,0
1,0
22,9
0,5
Y-30 05 0,47
0,0417
0,0029
0,020
0,001
0,0036
0,0001
196,0
121,0
20,0
1,0
22,9
0,4
Y-30 06 1,03
0,0473
0,0029
0,022
0,001
0,0036
0,0001
62,0
91,0
22,0
1,0
22,9
0,4
Y-30 07 1,36
0,0492
0,0022
0,024
0,001
0,0036
0,0001
156,0
81,0
24,0
1,0
22,9
0,3
Y-30 08 0,84
0,0489
0,0041
0,022
0,002
0,0036
0,0001
142,0
124,0
22,0
2,0
23,0
0,5
Y-30 09 1,08
0,0566
0,0032
0,027
0,001
0,0036
0,0001
475,0
78,0
27,0
1,0
23,0
0,4
Y-30 10 1,62
0,0535
0,0027
0,027
0,001
0,0036
0,0001
348,0
89,0
27,0
1,0
23,4
0,3
Y-30 11 1,17
0,0494
0,0024
0,024
0,001
0,0036
0,0001
168,0
79,0
24,0
1,0
22,9
0,3
Y-30 12 1,18
0,0507
0,0081
0,025
0,004
0,0035
0,0001
226,0
323,0
25,0
4,0
22,7
0,5
Y-30 13 0,67
0,0501
0,0044
0,024
0,002
0,0037
0,0001
200,0
143,0
24,0
2,0
23,8
0,5
Y-30 14 1,19
0,0468
0,0046
0,022
0,002
0,0036
0,0001
38,0
144,0
22,0
2,0
22,9
0,4
Y-30 15 1,00
0,0589
0,0055
0,028
0,002
0,0035
0,0001
562,0
133,0
28,0
2,0
22,8
0,6
Y-82 01 0,95
0,0554
0,0056
0,025
0,002
0,0033
0,0001
429,0
229,0
25,0
2,0
21,1
0,4
Y-82 02 0,99
0,0458
0,0037
0,020
0,001
0,0033
0,0001
12,0
110,0
20,0
1,0
21,3
0,4
Y-82 03 0,82
0,0555
0,0039
0,025
0,002
0,0034
0,0001
434,0
100,0
25,0
1,0
21,9
0,4
Y-82 04 0,96
0,0443
0,0033
0,020
0,001
0,0035
0,0001
54,0
113,0
21,0
1,0
22,3
0,4
Y-82 05 1,98
0,0479
0,0022
0,022
0,001
0,0034
0,0000
94,0
78,0
22,0
1,0
21,9
0,3
Y-82 06 1,22
0,0487
0,0039
0,022
0,002
0,0034
0,0001
135,0
119,0
22,0
2,0
21,7
0,4
Y-82 07 1,21
0,0501
0,0031
0,023
0,001
0,0035
0,0001
201,0
82,0
23,0
1,0
22,7
0,6
Y-82 08 0,96
0,0504
0,0029
0,023
0,001
0,0034
0,0001
215,0
87,0
23,0
1,0
21,9
0,4
Y-82 09 1,20
0,0515
0,0044
0,024
0,002
0,0034
0,0001
264,0
196,0
24,0
2,0
21,6
0,3
Y-82 10 1,22
0,0566
0,0028
0,026
0,001
0,0034
0,0001
475,0
79,0
26,0
1,0
22,1
0,3
Y-82 11 0,98
0,0461
0,0040
0,022
0,002
0,0034
0,0001
1,0
193,0
22,0
2,0
21,8
0,4
Y-82 12 0,74
0,0432
0,0036
0,019
0,001
0,0033
0,0001
112,0
128,0
19,0
1,0
21,1
0,4
Y-82 13 0,65
0,0536
0,0033
0,023
0,001
0,0033
0,0001
354,0
101,0
23,0
1,0
21,0
0,4
Y-82 14 0,54
0,0508
0,0031
0,023
0,001
0,0034
0,0001
231,0
98,0
23,0
1,0
21,6
0,4
Y-82 15 0,55
0,0486
0,0032
0,022
0,001
0,0034
0,0001
129,0
107,0
22,0
1,0
21,9
0,3
Y-82 16 0,61
0,0435
0,0029
0,020
0,001
0,0034
0,0001
97,0
97,0
20,0
1,0
22,1
0,4
Y-82 17 0,55
0,0575
0,0040
0,026
0,002
0,0033
0,0001
512,0
111,0
26,0
2,0
21,2
0,4
Y-82 18 0,66
0,0562
0,0038
0,026
0,002
0,0033
0,0001
458,0
112,0
26,0
2,0
21,4
0,4
Y-82 19 0,56
0,0453
0,0037
0,020
0,001
0,0033
0,0001
6,0
124,0
20,0
1,0
21,5
0,4
Y-82 20 0,50
0,0526
0,0036
0,023
0,001
0,0033
0,0001
313,0
105,0
23,0
1,0
21,4
0,4
Y-90 01 0,50
0,0476
0,0032
0,022
0,001
0,0033
0,0001
0,0011
0,0001
79,0
110,0
22,0
1,0
Y-90 02 0,49
0,0523
0,0037
0,024
0,001
0,0035
0,0001
0,0011
0,0001
300,0
112,0
24,0
1,0
Y-90 03 0,54
0,0500
0,0039
0,025
0,002
0,0036
0,0001
0,0011
0,0000
197,0
177,0
25,0
2,0
Y-90 04 0,61
0,0461
0,0045
0,021
0,002
0,0034
0,0001
0,0011
0,0001
2,0
205,0
22,0
2,0
Y-90 05 0,82
0,0478
0,0041
0,022
0,002
0,0033
0,0001
0,0011
0,0000
87,0
192,0
22,0
2,0
Y-90 06 0,51
0,0558
0,0042
0,026
0,002
0,0034
0,0001
0,0012
0,0001
444,0
108,0
26,0
2,0
(continued on next page)
ACCEPTED MANUSCRIPT Y-90 07 0,57
0,0487
0,0058
0,023
0,003
0,0034
0,0001
0,0011
0,0001
132,0
252,0
23,0
3,0
Y-90 08 0,59
0,0470
0,0058
0,022
0,003
0,0034
0,0001
0,0011
0,0001
51,0
243,0
22,0
3,0
Y-90 09 0,55
0,0489
0,0062
0,024
0,003
0,0035
0,0001
0,0011
0,0001
145,0
262,0
24,0
3,0
Y-90 10 0,54
0,0478
0,0045
0,022
0,002
0,0033
0,0001
0,0011
0,0000
90,0
208,0
22,0
2,0
Y-90 11 0,59
0,0538
0,0036
0,024
0,001
0,0034
0,0001
0,0012
0,0001
364,0
97,0
24,0
1,0
Y-90 12 0,60
0,0597
0,0042
0,027
0,002
0,0034
0,0001
0,0011
0,0001
594,0
104,0
27,0
2,0
Y-90 13 0,62
0,0516
0,0029
0,023
0,001
0,0033
0,0001
0,0011
0,0000
267,0
90,0
23,0
1,0
Y-90 14 0,56
0,0514
0,0036
0,023
0,002
0,0033
0,0001
0,0011
0,0001
259,0
118,0
23,0
1,0
Y-90 15 0,78
0,0527
0,0031
0,024
0,001
0,0033
0,0001
0,0010
0,0000
315,0
101,0
24,0
1,0
Fig. 14. Concordia diagrams of zircon U-Pb ages for Esenköy granitoid samples (Y-30: gabbro; Y-82: granodiorite; Y-90: tonalite).
ACCEPTED MANUSCRIPT
Fig. 15. Suggested geodynamic model for Esenköy Pluton.
ACCEPTED MANUSCRIPT
The Esenköy pluton contain I type and syn-COLG granitoids. The Esenköy pluton contain gabbro,diorite,quartz diorite,tonalite and granodiorite. The MMEs in the Esenköy granitoids are generally in quartz microdiorite composition. The mixing and FC are main processes in evolution of the Esenköy granitoids.