Applied Mathematics and Computation 258 (2015) 1–11
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
Synchronization for complex dynamical networks with time delay and discrete-time information Mei Fang Business and Trade School, Ningbo City College of Vocational Technology, Ningbo 315000, China
a r t i c l e
i n f o
Keywords: Complex dynamical networks Discrete-time communication Synchronization Time delay
a b s t r a c t The synchronization problem is studied for complex dynamical networks (CDNs) with time delay based on discrete-time communication pattern. A new Lyapunov functional is proposed, which is positive definite at communication instants but not necessarily positive definite inside the communication intervals, and can make full use of the available information about the discrete-time communication pattern. Based on the Lyapunov functional, an exponential synchronization criterion is proposed to ensure the synchronization of the considered CDNs. The effectiveness of the developed results are shown by the numerical simulation. Ó 2015 Elsevier Inc. All rights reserved.
1. Introduction In the past decades, complex dynamical networks (CDNs) which consist of interacting dynamical entities with an interplay between dynamical states and interaction patterns has been intensively studied by many researchers and numerous results have been reported due to the fact that many systems in nature can be modelled by CNDs, for example, power grids, the Internet, electrical power grids, food webs and the World Wide Web. As a result, a great number of important research results have been published on this topic [2,1,3–14]. For example, in [8], the synchronization problem has been studied for discrete-time delayed complex networks with stochastic nonlinearities, multiple stochastic disturbances, and mixed time delays, and by utilizing the properties of Kronecker product, the free-weighting matrix method, and the stochastic techniques, the synchronization stability criteria have been proposed, which can be readily checked by using standard numerical software. In [9], the synchronization problem has been considered for discrete-time stochastic complex networks over a finite horizon, and based on a time-varying real-valued function and the Kronecker product, the criteria have been established that ensure the bounded H1 synchronization. The distributed adaptive control of synchronization in complex networks has been considered in [10], where an effective distributed adaptive strategy to tune the coupling weights of a network has been designed based on local information of node dynamics. On the other hand, much attention has been drawn to the study of sampled-data control systems because modern control systems usually employ digital technology for controller implementation [15–22]. For example, in [15] the synchronization problem of a complex dynamical network with coupling time-varying delays via delayed sampled-data controller has been investigated and a stability condition has been proposed to find the controller which achieves the synchronization of a complex dynamical network with coupling time-varying delay. In [17], the sampled-data control of linear systems under uncertain sampling with the known upper bound on the sampling intervals has been considered and for the first time, the time-dependent Lyapunov functionals has been proposed to guarantee the stability of systems under the time-varying E-mail address:
[email protected] http://dx.doi.org/10.1016/j.amc.2015.01.106 0096-3003/Ó 2015 Elsevier Inc. All rights reserved.
2
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
sampling. In [21], a novel approach to assess the stability of continuous linear systems with sampled-data inputs has been given, which had provided easy tractable stability conditions for the continuous-time model, and sufficient conditions for asymptotic and exponential stability have been provided dealing with synchronous and asynchronous samplings and uncertain systems. Recently, the discrete-time communication pattern has been proposed for continuous-time CDNs based on the concept of sampled-data control systems in [23], where a piecewise Lyapunov–Krasovskii functional has been employed to govern the characteristics of the discrete communication instants, and a synchronization criterion has been derived and an upper bound of the communication intervals has been obtained. However, the time delay has not been considered in [23]. It is well-known that time-delay is frequently encountered in a variety of engineering systems [24–36], and a relatively small time-delay may lead to non-synchronization or significantly deteriorated performances for the CDNs. Therefore, it is necessary to study the synchronization for CDNs with time delay based on discrete-time communication pattern, which is the motivation for this paper. The synchronization problem of CDNs with time delay is investigated based on discrete-time communication pattern. A new time-dependent Lyapunov functional is proposed, which make full use of the available information about the discretetime communication pattern. Based on the Lyapunov functional, an exponential synchronization criterion is proposed to ensure the synchronization of the considered CDNs. A simulation example is given to show the efficiency of the proposed method. 2. Preliminaries Consider a CDN consisting of N identical nodes coupled in the discrete-time way:
x_ i ðtÞ ¼ Axi ðtÞ þ Bf ðxi ðtÞÞ þ Cf ðxi ðt dÞÞ þ c
N X
g ij Cxj ðt k Þ; t 2 ½tk ; tkþ1 Þ;
i ¼ 1; 2; . . . ; N;
ð1Þ
j¼1
where xi ðtÞ ¼ ½ xi1 ðtÞ xi2 ðtÞ . . . xin ðtÞ T 2 Rn is the state vector of node i; f : Rn ! Rn is a nonlinear vector-valued function, and c is a constant denoting the coupling strength. A; B; C; C 2 Rnn are constant matrices and C denotes the inner-coupling matrix. G ¼ ðg ij ÞNN is the coupling configuration matrix. If there is a connection from node j and node i (i – j), then g ij > 0, otherwise, g ij ¼ 0 (i – j). The diagonal elements of matrix G are defined by
g ii ¼
N X
g ij :
ð2Þ
j¼1;j–i
On the other hand, tk ; k ¼ 0; 1; 2; . . ., are the communication instants satisfying 0 ¼ t 0 < t1 < < t k < < limk!þ1 tk ¼ þ1. In this paper, the distance between any two consecutive communication instants is assumed to be bounded. Specifically, it is assumed that t kþ1 t k ¼ hk 6 h for all k P 0, where h > 0 represents the largest communication interval. Let 3 2
3 f ðx1 ðtÞÞ x1 ðtÞ 7 6 6 x2 ðtÞ 7 6 f ðx2 ðtÞÞ 7 7 6 7 7 2 RNn ; gðxðtÞÞ ¼ 6 xðtÞ ¼ 6 7 2 RNn ; 6 6 .. 7 .. 7 6 4 . 5 . 5 4 xN ðtÞ f ðxN ðtÞÞ 2
then CDN (1) can be written as
_ xðtÞ ¼ ðIN AÞxðtÞ þ ðIN BÞgðxðtÞÞ þ ðIN CÞ gðxðt dÞÞ þ cðG CÞxðt k Þ;
t 2 ½t k ; tkþ1 Þ:
ð3Þ
Throughout this paper, we make the following assumption on f ðÞ. Assumption 1. For 8u; v 2 Rn , the nonlinear function f ðÞ is continuous and assumed to satisfy the following sector-bounded nonlinearity condition: T ðf ðuÞ f ðv Þ F 1 ðu v ÞÞ ðf ðuÞ f ðv Þ F 2 ðu v ÞÞ 6 0;
ð4Þ
where F 1 and F 2 are known constant real matrices. Remark 1. It is noted that such type of description of nonlinear function is known as the sector-like condition, which is originated from [37] and more general than the commonly used Lipschitz conditions. It is not difficult to prove that for any nonlinear function f ðÞ satisfying (4), there exists a scalar q > 0 such that
kf ðuÞ f ðv Þk2 6 qku v k2 :
ð5Þ
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
3
The following definition and lemmas will be needed in the derivations of our main results. Definition 1 [38]. CDN (1) is said to be globally asymptotically synchronized if the following holds:
lim jjxi ðtÞ xj ðtÞjj ¼ 0;
i; j ¼ 1; 2; . . . ; N:
t!þ1
ð6Þ
Furthermore, CDN (1) is said to be globally exponentially synchronized if there exist constants a > 0 and b > 0, such that for any initial values and a sufficient large T > 0, the following inequality holds,
jjxi ðtÞ xj ðtÞjj 6 beat ;
i; j ¼ 1; 2; . . . ; N;
ð7Þ
for all t > T. Lemma 1 [23]. Let G be an N N matrix, in which each row has the same sum. Then,
e ¼ MG e U M; e MG
ð8Þ
where
2
1 1
0
1
0 .. .
0
1
61 6 6 e ¼ 6 ... M 6 6 41
0
1
0
2
0
0
0
0
0
6 1 0 0 6 6 6 0 1 0 6 U¼6 .. .. 6 6 0 . 0 . 6 .. 6 .. 4 . . 1 0
0
0
0
0
3
7 7 7 7 2 RðN1ÞN ; 7 7 0 5 0 .. .
1 3
7 7 7 7 7 7 2 RNðN1Þ : 7 0 7 7 7 0 5 0 .. .
1
Denote
3 x1 ðtÞ x2 ðtÞ 6 x1 ðtÞ x3 ðtÞ 7 7 6 7; yðtÞ ¼ 6 . 7 6 . 5 4 . 2
x1 ðtÞ xN ðtÞ
3 f ðx1 ðtÞÞ f ðx2 ðtÞÞ 7 6 6 f ðx1 ðtÞÞ f ðx3 ðtÞÞ 7 7 6 f ðyðtÞÞ ¼ 6 7; .. 7 6 . 5 4 2
f ðx1 ðtÞÞ f ðxN ðtÞÞ
e In . It can be seen from (5) that which imply yðtÞ ¼ MxðtÞ and f ðyðtÞÞ ¼ MgðxðtÞÞ, where M ¼ M
kf ðyðtÞÞk2 6 qkyðtÞk2 :
ð9Þ
Based on Lemma 1, it can be found that
^ ^ ðyðt dÞÞ þ Dyðt ^ ðyðtÞÞ þ Cf ^ k Þ; _ þ Bf yðtÞ ¼ AyðtÞ
t 2 ½t k ; t kþ1 Þ;
ð10Þ
where
^ ¼ IN1 A; A ^ ¼ IN1 C; C
^ ¼ IN1 B; B ^ ¼ cMðGU CÞ: D
Lemma 2 ((Jensen Inequality) [39]). For any matrix W > 0, scalars c1 and c2 satisfying c2 > c1 , and a vector function x : ½ c1 ; c2 ! Rn , if the following integrations concerned are well defined, then
ðc2 c1 Þ
Z
c2
c1
xðaÞT W xðaÞ da P
"Z
c2
c1
#T
xðaÞ da W
"Z
c2
c1
#
xðaÞ da :
ð11Þ
4
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
Lemma 3. Consider system (10). Then there exists two scalars h1 and h2 such that
jjyðtÞjj2 6 h1 jjyðt k Þjj2 þ h2
Z
tk
jjyðaÞjj2 da;
t k 6 t < tkþ1 :
ð12Þ
t k d
Proof. The proof of Lemma 3 is similar to the one proposed in Lemma 2 of [22]. This completes the proof. This completes the proof. h In this paper, we aim to establish a sufficient condition for the globally exponential synchronization between the nodes of CDN (1). Based on the time-dependent Lyapunov functional method, we construct a new Lyapunov functional to derive the criterion to ensure the addressed CDN to be globally exponentially synchronized. 3. Main results In this section, we will propose a novel globally exponential synchronization criterion for CDN (1).
2
X 1 þX T1 6 2
X 1 þ X 2
6 H¼6 4
X 2 X T2 þ
3
X3
7 7 ; X4 7 5
X 1 þX T1 2
X 5 þX T5 2
T h1 ðtÞ ¼ yðtÞT f ðyðtÞÞT yðt dÞT ; h iT Rt T yðsÞT ds yðtk ÞT ; h2 ðtÞ ¼ f ðyðt dÞÞ tk
T
xðtÞ ¼ h1 ðtÞT h2 ðtÞT ; m ¼ nðN 1Þ;
el ¼ 0mðl1Þm X1 ¼ I
F T1 F 2
þ 2
Im
0mð6lÞm ;
F T2 F 1
;
l ¼ 1; 2; 3; 4; 5; 6;
X2 ¼ I
F T1 þ F T2 ; 2
Then system (10) can be rewritten as
_ yðtÞ ¼ NxðtÞ; t 2 ½tk ; tkþ1 Þ;
ð13Þ
where
^ 1 þ Be ^ 4 þ De ^ 2 þ Ce ^ 6: N ¼ Ae
Theorem 1. Given scalars a and h, CDN (1) is globally exponentially synchronized with convergence rate a, if there exist matrices Q1 Q2 R1 R2 P > 0; Q ¼ > 0; R ¼ > 0; Z > 0; X 1 ; X 2 ; X 3 ; X 4 ; X 5 ; W, diagonal matrices K1 > 0; K2 > 0; K3 > 0 and K4 > 0 Q3 R3 such that
N þ Pl < 0;
l ¼ 1; 2;
ð14Þ
2
h N þ P1 þ H1 ðhÞ þ NT SN < 0; 4 pffiffiffi 2 hW N þ P2 þ H2 ðhÞ þ H3 6 4 e2ah R1
ð15Þ hG 0
3 7 5 < 0;
2e2ah S
where
T T e1 e6 e1 e3 e3 e1 e6 T e2ad þW e2ah Q Q R2 e6 e2 e2 e4 e4 e5 e5 2 3T 2 3 e1 e1 e e e1 e6 T T 1 6 6 7 6 7 2 T 4 e6 5 H4 e6 5 þ e2ah eT6 R2 W Ge5 eT5 GT e2ad ðe1 e3 ÞT Zðe1 e3 Þ þ d NT Z N; e5 e5 e5 e5
N ¼ eT1 PN þ NT Pe1 þ 2aeT1 Pe1 þ
e1
ð16Þ
5
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
P1 ¼ eT1 ðK1 IÞX1 e1 eT2 ðK1 IÞe2 þ eT1 ðK1 IÞX2 e2 þ eT2 XT2 ðK1 IÞe1 eT3 ðK2 IÞX1 e3 eT4 ðK2 IÞe4 þ eT3 ðK2 IÞX2 e4 þ eT4 XT2 ðK2 IÞe3 ;
P2 ¼ eT1 ðK3 IÞX1 e1 eT2 ðK3 IÞe2 þ eT1 ðK3 IÞX2 e2 þ eT2 XT2 ðK3 IÞe1 eT3 ðK4 IÞX1 e3 eT4 ðK4 IÞe4 þ eT3 ðK4 IÞX2 e4 þ eT4 XT2 ðK4 IÞe3 ; 2 3T 2 3 2 3T 2 3 2 3T 2 3 2 3T 2 3 N e1 N N e1 e1 e1 N R R 1 2 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 H1 ðhÞ ¼ h4 e1 5 4 e1 5 þ 2ah4 e6 5 H4 e6 5 þ h4 e6 5 H4 0 5 þ h4 0 5 H4 e6 5; R3 e1 e1 e6 e6 e5 e5 e5 e5 and
H2 ðhÞ ¼ hGe1 þ heT1 GT ; 2
2ah T e6 R3 e6
H3 ¼ he
þ
h T N SN: 4
Proof. Consider the following Lyapunov functional for system (13):
VðtÞ ¼
5 X V l ðtÞ; t 2 ½t k ; t kþ1 Þ;
ð17Þ
l¼1
where
V 1 ðtÞ ¼ e2at yðtÞT PyðtÞ; " #T " # Z t yðsÞ yðsÞ ds; V 2 ðtÞ ¼ e2as Q f ðyðsÞÞ f ðyðsÞÞ td Z 0Z t _ T Z yðsÞ _ ds dh; V 3 ðtÞ ¼ d e2as yðsÞ d
tþh
V 4 ðtÞ ¼ ðt kþ1 tÞ
Z
t
tk
2 _ 3T 2 _ 3 yðsÞ yðsÞ 6 7 6 7 e2as 4 yðsÞ 5 R4 yðsÞ 5 ds; yðtk Þ
yðt k Þ 3T 2 3 yðtÞ yðtÞ 6 7 6 7 yðt k Þ 7 H6 yðt k Þ 7; V 5 ðtÞ ¼ ðt kþ1 tÞe2at 6 4 5 4 5 Rt Rt yðsÞ ds yðsÞ ds tk tk Z 0 Z t _ T SyðsÞ _ ds dh: e2as yðsÞ V 6 ðtÞ ¼ ðt kþ1 tÞ 2
tþt k
tþh
Calculating the time derivative of VðtÞ along the trajectories of (13), we obtain
_ þ 2ae2at yðtÞT PyðtÞ ¼ 2e2at xðtÞT eT1 PNxðtÞ þ 2ae2at xðtÞT eT1 Pe1 xðtÞ; V_ 1 ðtÞ ¼ 2e2at yðtÞT P yðtÞ T T yðtÞ yðt dÞ yðt dÞ e2aðtdÞ Q Q f ðyðtÞÞ f ðyðtÞÞ f ðyðt dÞÞ f ðyðt dÞÞ T T e1 e e1 e Q xðtÞ e2at e2ad xðtÞT 3 Q 3 xðtÞ; ¼ e2at xðtÞT e2 e2 e4 e4 Z t Z 2 _ T Z yðtÞ _ d _ T Z yðsÞ _ ds 6 d2 e2at xðtÞT NT Z NxðtÞ de2at e2as yðsÞ V_ 3 ðtÞ ¼ d e2at yðtÞ V_ 2 ðtÞ ¼e2at
ð18Þ
yðtÞ
td
t
_ T Z yðsÞ _ ds e2ad yðsÞ
td 2
6 e2at e2ad xðtÞT ðe1 e3 ÞT Zðe1 e3 ÞxðtÞ þ d e2at xðtÞT NT Z NxðtÞ; where Lemma 1 is adopted, and
2
ð19Þ
3T 2 3 2 3T 2 3 _ _ _ _ yðtÞ yðtÞ yðsÞ yðsÞ Z t 6 7 6 7 6 7 6 7 V_ 4 ðtÞ ¼ ðt kþ1 tÞe2at 4 yðtÞ 5 R4 yðtÞ 5 e2as 4 yðsÞ 5 R4 yðsÞ 5 ds tk yðt k Þ yðt k Þ yðtk Þ yðtk Þ
ð20Þ
6
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
2
N
3T
6 7 6 ðtkþ1 tÞe2at xðtÞT 4 e1 5 2
e6
N
2e2at e2ah xðtÞT 2 6 V_ 5 ðtÞ ¼ e2at 4
Rt
e1 e6
R1 T
e5
3T 2
yðt k Þ
7 6 5 H4
yðsÞds 2
e6
yðtÞ
tk
R1
3T
6 7 ¼ ðt kþ1 tÞe2at xðtÞT 4 e1 5
Rt
2 3 2 3T 2 3 _ _ yðsÞ N yðsÞ Z t R2 6 7 6 7 R1 R2 6 7 e2ah 4 yðsÞ 5 4 e1 5xðtÞ e2at 4 yðsÞ 5 ds R3 R3 tk e6 yðtk Þ yðt k Þ 2 3 N T Z t _ _ R2 6 7 yðsÞ yðsÞ ds e2ah R1 4 e1 5xðtÞ e2at R3 yðsÞ yðsÞ tk e6
R2 e6 xðtÞ ðt t k Þe2at e2ah xðtÞT eT6 R3 e6 xðtÞ;
yðtÞ
3
2
yðt k Þ
7 6 5 þ 2aðt kþ1 tÞe2at 4
yðsÞds 3T 2
tk
yðtÞ yðtk Þ
Rt
yðtÞ
3T 2
yðt k Þ
7 6 5 H4
tk
3
yðsÞds
Rt
ð21Þ
yðtÞ
3
yðtk Þ
7 5
tk
yðsÞds
_ yðtÞ 7 6 7 þ 2ðtkþ1 tÞe 4 5 H4 0 5 Rt yðsÞds yðtÞ tk 2 3T 2 3 2 3T 2 3 2 3T 2 3 e1 e1 e1 e1 e1 N 6 7 6 7 6 7 6 7 6 7 6 7 ¼ e2at xðtÞT 4 e6 5 H4 e6 5xðtÞ þ 2aðt kþ1 tÞe2at xðtÞT 4 e6 5 H4 e6 5xðtÞ þ 2ðtkþ1 tÞe2at xðtÞT 4 e6 5 H4 0 5xðtÞ; 2at 6
e5
e5
e5
e5
e5
e1 ð22Þ
_ T SyðtÞ _ V_ 6 ðtÞ ¼ ðt kþ1 tÞðt tk Þe2at yðtÞ
Z
Z
0
tþt k
6 6 ¼
ððt kþ1 tÞ þ ðt t k ÞÞ2 2at _ T SyðtÞ _ e yðtÞ 4
Z
t
_ T SyðsÞ _ ds dh e2as yðsÞ
tþh
Z
0
Z
_ T SyðsÞ _ ds dh e2as yðsÞ
tþh
tþt k
hððt kþ1 tÞ þ ðt t k ÞÞ _ T SyðtÞ _ e2at yðtÞ 4
t
Z
0
t
_ T SyðsÞ _ ds dh e2ah yðsÞ
tþh
tþt k
h h ðt kþ1 tÞe2at xðtÞT NT SNxðtÞ þ ðt tk Þe2at xðtÞT NT SNxðtÞ e2at 4 4
Z
0
tþt k
Z
t
_ T SyðsÞ _ ds d:h e2ah yðsÞ
ð23Þ
tþh
On the other hand, based on the free-weighting matrix method [40,41], for any matrices W and G with appropriate dimensions, the following equations hold:
"" 0 ¼ 2xðtÞT W
# Z " # # Z t t yðtÞ yðtk Þ _ _ e1 e6 yðsÞ yðsÞ Rt ds ¼ 2xðtÞT W ds ; xðtÞ yðsÞ ds e5 yðsÞ yðsÞ tk tk tk
ð24Þ
and
" T
0 ¼ 2xðtÞ G ðt t k ÞyðtÞ
Z
t
yðsÞ ds
Z
tk
Z
0
#
t
_ ds dh yðsÞ
tþh
tþtk
¼ 2ðt tk ÞxðtÞT Ge1 xðtÞ 2xðtÞT Ge5 xðtÞ 2xðtÞT G
Z
Z
0
tþt k
t
_ ds dh: yðsÞ
ð25Þ
tþh
Moreover, based on the fact that for any matrix G > 0; 2yT x 6 yT Gy þ xT G1 x, it is easy to obtain that
Z t
2xðtÞT W
_ yðsÞ
tk
yðsÞ
0
Z
ds 6 e2ah
Z t tk
_ yðsÞ
T
yðsÞ
R1
_ yðsÞ
yðsÞ
T ds þ ðt tk Þe2ah xðtÞT WR1 1 W xðtÞ;
ð26Þ
and
2xðtÞT G
Z
tþt k
t
_ ds dh 6 yðsÞ
tþh
ðt t k Þ2 2ah e xðtÞT GS1 GT xðtÞ þ 2
Z
0
tþtk
Z
t
_ T SyðsÞ _ ds dh: e2ah yðsÞ
ð27Þ
tþh
Combining (24) and (26) leads to
0 6 d1 ðtÞ , 2xðtÞT W
e1 e6 e5
xðtÞ þ e2ah
Z t tk
_ yðsÞ yðsÞ
T
R1
_ yðsÞ yðsÞ
T ds þ ðt t k Þe2ah xðtÞT WR1 1 W xðtÞ;
ð28Þ
7
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
and combining (25) and (27) leads to
0 6 d2 ðtÞ , 2ðt tk ÞxðtÞT Ge1 xðtÞ 2xðtÞT Ge5 xðtÞ þ
hðt tk Þ 2ah e xðtÞT GS1 GT xðtÞ þ 2
Z
0
Z
tþt k
t
_ T SyðsÞ _ ds dh: e2ah yðsÞ
tþh
ð29Þ Furthermore, it is noted that based on (4), the following inequality holds: T
ðf ðx1 ðtÞÞ f ðx2 ðtÞÞ F 1 ðx1 ðtÞ x2 ðtÞÞÞ ðf ðx1 ðtÞÞ f ðx2 ðtÞÞ F 2 ðx1 ðtÞ x2 ðtÞÞÞ 6 0; which implies for any scalar
v1 > 0, the following inequality holds:
T
x ðtÞ x ðtÞ
ð30Þ
x ðtÞ x ðtÞ
2 1 2 P 0; v1 1 C f ðx1 ðtÞÞ f ðx2 ðtÞÞ f ðx1 ðtÞÞ f ðx2 ðtÞÞ
ð31Þ
where
"
C¼
F T1 F 2 þF T2 F 1 2
F T1 þF T2 2
# :
I
Similarly, it can be seen that for l ¼ 2; 3; . . . ; N 1,
x ðtÞ x
ðtÞ
T
x ðtÞ x
ðtÞ
1 lþ1 lþ1 P 0: vl 1 C f ðx1 ðtÞÞ f ðxlþ1 ðtÞÞ f ðx1 ðtÞÞ f ðxlþ1 ðtÞÞ
ð32Þ
Thus, we can conclude from (31) and (32) that for any diagonal matrix K1 ¼ diagfv1 ; v2 ; . . . ; vN1 g > 0, the following inequality holds:
T
yðtÞ f ðyðtÞÞ
ðK1 IÞX1
ðK1 IÞX2
K1 I
yðtÞ f ðyðtÞÞ
P 0:
ð33Þ
Rewriting (33), we have
0 6 d3 ðtÞ , xðtÞT eT1 ðK1 IÞX1 e1 xðtÞ xðtÞT eT2 ðK1 IÞe2 xðtÞ þ 2xðtÞT eT1 ðK1 IÞX2 e2 xðtÞ:
ð34Þ
Similarly, we also have that any diagonal matrices K2 ; K3 and K4 with appropriate dimensions, the following inequalities hold:
0 6 d4 ðtÞ , xðtÞT eT3 ðK2 IÞX1 e3 xðtÞ xðtÞT eT4 ðK2 IÞe4 xðtÞ þ 2xðtÞT eT3 ðK2 IÞX2 e4 xðtÞ;
ð35Þ
0 6 d5 ðtÞ , xðtÞT eT1 ðK3 IÞX1 e1 xðtÞ xðtÞT eT2 ðK3 IÞe2 xðtÞ þ 2xðtÞT eT1 ðK3 IÞX2 e2 xðtÞ;
ð36Þ
0 6 d6 ðtÞ , xðtÞT eT3 ðK4 IÞX1 e3 xðtÞ xðtÞT eT4 ðK4 IÞe4 xðtÞ þ 2xðtÞT eT3 ðK4 IÞX2 e4 xðtÞ:
ð37Þ
Then, we obtain from (18)–(22) (34)–(37) that for t 2 ½tk ; t kþ1 Þ,
t kþ1 t t tk _ _ VðtÞ 6 VðtÞ þ e2at ðd1 ðtÞ þ d2 ðtÞÞ þ e2at ðd3 ðtÞ þ d4 ðtÞÞÞ þ e2at ðd5 ðtÞ þ d6 ðtÞÞÞ hk hk tkþ1 t t tk _ þ e2at d1 ðtÞ þ e2at xðtÞT P1 xðtÞ þ e2at xðtÞT P2 xðtÞ ¼ VðtÞ hk hk tkþ1 t t tk X1 ðhk Þ þ X2 ðhk Þ xðtÞ; 6 e2at xðtÞT hk hk
ð38Þ
where
X1 ðhk Þ ¼ N þ P1 þ H1 ðhk Þ þ
hhk T N SNX2 ðhk Þ 4
¼ N þ P2 þ H2 ðhk Þ hk e2ah eT6 R3 e6 þ
hhk T hhk 2ah 1 T T N SN þ e2ah hk WR1 e GS G : 1 W þ 4 2
On the other hand, we can deduce from (14) and (15) that
X1 ðhk Þ ¼
h hk hk ðN þ P1 Þ þ ðN þ P1 þ HðhÞÞ < 0: h h
ð39Þ
Applying Schur complement to (16) leads to T N þ P2 he2ah eT6 R3 e6 þ e2ah hWR1 1 W < 0:
ð40Þ
8
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
Based on this together with (14), we obtain
h hk hk 2ah T 1 ðN þ P2 Þ þ ðN þ P2 he e6 R3 e6 þ e2ah hWR1 W T Þ: < 0 h h
X2 ðhk Þ ¼
ð41Þ
Now, from (38), (39) and (41), we have
_ VðtÞ < 0; t 2 ½t k ; t kþ1 Þ:
ð42Þ
Noting that
V 4 ðt k Þ ¼ V 4 ðtk Þ ¼ 0; V 5 ðt k Þ ¼ V 5 ðtk Þ ¼ 0:
ð43Þ
Therefore,
Vðtk Þ ¼ Vðtk Þ:
ð44Þ
It is easy to see from (42) and (44) that for t 2 ½tk ; tkþ1 Þ,
VðtÞ 6 Vðtk Þ ¼ Vðtk Þ 6 Vðt k1 Þ ¼ Vðtk1 Þ 6 6 Vð0Þ:
ð45Þ
On the other hand, applying Schur complement to
Q¼
Q1
Q2
Q3
> 0;
ð46Þ
we have
^ , Q Q Q 1 Q T > 0; Q 1 2 3 2
ð47Þ
and
" Q
^ Q
0
0
#
" ¼
T Q 2 Q 1 3 Q2
Q2
Q3
# P 0:
ð48Þ
By Lemma 3, it follows readily that for tk 6 t < t kþ1 ,
jjyðtÞjj2 6 h1 jjyðt k Þjj2 þ h2
Z
tk
jjyðaÞjj2 da
t k d
Z tk h1 h2 2 2at k 2at k ^Þ e k ðPÞjjyðt Þjj þ e k ð jjyðaÞjj2 da Q min min k ^ 2atk kmin ðPÞe2atk kmin ðQÞe t k d Z tk h1 h2 e2ad T 2at k ^ yðsÞ ds: 6 e yðt Þ Pyðt Þ þ e2as yðsÞT Q k k ^ Þe2atk tk d kmin ðPÞe2atk kmin ðQ ¼
ð49Þ
Condition (48) indicates that
T yðsÞ ^ P yðsÞT QyðsÞ: Q f ðyðsÞÞ f ðyðsÞÞ yðsÞ
ð50Þ
Then by (49) and (50), we have that for tk 6 t < tkþ1 ,
jjyðtÞjj2 6 qe2atk ðV 1 ðtk Þ þ V 2 ðt k ÞÞ 6 qe2atk ðV 1 ðt k Þ þ V 2 ðtk Þ þ V 3 ðtk ÞÞ ¼ qe2atk Vðt k Þ 6 qe2atk Vð0Þ ¼ qe2at e2aðttk Þ Vð0Þ 6 e2ah qe2at Vð0Þ;
ð51Þ
where
(
h1 q ¼ max ; kmin ðPÞ
) h2 e2ad : ^Þ kmin ðQ
It follows from (51) that
jjx1 ðtÞ xl ðtÞjj2 6 e2ah qe2at Vð0Þ; l ¼ 2; 3; . . . ; N:
ð52Þ
jjxi ðtÞ xj ðtÞjj2 6 ðjjx1 ðtÞ xi ðtÞjj þ jjx1 ðtÞ xj ðtÞjjÞ2 6 2jjx1 ðtÞ xi ðtÞjj2 þ 2jjx1 ðtÞ xj ðtÞjj2 6 4e2ah qe2at Vð0Þ;
ð53Þ
Thus,
which implies
jjxi ðtÞ xj ðtÞjj 6 2eah
pffiffiffiffiffiffiffiffiffiffiffiffiffi at qVð0Þe :
ð54Þ
9
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
Hence, eat jjxi ðtÞ xj ðtÞjj is bounded, and we conclude that CDN (1) is globally exponentially stable with convergence rate a, namely
jjxi ðtÞ xj ðtÞjj ¼ Oðeat Þ:
ð55Þ
This completes the proof. h Remark 2. It is noted that an exponential synchronization criterion is given for CDN (1) via a new time-dependent Lyapunov functional, which is positive definite at communication instants but not necessarily positive definite inside the communication intervals, and thus can make full use of the available information about the discrete-time communication pattern and lead to less conservative result.
4. Numerical example In this section, we will use a numerical example to illustrate the advantages of the proposed result in this paper. Consider the isolated node of CDN (1) with the following parameters:
A¼
B¼
1 0 ; 0 1
2
0:11
5
3:2
C¼
1:6
;
0:1
;
0:18 2:5
and the inner-coupling matrix
C¼
1 0
0 1
:
In this example, we choose
F1 ¼
0 0 0 0
; F2 ¼
1 0 0 1
:
First we take the coupling configuration matrix
2
2 1 6 G ¼ 4 1 2 1
1
3 1 7 1 5: 2
The allowable bound of communication intervals h for different coupling strength c ¼ by Theorem 1 can be found in Table 1, from which we can find that the allowable bound of communication intervals h depends the coupling strength c. Specifically, a larger c corresponds to a smaller h. Next we choose the coupling strength c ¼ 3 and the coupling configuration matrix
2
6 1 2 6 4 15 5 6 G¼6 4 5 0 5 6
0
0
3 3 6 7 7 7: 0 5 6
By applying MATLAB LMI toolbox to solve the LMIs in Theorem 1, we can find that The allowable bound of communication interval, which ensures CND (1) is synchronized, is 0.1509.
Table 1 Allowable bound of communication intervals h. c
1
3
5
7
Theorem 1
0.2931
0.2922
0.2563
0.2271
10
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
5. Conclusion The synchronization problem has been considered for CDNs with time delay based on discrete-time communication pattern. A new Lyapunov functional has been proposed, which is positive definite at communication instants but not necessarily positive definite inside the communication intervals, in order to make full use of the available information about the discrete-time communication pattern. Based on the Lyapunov functional, a criterion has been proposed to ensure the synchronization of the considered CDNs. A simulation result has demonstrated the successful application of the proposed design methods. It should be mentioned that the given results can be extended to more complex systems, such as CDNs with time-varying delay [29], CDNs with Markov jumping parameters [42], CDNs with singular model [43,44], and stochastic CDNs [45]. References [1] Y. Tang, H. Gao, W. Zou, J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings, IEEE Trans. Cybern. 43 (1) (2013) 358–370. [2] J.Q. Lu, D.W.C. Ho, Stabilization of complex dynamical networks with noise disturbance under performance constraint, Nonlinear Anal. Series B: Real World Appl. 12 (2011) 1974–1984. [3] J.Q. Lu, D.W.C. Ho, J.D. Cao, Synchronization in an array of nonlinearly coupled chaotic neural networks with delay coupling, Int. J. Bifurcation Chaos 18 (2008) 3101–3111. [4] R. Lu, W. Yu, J. Lu, A. Xue, Synchronization on Complex Networks of Networks, IEEE Trans. Neural Networks Learning Sys. 25 (2014) 2110–2118. [5] X. Yang, J. Cao, J. Lu, Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control, IIEEE Trans. Circuits Syst. I: Regul. Pap. 59 (2012) 371–384. [6] G. Ning, D. Yang, L. Tie, K. Cai, Nash equilibrium of time-delay interaction complex networks subject to persistent disturbances, IET Control Theory Appl. 6 (2012) 1715–1721. [7] J. Liang, Z. Wang, X. Liu, P. Louvieris, Robust synchronization for 2-D discrete-time coupled dynamical networks, IEEE Trans. Neural Networks Learning Syst. 23 (2012) 942–953. [8] Z. Wang, Y. Wang, Y. Liu, Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays, IEEE Trans. Neural Networks 21 (2010) 11–25. [9] B. Shen, Z. Wang, X. Liu, Bounded H1 synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon, IEEE Trans. Neural Networks 22 (2011) 145–157. [10] W. Yu, P. DeLellis, G. Chen, M. Bernardo, J. Kurths, Distributed adaptive control of synchronization in complex networks, IEEE Trans. Autom. Control 57 (2012) 2153–2158. [11] H. Su, Z. Rong, M.Z.Q. Chen, X. Wang, G. Chen, H. Wang, Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks, IEEE Trans. Cybern. 43 (2013) 394–399. [12] Y. Zhao, B. Li, J. Qin, H. Gao, H1 consensus and synchronization of nonlinear systems based on a novel fuzzy model, IEEE Trans. Cybern. (2013), http:// dx.doi.org/10.1109/TCYB.2013.2242197. [13] N. Mahdavi, M.B. Menhaj, J. Kurths, J. Lu, Fuzzy complex dynamical networks and its synchronization, IEEE Trans. Cybern. 43 (2013) 648–659. [14] Y. Liu, Z. Wang, J. Liang, X. Liu, Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays, IEEE Trans. Cybern. 43 (2013) 102–114. [15] T.H. Lee, Z.-G. Wu, Ju.H. Park, Synchronization of a complex dynamical network with coupling time-varying delays via sampled-data control, Appl, Math. Comput. 219 (2012) 1354–1366. [16] Z.-G. Wu, Ju H. Park, H. Su, B. Song, J. Chu, Exponential synchronization for complex dynamical networks with sampled-data, J. Franklin Inst. 349 (2012) 2735–2749. [17] E. Fridman, A refined input delay approach to sampled-data control, Automatica 46 (2010) 421–427. [18] N. Li, Y. Zhang, J. Hu, Z. Nie, Synchronization for general complex dynamical networks with sampled-data, Neurocomputing 74 (2011) 805–811. [19] Ju. H. Park, T.H. Lee, Synchronization of complex dynamical networks with discontinuous coupling signals, Nonlinear Dyn. (2015), http://dx.doi.org/ 10.1007/s11071-014-1746-x. [20] K. Liu, E. Fridman, Wirtinger’s inequality and Lyapunov-based sampled-data stabilization, Automatica 48 (2012) 102–108. [21] A. Seuret, A novel stability analysis of linear systems under asynchronous samplings, Automatica 48 (2012) 177–182. [22] Z.-G. Wu, P. Shi, H. Su, J. Chu, Sampled-data synchronization of chaotic Lur’e systems with time delays, IEEE Trans. Neural Networks Learning Syst. 24 (2013) 410–421. [23] Y. Wang, J. Xiao, C. Wen, Z. Guan, Synchronization of continuous dynamical networks with discrete-time communications, IEEE Trans. Neural Networks 22 (2011) 1979–1986. [24] Z.-G. Wu, P. Shi, H. Su, J. Chu, Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data, IEEE Trans. Cybern. 43 (2013) 1796–1806. [25] Z.-G. Wu, P. Shi, H. Su, J. Chu, Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time-delays, IEEE Trans. Neural Networks 22 (2011) 1566–1575. [26] Z. Wu, H. Su, J. Chu, Delay-dependent H1 filtering for singular Markovian jump time-delay systems, Signal Process. 90 (2010) 1815–1824. [27] B. Zhou, H. Gao, Z. Lin, G.-R. Duan, Stabilization of linear systems with distributed input delay and input saturation, Automatica 48 (2012) 712–724. [28] B. Zhou, Z.-Y. Li, Z. Lin, Observer based output feedback control of linear systems with input and output delays, Automatica 49 (2013) 2039–2052. [29] B. Zhou, Z. Lin, G.-R. Duan, Truncated predictor feedback for linear systems with long time-varying input delays, Automatica 48 (2012) 2387–2399. [30] J. Wang, Ju.H. Park, H. Shen, New delay-dependent bounded real lemmas of polytopic uncertain singular Markov jump systems with time delays, J. Franklin Inst. 351 (2014) 1673–1690. [31] H. Shen, S. Xu, J. Lu, J. Zhou, Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays, J. Franklin Inst. 349 (2012) 1665–1680. [32] H. Shen, S. Xu, X. Song, Y. Chu, Delay-dependent H1 filtering for stochastic systems with Markovian switching and mixed mode-dependent delays, Nonlinear Anal. Hybrid Syst. 4 (2010) 122–133. [33] H. Shen, Ju H. Park, L. Zhang, Z.G. Wu, Robust extended dissipative control for sampled-data Markov jump systems, Int. J. Control 87 (2014) 1549–1564. [34] R. Lu, Y. Xu, A. Xue, H1 filtering for singular systems with communication delays, Signal Process. 90 (2010) 1240–1248. [35] R. Lu, H. Wu, J. Bai, New delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, J. Franklin Inst. 351 (2014) 1386– 1399. [36] R. Lu, H. Li, Y. Zhu, Quantized H1 Filtering for Singular Time-varying Delay Systems with Unreliable Communication Channel, Circuits Syst. Signal Process. 31 (2012) 521–538. [37] Z. Wang, Y. Liu, X. Liu, H1 filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities, Automatica 44 (2008) 1268–1277. [38] J. Lu, D.W.C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica 46 (2010) 1215–1221.
M. Fang / Applied Mathematics and Computation 258 (2015) 1–11
11
[39] Z. Shu, J. Lam, Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays, Int. J. Control 81 (2008) 865– 882. [40] M. Wu, Y. He, J. She, G. Liu, Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40 (2004) 1435–1439. [41] Y. He, Q. Wang, M. Wu, C. Lin, Delay-dependent state estimation for delayed neural networks, IEEE Trans. Neural Networks 17 (2006) 1077–1081. [42] Z.-G. Wu, P. Shi, H. Su, J. Chu, Asynchronous l2 l1 filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica 50 (2014) 180–186. [43] R. Lu, H. Su, J. Chu, S. Zhou, M. Fu, Reduced-order H1 filtering for discrete-time singular systems with lossy measurements, IET Control Theory Appl. 4 (2010) 151–163. [44] R. Lu, H. Su, J. Chu, A. Xue, A simple approach to robust D-stability analysis for uncertain singular delay systems, Asian J. Control 11 (2009) 411–419. [45] B. Song, Ju H. Park, Z.-G. Wu, Y. Zhang, New results on delay-dependent stability analysis for neutral stochastic delay systems, J. Franklin Inst. 350 (2013) 840–852.