Marine Micropaleontology, 9 (1985): 489--523 Elsevier Science Publishers B.V., Amsterdam -- Printed in The Netherlands
SYNCHRONOUS AND TIME-TRANSGRESSIVE NEOGENE RADIOLARIAN LEVELS IN THE EQUATORIAL INDIAN AND PACIFIC OCEANS
489
DATUM
DAVID A. JOHNSON 1 and CATHERINE A. NIGRINP
i Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (U.S.A.) 2 510 Papyrus Drive, La Habra Heights, CA 90631 (U.S.A.) (Revised form accepted June 17, 1985)
Abstract Johnson, D.A. and Nigrini, C.A., 1985. Synchronous and time-transgressive Neogene radiolarian datum levels in the Equatorial Indian and Pacific Oceans. Mar. Micropaleontol., 9: 489--523. Fifty radiolarian events of early Pleistocene and Neogene age were identified in an E--W transect of equatorial DSDP sites, extending from the Gulf of Panama to the western Pacific and eastern Indian Oceans. Our objective was to document the degree of synchroneity or time-transgressiveness of stratigraphically-useful datum levels from this geologic time interval. We restricted our study to low latitudes within which morphological variations of individual taxa are minimal, the total assemblage diversity remains high, and stratigraphic continuity is welldocumented by an independent set of criteria. Each of the five sites chosen (503, 573, 289/586, 214) was calibrated to an "absolute" time scale, using a multiple of planktonic foraminiferal, nannofossil, and diatom datum levels which have been independently correlated to the paleomagnetic polarity time scale in piston core material. With these correlations we have assigned "absolute" ages to each radiolarian event, with a precision of 0.1--0.2 m.y. and an accuracy of 0.2--0.4 m.y. On this basis we have classified each of the events as either: (a) synchronous (range of ages <0.4 m.y.); (b) time-transgressive (i.e., range of ages > 1.0 m.y.); and (c) not resolvable (range of ages 0.4--1.0 m.y.). Our results show that, among the synchronous datum levels, a large majority (15 out of 19) are last occurrences. Among those events which are clearly time-transgressive, most are first appearances (10 out of 13). In many instances taxa appear to evolve first in the Indian Ocean, and subsequently in the western and eastern Pacific Ocean. This pattern is particularly unexpected in view of the strong east-to-west zonal flow in equatorial latitudes. Three of the time-transgressive events have been used to define zonal boundaries: the first appearances of Spongaster pentas, Diartus hughesi, and D. petterssoni. Our results suggest that biostratigraphic non-synchroneity may be substantial (i.e., greater than 1 m.y.) within a given latitudinal zone; one would expect this effect to be even more pronounced across oceanographic and climatic gradients. We anticipate that the extent of diachroneity may be comparable for diatom, foraminiferal, and nannofossil datum levels as well. If this proves true, global "time scales" may need to be re-formulated on the basis of a smaller number of demonstrably synchronous events.
Introduction A fundamental presumption of stratigraphic c o r r e l a t i o n is t h e r e l a t i v e s y n c h r o n e i t y o f b i o s t r a t i g r a p h i c d a t u m levels o n a r e g i o n a l o r e v e n a g l o b a l scale, i n c o n t r a s t w i t h t h e
common time-transgressive nature of other stratigraphic "horizons" (e.g. lithofacies b o u n d a r i e s ; hiatuses; seismic reflectors). As a result of the development of a precise paleomagnetic geochronology over the past two decades, biostratigraphers have been able
490
to test this presumed synchroneity of faunal and floral biostratigraphic "events" against an independent calibration -- the polarity reversal sequence. Such comparisons have suggested apparent synchroneity for a substantial n u m b e r o f biostratigraphic events to within a precision of ~ 0 . 1 - - 0 . 4 million years, and as a result have formed the basis for the calibration of biostratigraphic zonations to " a b s o l u t e " time scales (e.g., Berggren et al., 1980; in press). In recent years, however, some notable exceptions to global synchroneity have emerged u p o n closer examination of the latitudinal dependence of floral and faunal zonations, and of the associated stratigraphic marker "horizons". Among the planktonic foraminifera, which are perhaps the most thoroughly-studied of the microfossil groups, significant latitudinal diachroneity has been demonstrated for numerous "horizons", including: (a) The first-appearance datums of Globorotalia truncatulinoides and G. inflata (Kennett, 1970); (b) The first-appearance datum of Globorotalia puncticulata (Kennett, 1973; Kennett and Watkins, 1974); (c) The last-appearance datum of Globorotalia (Fohsella) kugleri (Srinivasan and Kennett, 1983); and (d) The last-appearance datum of Globoquadrina dehiscens (D. Hodell, personal communication, 1984). In a recent review of Neogene chronostratigraphy and biostratigraphy, Saito (1984) has summarized the evidence for latitudinal diachroneity of several first- and last-appearance datum levels of planktonic foraminifera. Consequently there is a clear basis for reexamining the presumed biostratigraphic synchroneity for all microfossil d a t u m levels with a much closer scrutiny, b o t h within and between latitudinal zones. We have re-examined the classical sequences of low-latitude radiolarian events (e.g., Riedel and Sanfilippo, 1978; Theyer et al., 1978), and have discovered some persistent
"wrinkles" within the presumed paradigm of biostratigraphic synchroneity. Our results amplify Baker's (1983, fig. 3) initial documentation o f time-transgressive d a t u m levels for a single radiolarian genus, Theocorythium. We believe that at least some of the apparent departures from synchroneity may be real, rather than mere artifacts of the combined effects of incomplete core recovery, low abundances of taxa, or poor specimen preservation. If non-synchroneity is indeed significant, then its documentation in diverse groups of fauna and flora may be important n o t only for sharpening stratigraphic resolution, b u t also in interpretations of paleoceanography and evolutionary biology.
Objectives and methods of study We have examined low-latitude radiolarian sequences of Quaternary and late Neogene age (ca. 1--15 m.y.) in four composite DSDP drilling localities (Fig. i and Table I): the eastern Pacific (Site 503), central Pacific (Site 573), western Pacific (Sites 289 and 586), and Indian Ocean (Site 214). We intentionally selected a coring transect within a given latitudinal zone in which one would expect to encounter comparable taxa at all sites, thus avoiding the complexities introduced by latitudinally
Latitude
Longitude
503 573 289 586 214
04 ° 03'N 95° 38'W 00°30'N 133°19'w 00° 30'S 158°31'E 00°30'S 158°29'E 11° 20'S 88°43'E
Depth
3672 4301 2206 2207 1685
491
90°E
120"
150"
160"
1~0"
120"
90~W
Fig. 1. Index m a p showing D S D P sites whose radiolarian biostratigraphy forms the basis of our study of synchroneity.
In considering the n u m b e r of possible radiolarian events from which to choose, we e m p l o y e d t w o principal criteria in deriving our final list (see Appendix I): -- We used principally first- and last-appearance datums o f m o r p h o t y p e s (48 events), and included only t w o evolutionary transitions b e t w e e n m o r p h o t y p e s within a lineage. Although evolutionary transition events clearly have stratigraphic value (e.g., Riedel and Sanfilippo, 1978, fig. 1), there is some subjectivity associated with selecting the "crossover p o i n t " in an evolving population of different morphotypes, even if large numbers of specimens are examined. With this criterion we have therefore excluded some evolutionary transitions within the artiscin lineage(s) which have classically been e m p l o y e d in subdividing the Neogene (Riedel and Sanfilippo, 1978; Sanfilippo and Riedel, 1980), b u t which we f o u n d were n o t practical for inclusion in our study. -- We included in our tabulations o n l y taxa whose identity is relatively unambiguous using ordinary light-microscopic examination. Several additional taxa were noted which appear to have stratigraphic value, b u t which will require more taxonomic research and perhaps re-definition prior to
their consistent application as stratigraphic markers. Using these two criteria we selected fifty radiolarian events which we identified so far as the material would allow in each of our four reference localities. In all instances we supplemented published tabulations of radiolarian occurrences with our own re-examination of the material to verify that we were applying consistent criteria in identifying taxa (e.g., Riedel and Westberg, 1982 for Site 503; Holdsworth, 1975, and Westberg and Riedel, 1978, for Site 289; Johnson, 1974, for Site 214; Caulet, in press, for Site 586). We examined each drill site at intervals of one sample per section (1.5 m), and tabulated whether each taxon was present (P), rare (+, only one specimen in a slide), or absent (--) (see Appendix II). From these tabulations we selected upper and lower limits for as m a n y taxa as possible (see Appendix III). Selection and calibration of stratigraphic reference sections We devoted a major effort to re-calibrating all available stratigraphic marker horizons in our chosen drill sites to the revised Neogene time scale of Berggren et al. (in press). This substantial revision, which emerged in early 1984, reassigns the long magnetic normal interval of the late Miocene to Chron 11 rather than the previously assumed Chron 9 ( R y a n et al., 1974), and thereby has resolved m a n y discrepancies which formerly preoccupied late Miocene geochronology (see discussion in Berggren et al., in press). We have constructed age--depth curves for each of our reference sites (Figs. 2--5), using all available stratigraphic horizons in these sites which have been calibrated to the polarity time scale (Tables II--V). We recognize that there is a multiplicity of allowable (and perhaps preferable) ways of constructing curves through the available control points. Minor hiatuses, such as those interpreted b y Keller and Barron (1983),
492 A G E (Ma} 0
I
40
2
5
4
5
6
7
I
I
8
"~
60-
~.
\
-
\.
80 100-
120
~ .p_,
D S D P SITE 5 0 5 • POLA~I[YBOUNDA/PIE~
tx~ 2 \ k
BIOETRATIGRAPHIC DATUMLEVELS
l'O _ 160 -
rr~:fOI~AMINIF.Ep A
\ ~ Dj
#--i~'~I
N~=NAIWOrO#gL#
,75
D} :DIATOM.f
~i DJ
\
180 2OO 220
'
,
]
I
I
I
I
Fig. 2. Absolute age control at DSDP Site 503, eastern equatorial Pacific Sources of data are listed in
Table 2.
may indeed be present. In our study, however, we have adopted a more conservative approach and constructed a minimal number of straight-line segments through the control points, ignoring second-order changes in accumulation rate which m a y indeed be present. Our objective here is to d o c u m e n t only major events of non-synchroneity (1 m.y. or greater), and for this purpose we require an age resolution at each site on the order of ~ 0 . 3 m.y. The multiplicity of control points which we have e m p l o y e d allows this degree o f resolution, although we of
course would prefer to have had a complete polarity stratigraphy directly available for each of our reference sites. We note that the strength of our case for radiolarian synchroneity/non-synchroneity lies in the accuracy o f our reference site calibrations. There is insufficient space in this paper to discuss and justify each of our choices of calibration points and their corresponding " a b s o l u t e " ages, b u t we have provided a detailed tabulation and citations for each control point, thereby allowing readers t o assess the validity of our approach.
493
AGE (/14o) 0
i 0 ~6N~
t
2
I
,
3
I
i
4
I
i
5
I
i
6
I
i
7
I
i
I
8
9
I
I
i
20 40 ~ k bg
60 so
100DI6
'
12O [~SE)P
SIT[
="
5 7 3
~
BIOETRATIGI~APt#'CDATUMl £VELS
140 160
D ~7 Dm - ~-D2o
AMiN/FEI~A # } : FOP,
i
N~=NANNOFOYS Z /Y
~ , /
I
180
1
,
I
,
1
~
1
11 A
I
D
12 ,
I
D27 ~-
#4 -
t3 ,
I
I
,
15
14 ,
I
,
~,-
200
I
1
I
t6 l
,
SITE
n28~D2~ D3o
220
v
/
,
I
i7 ,
i
18 ~
I
573
~ ~ i m
260
;i
280
O} .
I
,
(Ma)
AGE
t0
I
h
I
~
D~_5
D,AW~S ,
Eg I
,
I
,
I
,
I
,
I
,
I
,
I}
Fig. 3. Absolute age control at DSDP Site 573, central equatorial Pacific. Sources of data are listed in Table III.
494
AGE (Mo) 2
1 i
I
,
5
I
i
JI,-
4
I
i
5
I
I
6
I
I
7
L
I
I
I
8
9
I
I
fl.~
N2 ~ ~ -
N~
N~"<~
r3
"9 %;
100
-
~;~
0
\ N_, \ ~
£-
N,;Q'
200
;;~'~
-100
"\s 6 300
-200
"~ D,SE)P SITES
289
8 , 5 E 3 6 / ) ~\
BIOETRATIC~APHIC PaTUMLEVELE T F "_L:FORAMINIFERA
~
N I : NANNOFO55/LY
#ji'~;
4 0 0 - 300 SffE 586
~r5~-~Z ;ITE
-
~'89,
I
I
I
I
I
I
J
I
I
N~~ i
I
AGE(Ma) 10 i
1t ,
I
12 i
J
1:5 ,
I
14 i
]
t6
1,5 i
i
17
18
I
i
I
400
DSDP
500
SITE
289
F j _ ~ ' ~
\
BIOETRATIM,~APttlC DATUMI EVELE F1 = FORAMINIFERA Nt = NANNOfO$fflL~
•
8
--
I
i
i
i
i
i
I
I
,
I
i
I
i
I
~-17 " I
Fig. 4. Absolute age control at D S D P Sites 289 and 586, western equatorial Pacific. Sources of data are listed in Tables IV and V.
495 TABLE II Magnetostratigraphic and biostratigraphic datum levels at sites 5 0 3 A and 503B, eastern equatorial Pacific
Datum
Samples
Depth (m)
Age (Ma)
10.8 12.2 35.1 49.2 63.5 72.5 89.7
0.73 e 0.98 1.88 2.47 3.08 3.40 3.88
Paleomagnetics a
Brunhes/Matuyama Base of JaramiUo Base of Olduvai Matuyama/Gauss Top of Mammoth Gauss/Gilbert Top of Cochiti
503B-3-3,60-70 503B-4-2,30-40 503A-9-2,100-130 503B-12-2,60-100 503B-15-3,80-100 503B-17-3,80-100 503B-21-3,25-43
Diatoms b D 1T D2 B D3 T D, T D 5T D, T D7B D8 B D9 B
N. N. T. A. N. T. T. T. N.
cylindrica jouseae miocenica acutiloba miocenica praeconvexa convexa praeconvexa miocenica
A25-CC/26-CC A27-CC/28-CC A32-1/33-1 A34-2,48/108 A36-CC/37-1 A38-CC/39-2 A44-CC/45-CC A46-CC/47-CC A50-1,48/108
107.2--111.8 116.1--120.6 134.3--138.5 144.6--145.2 155.7--156.2 164.6--166.6 191.0--195.4 199.7--204.1 213.5--214.1
4.4 f 4.6 5.1 5.35 5.6 5.8 6.2 6.3 7.3
A33-CC/34-CC
142.6--147.0
5.2 e
A48-CC/49-2
208.5--210.5
6.5 e
Foraminifera c B G. t u m i d a N a n n o fossils d B A. p r i m u s
aprell et al., 1982, p. 179, table 5. bBaldauf, 1985, table 2. CKeigwin, 1982, pp. 274--275, tables 2 and 3. dInitial Reports of DSDP, 68, pp. 174--175. eBerggren et al. (in press), table X; appendix II, tables 6 and 7. fBarron et al., 1985 (a), table 3. Diatom events calibrated with paleomagnetic polarity epochs in Burckle (1978).
Documentation of synchronous and time-transgressive events Using i n d e p e n d e n t c o n t r o l p o i n t s f o r c o n s t r u c t i n g a g e - - d e p t h curves at e a c h site, w e d e r i v e d an age e s t i m a t e f o r t h o s e r a d i o l a r i a n e v e n t s in w h i c h t h e t a x o n w a s s u f f i c i e n t l y
a b u n d a n t t o yield a reliable " e v e n t " determ i n a t i o n . We f o u n d t h a t t h e e v e n t s fall i n t o t h r e e categories: t h o s e w h i c h a p p e a r t o b e s y n c h r o n o u s w i t h i n o u r limits o f r e s o l u t i o n ( T a b l e VI); t h o s e w h i c h are clearly t i m e transgressive b y ~ 1 m . y . o r g r e a t e r ( T a b l e VII); and those whose synchroneity remains
496
T A B L E III Biostratigraphic datum levels at DSDP Sites 5731573B Datum
Depth a (m)
Ages (Ma)
Paleomagnetic calibration
Foraminifera
F~ B G. truncatulinoides F~" T F3 B F4
B
Fs
B
F6
B
F7 B Fs
B
(N22/N21) G. n e p e n t h e s G. t u m i d a (NlS/N17) S. subdehiscens (N13/N12) G. fohsi s.1. (N12/Nll) G. f o h s i p r a e f o h s i (NIl/N10) Orbulina suturalis (N9/N8) G. insueta (N6/N5)
25.6--28.6
1.9 b
e,f
58.0--63.2 95.0--104.1
3.9 b
e,g e,h
185.8--195.6
11.8 c
--
206.7--209.1
13.1 b
i
216.1--217.6
13.9 b
i
247.1--250.2
15.2 b
ij
285.1--288.1
18.1 d
k
5.2 b
N a n n o fossils N~ T P. lacunosa N 2 T C. macintyrei N 3 T D. brouweri (CN13/112d) N 3 T R. p s e u d o u m b i l i e a (CN12/11) N s T A. p r i m u s
6.0---7.0 22.0--23.0 25.8--26.1
0.47 m o 1.45 m p 1 . 9 0 m f,P
51.0--50.5
3.5 m
q,r
64.5---66.0
4.4 m
s
82.2--85.7
5.5 n
q
(CNll]10) N,
N~ Na N9 N10
N~
N~2
T D. q u i n q u e r a m u s (CN10/9) T D. hamatus (CN7/6) B D. hamatus (CN615) B C. coalitus (CN6/5) B D. kugleri (CN5b/5a) T S. h e t e r o m o r p h u s (CN5a/4) T H. ampliaperta
168.6--170.1
8.85 m i
176.6--176.7
10.0 m
i
187.6--189.1
10.8 m
i
196.1--197.6
11.8 n
--
217.1--218.6
14.0 n
--
247.6--249.1
16.0 m
i
11.5--12.8 20.8--25.3
0.65 1.6
v --
25.3--30.5 33.1--36.1 36.1--38.9
1.8 2.2 2.6
w w w
Diatoms D 1 T N. reinhoidii D: T R. praebergonii robusta D 3 B P. doliolus D 4 T T. convexa D 5 T N. jouseae
497 TABLE III (continued) Datum D~ D7 Ds D9 Dx0 D~x D12 DI3 D~, D15 DI~ D~ D~s D~9 D~0 D21 D22
B B B T B T T T T B B T B T T B T
D23 B D2, D2s D26 D27 D~8
T T T B B
D29 D30 D3x D~2 D3~ D3, D3s
T T B T B T T
Depth a (m) R. praebergonii T. convexa convexa A. elegans N. cylindrica N. jouseae T. miocenica A. acutiloba N. miocenica T. praeconvexa T. miocenica T. praeconvexa N. porteri N. miocenica R. paleacea T. burckliana T. burckliana C. vetustissimus var. javanica C. vetustissimus vat. javanica A. moronensis C. tuberculatus C. eoscinodiscus H. cuneiformis C. temperei var. delicata D. nieobarica C. lewisianus D. hustedtii C. peplum A. ingens T. fraga T. bukryi
Ages (Ma)
Paleomagnetic calibration
43.4--46.4 49.1--52.1 57.7--63.7 63.7--66.6 73.4---765.2 76.2--76.2 76.9--85.8 92.4--95.0 95.9--98.9 110.7--112.6 112.6--114.6 122.O 127.0 128.5--131.3 128.5--131.3 133.4--137.9 158.2--158.3 159.7--161.2
3.0 3.6 3.9 4.4 4.6 5.1 5.35 5.6 5.8 6.15 6.3 6.7 6.8 6.9 7.0 8.0 8.5
w w w w w w w w w w w w w w w w w
167.2--170.7
8.8
w
167.2--170.7 176.6--177.2 185.9--186.7 185.9--186.7 195.6--199.2
8.9 10.4 10.7 11.2 11.8
w x -w x
203.4-2102 203.4--210.2 214.7--219.7 222.7--224.1 232.8--242.9 254.7--257.7 265.7--267.2
12.6 12.9 13.7 14.1 15.5 16.4 17.0
---w --Y
aSaito, 1985. bBerggren et al., in press, appendix II, table 6. CBarron et al., 1985 (b), table 1, column "B84". dBarron et al., 1985 (a), table 5. eSaito et al., 1975. fBerggren et al., 1980. gBerggren et al., 1983. hKeigwin, 1982. iMiller et al., 1985. JPoore et al., 1983. kLeg 85 paleomag. data at Site 575A. 1pujos, 1985. mBerggren et al., in press, appendix II, table 7. nBarron et al., 1985 (b) table 2, column "B84". °Thiefstein et al., 1977. PBackman et al., 1983. qGartner, 1973. rBackman and Shackleton, 1983. SMazzei et al., 1979. tBarron, 1985. UBarron et al., 1985 (a) table 3; Barton et al., in press (b), table 4. VBurckle, 1972. WBurckle, 1978. XBurckle et al., 1982. YLeg 85 paleomagnetic calibration in Hole 575 A. d i f f i c u l t t o assess, d u e e i t h e r t o r a r e a n d sporadic occurrences of the taxon or to inc o n s i s t e n t p a t t e r n s o f c o m p u t e d ages ( T a b l e VIII). From this grouping of events the following general patterns have emerged:
-- Among those events which appear sync h r o n o u s , t h e large m a j o r i t y ( 1 5 o u t o f 1 9 ) a r e last o c c u r r e n c e s ( F i g . 6). W e n o t e t h a t a number of other biostratigraphic events i d e n t i f i e d as " g l o b a l l y s y n c h r o n o u s " a r e also
498
last occurrences (e.g., Hays and Shackleton, 1976; Thierstein et al., 1977; Burckle et al., 1978). -- A m o n g the events showing strongest non-synchroneity (i.e., 1 m.y. or greater), most (10 o u t of 13) are first appearances; furthermore, in 8 o u t o f these 10 cases the
taxon evolves first in the Indian Ocean, and subsequently in the western and eastern Pacific (Fig. 7). -- The three extinction events which are m o s t strongly diachronous show the inverse relationship: some extinctions in the Pacific apparently precede corresponding events in
T A B L E IV Biostratigraphic d a t u m levels at DSDP Site 289 Datum
Samples a,j
Depth (m)
Age b .k (Ma)
Paleomagnetic calibration
18-4/19-2 22-1/22-2 27-2/27-5 30-3/31-3 33-4/34-2 36-2/36-4 37-5/38-1 40-4/40-5
166.5--173.0 201.0--202.0 249.0--253.5 279.0--288.5 309.0--315.5 334.5--337.5 348.5--352.0 375.5--377.0
5.2* 5.8* 7.1"* 8.0** 8.6** 9.9** 10.9"* 11.5"
c,d c --e e -f
43-6/44-1 45-2/45-4 47-6/48-1 49-4]49-5 51-6/52-2 54-4/55-1 55-2/55-3 58-2,60/92 59-1/59-2
407.0--409.0 420.0--423.0 445.0--447.0 461.0--462.5 483.0--487.0 509.0--513.5 515.0--516.5 543.5--544.0 551.5--553.0
12.6" 13.1" 13.9" 14.6"* 15.2" 16.0"* 16.4"* 17.6" 18.1"*
f f f -f,g --h i
15-CC/16-1 (S) 25-1/25-2 (S) 27-3]27-6 (B) 34-1134-3 (B) 36-CC/34-1 (S) 37-6,35/120(S) 40-3/41-2 (B) 47-4]47-5 (S) 57-CC/58-1 (S) 58-1/58-2 (S)
142.5--143.5 229.0--230.5 250.5--255.0 314.0--317.0 342.0--343.0 350.5--351.5 374.0--383.0 442.0--443.5 532.0--533.0 533.0--534.5
4.5*** 6.5*** 7.3**** 8.85*** 10.0"** 10.8"** 11.8"*** 14.0"*** 17.1"** 17.4"**
1,m n n f f f --h h
Foraminifera F1 F~ F3 F, Fs F6 F, F6
B B B B B T B T
F9 F~0 F~I F~2 F~3 F~, F~5 F~, F~
B B B B B B B T B
G. tumida PuUeniatinaprimalis G. conglobatus B. obliquus extremus N. acostaensis G. siakensis G. nepenthes G. fohsi robusta, G. fohsi lobata G. fohsi robusta G. fohsilobata G. fohsipraefohsi G. peripheroacuta Orbulinasuturalis G. mitra G. sicanus C. dissimilis G. insueta
Nannofossils N, N~ N3 N, N5 N6 N7 N8 N9 N~0
B B B T B B B T B T
C. rugosus A. primus D. quinqueramus D. hamatus D. hamatus C. coalitus D. kugleri S. heteromorphus S. heteromorphus S. belemnos
a F o r a m i n i f e r a l d a t u m levels based on results r e p o r t e d in: Saito, 1975; Srinivasan and K e n n e t t , 1981a, b. bSources o f absolute ages: * = Berggren et al., in press, a p p e n d i x II, table 6; ** = Barron et al., 1985 (b), table 1, c o l u m n " B 8 4 " . cSaito et al., 1975. dKeigwin, 1982. e R y a n et al., 1974. fMiller et al., 1985. gPoore et al., 1983. hBerggren et al., 1983. iBarron et al., 1985 (a), table 5. JNannofossil d a t u m levels based on Bukry, 1975 (B); Shafik, 1975 (S). kSources of absolute ages: • ** = Berggren et al., in press, a p p e n d i x II, table 7; * * * * = Barton et al., 1985 (b), table 2, c o l u m n " B V 8 4 " . 1Gartner, 1973. mBerggren, 1973. n H a q et al., 1980.
499
the Indian Ocean by up to several million years (see Fig. 6).
Discussion
Our most significant finding is the asymmetrical distribution o f diachronous events between first occurrences and last occurrences: The overwhelming majority of synchronous datum levels are extinctions, and a
comparable majority of time-transgressive events are first-appearance d a t u m levels (Fig. 7). We note that the same a s y m m e t r y has recently been identified for benthic marine invertebrates in the Late Ordovician of eastern North America (Bretsky and Klofak, 1985). We thus have reason to suspect that biostratigraphic d a t u m levels for other planktonic and benthonic marine organisms may exhibit this same asymmetrical pattern. If indeed this proves to be true upon further
TABLE V Biostratigraphic datum levels at DSDP Sites 586/586A Datum
Samplesa,C
Deptha,c (m)
Ageb,d
Foraminifera
FI T G. fistulosus F~ B G. truncatulinoides (N22/N21) F 3 B G. tosaensis F, B G. fistulosus F s T G. margaritae F 6 T G. nepenthes F 7 B G. tumida
5-2/5-3 5-6/5-CC
32--34 37--39
1.6 1.9
A-2-CC/A-3-CC A-3-CC/A-4-CC A-3-CC/A-4-CC A-6-CC/A-7-CC A-12-6/A-12-CC
58--68 68--78 68--78 97--107 153--155
3.1 3.3 3.4 3.9 5.2
A-11-CC/A-12-3 A-15-CC/A-16-CC A-15-CC/A-16-CC
145--148 176--186 176--186
5.3 5.6 5.8
B4-2/4-3 B5-2/5-3 B5-CC/6-1 B6-4/6-5 B6-6/6-7 BS-CC/9-CC B8-CC/9-CC B15-2/15-5 B15-CC/16-1 B16-CC/17-CC B19-CC/20-CC B21-6/21-CC A20-CC/21-1 A30-CC/31-1
32.0--33.5 41.6--43.1 48.9--49.7 54.2--55.7 57.2--58.7 78.0-87.5 78.0-87.5 136.5--141.0 143.4--144.6 153.6--163.0 182.5--192.0 200.1--201.7 227.4--228.9 300.0-301.5
1.45 1.9 2.2 2.32 2.4 3.47 3.5 4.4 4.5 5.0 5.6 5.9 6.5 8.85
(NI8/NI7) F s T G. dehiscens F 9 B G. margaritae F~0 B Pulleniatina s . 1 . Nannofossils N~ N2 N3 N4 N5 N6 N7 N8 N9 N~0 NI~ N12 N~3 N,,
T T T T T T T T B B T B B T
C. macintyrei D. brouweri D. asymmetricus C. pentaradiatus D. surculus S. abies R. pseudoumbilica A. primus C. rugosus C. acutus A. amplificus A. amplificus A. primus D. hamatus
aForaminiferal data from Srinivasan and Kennett, unpublished Site Report, Site 586, DSDP Leg 90. bForaminiferal data from Berggren et al., in press, appendix II, table 6. CNannofossil data from Lohmann, in prep., Site Report, Site 586, DSDP " Leg 90. dNannofossil data from Berggren et al., in press, appendix II, table 7.
500
T A B L E VI Biostratigraphic d a t u m levels at DSDP Site 214 Datum
Samples a J
Depth (m)
Age b ,k (Ma)
Paleomagnetic calibration
2-5/2-CC 2-CC/3-1 3-3/3-4 5-3/5-4 5-CC/6-1 7-118-2 10-CC/ll-1 12-5/12-CC 14-CC/15-2 16-CC/17-1 17-6/17-CC 18-3/18-5 18-CC/19-1
15.5--18.5 18.5--19.1 22.0--23.5 41.0-42.5 47.0-47.6 58.0-68.5 95.0-95.5 110.0-114.0 133.0-134.5 152.5--153.0 161.0--162.0 165.0--168.0 170.0-172.5
1.3 1.6 1.9 3.0 3.3 3.9 5.2 5.8 7.5 8.6* 10.4 10.9" 11.5
c c,d c,d c,e f c,e,f c,g c h h i -i
1-5/1-6 2-CC/3-1 3-2/3-3 4-1/4-2 4-3/4-4 6-2/6-3 6-3/6-4 8-CC/9-1 9-CC/10-1 11-CC/12-1 13-3/13-5 13-2/14-2 14-3/14-CC(~) 17-1/17-2 17-1/17-2 17-6/17-CC 18-2/18-2 18-CC/19-1 18-CC/19-1
7.0--8.0 19.0--20.0 20.5--22.0 29.5--31.0 34.0--35.5 49.0-50.5 50.5--52.0 76.0-77.0 85.5--86.0 104.5--105.5 117.5--120.5 116.0-125.5 127.0--133.0 153.0--154.5 153.0-154.5 160.0--162.0 162.5--163.5 170.5--171.5 170.5--171.5
0.47 1.68 1.9 2.4 2.6 3.47 3.5 4.1 4.5 5.5** 6.0 6.5 7.3** 8.75 8.85 10.0 10.0 10.8 11.6
1 d d,m d,m,n o P,q n,o~p n,r o n s s s i.t i i i i i
Foraminifera F1 F2 F3 F4 Fs F6 F7 F8 F9 F,0 F,~ F,2 F~3
B T B T B T B B B B T
PuUeniatina finalis G. fistulosus G. truncatulinoides SphaeroidineUopsis spp. G. fistulosus G. nepenthes G. tumida Pulleniatinaprimalis N. humerosa N. acostaensis G. siakensis B G. nepenthes T G. fohsis.1.
Nanno fossils N, N2 N3 N4 Ns N6 N7 N8 N9 N~0 N~ N~2 N,3 N~4 N,s N,, N,7 N~8 N,9
T B T T T T T B B T B B B T T B B B T
P. lacunosa G. oceanica D. brouweri D. surculus D. tamalis S. abies R. pseudoumbilica D. asymmetricus C. rugosus D. quinqueramus A. tricorniculatus A primus D. quinqueramus C. calyculus D. hamatus C. calyculus D. hamatus C. coalitus C. floridanus
a F o r a m i n i f e r a l data f r o m McGowran, 1972, p. 612, fig. 2. b F o r a m i n i f e r a l data f r o m Berggren et al., in press, a p p e n d i x II, table 6. Ages m a r k e d by * are f r o m Barron et al., 1985 (b), table 1, c o l u m n " B 8 4 " . CSaito et al., 1975. dBerggren et al., 1980. eBerggren et al., 1983. fHays et al., 1969. gKeigwin, 1982. h R y a n et al., 1974. iMiller et al., 1985. JNannofossil data f r o m Gartner, 1972. kNannofossil data f r o m Berggren et al., in press, a p p e n d i x II, table 7. Ages m a r k e d by ** are f r o m Barton et al., 1985 (b), table 2, c o l u m n " B 8 4 " . IThierstein et al., 1977. m B a c k m a n et al., 1983. nGartner, 1973. ° B a c k m a n and Shackleton, 1983. P M o n e c h i et al., in press, q R i o , 1982. rBerggren, 1973. SHaq et al., 1980. t p o o r e et al., 1983.
501
T A B L E VII S y n c h r o n o u s Late C e n o z o i c radiolarian e v e n t s in the t r o p i c a l Pacific and I n d i a n Oceans. Original d a t a are t a b u l a t e d in A p p e n d i c e s II a n d III Event
Age (m.y.) Indian (214)
T T B T T T T B B T T T T B T T T T T
A. angulare P. prismatium A. angulare S. peregrina P. fistula L. audax P. doliolum A. ypsilon S. tetras S. omnitubus S. corona A. tritubus Eucyrtidium sp. cf E. diaphanes S. omnitubus D. hughesi S. wolffii C. cristata s.s. C. cornuta C. tetrapera
0.9-1.6-1.7-2.6-3.3-3.3-3.4-3.6-3.6--
1.0 1.7 1.8 2.7 3.4 3.4 3.5 3.7 3.7 4.7-4.8 5 . 0 - 5.1 5.3-- 5.4 5 . 7 - - 5.8 6 . 3 - - 6.5 7 . 1 - - 7.2 -9.8--10.0 11.6--11.9 --
W Pacific (289,586) 0.8-1.4-1.4-2.5-3.2-3.4-3.5-3.5-3.6-4.3-rare 5.2-5.5--
0.9 1.5 1.5 2.6 3.3 3.5 3.6 3.6 3.7 4.6 5.3 5.6
6 . 4 - - 6.8 6 . 9 - - 7.1 8 . 1 - - 8.2 9.5--10.1 11.4--11.5 11.8--12.1
C Pacific (573)
E Pacific (503)
1.1-1.6-1.7-2.6-3.2-rare 3.5-3.7-3.8-4.9-5.1-5.5-5.8--
3.6 3.8 3.9 5.0 5.2 5.6 5.9
1.1--1.2 1.5--1.6 1.4--1.5 2.7--2.9 3.2--3.3 3.4--3.5 3.5--3.6 3.6--3.7 3.7--3.8 4.7--4.8 4.9--5.0 5.3--5.5 5.9--6.0
6 . 7 - - 6.8 7 . 0 - - 7.1 8 . 0 - 8.1 9.9--10.1 11.6--11.8 11.6--11.8
6.4--6.5 6.7--6.8 -----
1.2 1.7 1.8 2.7 3.3
T A B L E VIII D i a c h r o n o u s Late C e n o z o i c radiolarian e v e n t s in the tropical Pacific and I n d i a n Oceans. E v e n t s listed s h o w d i a c h r o n e i t y by 1 m.y. or m o r e . Original data are t a b u l a t e d in A p p e n d i c e s II a n d III. Event
B B B B B T B B B B T B T
T. trachelium P. praetextum s.1. S. pentas P. prismatium B. aquilonaris D. bursa A. tritubus D. hughesi L. bacca P. doliolum D. alata D. petterssoni C. bramlettei
Age (m.y.) Indian (214)
W Pacific (289,586)
C Pacific (573)
2.4-5.3-4.2-5.7-6.4-5.07.7-8.7--
1 . 4 - - 1.5 3 . 9 - - 4.0 4 . 4 - - 4.7 4 . 9 - - 5.0 6 . 1 - - 6.3 6 . 1 - - 6.3 7 . 7 - - 7.9 8 . 3 - - 8.6 8 . 6 - - 8.7 11.0--11.3 11.8--12.0 11.0--11.3 13.1--13.3
1 . 4 - - 1.5 3 . 8 - - 3.9 5 . 0 - - 5:1 4 . 7 - - 4.8 5 . 2 - - 5.4 6 . 4 - - 6.5 7 . 1 - - 7.2 7 . 8 - - 8.1 8 . 0 - - 8.1 8 . 0 - - 8.1 13.5--13.7 12.5--12.7 14.8--14.9
2.5 5.4 4.3 5.8 6.5 5.1 7.8 8.8 9.09.3 11.1--11.9 10.6--10.8 10.6--10.8 8.5-8.7
E Pacific (503) 1.5--1.6 -5.5--5.6 4.2--4.3 5.0-5.3 6.4--6.5 >6.8 -------
502
AGE (Ma) 0
i ,
i
2 ,
5
I
i
4
I
i
l
5 i
[
6 I
I
7 I
I
S I
I
9 I
10
I
I
I
tl I
I
12 I
~.,~.
-
20
"~
\'#fN,
40 -
~, F~\
N6
~E,
60
\ 80 100 -
,_o DSDI ~ SITE
120
214
810ETIMTIGIMPHIC DATUMLEVELS T F "1= O~AMINIFEIM
140
N ~ =M'w~°r°~jls
~ ~ , . ~
&, 180
.
.
.
.
.
'
'
'
'
'
'
'
'
'
#,~ '
Fig. 5. A b s o l u t e age c o n t r o l a t D S D P Site 214, I n d i a n Ocean. S o u r c e s o f d a t a are listed in T a b l e VI. T A B L E IX A d d i t i o n a l r a d i o l a r i a n e v e n t s e x a m i n e d in c u r r e n t s t u d y w h o s e s y n c h r o n e i t y / d i a c h r o n e i t y r e q u i r e s f u r t h e r d o c u m e n t a t i o n in m o r e p r e c i s e l y - d a t e d cores. Original d a t a are t a b u l a t e d in A p p e n d i c e s II a n d III Event
Age (m.y.) Indian (214)
B T T
Lamprocyrtis nigriniae Theocorythium vetulum Spongasterpentas
T T
Spongaster berminghami Botryostrobus bramlettei Spongaster berminghami -* S. pentas Calocycletta caepa Stichocorys delmontensis -* S. peregrina Botryostrobus miralestensis Diartuspetterssoni Diartuspetterssoni-* D. hughesi Spongaster berminghami Botryostrobus bramlettei Lithopera neotera Crytocapsellajaponica Lithopera renzae Calocycletta virginis Calocycletta costata
T T T B B T T T T T
W Pacific (289,586)
C Pacific (573)
E Pacific (503)
rare 1.7-- 1.8 3.5-- 3.6 3 . 8 - - 3.9 4 . 9 - - 5.0 4 . 3 - - 4.4
1.0-- 1.1 absent 3.4-- 3.5 4 . 2 - - 4.3 4 . 1 - - 4.2 4 . 7 - - 5.1
1.1-1.3-3.2-4.5-4.5-4.4--
1.2 1.4 3.3 4.6 4.6 4.7
1.4--1.5 1.1--1.2 3.0--3.1 3.9--4.0 4.2--4.3 5.0--5.3
rare 6 . 1 - - 6.7
6 . 2 - - 6.6 5 . 9 - - 6.2
5 . 6 - - 5.7 6 . 1 - - 6.3
5.5--5.6 6.3--6.5
8 . 1 - - 8.2 8 . 1 - - 8.2 8 . 3 - - 8.5
8 . 0 - - 8.3 8 . 1 - - 8.4 8 . 2 - - 8.5
7 . 3 - - 7.4 7 . 5 - - 7.6 7 . 6 - - 7.7
7 . 9 - - 8.0 8 . 8 - - 9.0 8 . 6 - - 8.7 10.0--10.3 ----
7 . 9 - - 8.0 -8 . 4 - - 8.7 absent 12.1--12.3 13.7--13.8 14.5--14.6
7 . 4 - - 7.5 10.0--10.1 -8 . 9 - - 9.1 11.6--11.8 15.0--15.1 15.0--15.1
503
study, then the implications are considerable for geochronology, particularly in the selection of biostratigraphic datum levels as components of regional or global "time scales" (e.g., Berggren et al., in press). Moreover, a detailed documentation of the timetransgressive nature of first-appearance events will have important implications for the formulation of, and discrimination between, various models of evolutionary dynamics, speciation, and migration patterns of new species. Our limited sample coverage (see Fig. 1) is far too sparse for providing any constraints on evolutionary theories. Nevertheless, we believe that our results and those of Bretsky and Klofak (1985) suggest that more detailed studies of diachronous firstappearances will be fruitful for a diverse
range of biological, stratigraphic, and paleooceanographic objectives. Our evidence that biostratigraphic events in the Indian Ocean are precursors to corresponding Pacific events is perhaps unexpected, in view of the strong westward zonal flow from the Pacific into the Indian Ocean at low latitudes (Godfrey and Golding, 1981; Piola and Gordon, 1984). Nevertheless, our preliminary results indicate not only that the oceanography and biology of the tropical Indian Ocean are influencing the tropical Pacific fauna, but that these interactions occur on time scales on the order of 10 ~ years, or considerably longer than the nominal ocean-mixing time of 103 years. At DSDP SITES
We~,l 214
DSDP SITES
West 2t4
2891586 20 m
1.02
'~1
East
6o
20
15
:°I T
I o,,g~ee
T
p pr,s~#~
~o
254
AGE (Ma}
20.
5~
50
40-
5o
80tO0
t20' 80 . . . . . . . . . . . . -" "" :'<"f4e.: 90 ,""
80B PDrQetext~
t00-
I. . . . . . . .
...... " . . . . .
B Pl~l~t~m
120-
8 B ~l~r,s
5£) 6o,
ioO~IO ~2~."*""
404
t80.../*"
6.0
~,
~o I
===================== ::::::::::::::::::::::
S pemas
18o 2oo22o m
240 m
7.0
4.0
~oo-
,~{ ............. z2o
~ ~ ~o~x
6o~
8
~6o
60
70 7n
.
40-
~20m 440-
5.06.07.0AGE
50
zo
40
454
20 4
60-
404 454 504 6O4
5.o AGE (Ma) 4.0
60"
3.0
20
.....................
..--"
50
~4
....
20 m
20 ~ . . . . . . . . . . . . . . . . . . . 4020
503
~.o-
503
573
E]sl
$73
289/586
6O m
m
S~ s T Sc ~ 8o
200~
~ I O O
260-
160480200. . . . . . . . . . . . . . . . . 22O~
m
r
E daph~e$
~40
.
"~50
8
S ~r~,~
D.,,~/~£, L, ~occa
300 -
B
10.0-
t6o
AGE
140.
(Ma)
/"
18o. . . . . . . . . First Occurrences Lost Occurrences
//
11.0-
//"
340-
"
300 -
~70
12.0-
520-
400iO.O-
34O -
II.0-
36O-
13.0-
15.0 Italian
~,~stefn Pocif¢
Synchronous
T
0 o/ota
T
C bramlelIe/
~ .... c/e~pero
~ 2C~ m
. . . . . . . . . . . . . . . . . . . . F,rst 0cc~teP~es
Fig. 6. levels.
B 0 pe#wsson~
I~
14.0-
40~ m In@on
15.0-
180.
~6o-
t2.0-
P.dot~l~
////"
460
( M a ) 9 .0 -
B A m~
~ ......%-_ ...
9.0-
T D ~hes
280-
8.0-
8.0 -
..--............. 140,
260~
T ~ tn~JDus
'
220 . . . . . . . . . . . . . . . . . . . . . . . @ . . . . . . . . . . . . . . . . . JZC 240-
~
~oo r
16O16O,,
240~ m
7.0 -
Centrol Pacific -
Neogene
-
Western Poclflc
Centrol
Pacific
Eastern Pacific
LasfOcc~re~ces
radiolarian
datum
Fig. 7. Diachronous N e o g e n e radiolarian d a t u m levels. Events s h o w n include only those which are timetransgressive b y ~ I m.y. or m o r e (Table VIII).
504
present we cannot speculate on the mechanisms and pathways of such interactions, but our evidence indeed points to the Indian Ocean as a precursor of at least some biological and/or physical oceanographic events within the Pacific. Our present observations of radiolarian non-synchroneity remain subject to several important limitations: (1) We used indirectly-calibrated drill sites rather than core material which is directly dated paleomagnetically. As a result, only thirty-two of our fifty datum levels could be designated as clearly synchronous or time-transgressive (Tables VI and VII). With core material which is directly dated paleomagnetically, one might reduce the uncertainty in "absolute" age calibration associated with using "dated" calcareous microfossil events as control points, since the synchroneity of some of the control points themselves might also be called into question. With this increased precision, the synchroneity of the eighteen ambiguous datum levels (Table VIII) might be better resolved. (2) The broad spacing of sites in our present study (see Fig. 1) does not allow us to ascertain whether the Indonesian seaway connection (and its progressive closure during the Cenozoic) has been the essential controlling factor in Indian/Pacific non-synchroneity, and whether the observed, but minor, E--W non-synchroneity within the tropical Pacific is real. Moreover, this spacing is insufficient for assessing the reliability and significance of single anomalous events (e.g. the scarcity of S. corona at Site 586, of P. p r a e t e x t u m at Site 503, and of C. caepa at Site 214); the absence of T. vetulum at Site 586. (3) We were unable to assess radiolarian synchroneity of the late Pleistocene in our current study. A number of important radiolarian events occur in this stratigraphic interval (Nigrini, 1971; Johnson and Knoll, 1975; Caulet, 1979; Labracherie, 1985), some of which are clearly time-transgressive. The late Pleistocene form Buccinosphaera invaginata, for example, appears to have evolved
D/dr/us spp.
WEST 2t4
DSDP Sites 289/586
EAST 573
9 Mo iO
12
D..hughes/ I I D . pettersso4/ ~3
tlls011 eS
Fig. 8. Neogene datum levels in the Diartus lineage.
0
WEST
Spongaster spp.
II
214
I
2
5
II
2891586
II
573
EAST
II
503
4
Ma 5
6
7
e
r-~ S.tetras ~z~ S pentos I I S berm/~Ighom/
Fig. 9. Neogene datum levels in the Spongaster lineage.
505
earlier in the Indian Ocean than in the Pacific (Johnson and Knoll, 1975, p. 107), a trend which is consistent with our present observations of diachroneity {Table VII). Precise documentation of diachroneity of other Quaternary events will require magnetically- or isotopically
Summary (1) There is an asymmetrical distribution between diachronous and synchronous radiolarian events in the late Cenozoic of the equatorial Indo-Pacific. The majority" of synchronous events are last occurrences. The majority of diachronous events (i.e., >1.0 m.y.), including three which currently define zonal boundaries, are first appearances. Extinction events therefore may be preferable to first appearances in selecting "horizons" for defining biostratigraphic zonal boundaries. Global time scales (e.g., Berggren et al., in press) should be re-evaluated, incorporating only those micro fossil control points which are demonstrably synchronous. (2) Our observations of this asymmetrical pattern are comparable to recent studies of benthic marine invertebrates of the Late Ordovician of eastern North America (Bretsky and Klofak, 1985). Consequently, we anticipate that other micro- and macro-fossil events may display substantial diachroneity (>1 m.y.), particularly first-appearance datum levels. (3) A number of radiolarian taxa appear to evolve first in the Indian Ocean, and subsequently in the western and eastern Pacific Ocean. This pattern is opposite to the west-
ward zonal circulation pattern in equatorial latitudes. The time scale of the observed diachroneity (1--2 × 10 ~ years) is three orders of magnitude greater than the nominal mixing time of the oceans. Therefore, some biological and/or physical exchange processes may not follow simple advective models for mixing.
Acknowledgements We thank J. Barron, L. Burckle, J. Hays, D. Lazarus, J. Morley, W. Riedel, and A. Sanfilippo for continuing discussions and critique during the course of this project; A. Nigrini for assistance in setting up computer files for data storage; A. Peirson for sample preparation; and A. Tricca for her careful and conscientious work in preparing the manuscript. We thank G. Lombari for providing access to radiolarian counts from Miocene samples at Site 289, and J.P. Caulet for providing a pre-print of his manuscript on the DSDP Leg 90 Radiolaria. A. Knoll and his colleagues at Harvard University provided kind hospitality and many thoughtful suggestions about the implications of our work. We thank D. Lazarus, L. Keigwin, G. Jones, and F. Theyer for reviewing the manuscript. This project was supported under NSF Grant No. OCE82-08738. Contribution No. 5965 of Woods Hole Oceanographic Institution.
Appendix I Species list and taxonomic notes Descriptions and illustrations of the following species can he found in Nigrini and Lombari (1984)
Acrobotrys tritubus Riedel Botryostrobus aquilonaris (Bailey) Botryostrobus bramlettei (Campbell and Clark) There is an evolutionary transition from B. bramlettei to B. aquilonaris and so some care must be taken in determining the morphological limits of these species. Botryostrobus miralestensis (Campbell and Clark)
506
Calocycletta caepa Moore This species is essentially absent from Indian Ocean sediments.
Solenosphaera omnitubus
omnitubus (Riedel and Sanfilippo) At both the beginning and end of the range of this species its tubes narrow distally.
Calocycletta costata Riedel This species is absent from DSDP Site 214 samples, but is present at Site 216 (Johnson, 1974).
Stichocorys peregrina (Riedel) Stichocorys wolffii
Calocy cletta virginis (Haeckel) Only specimens with a complete abdominal segment showing characteristic flat, poreless feet can be positively identified as C. virginis. This species is absent from DSDP Site 214 samples, but is p-osent at Site 216 (Johnson, 1974).
This species is absent from DSDP Site 214 samples, but is present at Site 216 (Johnson, 1974).
Theocorythium vetulum Nigrini The lower limit of this species is not defined herein because the relationship between it and various species of Lamprocyclas is not presently understood.
Carpocanopsis bramlettei Riedel and Sanfilippo Carpocanopsis cristata(Carnevale) s.s. ,This species is used in a restricted sense herein. Only specimens resembling those figured by Riedel and Sanfilippo, 1971, pl. 1G, fig. 16 and pl. 2G, fig. 1 are included.
Cyrtocapsella cornuta (Haeckel) Cyrtocapse lla japonica (Nakaseko)
Descriptions and illustrations of the following species can be found in Nigrini and Moore (1979).
Amphirhopalum ypsilon Haeckel Lamprocyrtis nigriniae (Caulet) This species is found only rarely in DSDP Site 214 samples, but it is known to occur in other areas of the Indian Ocean (Johnson and Nigrini, 1982; J.P. Caulet, personal communication, 1984).
This species is absent from DSDP Site 289 samples.
Cyrtocapsella te trapera (Haeckel) This species is absent from DSDP Site 214 samples, but is present at Site 216 (Johnson, 1974).
Pteroeanium praetextum (Ehrenberg) s.l. The two subspecies (praetextum and eucolpum) of this species have been considered together herein.
Spongaster tetras tetras Ehrenberg Dendrospyris bursa Sanfilippo and Riedel Theocorythium trachelium trachelium (Ehrenberg) Diartus hughesi (Campbell and Clark) Diartus petterssoni (Riedel and Sanfilippo)
Descriptions and illustrations of the following species can be found in the publications cited:
L ychnodictyum audax Riedel
Anthocyrtidium angulare Nigrini; Nigrini, 1971, p.
The upper limit of this species could not be clearly defined in DSDP Site 573.
445, pl. 34.1, figs. 3a, b.
Dorcadospyris alata (Riedel); Brachiospyris alata in Phormostichoartus doliolum (Riedel and Sanfilippo)
Riedel, 1959, p. 293, pl. 1, figs. 11, 12.
Phormostiehoartus fistula Nigrini
Eucyrtidium cf. diaphanes Sanfilippo and Riedel
Pterocanium prismatium (Riedel)
Theoperid gen. et sp. indet., Johnson, 1974, pl. 8, fig. 18. Similar to E. diaphanes except that the thorax is larger and the abdomen is more cylindrical. The species has the same characteristic single row of enlarged pores just below the lumbar structure. Indian Ocean forms generally have a median indentation on the third segment, but Pacific Ocean forms generally do not. See Caulet (in press) for a more detailed description.
In the early part of its range the thorax of this species is shorter than in later specimens and the shoulders are less pronounced.
Siphostichartus corona (Haeckel) Spongaster berminghami (Campbell and Clark) Spongasterpentas (Riedel and Sanfilippo)
507 Lithopera bacca Ehrenberg; Nigrini, 1967, p. 54, pl. 6, fig. 2.
Lithopera renzae Sanfilippo and Riedel; Sanfilippo and Riedel, 1970, p. 454, pl. 1, figs. 21--23, 27. This species is absent from DSDP Site 214 samples, but is present at Site 216 (Johnson, 1974).
Lithopem neotera Sanfilippo and Riedel; Sanfilippo and Riedel, 1970, p. 454, pl. 1, figs. 24--26, 28.
APPENDIX
II-A
Ranges of taxa, D.S.D.P. Site 573 573
Species*
Core, Sec.
Level (cm)
a
b
8-i0
1
2
3
4
S
6
7
8
9 10
11 12 1 3 1 4 1 5
16 17 18 19 2 0
21 2 2 23 2 4 2 5
t-I l-co 2-1 2-2 2-3 ........
I C ' 6 : C : 6 130-131 : C I S 130-131I C : II 130-131 J C : 6 ~. . . . . . . . . ~.--:.--:
P P P P P : P P P P P : P P P P P : - P P P P ~ P - P P P ................
: P ~ P ÷ : P ~ P ~ P ~. . . . . . . . . . . . . . . . .
: : ~ : ~ : .................
I ~ : ~ : .................
: : : : ~ ~. . . . . . . . . . . . . . . . .
2-4 2-5 2-6 2"cc 3-I ........
130-131 : C I 6 I P - P P P 130-1311 C I 6 I P P P P P 1;30-131 : C I I I I P + P P P I C ~ 8 : + P P P P 130-[31 : C ~ fi I P P P P P ~. . . . . . . . . ~__-:---: ................
~ P + ~ P I P ~ P : P ~. . . . . . . . . . . . . . . . .
; I ~ ~ I ~. . . . . . . . . . . . . . . . .
: ~ ~ ~ ~ ~. . . . . . . . . . . . . . . . .
: I : : ~ : .................
3-2 3-3 3-4 3"5 3-6 ........
~ 129"129 ~ 130-131 ~ 130-131 : 130-13! ~ 130-131 ~. . . . . . . . .
~ P - ~ P + - ~ P ÷ : P P ~ ÷ ~ P P P ~. . . . . . . . . . . . . . . . .
I ~ ~ = ~ ~. . . . . . . . . . . . . . . . .
] ~ ~ ~ ~ ~. . . . . . . . . . . . . . . . .
: : ~ : ~ : .................
~-cc 4-1 4-2 4-3 4-4 ........
C ] 6 i30-13! C ~ 6 J30-131 C ~ 8 1~0-131 C~6 130-[31 C ~ 6 : ......... ~---~---~
4-5 4-6 4-cc 5-I 5-2 ........
130-131 I~0-131 : .........
5-3 5-4 5-5 5-6 5-cc ........ 6-1 6-2 6-3
~ 130-t31 C I 6 = 130-13! C ] 6 I 130-[31 C 111 : i07-]OB C 111 : C16: I ......... 1---1---~ I 130-1;~1 : C : 6 : 130-131 : C ~ 6 : 130-13! : C I 6
6-4 6-5 ........
I
6-6 6-cc 7-1 7-2 7-3 ........ 7-4 7-5
130-lTi iTO-131
~ C ~ H ~ C ~ 6 ~ C ~ 6 : C ~ 8 ~ C I 8 ~---~---I
C ~ 6 C ~ 6 C ~ 6 C ~ 6 C ] G :---~---:
I : : : I
- P P P P P P P P P ÷ P P P P - P P P P - P P P P ................
: - P P P P : - P p P : - P P P I - P P P I P P P ................ : I : : ]
P P P P - + P P P p p ................ ~ P P I P P : P P I P P P P ................ ~ P P ~ P P ~ P P
~ P P P ~ P P P ~ P P P ~ P - P ~ P + ~. . . . . . . . . . . . . . . . .
P P P P P + P
~ : I : ÷ + f + I .................
~ : ~ : ~ I .................
: 1 I ~ I ~. . . . . . . . . . . . . . . . .
: P - ~ P ÷ ? I P P ~ P ~ p + ~. . . . . . . . . . . . . . . . . P : P P P ~ P P ~ P P ~ P ÷ P ~ P P I ................. P ~ P " P I P P ~ P P
- P + P P P - P - P
: + : I I ~ : ................. : ~ - ÷ : + + ~ P ~ P ~. . . . . . . . . . . . . . . . . : P ~ P ~ P - -
~ I ~ ~ ~ ~. . . . . . . . . . . . . . . . . ~ : ~ ~ ~ ~. . . . . . . . . . . . . . . . . ~ : ]
: : : : : I ................. : : : ~ : ] ................. : : I
P P
~ P . . . . ~ P ~. . . . . . . . . . . . . . . . .
i ~ l .................
: : : .................
+ P ÷ P - P ÷ P ÷ P
: P - ~ P ÷ P : P P ÷ ~ P ÷ ÷ : P ÷ ÷ : ................. I P ÷ ~ P - ÷
I : ÷ : : I : ................. I ÷ I
! : : ~ : : ................. : ~
P P P P P
P P - P + P - P P P "
P P ÷ P
130-J3[ ~ C ~ 6 f P P P : 130-131 I C : 6 ; P P P l ......... ~---~---~ ................
I P ÷ : P ~. . . . . . . . . . . . . . . . .
: 114-115 C : 6 : C ~6 1129-130 C :Ill 112%130 C : 6 ~ 129-130 C ~ 6 l ......... l---l---I ~ 129-130 : C I 6 ~ 129-130 I C g 6
g
~ :
-
P P P P P P P ÷ P I ÷ P P : P P P ................ : ÷ P P I P P
- ~ P P : - ÷ ~ - I - ÷ : ................. : - ~ ÷ ÷
-
P P
-
P
-
P P
26 27
: I
~. . . . . . . . . . : I
: ...........
: ~. . . . . . . . . . .
I
: ~. . . . . . . . . . . : : I ~. . . . . . . . . . . : : : : ~. . . . . . . . . . . : :
~. . . . . . . . . . . : : : ~. . . . . . . . . . . :
508 APPENDIX II-A 573
Species*
Core, Sec. 7-6 7-cc 8-t ........ 8-2 8-3 8-4 8-5 8-6 ........ 8-cc 9-] 9-2 %3 9-4
Level (cm) I 129-130 I I 69-70 I ......... I 69-70 I 69-70 I 69-70 I 69-70 I 69-70 : .........
9-5 9-6 9-cc IO-I 10-2 ........ I0-3 10-4 10-5 10-6 lO-cc ........ II-[ 11-2 11-3 tl-4 11-5 ........ II-6 It-cc [2-1 12-2 12-3 12-4 12-5 12-6 t2-cc 13-2 13-3 13-4 I3-5 13-6 13-cc ........ 14-1 14-2 14-5 14-4 I4-5 ........ 14-~ 14-cc 15-1
(continued)
b
1
3
/,
S
-
-
P -
6
7
8
68-69 68-69 68-6? 68-69 68-69 68-69
I C I 6 I I C : 6 I
I I
I C I 6 : C I 6 I C = 6 ]---I---I I C I G I C I G I C I 6 ] C I 6 IC I 6 I---l---I t C : 6 : C : G I C I G I C I 6 I C I G I---l---I IC I G I C I 6 I C I G I C I 8 I C I 6
I I I I :
: P P I + P = - P I ................. I + P I P I + P I + I - P I ................. I + P : P I - P I P I P : ................. I + I P : P I P : - -
I : I I I
I : I I :
I ......... I 63-64 : 63-64 ] 63-64 I 63-64 I 63-64 I ......... 63-64 68-69 68-69 68-69 68-69 68-6~ 68-69 65-66 65-56 65-66 55-66 65-66
I I I I I
C C C C C
I I I : I
6 6 6 6 8
I I I
2
I C I G I C I 6 : C I 6 I---l---I : C : G I C I G I C I 6 I C I 6 I C I 6 I---I---I I C I G I C I 6 I C I 6 I C I G I C I 6
67-68 67-68 ] ......... 67-68 67-68 67-68 67-68
I : I : I
';a
................ I I I I I ................ I ~ ] t I
I I I ................ I I I I I ................ : : I I : ................
+
9 10
11 12 13 1/, 15
= + P P I P P P I + + P I ................. ', + P : P P P f P ÷ P ] P + ÷ I P P P I ................. I P '," P : P + * P ] P + P
I P + + I P P P I P + P I ................. I P + P I P P P I P + + ] P P + I P * I ................. I P + P I P ',' P I P - +
- P + P + P
I
P
-
I
P
-
I
+
-
I
P
-
+
P -
I :
P P -
P P P
+
P
I F I 6 I I C I 6 ', P I C I 6 I P I C I 6 I P I C I 6 I P I......... I---I---I .................................. 55-65 I C I G I P 65-66 I C I 6 I P 65-66 I C I G I P 65-66 : C ', 8 I P 65-65 I C I G I P I ......... I---l---I .................................. I 65-66 : C ', 6 I P I ', F I 6 I P I 54-55 I C I G I ~"
16 17 18 19 20
21 22 23 2/, 2S
26 2 7
+ P - P + P
I I I I ................. I I I I I + I ................. I - I + + ] + +
I I I I ................. I I I ] I I ................. I : I +
+
+
P
I
-
P
-
I
I
+
+
P
I
+
+
+
I
I
+ -
P P - P
I I
-
+ P P P -
I I
I P - P I P + I P P I ................. I P P + I P P I P P I P P + I P P I ................. t P P : P P I P + I P P I P + I ................. I P '¢" I P + I P I P + I P P
+ -
+ P - P P + P P P
: + P P I - - + = - - + I ................. I + P P I + P P I - + P I + P P = P P P I ................. : P P P I P P P I - P P ', - P P : + P P I ................. I P P I + P P : P P P I + P P I P P P
I : I I I
P P P P P P P P P P
I : I I I
P P P P P P P P P P
P P + P P P - P + P
P P P
? P - P - P + ÷ P P + P + P P P - P + P
I P P P P I P P P P 1 P P + P I P P P P I P P P P I................. I P P P P I P P P P : P P P P I P + P P I ~" + P P I ................. I + P P P I P P I + P P P
*
-
÷ P P P P P P p P P P + P P P + P P P -
P P P P P P P P P P P P P P P P P P + p p p p -
I P P - P + ', P P P P ÷ I P P + P + I P - P P + I P P P P P I................. I P P P P P I P P P P P I P P P P P I P P P P P I P P + P P ', . . . . . . . . . . . . . . . . . I P P + P P I P P P I P ', P
I I = I ................. I + I I I + = I ................. I : I I I I ................. I I + I + I + I + + I : I I I
P P P P P P P P p p
+ +
I I ] I ........... : I I I I I ........... I I
I + I I ........... I I I I ........... I I I I ...........
I I I +
I + P I + P I + P I P P I P P I................. I P P I P + I P P I P P I P P I ................. I P P P I P + + I P P P
I
I I I I I........... I I I I I I ........... : I I
509
APPENDIX
II-A
573
(continued)
Species ~ I
Core, Sec. 15-2 15-3 ........ 15-4 15-5 15-6 15-cc 16-I ........ 16-2
Level (cm) : 54-55 I 54-55 I ......... 54-55 54-55 54-55
ia '
b
1
2
3
4
5
6
7
8
9 10
60-6l ~. . . . . . . . . I 60-61
] C t fi ~ I C I 8 I ~---~---I ................ I C I G ~ I C ~8 ~ I C ~6 ~ ~C I 6 ] : C t G I 1---~---~ ................ I C ~ 6 I
I P I P I................. I P I P ', P ] P I P ~. . . . . . . . . . . . . . . . . I P
16-3
I
60-61
+C I G I
t
P
16-4 16-5 16-6
I 60-61 ~ 60-61 1 60-61
I C t G I I C ~G I I C I G ]
I I ~
P P P
........ 16-cc 17-1 17-2 17-3 17-4
', . . . . . . . . . I ~ 61-62 ¢ 61-62 I 61-62 1 61-62
t---l---I ', C I G I C : G I C I 8 ~C I 8 I C ~8
I................. ~ P : P : P I P I P
........
t. . . . . . . . .
17-5 17-6 17-cc 18-1 18-2
I 61-62 I 61-62 I ~ 61-62 I 61-62
........ 18-3 18-cc
I. . . . . . . . . I 61-62 ~
19-1 19-2 1%3 ........ lg-cc
~ 61-62 I 61-62 : 61-62 :......... t
................ I : I I I I---I---I ................ I C ] G : I C ~6 ~ tC I 6 ~ : C : G I ', C I 6 ¢ I---I---: ................ I C I 6 I I C +6 I ~C ~6 ~ ~ C ~ 6 I : C : 6 t :---:--°I ................ I C I 6 ~
11 12 13 1/+ 15
t + P P I + I................. ~ * P : ÷ P P I P : ÷ P : P :................. ( - + P
P P P P P P P
16 17 18 19 20
~ P + P t P P + P ~. . . . . . . . . . . . . . . . . I P P P I P + - P I P + P : P - P : P P P : ................. t P P - P
P I P P P + P P - P I - P P ~ P P P t P P ~ P P P ¢ P P ¢ P P P ~. . . . . . . . . . . . . . . . . ~. . . . . . . . . . . . . . . . . ~ P P P ~ P P ~ P ~ P P ~ + P P P ~ P P ~ + P P P I P P P I P P P I P P P I. . . . . . . . . . . . . . . . . I. . . . . . . . . . . . . . . . . I + P P I P P ~ + P P ~ P P P I P P I P ~ + P P ~ P P I P P ~ P :. . . . . . . . . . . . . . . . . I. . . . . . . . . . . . . . . . . ~ P P + P P I P P P t P ~ P P I P I P I P : P P : P P 1. . . . . . . . . . . . . . . . . l ................. : + P P I P P
I. . . . . . . . . . . . . . . . . ~ P ~ P ~ P i P : I .................
I P I P I P f P : P I................. : P
+ P P P P P P
21 22 23 2 4 2 5
t P + + ~ P P + ~. . . . . . . . . . . . . . . . . ~ P P - l P P - I P P + ~ P P P I P P + I ................. : P P P -
P P + P P + P I P P P P P t P P P P - I P P P t................. - ~ P P P - t P P P - I P + P P + I P P P P - ~ P P I. . . . . . . . . . . . . . . . . - I P + P P - I P P P - ~ P P P + I P P P - ~ P P P P t. . . . . . . . . . . . . . . . . - ~ P P P P - : P P P ~ P P P I P P P l P + P P I ................. : P P -
26 27
+ I .......... ÷ ÷
I I I
+ I...........
+ + P P +
I I
I........... P I P I P I - ~ - P l - I. . . . . . . . . . . P I P + I + P ~ P P I P P I P I. . . . . . . . . . . P t + P 1 P P P I + P P I P P P I + P I ........... P ~ P P
*a = abundance; C = common, b = preservation; G = good; M = moderate. 1 = L. nigriniae. 2 = T. t r a c h e l i u m . 3 ffi A . y p s i l o n . 4 = S. t e t r a s . 5 = P. p r a e t e x t u m . 6 = B. aquilonaris. 7 = L. b a c c a . 8 ffi A . a n g u l a r e . 9 = T. v e t u l u m . 1 0 = P. p r i s m a t i u m . 1 1 = S. p e r e g r i n a . 1 2 ffi P. f i s t u l a . 1 3 = S. p e n t a s . 1 4 = L . a u d a x . 1 5 ffi P. d o l i o l u m . 1 6 = B . b r a m l e t t e i . 1 7 = S. b e r m i n g h a m i . 1 8 = S. o m n i t u b u s . 1 9 = S. c o r o n a . 2 0 = A . t r i t u b u s . 2 1 = C . c a e p a . 2 2 = E . c f . d i a p h a n e s . 2 3 = D. b u r s a . 2 4 = D. h u g h e s i . 2 5 = L . n e o t e r a . 2 6 = B . m i r a l e s t e n s i s . 2 7 = D. p e t t e r s s o n i . P : present;
+ = very
APPENDIX Ranges
Core, Sec. 1-1 1-2 1-3 1-4 1-5 ........
(1 specimen);-
= absent.
II-B
of taxa,
573 B
rare
D.S.D.P.
Site
573B
3
4
5
: C 6 P P P : C I 6 I P P P ~C :61P + + P ~C ~6 I P P P : C I 6 I P P P I---I---I ................
P P + P -
Species ~ Level (cm) ~ 61-63 ~ 61-63 : 61-63 I 61-63 : 61-63 : .........
a
b
1
2
6
7
8
9 10
: P P - P I - P - P I P P - P I P P P I P P + P : .................
P -
11 12 13 14 15
P P P : P P P I P P P I P P P + : P P P I.................
-
16 17 18 19 20
: ~ I : :.................
21 22 23 2/+ 2 5
26 27
: : ¢ I I.................
I I I l : .........
510
A P P E N D I X II-B (continued) 573 B
Species*
Core, Sec. 1-6 I-co 2-I 2-2 2-;3 ........ 2-4 2-5 2-6 2-cc 3-1 ........ 3-2 3-3 3-4 3-5 3-6
Level (cm) 6J-63 61-63 61-6.~ 61-63 I......... 61-63 61-63 61-63 61-63 ~. . . . . . . . . ~ ~ 1 ~
a
b
1
2
3
z, S
C I G I P P ÷ P C I 6 I P P P C I G I ÷ - P P C : 6 ~P P P P C ~G ~P P P P l--d---~ ................ ~C ~6 P P ~C ~6 P P I C I 6 P P P I C I S P P P P I C I 8 P P P I-..~ ...................
61-63 61-63 61-63 61-63 61-63
C C C C ~C
........ 3-cc 4-1 4-2 4-3 4-4
61-63 61-63 6t-63 61-63
~---H--I C ~G C : 6 C ~S C : 6 C ~8
........ 4-5 4-6
I......... 61-6T 61-63
~---~---I ................ C ~G I P C I 6 I
4-cc 5-1 61-63 5-2 61-63 ................. 5-3 61-6;~ 5-4 61-6;~ 5-5 61-6~
C I G [',P C I G ~ P C I G ~ P ~---~ . . . . . I. . . . . . . . . . . . . . ~C ~G ~ P P ~C ~B : - P ~C I 6 I P P
5-6 5-cc ........ 6-[ 6-2 6-3 6-4 6-5 ........ 6-6 6-cc 7-1 7-2 7-3 ........ 7-4 7-G 7-cc 8-! 8-2 ........ 8-3 8-4 8-5 6-6 8-cc ........ 9-[
~ C I (; : C : 6 ~---~---I I C I 6 ~C I 6 I C 16 I F ~ ff I C ~6 ~---I---I I C I fi I C ~6 I C ~8 ¢ C : 6 ~C I 6 1---I---~ ~ C ~6 I C ~8 ~C I 6 ICI6 I C I fi l---~--d : C ~6 ~F I 6 I C : 6 ~C ~B : C ~l't H-d---~ : C : 6
61-63 ' I......... ~ 61-63 I 61-63 I 61-63 I 61-63 I 6[-63 ~. . . . . . . . . ~ 6l-6S ~ l 61-63 I 61-63 ¢ 61-63 ~. . . . . . . . . 61-63 61-63 61-63 61-63 l ......... 61-63 61-63 61-63 61-63 : ......... : 61-63
I G ~6 i 6 I1'1 ~8
P
7
8
9 10
11 12 131z, 15
P P '," +
~ ÷ P - P P P ~ P P ÷ P P P I ÷ P - P P P P ~ - P - P P P P I + P - P P P P I.................................. P ~ - P - P P P P ÷ ~ ÷ P - P P P P ÷ ~ P ÷ P P - P P ~ P P P P + '," ~ P P P P I ...................................
÷
+ ÷ - ÷ P ÷ - ÷ + + ................ I ÷ P ÷ ÷ : - P P ? ~ - P ÷ : - P - ÷ ~
I P P ~ P ................ ~ P 1 ~ P P ~ I P ................ ~ "P : P ÷ ] P P ] P P I P P ................ ~ P P I ~ I P P ~ P ................ I I P P I P ~ P I ................ I P
6
I : ' I ~
P P P P P
P + P P P P
16 17 18 1 9 2 0
P P P P P
- P " P P +
I I I : ~ I ................. ~ ~ l I I ~. . . . . . . . . . . . . . . . .
P P P P P
P P P P -
P ?
- ÷ P P - P P - P P P P P
P P P P P
P ~ ÷ P ~ ÷ P I P P ¢ P P ~ P
I I .......................... I I I ~. . . . . . . . . . . . . . . . . . . . . . . . . I I I I
÷ P P P P P P P P P P P
I ................. ~ P . . . . ] p I P P : p P ~
÷
l ................................... ~ P P P ~
P P P
~. . . . . . . . . . . . . . . . . ~ p p ]
+ ÷ ÷
I ~ I
P P : P P ÷ ÷ P P P I P P - - P P P ~ P P P
P P P
P P
~ ..................................
-
-
~ ~ ~
P P P
P P P
~ P P P I P P P I .................................. I P P P ~ ~ P P P I P P ~ P P I................................... l P P P I P P P I P P P : P P P ~ P P (.................................. I P P P I I P P P ~ P P P l P P P I.................................. ~ P P P t P P P : P P P l P P P : P P P ' :.................................. ~ P P P
+
P P P P P P
I P P P I P P I ................. ~ P P P ÷ ~ I P P P I P P * I P P P " I................. I P + P ÷ I P - P P I P P P P ~ P P P P ~ P P P P ~. . . . . . . . . . . . . . . . . I P P P I i P P P P t P P I P P ~. . . . . . . . . . . . . . . . . : - P P : P - P P I P P I P P : P P P I ................. : P P
P P P P P P P P P P
P
~.
P P P P P P ÷ P P P P
÷ -
I......................... ~ : I I .................
~ P P P ~ P P P ~ p p P
P P P P P ? P P ?
'
I :
P P P P P P P P P
P P P
'
I........................ I
~ ................
P P P
26 27
I
~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ¢ P P ' ~ P P p I P P P I P P P l
P P P
21 22 2 3 2 / , 2 5
-
-
" " P ÷ + P P P P P P P P P P
.......
l l I I ~. . . . . . . . . . . . . . . . . . . . . . . I I ~ - I - I - I........................ I '," ~ P ÷ I P I + ~ P ~. . . . . . . . . . . . . . . . . . . . . . . ~ ÷ I I P I P I P ~. . . . . . . . . . . . . . . . . . . . . . . . : P ',' ~ P ~ P P I P I P P 1. . . . . . . . . . . . . . . . . . . . . . . I P P
' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' '
511
II-B (continued)
APPENDIX 573 B
Species ~
Core, Sec.
Level (cm)
q-2
9-S 9-4 ........ 9-6 9-cc 10-1
o
b
1
2 3 4
5
6
7 8 9 10
( 61-63 : 61-63 : 61-63
¢C J6 : I C I N I ~C ~H :
P P P
P
I.........
l---l---I ..................................
61-63 : C I 6 ~
P P P
I : P ~
P P
'
P
P
61-63 : C I 6 I 61-63 I C i 6 :
10-2 10-3 ........ 10-4 10-5 10-6
: C I 6 I P * P P :---I---~ ................ ' ................. : C I 6 : ' P : C ~6 I P P ' P P I CI 6 : ' tO-co I C ~6 I P P ' P P II-1 61-63 I C I 6 : ' ........ : ......... l--4---t .................................. 11-2 : 61-6~ I C I 6 ) I1-T l 61-6~ I C I 8 I ' P ll-4 I 61-63 : C I 6 ~ ' 11-5 : 61-6~ I C I 6 I ' II-6 I 61-63 I C I 6 I ' ........ l ......... I---I---I .................................. It-co I C I 6 : ' P P 12-I bl-63 t C I 6 I ' 12-2 61-63 I C t 6 : ' 12-3 t,I-63 I C I 6 I P P 12+4 61-63 I C ) 6 l .
.
.
.
61-63 :......... 61-63 61-63 61-63
.
12-5 12"-cc
.
.
: I
.
.
.
.
61-63
.
.
.
.
.
.
.
.
I C I 6 I I C 16 I
.
.
.
.
.
.
.
.
.
.
.
: l
P P
.
.
.
.
+
.
.
16 17 18 19 20
P P
l I I
I................. I P : P I ~ : I................. ~ P P ~ P P I I P ~ :.................
'
: F ~6 I
11 12 13 1/, 15
P
P
~ : l I................. : l l I P l .
.
P
.
.
.
.
: I
.
.
.
.
.
.
.
.
.
.
l l
P
26 27
P P P I P P P P P : P P :
~. . . . . . . . . . . . . . . . . I ~ P P I I l P I................. : P P P : P P P : I P P : : ................. : I - P I l l l ................. : P l l I P P P l
~ I
21 22 23 2/, 25
.
.
.
P
.
.
.
.
I................. I I P P : : : P - - :................. I P + I P P + P ~ I P P P P I ~. . . . . . . . . . . . . . . . . I I P P P P I I I I ................. : P P P P I I I P P P l
P
P P P P
P
P
P .
.
I I :
.
.
: P I
.
I ...... l : : l : ...... : : : I : I ...... : I : l l l ...... I I : I I
'," P
P
P
P
.
÷
I P P I
*a = abundances, b = preservation. I = L. bacca. 2 = P. f i s t u l a . 3 = L. a u d a x . 4 = P. d o l i o l u m . 5 = B. b r a m l e t t e i . 6 = S. b e r m i n g h a m i . 7 = S. c o r o n a . 8 = A . t r i t u b u s . 9 = C. c ae pa. 1 0 = E . c f . d i a p h a n e s . 1 1 = D. bursa. 1 2 = D. h u g h e s i . 1 3 = L . n e o t e r a . 1 4 = B. m i r a l e s t e n s i s . 1 5 = D. p e t t e r s s o n i . 1 6 = S. w o l f f i i . 1 7 = C. j a p o n i c a . 1 8 = C. c r i s t a t a s.s. 1 9 ffi C. c o r n u t a . 2 0 = C. t e t r a p e r a . 2 1 = L. r e n z a e . 2 2 = D. alata. 2 3 = C. virginis. 2 4 = C. b r a m l e t t e i . 2 5 =
C. c o s t a t a . P : p r e s e n t ;
APPENDIX Ranges
of taxa, D.S.D.P.
Species ~
Core, Sec.
a
........
2-5 2-6 3-1 S-2
absent.
II-C
586, 586A
1-1 2-1 2-2 2-3 2-4
+: very rare (1 specimen);-:
Level (cm)
b
I 47-49 : 46-48 : 45-46 I 46"49 I 46-48
I C : F IC : C : C
: .........
I---I---I
I ~ ~ ~
I I I :
46-48 46-48 45-4b 45-46
F F C C
1
R' I fi I IH I I H I I 6 I IiI IH I H :6
P P + ÷
Site 586, 586A
2 3 /* 5
<' P
P P ÷ P P
P P P P
P P P P P
P P P P
P P P P
P P P P
................
I P + I P I P P ~ P
6
7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27
,
,
i
i
: ...................................
: .................
I .................
I ........
I
: ~ ~ :
I I I I
I I ; :
I I I :
:
I P . . . . . : P . . . . I P . . . . I P . . . . : P . . . . P ÷ . . . . P . . . . P . . . . P . . . . .
)
.
'
' ~
512 APPENDIX II-C
(continued)
586, 586A
Species "e
Core,
a
Sec. 3-~ ........ 3-4 3-5 3-6 4-J 4-2 ........ 4-3 4-4 4-5 4-6 5-[
Level
(crn)
b
1
~ 46-48
+ C : 6 I
: ......... : 46-48 : 46-48 i 45-46 : 48-50 ~ 46-49,+ I .........
:---~---; : C I M ~ C :lI : C ~H : C : 6 C t 8 ~---~---:
: 46-48 ~ 46-48 I 46-48 I 46-48 ( 46-48
~ ~ I ~ ~
C C C C C
2
3
/+ 5
P
P
P
6
P
................ : P P P P P : P P P P P ~ P P P P P : P P P P P : P P P P P .............
] 8 ~ ~tl ~ I H i ~ 111 I ~l I
-
. . . .
I ................. : P . . . . : P . . . . : P P - I P P P ~ P P P : ................. : I ~ ¢ I
P P P P P P P P P P - P P - P -
2627
t
~
~
I
+. . . . . . . . . . . . . . . . . : ~ : :
I ...................................
I ........
: t
I
t
~. . . . . . . . . . . . . . . . . o
', I
t
+
]
:
t
t
I + ' I P t I : I t ................................... ~. . . . . . . . . . . . . . . . . I ................. I ] I I I ~ ~ ] I ................................... ~ I ¢ t t
~ ' t
I ', ~ ~ I ........ ~. . . . . . . . I I ', t I ~. . . . . . . .
] I :
, ~
~ ,
~ ~ ~ : ~
I ~ : ~ ~
] ~ ~ I ~
~
' ~ ' : '
~ : ~ : I
........
P P P P P P P P P P P P P P P
................
P P P P P P P P
P P P
:
I P P P ~ I P P P ¢ ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i . . . . .
f I ~ I
-
2122232425
~ C ~ 8 ~ P P P t C ~ 6 ~ P P P ,i - - - I - - - ~ . . . . . . . . . . . . . . . . H 6 6 8 8
I P P P ~ P P I P P ~ P P I ................. I ................. P I P P P I P P P I P P P : P P P ', P P t ................. I~ t P P ~ ~ P P ~ P P
16 1 7 1 8 1 9 2 0
I 45-46 ~ 45-46 ~. . . . . . . . .
: I : ~ I
P P P P
-
1112131/+15
2-3 2-4 ........
C C C C C
P P P P - P P - P P ................ ................ I P P : P P i P P : P P I P P ................ ~ P P ¢ ÷ P P ~ P P
9 10
~ 45-46 +C + M ~ 45-46 I C I I I 1 45-46 ~ C : 6 ~ 45-46 I C ~ 8 : ......... i---l---I ~. . . . . . : - - - ~ - - - ¢ - - - I I 45-46 I C t 8 i 45-46 ~ C ] 6 I 45-46 I C I 6 ] 45-46 : C : tl ~ 45-46 ~ C I 8 I ......... ~---:---I I 45-46 ~ C ~ 6 I 45-46 I C I H I 45-46 I C : 6
46-49 45-46 45-46 45-46 46-48
+
~ P
8
5-2 5-3 5-5 5-6 ........ ........ A 1-1 ]-2 ]-3 1-4 ]-5 ........ [-6 2-J 2-2
2-5 2-6 ~:'1 3-2 3-5
~ + : I
P P P P - P P P - P P P + P P P - P P P
7
P P P P P P P P
P P P P
: ' ~
' I ' I ................. ' I
I ] I ] I : I I I t t , : : :
I .........
~---~---~
~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
l .................
t ........
3-4
I
45-46
I C : 6 :
P
P
P
I
P
P
P
~ P
:
'
I
~-5
~
46-48
:C
P
P
P
I
P
-
'
~
:
' : ' I .................
: : ~ I ........
t : t
, I ' , ' l : ' ' ~ l ................................... ' : ~ ' ' ~ ~ ' ' l t ...................................
: : ~ ~ : ~. . . . . . . . : l I
:
l I ........
: +-
' : ;
I ~ : ~ I I ........
t ; l : I ~-
: 6 :
: .................
: : : P ~ P t P
; ................. ................. ]
3-6 4-1 4-2 ........
: 45-46 : 45-46 ~ 45-46 I .........
: C i 6 t C : 6 ~ C I G ~---I---I
~ P P P : P P P ~ p p p ................
4-~
4-4 4-5 4-6 5-I ........ 5-2 5-3 5-4 5-5 5-6 ........
~ 46-48 ~ 46-48 I 46-48 : 46-48 : 46-48 ~. . . . . . . . . t 48-50 : 45-46 ¢ 46-49 ~ 46-46 ; 45-47 I .........
~ C ~ 6 I P P : C ~ 8 ~ P P :C I H I P P 1C:6 : P P : C I 6~ P P ~---~---1 ................ ~C:6: P P : C 16 ~ p p IC : 6 t p p : C 16 ; P P i C : 6 I p p l---l---I ................
6-1 6-2 6-3 6-4 6-5 ........
: 46-50 : 46-48 I 45-46 : 46-48 ~ 45-46 l .........
I C I H I C I H i C ~ 6 : C :11 I C ~ 6 t---~---~
P P P P P P p p P P
I + p p ~ - P P : P P ~ - P P I p p ................
P
:
: P ¢ P + ~ p : .................
P P P
: P l : P ' ~ P : I ..................................
~ P : - : P ~ P ~ P P : ................. l P ~ p ~ p p ~ P P ¢ p P : .................
P P P P P
I P - ~ P P ~ P P : P P: P + I ................. I p p + ~ p + ] p p + : P P : P P + t .................
: p p I + P I P P : - P : - p l .................
P P P P +
P p P P P
P
; p p P I P P P t P P P I P P P : p p P l .................
+ P
-
P P P P P P + p
?
: ~ ,
: : I ..................................
~ -
I -
I : : ~l ;
:
513
APPENDIX 586,
586A
Species*
Core, Sec.
Level (cm)
6-6 7-1 7-2 7-3 7-4 ........ 7-5 7-6 B-! 8-2 8-3 ........ B-4 8-5 8-6 9-! 9-2 ........ 9-3 9-4 9-5 9-6 10-1 .
.
.
.
.
.
.
(continued)
II-C
o
/*
5
= 45-46 ~ 45-46 I 46-48 ~ 46-48 I 46-48 ~. . . . . . . . . : 46-48 ¢ 46-48 ~ 46-48 t 46-48 ~ 46-48 t ......... ] 46-48 ¢ 46-48 ~ 46-49 ~ 46-48 I 46-4B : .........
t C I 11l - p I C ~ 8 ~ - I C : 6 I - : C ~ 6 ~ - : C ~ 11~ - I---~---~ ................ : C t 6 ~ : C : 8 ~ : C I 6 ~ ~ C :6 : ~ C : 6 ~ H--H--I ................ ~ C : 6 : I C t 6 ¢ : C : H I : C : 6 I ~ C : 6 : l---:---: ................
p P P +
I : l : I
~ ~ : ~ ]
47-49 45-46 45-46 45-46 45-46
.
.
.
.
.
.
.
.
.
b
C C C C C .
.
I I ] ~ ~
6 6 6 G 6
.
.
1
2
3
P P P * P -
I I : ~ I .
.
6
+
.
.
.
.
.
.
.
.
.
.
.
.
7
B
9 10
= - l P P : P I P : p : ................. : + I p ~ P + ~ P P ~ P + t ................. I * P I P P l P ~ p ~ P l .................
p P P P p
~ I t : I
P P P P P
.
.
.
.
.
P P P p P
:
.
.
.
t p p p I P P P ¢ P P P I p P P : p p p l ................. ~ P P P i p p p ~ P P P ~ P P + ~ P P P ~. . . . . . . . . . . . . . . . . I P P P t P P P I P + P ~ p P P ; P P P : .................
P p ÷ P P
P P - P P P P + .
11 12 13 1 / . 1 5
.
.
.
.
~ ] ~ I l .
.
p P
16 17 18 19 2 0
p P P p P + p
: ~ : : : : ................. P ~ + p ~ P ~ P P ~ " P : P : ................. P I + P I + P I P ~ ÷ P : ~. . . . . . . . . . . . . . . . .
P P P P P
P P + P P P ÷ P + P P P - P P P P P P P P P .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
~ t ~ I : : ......................... : : : : ~ : ......................... I l ~ l : ~. . . . . . . . . . . . . . . . . . . . . . . . .
'
I
f ~ ~ : l
' ' ' ' '
I ~ I t : ~. . . . . . . . . . . . . . . . . I : ~ : I : ................. : I : ~ : ~. . . . . . . . . . . . . . . . . I ~ : ~ : ~. . . . . . . . . . . . . . . . .
: I ~ : ~ I ........ ~ t t : I : ........ : : : : ; I ........ t : ~ I ~ : ........
I ~
~ ~
: I
: "
l : l : ; : ~ " I
' ' ' ' '
: : ~ "
l I
.
~ C : 8 I ~ C ~ G ~ I C t 6 ~ : C : 6 ~ I C ', 6 I ~---~---I ................ : C ~ 8 : t C ~ 6 ~ I C ~ 6 ~ I C I 6 I I C ~6 ~ ~---:---: ................ ~ C : 6 : t C I 6 : ~ C I G : I C : 6 I ~ C ~ 8 : H--H--I ................ ] C t 6 : I C ~ I1~ ~ C ~ 11 : : C ~ 111 : C I 6 : ~---~---~ ................
: P ~ P + ~ P ÷ I P P ~ P I ................. I P ÷ : P : + I P ~ ÷ + ~. . . . . . . . . . . . . . . . . : P + I P P : P P I - P : P P I ................. ] P + : P P : P + : p I P ~. . . . . . . . . . . . . . . . .
P P P P P
13-5 H-I
~ 46-48 ~ 45-46
: C : 8 ~ ~ C ~ 8 ~
: P ~ p
-
I t
+
P P
: :
14-2 14-5 15-1 ........
~ 45-46 l 45-46 I 46-4B : .........
: C I 6 : ~ C ¢ 6 : ~ C I 6 ~ :---H--~ ................
I P t P t P : .................
-
: p P I P : P P - + ~. . . . . . . . . . . . . . . . .
P
~ P P + l p P + : P P P P : .................
I ¢ ~ ~. . . . . . . . . . . . . . . . .
~ = ~ ~. . . . . . . .
~ 46-4B ~ 46-48 ~ 46-48 ~ 45-46 ~ 43-45 : .........
: C ~ fi : C : 6 : C ~ 6 I C I 6 : C ~ 8 ~---~.--:
I + P I P : P ~ P P l P ~. . . . . . . . . . . . . . . . .
l P P I P P l P + ~ P P ~ P P : .................
: P + P : P ÷ P I + P ~ P + P + ¢ P - P ~. . . . . . . . . . . . . . . . .
P P P P P
~ : : I : : .................
: ~ : ~ : ~. . . . . . . .
: :
~ 45-47
I C I II I
;
~ P
~ P
P
:
:
:
15-2
15-3 15-4 15-5 lS-6 ........ 16-1
~ I ~ ~ : ................
P
P + P + p
P p
P P
P
P P P P P P P P
-
.
26 27
I 45-46 I 45-46 I 46-48 I 45-46 1 46-48 ~. . . . . . . . . I 45-46 ~ 46-48 I 46-48 ~ 46-48 ~ 46-48 ~. . . . . . . . . ~ 46-48 1 45-46 ] 45-46 I 46-4B I 46-4B I ......... I 46-48 : 46-48 : 46-48 ~ 46-4B : 46-48 ~. . . . . . . . .
P P P P P
P
.
+
2/,25
10-2 10-3 10-4 10-5 10-6 ........ ll-I l I-2 11-3 H-4 1[-5 ........ 11-6 12-! ,= 12-2 12-3 12-4 ........ 12-5 12-6 13-1 13-2 13-~ ........
P P P P P
~ P P P : P P P ~ P P P I P P : P P P ~. . . . . . . . . . . . . . . . . : P P P ~ P P ~ P P t P P t P P : ................. + P P I P P : P P : P P : P P ~. . . . . . . . . . . . . . . . . ~ P P ~ P P ~ P P ~ p P ~ p P ~. . . . . . . . . . . . . . . . .
.
: : t : I
21 2 2 2 3
P P - - P P P + P P P P P P P + P P P P P P ÷ P + + P P
P
÷ P P P P P P P P
I - I ÷ ~ P I + P ~ + P I ................. ~ P P ~ P P ', P P : P P : P P I ................. : P P i P P : P P ; P P : P P ~. . . . . . . . . . . . . . . . . ¢ - P P ~ + P P I + P P + : - P P ] p p P : ................. P P
P P
"
P P
P
-
-
-
: I I : I : : ~ : : : ~ I I
I I -
I
~ -
514
A P P E N D I X
586,
586A
Core, Sec.
Level (cm)
(continued)
II-C
Species ~ n
b
1
2
3
S
6
16-2 16-3 16-4 16-5 ........
~ 45-44 ~ 46-40 I 45-47 : 46-48 : .........
I F I 14 i C I E I C : 6 ~C ~8 I---~---I
16-6 17-1 17-2
~ 43-45 ~ 44-46 ~ 46-48
~ C ~ 6 I I F I H I I C I 6 ~
: P ~ ~
17-3
~
: C t 6
I
46-48
~ ~ ~ ~ ................
/*
~
7
8
9 10
; I P P ~ P P I P : ................. -
P
11 12 13 1/* 15
16 17 19 19 20
l P P : P P P P I P P P P : P P P P ; ...................................
P P P P
I P P ~ P P t P P :
P
P
P P P -
P P
~ ; ~
P
'
+
P
-
+
~
+
+
P
: 45-47 l ......... l 44-46 ~ 44-46 I 48-50 I 42-44 I 46-48 l ......... i 46-48 ~ 46-48 ~ 45-47 ~ 45-46 ~ 45-46
; C I It ~ l"-l---I ................ I C : 6 : I C ~ 6 I ~ C ~ 6 I ~ F I H I ~ F t H ~ 1---I---1 ................ I C : H I F t t+ : C t PI I C t 6 : C ~ 6
] I ................. : P I P ~ P ~ I ~. . . . . . . . . . . . . . . . . : ~ P P : ? P : :
+ P P P P +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : P P ' P I P P P P P ~ P P ' P P : P P ' P ~ P P ' + P : ................................... : P P ' P P I P P P P P I P P P P P P ~ P P P P P I P P P P
........
: .........
:---~---I
I .................
: ...................................
~ ~ : ~ ¢
I C ~ C t C : C :C
l ~ : : l
I I :
45-44 45-46 46-48 45-46 45-46
~ I ~ ~ ~
................
6 6 6 6 6
I I : ~ ¢ ................
-
P P P t P P I P P
+
P P P P P P P P P
P + P P
........
I .........
t---:---I
20-2 20-3 20-4 20-5 20-6 ........ 21-2 21-~ 21-4 21-6 2[-7
: 45-46 ~ 45-46 ; 45-46 : 45-46 ~ 45-46 : ......... ], 45-44 ~ 45-46 ~ 45-46 ~ 45-46 ~ 45-44
: C ~ 6 : C + 6 ~ C ~ 6 : C ~ 6 I C I 6 I---:---I I C + 6 t C ] 6 I C t 6 I C ~ G t C ~ 6
........
: .........
:---I---:
................
: .................
~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22-1 22-2 22-~ 22-4 22-5 ........
{ 45-46 I 45-46 ~ 45-46 ~ 45-44 ~ 45-46 ~. . . . . . . . .
~ C ~ 6 I C ~ 6 I C t 6 : C : 6 I C ¢ 6 :--.:--_t
................
I - P I - P I P ~ P : P ; .................
I P P P ~ P P ' P I P P P I P P P P : P + ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22-4 23-1 23-2 23-.~ 23-4 ........ 23-5 23-6 24-! 24-2 24-3 ........ 24-4 24-5
] 45-46 ¢ 45-46 : 45-46 f 45-46 t 45-46 : ......... l 45-44 t 45-46 ~ 45-44 + 45-46 ~ 45-44 ~. . . . . . . . . : 45-46 ~ 45-46
~ C : 6 I C : 6 ~ C I 6 I C : 6 ~ C : 6 :---:---; ~ C : H I C I 6 I C : 6 I C I 6 : C : 6 ]---I---~ ~ C : 6 ~ C : 6
~ ~ ~ t : ................ t ~ ~ ~ ~ ................ t f
: ) P : P ; + P : P I ................. : P : P ~ P I P t P ~. . . . . . . . . . . . . . . . . l P : P
l P P ' I P ' : P : P P ' : P + : ................................... I P P P I P + ~ P P P P t P P P ~ P P P P ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ P P P P I P P P P
: : ~ ~ ~ ................ : : : ~ ~
P P P P P
: .................
I ...................................
: P : P I P ~ I P ~. . . . . . . . . . . . . . . . . l + t P I I : - P
: P P P P ', P P P P I P P P P I P P P P : P P P P P ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ P P P P P ~ P P P P P I P P P + I - P P P P : P P P P
-
: : : ~ : .................
P P P
17-4 ........ L7-5 17-6 18-1 18-2 19-3 ........ 18-4 18-5 18-6 19-1 19-2
19-3 19-4 19-5 19-6 20-!
P + P
'
P
P
-
21 2 2 2 3 2 / . 2 5
; : ;
+
: I
t P l ................. : - P : - P - P ~ t ~ : ................. ~ : P P : - P P ~ P P : P
l ........ ~ t ~ : I : ........
-
+ + : l t
~ : I I :
t .................
I ........
~
+
I
l
P P + P P P P
t
~ ~ I : [
:
~.................
I ........
I
: P P ~ P : P P ~ P : P : ................. : P ; P P I P ~ P : P
: t ~ : ~ l ........ ~ I ~ I ~
l l I I I : l I I I
: ........
:
t I : + t : ~. . . . . . . .
t l
P P P P P P P P P P P P
P P P P P
P P P P P
P P P P
P P P P P
P P + -
~ l ~
P P P P P
I .................
-
26 27
P P P + P P + P P P
I P P ~ P : P : P P P : P ~. . . . . . . . . . . . . . . . . : P ~ P : P P : P + ; P + P : ................. : + + t P + ~ P P P ~ P : P P P ~. . . . . . . . . . . . . . . . . : P + P : P P
÷ P P P P P P P P + P + P P
~ ~ ~ : : : ........ : : : ] : ~. . . . . . . . : f -
-
:
-
-
: : ,, t
: ~ : I I I ;
515
APPENDIX 586,
II-C ( c o n t i n u e d )
586A
Species ~
Core, Sec.
Level (cm)
24-6 25-! 25-2
~ 45-46 ] 45-46 ~ 45-46
o
b
1
2
3
/* 5
CI6~ C16~ CIGI
6
7 8
9 10
. . . . . . . .
I . . . . . . . . .
25-3 25-4 25-5 25-6 26-1 ........ 26-2 26-'3 27-1
I 45-46 : 45-46 ¢ 45-46 I 45-46 ~ 45-46 I ......... ', 45-46 ~ 45-46 I 45-46
................ : ~ =
~ P I P ~ P I ................. ~ + P : P : P : + P ~ P ~. . . . . . . . . . . . . . . . . : : P ; p
27-2 27-3 ........ 29-2 29-3 29-4 29-t 29-2 ........ 29-3 29-C 30-1 30-2 30-3 ........ 30-4 31-1 31-2 31-3 31-4
I 45-46 I ~6 ~ ~ 45-46 C : 6 ~ I......................... ~ 45-46 C ~6 I : 45-46 C ~6 I ~ 46-49 C ~ 6 I ~ 45-46 C I 6 ~ ~ 45-46 C 19 ~ ~. . . . . . . . . ~---:---: ................ I 45-46 ~ C I 9 ~ : : C I 6 ~ I 45-46 I C ~G : I 45-46 ~ C : E I ~ 45-46 ~ C ~ 6 I ] ......... ~---]---~ ................ : 45-46 : C : G I I 45-46 : C l H I ¢ 45-46 ~ C 1 6 : I 45-46 I C ~ 9 ~ ~ 45-46 : C : fl :
¢ P ~ P :................. ; P i P ~ P ~ ~ P : ................. ~ ~ l ÷ ~ ÷ ~ I ................. : 1 l ÷ ~ ~
................ C~GI C191 C~6~ C:S; CIG~ ',---I-HI 1 I G ~ ~9 l ~G
11 12 13 1/* 15
16 17 18 1 9 2 0
I P P I P + I P P :................. : P P P : P P : P P ~ P P ~ P + P I................. : l P + ~ p p
P P
~ P P I P P ~. . . . . . . . . . . . . . . . . I P P : P P : P P : P ÷ I ~. . . . . . . . . . . . . . . . . l : ~ : ~ P ~. . . . . . . . . . . . . . . . . ~ - P ~ + P : P : + P : - P
P : P P P ~ P P : ................. P : P P P i P P P : P P P ~ P ÷ P P ~ P I................. P I ÷ P I P P ~ P P ~ P P : P ~. . . . . . . . . . . . . . . . . P I P P ~ P P ~ P P ~ P P : P P
P P P
P P p
: P P ] P P : P : ................. ~ P P ~ P P : P P : P : P P I................. I P ÷ P ; P ~ p
P P -
+ +
21 22 23 2/, 25
26 27
I P P + P : P P P P : P P P : ................. : P P + P : P P P ~ P P P P : P P P P : P + P ¢. . . . . . . . . . . . . . . . . : P P P P ~ P P P P t p p p p
I + I ~ + I ........ + ~ P ÷ I P : - : + + I - I ........ - ~ - + ~ ÷ c. ; - -
: P P P P ~ P P P P ~. . . . . . . . . . . . . . . . . ~ P P P P I P P P P I P P P P : P + P P ] P P :................. I P P : ÷ P : P P i ÷ + I ÷ ÷ ~. . . . . . . . . . . . . . . . . ~ P P P : P P + + ; ÷ P { ~ ÷ P ÷ : ÷ P P -
÷ + ÷ P P P P P
~ - I P :........ I + I P f P : P : P + : ........ I P P I P P : P + ~ P P ~ P P ~. . . . . . . . ~ P P : P P I P P : P P I P P
I l :l : : I : : : ]
I I : :
~ I : I : : l [ :
* a = a b u n d a n c e , b = p r e s e r v a t i o n . 1 = L. ni gr i ni ae . 2 = T. t r a c h e l i u m . 3 = A . y p s i l o n . 4 = S. tetras. 5 = P. p r a e t e x t u m . 6 = B. a q u i l o n a r i s . 7 = L. bacca. 8 = A . a n g u l a r e . 9 = T. v e t u l u m . 1 0 = P. p r i s m a t i u m . 11 = S. p e r e g r i n ~ 12 = P. f i s t u l a . 13 = S. p e n t a s . 14 = L. a u d a x . 15 = P. d o l i o l u m . 16 = / 3 . b r a m l e t t e i . 1 7 = S. b e r m i n g h a m i . 1 8 = S. o m n i t u b u s . 1 9 = S. c o r o n a . 2 0 = A . t r i t u b u s . 2 1 ffi C. c a e p a . 2 2 = E. el. d i a p h a n e s . 2 3 = D. bursa. 2 4 = D. h u g h e s i . 2 5 = L. n e o t e r a . 2 6 = B. m i r a l e s t e n s i s . 2 7 = D. p e t t e r s s o n i . P: p r e s e n t ; + = v e r y r a r e (1 s p e c i m e n ) ; - : absent.
APPENDIX
II-D
Ranges of taxa, D.S.D.P. Site 214 21~
Species ~
Core, Sec.
Level (cm)
1-I I-2 1-3 1-4
~ 3-I0 ~ 7-10 I top I 50-55
o
b
1
2
3
4
5
6
7 8
-
P P P P
P P P
P P P P
P P P ~ P P P I P P P ~ P P
9 10
11 12 1 3 1 ~ 1 5
i
~ I : ~
F : H C~6 C I 9 C ~9
I ~ : :
~ I : :
16 17 18 19 20
21 22 23 24 25
i
i
~ ~ I l
Z I l I
26 2 " 7 2 8 2 9 3 0
~ I I ~
31 32 3 3 3 ~ 3 5
I : ~ ~
I :
516 APPENDIX II-D 21~,
Species ~
Core, Sec.
Level (cm)
1-5 ........
~ top : .........
1-6 l-cc
: ~
2-1
2-2 2-3 ........ 2-4 2-5 2-cc 3-1 3-2 ........
7
8
~ C : N I - P P P P : ) . . . . . . . , : .................................. ,
P P
-
~ C : 6 : -
P
P
I
P
P
P P P P
:
P P
: 4-6 ~ top I top : .........
~C:G: IC : H IC ; 6 I C :M :---:---,'
: top : top ~ ~ 70-72 ~ 70-72 l .........
~ C : B : P P P ~ C I 6 I P P P ~ C ~ ff : p p p : C ~ 6 ~ - P P P I C ~ PI: P P P l---:---~ ................
P P p P P
: P P + I P P P : p p ÷ - I P P P - P : P P - P P ~. . . . . . . . . . . . . . . . .
: C ~ 8 ~
P
P
:
~ C ~ S : i C : 6 ~
p p p p P P P P
~" p p I P P -
: C ~ 8 ~ ÷
P
P
;
P
~C :lt~ P P P P :---:---~ ................
:
P P
top
:~-~ ~ 68-70 3-4 ~ 70-72 3-5 ~ 70-72 3-6 ~ 66-68 3-cc ~ . . . . . . . . . . . . . .l . . . 4-1 4-2 4-~ 4-4 4-5 ........ 4-6 4-cc 5-2 5-3 5-4 ........
(continued)
I top I 70-72 : 70-72 ~ 80-82 ~ 70-72 ~. . . . . . . . . I 70-72 ~ l 70-72 ~ 66-68 ~ 70-72 ~. . . . . . . . .
5-5 ~ top 5-6 I 70-72 5-cc ~
n
b
1
2
3
P
/*
P
S
6
P
P
P
P
P
:
I
:
) ..................
) .................
-
¢
:
:
:
]
I
-
:
f
:
:
:
:
+
P
-
-
:
:
:
:
~
I
: :
: ;
: ~
] ]
: ]
,
~ .................
: .................
~ .................
: .................
: ¢ ~ ] ~ ~. . . . . . . . . . . . . . . . .
: i ~ : ~ : .................
: ~ : ¢ : ~. . . . . . . . . . . . . . . . .
; ~ : ] ~ : ..................
I : ] ¢ ~ ,i . . . . . . . . . . . . . . . . .
:
-
:
~
~
I
:
p p P P
~ : -
: :
: ¢
', :
~ I
I :
-
P
:
-
~
:
~
~
I
+
P
~ -
~
I
I
:
l .................
~ .................
: .................
; .................
~ .................
: ~ : ~ :,
~ l : 1 ~
~ ~ I : l
l : ~ ; I
: ~ : : ~
I :
:
P
+
P
~ P P
÷
:
+
P
:
+
~
÷
~
P
P
P P P P P
÷
I P
P P - P - +
P P
P
P P
: 70-72 ~ 70-72
~C : 8 ~ ~ C :fl ~
÷
', .........
I .......,
: 70-72 : 72-74 I ~ 70-72 I 70-72
~ ~ : t ~
,, .........
,,___,___~, .................................. ,
7-~ 7-4 7-5 7-6 7-cc
~ : ~ ~ ~
70-72 70-72 70-72 69-71
I I : ~ ~
8-1 8-2 8-~ 6-4 8-5
I : ~ l ,
70-72 70-72 70-72 70-72 top
C C C F C
~ .................
~ .................
I ..................
I .................
P
=
:
:
¢
:
P
:
P
:
~
:
:
:
C C
H 6
C C
II 6
IF I I F I : C I 1C16: , C I
+
P P P P P P
P +
: I
P P + P P -
P P ÷ ÷ -
-
: .................
P P -
-
+
fl I N~ 8 : 8 I
P P P P P P P
I I ~ I ~
P P P
p - ÷ P ? P P
~
~
:
:
:
I
~
I
f ~ ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
: ~. . . . . . . . . . . . . . . . .
~ ~. . . . . . . . . . . . . . . . .
:
-
-
~ : ~
: ~ :
: : ~
~ ~ I
: I I
-
P P P
~ :
: I
l :
: :
,' .................
', ..................
~ .................
: I ~ : :
: ~ l l ~
: l ~ f ~
~ .................
~ .................................... ,
P -
I ~ ~ I ~
: : : : ~
I : ~ : I
I I I : I
-
~ l I l ,
I l ~ : f
I : : ~ ~
I I : :
: l
I
-
: .................
+ P P P
: : ~ I :
P P P P P
p P P P
l ................
P P P P
p P P P P
+ P P P P
P P ÷ P P P P
I P P ~ P P I P P : P P : P
P ÷
P P ÷ P
l . . . . . . . . . . . . . . . . .
~ P P ~ P P ~ P P ~ P ~ P P
P P p P P
P P p P P
P : P I p : P ~ P :
I ~ I : I
P P P P P P P P P P P + P P P P P
-
-
-
-
+
I f P ~ P I P :
~
. . . . . . . . . . . . . . . .
+
8-5 8-6 8-cc 9-1 9-2 ........
I 70-72 I top I = 70-72 : 70-72 I .........
: C ~ 6 I i C ~ 8 f
P P
I I
P P P P
P ÷
i I
P P P P P P P P P P
:C~6
P
:
P
P
I
P
P
P
P
÷
t - - - ~ - - - ~
P
-
P
i . . . . . . . . .
~C : 6 : ÷ + P l P P ~ P P + I C :G : P ~ P P P I P P :---l---: ...................................................., ,
-
+
. . . . . . . .
i
~ ~ ~ ) :
,' ................................... ,
: P P ~ P P ~ P : P f P
. . . . . . . . . . . . . . . .
: ~
-
~ P - ÷ ~. . . . . . . . . . . . . . . . . P p p .-
+
-
-
; : :
P P - P
: :
:
÷ -
I I
,J
: .................
P P P ~ P P p p p ~ p P P + I P P
l ................
: M : ~ fl : f 6 : ~11~ 111 :
÷ +
: : I :
P
: F : N ~ P P P ~ P P : ....... ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
:
: :
: C Ill
:
31 32 33 3/* 35
: .................
', .................
P
26 27 28 29 30
~
P P ÷
21 22 23 2 / . 2 5
,, .................
~ C : 6 I P P P : C : 8 : P P P : C : N : P P ~ C ~lil - P P I C ~11~ P P ,'---:---~ ................ I C ~tI ~ P P ] C I H : P P ~ C ~ 6 I ÷ P P
-
P P P P P
16 17 18 19 20
:
,' .................
~ : I I :
11 12 1 3 1 ~ , 1 5
: .................
~ P p p p : p p + ~ + P P P P ; P P : P P P P ~ P P P . . . . . . . . . . . . . . . . . . . . . . . . . . .l . . . . . . . . . . . . . . . . . . . . . . . .
: C I H: : C ~ ff : I C ~1~ ~
6-1 6-2 ........ 6-3 6-4 6-cc 7-! 7-2 ........
9 10
P ÷ +
-
~ . . . . . . . . . . . . . . . . .
~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
: I
I ~
P P -
] :
:
l : I l I ]
P
:
÷
-
~
l
:
:
P P P P
~ I
P ÷ P -
; ~
~ I
; :
: :
f ..................
~ .................
I
l .................................. f
517
APPENDIX
(continued)
II-D
21/,
Species ~
Core, Sec.
Level (cm)
9-3 9-4 9-5 9-6 9-cc
: 6 ~6 : 6 I 6 ~6
3
/*
S
6
7
8
9 10
÷ P P ÷ P
.
.
70-72 70-72
C C C C C
2
~C ; 6 : P P I C ~ 6 : P P P 10-3 ~ 70-72 ~ C I 9 ~ ~ P ÷ P 10-4 ~ 70-72 : C ~ 6 : P P P 10-5 : 70-72 ~ C : 6 : + P P P ........ I ......... ~---~---~ ................................. [ 0 - 6 ~ 70-72 I C ~ 9 ; P P P lO-cc : I C : 9 ~ P P P ll-I ~ "70-72 I C I 6 ¢ '(" P P P 11-2 ~ 70-72 I C I 6 I P P P 11-3 ; 70-72 ~ C ~ 6 ~ P P P ........ I ......... I---I---; .................................. 11-4 : 70-72 ~ C ~ B I P P P 1J-5 I 70-72 I C I 6 : ÷ P [l-cc I ; C ~6 ~ ÷ P 12-I ~ 80-62 I F ¢ i t l P P 12-2 ~ top : C I 6 ~ p p ........ I ............., ~---I .................................. 12-3 ¢ 74-76 I C ; 6 ÷ P 12-4 ~ top ~C ~6 ~ P 12-5 ~ 70-72 I C ~ 6 P P 12-cc I ~C ~6 P P 13-2 ~ 70-72 I C ; 6 ' + P .
; :
.
.
.
13-3 70-72 13-4 70-72 13-5 70-72 13-6 70-72 13-cc ........ ~. . . . . . . . . 14-1 14-2 14-~ 14-4
I 70-72 ~ top I 70-72 ~ 70-72
: : ~ ~ :
1
P + + P P
.
70-72 70-72 70-72 70-72
b
P P + P P P P P
10-! 10-2
: ; : : I
a
.
.
.
.
.
.
.
.
.
.
.
-
: C : 9 ~
'
~C : 6 : : C : 6 ~
, ,
~. . . . . . . . .
~. . . . . . . ,
16-2 16-~ I6-4 16-5 16-6 ........
I 70-72 : 70-72 : 70-72 ~ 70-72 ~ 74-76 ~. . . . . . . . .
I C ~ ff i C I 6 ~C ~9 I C ~8 : C ~ 6 I---I---¢
16-cc ~ 17-1 ~ 70-72
.
~C ~8 I
I 70-72 I ......... I 70-72 : I 17-I8 ~ 70-72 : 80-62 ~. . . . . . . . . ~ 70-72 I 70-72 ~ 70-72 : 78-80
.
.
÷
~ : : : ;
P P P P P
P P P P P
-
P p P P P
.
.
.
.
-
.
.
.
.
.
.
'
P P
~
P
~
P
P
)
P P
~ P + : P +
P
~ ' : P : P ~ ' P ~ ' p .................................
~C ~6 : ~ C ;iI ;
' '
.
P P
.................
P P
÷
P
P P P P
.
.
.
: :
P
P P P +
26 27 28 29 30
-
.
: : I ~
-
.
: : -
:
~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - I - ; P - ; ')' + - I P - ~ P I .................................... - ~ P ~ - - P P ~ P P I P p : - - + ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P ¢ ~ P P ~ - - P P ; P P ~ P * P ) - + P .
P P P P P
.
.
÷ P P
:
P
+
P + P P
.
.
.
.
.
.
.
.
.
.
-
P P
-
~
P
-
: ~ ÷
P P P P -
P
~
:
-
I .................
~ .................
I P : P P I P ~ P P ; p ]................. ~ P ~ P
P P P P
P
+
P ~ P P : P P : + P P ~ + P p ~ ÷ p I .................
P P P
~ + ~ +
P P
~ P P P ,, ...................................
i P P P I P P P : P P P : P P P : + P P P ~. . . . . . . . . . . . . . . . . ~ + :
+
P P P + P
I
I
I
.. . . . . . . . . . . . . . . . . '
I - P P ' ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + ~ + P P = + I - P P P + ~ P P P ' P : P P P + ÷ P ~ P P P ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + : P P P ' + I - P P P ' - I P P P ' - ~ P P P - -
P P P P P
I ]
.
~ - + ) ) P P ' ~ P ) ~ - P P ~ + P + ' ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
~ + + P }................. I P P ~ P + P : P + P I P + P ] P P P :................. ~ P I P P ~ + P P l '¢' P
P
3'1 32 33 3Z~ 3,5
l
I P P P I P P P I P - P ~ * - P I - - P ~. . . . . . . . . . . . . . . . .
I
I C I G I , P = P P P ~=--~--=I . . . . . . . . . . . . . . . . ................. ', . . . . . . . . . . . . . . . . . I C I 9 I ' P I P P I C ~6 : ' + P ~ P P ~C ~G ~ P : P P : C : 6 : ' P : P P P ~C : 6 : ' P : P ~__.1__.~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , I C ~H : ' P ¢ p p ~C ~6 ~ ' P I P + P : C : 6 ~ ' P ~ P ? : C I 9 I ' P ~ P P ~ C : 6 ; ~ ................
.
P P P P P
P
P
P
p p P ÷ P ~
P : - P - P ¢ + P - P I - P - P I - P P P ~ - P P i ,................. P ; + P P P : P P P P ~ P P P P P I P P P P P I P P P P ~. . . . . . . . . . . . . . . . . P I P P P P P ~ P P P P : P P P P P ~ P - P P p ~ p p p I ................. P ~ + P P P P I P P P P P ) p P P P ~ P P P P P ~ P P .
~ P P P ', P ÷ P I P P P I P P P : P P ~. . . . . . . . . . . . . . . . .
21 22 23 24 25
16 17 19 19 20
P I P ~ P ~ P I P ; -
f P P P : P P P : P P P ~ P P P ~ P P P ~. . . . . . . . . . . . . . . . . - ~ P P P P I P P P '," ¢ P P P - I P P P - I P P P I ................. - : P P P + ; P P P + ~ P P P I P P P + ~ P p p ~. . . . . . . . . . . . . . . . . P ~ P P P ÷ I P P P - I P P P : P P P - I P P P
) C I 6 , ÷ P ¢ C ~6 , ÷ P I C ~ ff , P P ¢ C I 6 , P : C ~6 - P :._-~-._~ .................................
14-5 ........ 14-6 14-cc 15-1 15-2 15-~ ........ 15-4 15-5 15-6 IS-co 16-1 ........
~
.
11 12 13 1 / . 1 S
-
-
' I.................
I I J ; ]................. I ] : I : ) .................
- P P P + P P P P '.................. P P P P
I I : I I................. ~ ]
"
+ P
518
APPENDIX
II-D (continued)
21h
Species*
Core, Sec. 17-2 17-3 17-4 ........
Level (cm)
a
I 70-72 ~ 70-72 I 70-72 : .........
~ F ~ H I F I II ~ F ~ H ~---I---I
17-5
:
70-72
17-6
: 70-72
17-cc ~ 18-1 I 68-70 18-2 ~ 70-72 ........ I ......... 18-3 18-4
2
3
4
5
: I I
6
7 8
9 10
: ÷ + I + : + P I .................
: P : : P l .................
: : ~ P : .................
: F : i4 :
:
I
I
:
~F ;H ;
:
:
I
:
: F : H : C I II : C ~ M ~---~---I
l : I : .................
: : ~ : .................
: : = : .................
', P l P I : .................
~ ~
~ ~
................
: : : ................
?
~ :
I ',
16-5
I 70-72
18-cc
I
R ~ P ~ F I II I
I :
I I
19-2 19-3 1~-4 19-5
: I08-II0 : .........
C ~G I :---~---~
................
S ~ II: ~ : 19-cc ~ I ........ : ......................... 20-1 20-2 20-3 20-4
82-84 70-72 70-72 70-72
I 68-70 : 70-72 : 70-72 : 70-72
20-5
l 70-72
........ 20-6 20-cc
: ......... : 70-72 I
21 22 23 2 6 2 5
19 2 0
~ ÷ ~ ~ : .................
C ; I'l : ~ ~
19-I
16 17 18
11 12 13 1 6 1 S
70-72 70-72
........
I :
1
b
I C : C : ~
F ~ M ~ ', I F I M f F : I~ t
C ~G I
÷ p
-
p
I ~
:
:
: .................
~. . . . . . . . . . . . . . . . .
~ ~ ~ I ~ : .................
: P ~ ~ I l ~. . . . . . . . . . . . . . . . .
I f : t ~. . . . . . . . . . . . . . . . . :
: I : ~ I ~. . . . . . . . . . . . . . . . . l
I
~
~
~---I---I ................ : ; f ~ F I H ~
p
P ÷ +
-
I I ~ ~. . . . . . . . . . . . . . . . .
P P P
+
:
-
I
-
P
P
I p p
- P
~
- P
-
P
p p
-
: I
~
:
~. . . . . . . . . . . . . . . . .
: .................
I ~ I ~ : ~. . . . . . . . . . . . . . . . .
: ÷ P I + P : P P : p l p l .................
+ P p P
~ : ~ :
P
-
* + P p p
: $ : I
P P P P
I
:
P
: ................. l I ÷
I ................. l P : + P
31 32 33 3& 3 5
~ P P : P P : P P : ..................
P
+
26 27 2 8 2 9 3 0
P P
P +
P
P
-
I P P P : p p P P I P P P I ..................
: ~ I ~. . . . . . . . . . . . . . . . .
: p ~ p
-
I t
: ~ P
-
P P
P
I
P P P
P P P P
-
I
I ~
P P
P P
I I t
I ; :
: P -
: +
~. . . . . . . . . . . . . . . . . .
I .................
l p P I P P : P - + P P f p P P ~ p P P l ..................
~ + ~ P ~ P : P ~ P ~. . . . . . . . . . . . . . . . .
P P P P P P P P P P
~ P i P I P ', P
P P +
~ I [ I
-
P P P P P P P P
I :
I P
- P
t P -
P P
t
: .................. : P I P
P P P P
P P
P P P P
I I
I I
:
: ................. ; P P P : P P P
I :
* a = a b u n d a n c e , b = p r e s e r v a t i o n . 1 = L . n i g r i n i a e . 2 = T. t r a c h e l i u m . 3 = A . y p s i l o n . 4 = S. t e t r a s . 5 = P. p r a e t e x t u r n . 6 = B . a q u i l o n a r i s . 7 = L . b a c c a . 8 = A . a n g u l a r e . 9 = T. v e t u l u m . 1 0 = P. p r i s m a t i u r n . 1 1 = S. p e r e g r i n a . 1 2 = P. f i s t u l a . 1 3 = S. p e n t a s . 1 4 = L . a u d a x . 1 5 = P. d o l i o l u m . 16 = B. bramlettei 1 7 = S. b e r m i n g h a r n i . 1 8 = S. o m n i t u b u s . 1 9 = S. c o r o n a . 2 0 = A . t r i t u b u s . 2 1 = C. c a e p a . 2 2 = E. cf. d i a p h a n e s . 2 3 = D . b u r s a . 2 4 = D. h u g h e s i . 2 5 = L . n e o t e r a . 2 6 = B. m i r a l e s t e n s i s . 2 7 = D . p e t t e r s s o n i . 2 8 = S. w o l f f i i . 2 9 = C. j a p o n i c a . 3 0 = C. c r i s t a t a . 3 1 = C. c o r n u t a . 3 2 = C. t e t r a p e r a . 3 3 = L . r e n z a e . 3 4 = D . a l a t a . 3 5 = C. b r a m l e t t e i .
APPENDIX Tabulation
III of all radiolarian
RADIOLARIAN EVENTS
214
I T Anthocyrtidzum I angulare
2-2 2-3
I B Lamprocyrtis nzgrzniae I
too r a r e
I
I
events
289
~A/S86B
5731573B
: 503AI503B ', Riedei
II.[ 12.b
4-1
18.8 20,8
3-4 3-5
17,3 18.8
~A 5-I ', 5-2
15.5 17.0
4-2
22.3
3-4
17.3
~A 7-I
24,3
4-3
23.8
3-5
18.8
~ 7-2
25,8
3-6 3-cc
20.3 20.8
~A 5-I i 5-2
15.5 17.0
3-6
T Theocorythsum vetulum
3-1 3-2
19.7 21.2
absent
B Theocorythzum trachelium
4-2 4-3
30.7 32.2
5-2
31.8
3-cc
20.8
;A 7-2
25,B
5-3
33.3
4-1
22.3
I 7-3
27.3
519
APPENDIX
III
(continued)
RAOIOLARIAN EVENTS
214
586/586A/586B
289
57315738
I 503A1503B I Riedel I
T Pterocanium prismatzum
2-cc 3-I
18.9 19.7
5-2 5-3
31,8 33,3
4-2 4-3
23.8 25.3
IA 7-2 I 7-3
8 Anthocyrtidium angulare
3-I 3-2
19.7 21,2
5-2 5-3
31.8 33.3
4-3 4-4
25.3 26.8
T 8tichocorys peregrina
4-5 4-6
35.2 36.2
56.9 59,0
5-5 5-6
37.6 38.9
T Phormostzchoartus fistula
5-cc 6-I
47.4 48, 2
IA 2-6 I 3-I I IA 4-3 4-4
71.6 73.1
6-5 ~-6
46.4 47,8
IA 7-I I 7-2 I IA13-3 I 14-3 I 181o-2 I 16-3
T Spongaster pentas
6-3 6-4
51.2 52.7
85.7 87.8
6-6 6-cc
47,8 48.0
T Lychnodictyum audax
5-cc 6-I
47.4 48.2
82.7 84.2
too rare
T Phormostichoartus doliolum
6-1 6-2
48.2 49, 7
87.8 89o3
7-2 7-3
50.6 52,1
8 Amphzrhopalum
ypsilon
6-cc 7-I
56.9 57.7
IA 6-1 I 6-2
87.8 89.3
7-4 7-5
5].6 55.1
8 Spongaster tetras
6-4 6-cc
52.7 56.9
IA 6-6 I 7-i
95.3 97,4
7-5 7-6
55,1 56.6
7% 7-cc
56.6 57, I
25.8 27,3
I
16-cc 56.5 7-3 60.5
I IA 5% I 6-1 I IA 5-4 I 5-5 I IA 6-I I 6-2 I
IAI5-3 ~ 1~+2 I 1818-3 ', I%1 I ~81~-I I 19-2 I 1819-2 t 19-3 I IA20-3 21-1
24.3 25.8 53.7 58.1 66.4 67,g 62.5 643 76.7 78,1
78,1 79.5 79.5 81.0 84,3 85,9
I
too rare
8 Pterocanium praetextum sl
II-4 11-5
I00,2 lOI.7
T Botryostrobus bramlettei
10-6 lO-cc
93.7 94.9
IBI4-1 I 14-3
7-6 7-cc
65.2 66.4
8-cc 9-I
66.7 67.4
8-cc 9-i
75.9 76.7
IAIO-3 129.2 ', 10-4 130.7 I IAIO-6 133.7 I 11-2 137.3 I
q-2 q-6
68,9 74.5
IA13-3 I 13-5
158.0 161.0
9-2 9-3
68.9
1824-2 I01.6
70.4
9-4 9-5
71.9 73.4
I 25-I 104.5 I IA29-2 122.8 I 29-3 124.3 I I A36-2 154.5 I 37-I 156.3 I IA31-2 131.6 I 31-3 133,1 I IA31-3 133. I I 34-2 144.8 I IA34-3 145.8 I 36-I 151,9 IC.robusta gp. IA36-2 154,5 I 37-I 156.3
IA 8-3 110.0 I 8-4 111.5 I
125.7 128.7
8-co 66,7 9-I 67.4
I
T Spongaster berminghaml 8. berminghami --> S, pentas
I115-cc 142.0 16-4 147.5
8 Pterocanzum prismatium
12-4 12-5
1010 111.2
T Solenosphaera omnitubus
10-3 10-4
89,5 gl.O
1115-3 136,5 I 15-cc 142.0
IAIO-4 130,7 : 10-5 132.2
9-I 9-2
76.7 78.2
T Szphostichartus corona
lO-cc II-I
94.9 95.7
IAII-I 135.'8 ', 11-2 137.3 I ', too rare
8 Botryostrobus aquiIonarls
13-5 13-6
120.7 122.2
T Acrobotrys trltubus
11-4 II-5
100.2 101,7
T Calocycletta caepa
too rare
Itl5-cc I 16-4 I I i I : ~ I lll8-cc I 19-3 ; 1123-4 ', 25-3
I
8 Spongaster pentas
142.0 147.5
9-cc 76.2 10-I 76.9
I0-! 10-2
76.9 78.4
205.5 215.1
10-I 10-2
76.9 78.4
165,3 167.2
11-3 11-4
89.3 90.8
221.1 224.7
11-6 93.9 11-cc 95.0
I
170.5 174.5 214.2 231.5
1822-3 I 23-~ I IA14-3 ~ 15-I I 1824-1 I 24-3
1825-i I04.7 I 25-2 106.2 t t ? rewording ', IA31-3 132.8 I 34-2 144.3 I
520
A P P E N D I X III
(continued)
RAOIOLARIAN
214
289
586/586A!586B
573/573B
EVENTS
S. delmontensls --~ S. peregrlna
50~AI503B Riedel
13-4 119,2 14-2 125.0
IA18-4 199,9 19-4 209.5
13-4 109.2 13-cc I12.6
~A48-2 204,4 ~ 49-I 209.1
12-&
IAl7-1 ; 17-2
12-3 98,9 12-4 100.4
~ A41-1 173.9 i 41-2 175.4
1822-5 208.5 ', 23-3 215.1
14-5 119.1 14-6 120.6
IA48-2 204.4 ~ 49-I 209.1
T Eucyrtldium cf, diaphanes
12-5
T Oendrospyris bursa
10-6 93.7 lO-cc 94.9
8 Solenosphaera omnltubus
13-4 119.2 13"5-5 120.7
[25-3 231.5 25-cc 237.0
IA20-6 221.0 ! 21-2 224.6
15-4 127.0 15-5 128.5
~A48-2 204.4 49-1 209.1
T Olartus hughesi
14-6 131.7 14-cc 132.9
IL26-2 239.5 I 26-5 244.0
IA22-5 238.7 I 22-6 240.2
16-3 134.9 16-4 136.4
A53-2 228.2 54-I 231.1
T Cithopera neotera
Ib-cc 152.4 17-1 153.2
I|32-5 302.5 ', 33-I 305.1
~A31-1 295.7 i 31-2 297.2
16-3 134.9 16-4 136.4
B ~crobotrys
15-5 139,7 15-6 141.2
I129-cc 275.0 ~130-I 276.5
IA25-6 269.0 : 26-I 271.1
16-5 137.9 16-6 139.4
T Botryostrobus miralestensls
16-2 145.2 16-3 146.7
~ I
~A27-2 278.6 ', 27-3 280.1
17-4 145.2 17-5 146.7
B Spongaster
15-6 141.2 15-cc 142,6
~131-2 283.0 ', 31-6 286.B
',too rare
berm~ngham~
17-6 148.2 17-cc 149.0
T Oiartus petterssoni
16-2 145.2 16-3 146.7
1,31-4 290.0 ~ 31-cc 294.0
',A2q-I 285.7 ~ 2q-2 287,2
18-3 152.5 18-cc 153.5
16-4 148.2 16-5 149.7
1131-6 293.0 I 32-5 302.5
IA29-2 287.2 { 30-2 292,2
18-co 153.5 19-2 155.0
16-C¢ 152.4 17-I 153.2
~433-I 305.0 i 33-6 312.5
~A31-3 298.7 [ 31-4 300.2
19-3 156.5 19-cc 159.0
tritubus
D. petterssoni --~ 0. hughesi B Olartus hughesi
I09.0 Ill.2
~431-6 293.0 32-2 298.0
T St~chocorys
wolffii
185.8 187.3
S3-I 3-2
158. I 159.6
B Lithopera bacca
17-2 154.7 17-3 156.2
;|33-6 312.0 ~ 34-I 314.5
',
B3-1 158.I 3-2 15%6
B Phormostichoartus doliolum
18-4 167.2 1~-1 172.2
ij38-4 356.3 I 39-4 365.8
', i
B3-1 158.1 3-2 159.6
T Cyrtocapsella japonica
17-cc 161.0 18-I 162.7
I i f
',
B4-1 167.6 4-2 169. I
T Carpocanopis crlstata ss
17-5 159.2 17-6 160.7
~J35-4 328,0 I .X6-5 338.0
i I
B5-1 5-2
B Botryostrobus bramlettei
17-1 153.2 17-2 154.7
T Cyrtocapsella
iS-co 170.5 19-I 172.2
~ ~ I ~139-6 369.0 = 40-I 371.5
I I i
cornuta
177,1 178.7
B5-2 178.6 5-3 180,I B6-6 194,1 6-cc 195.7
521
I T Cyrt0capsella
:441-2 382.0 I
I
: 42-I 390.0
i B6-6 194.1 6-cc 195.7
~142-2 391.5 : 43-I 3?9.5 :
: B6-6 194,1 : 6-cc 195,7
18-2 164.2 IL38-4 355.3 I 18-3 165.7 I 39-4 364.8 I
~7-cc 203.4
18-2 164,2 ~141-I 3B0,5 18-3 165.7 : 41-cc 389.0
88-6 213.0 8-cc 214.7
tetrapera T Lithopera renzae
B Oiartus petterssoni
8-I 205.6
I
T Oorcadospyris alata ]
I T Carpocanopsls I braalettei
16-6 151.2 ~|45-3 421.5 16-cc 152.4 i 45-6 426.0
:
T Calocycletta
~L47-I 437.5 47-2 438.0
:
I)49-3 459.5
I
I 49-5 462.5
I
[BIO-4 229.1 I 10-5 230.6 I
virginis T Calocycletta costata
:B10-6 232.1 IO-c~ 232.8 :BIO-6 232.1 10-co 232.8
t - data take. froe Hnldswnrth, 1975 I - data taken from Mestberg and Riedel, 1978
J - data determined by Johnson us;ng sli~es provided by G. Loabari L - data derived by 6, LoJbari (personal c0eaunicati0n, 1983)
References Backman, J. and Shackleton, N.J., 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific Oceans. Mar. Micropaleontol., 8: 141--170. Backman, J., Shackleton, N.J. and Tauxe, L., 1983. Quantitative nannofossil correlation to open ocean deep-sea sections from Plio-Pleistocene boundary at Vrica, Italy. Nature, 304: 156--158. Baker, C.W., 1983. Evolution and hybridization in the radiolarian genera Theocorythiurn and Lamprocycles. Paleobiology, 9: 341--354. Baldauf, J.G., 1985. A high resolution late Miocene-Pliocene diatom biostratigraphy for the eastern equatorial Pacific. In: Initial Reports of the Deep Sea Drilling Project, 85. U.S. Government Printing Office, Washington, D.C., pp. 457--475. Barton, J.A., 1985. Late Eocene to Holocene diatom biostratigraphy in the central equatorial Pacific, D S D P Leg 85. In: Initial Reports of the Deep Sea Drilling Project, 85. U.S. Government Printing Office, Washington, D.C., pp. 413--456.
Barton, J.A., Nigrini, C.A., Pujos, A., Saito, T., Theyer, F., Thomas, E. and Weinreich, N., 1985 (a). Synthesis of biostratigraphy; central equatorial Pacific, Deep Sea Drilling Project, Leg 85: Refinement of Oligocene to Quaternary biochronology. In: Initial Reports of the Deep Sea Drilling Project, 85. U.S. Government Printing Office, Washington, D.C., pp. 905--934. Barron, J.A., Keller, G. and Dunn, D.A., 1985 (b). A multiple microfossil biochronology for the Miocene. Geol. Soc. A m . Mere., 163: 21--36. Berggren, W.A., 1973. The Pliocene time scale: calibration of planktonic foraminifera and calcareous nannoplankton zones+ Nature, 243:
391--397. Berggren, W.A., 1984. Neogene planktonic foraminiferal biostratigraphy and biogeography: Atlantic, Mediterranean, and Indo-Pacific regions. In: N. Ikebe and R. Tsuchi (Editors), Pacific Neogene Datum Planes. Univ. Tokyo Press, Tokyo, pp. 111--161. Berggren, W.A., Burckle, L.H., Cita, M.B., Cooke, H.B.S., Funnell, B.M., Gartner, S., Hays, J.D., Kennett, J.P., Opdyke, N.D., Pastouret, L., Shack-
522 leton, N.J. and Takayanagi, Y., 1980. Towards a Quaternary time scale. Quat. Res., 13: 277--302. Berggren, W.A., Aubry, M.P. and Hamilton, N., 1983. Neogene magnetobiostratigraphy of DSDP Site 516 (Rio Grande Rise, South Atlantic). In: P.F. Barker, R.L. Carlson et al., Initial Reports of the Deep Sea Drilling Project, 72. U.S. Government Printing Office, Washington, D.C., pp. 675--713. Berggren, W.A., Kent, D.V. and Van Couvering, J., in press. Neogene geochronology and chronostratigraphy. In: N.J. Snelling (Editor), Geochronology and the Geologic Record. Geol. Soc. London, Spec. Pap. Bretsky, P.W. and Klofak, S.M., 1985. Margin to craton expansion of Late Ordovician benthic marine invertebrates. Science, 227: 1469--1471. Bukry, D., 1975. Phytoplankton stratigraphy, southwest Pacific, Deep Sea Drilling Project, Leg 30. In: J.E. Andrews, G. Packham et al., Initial Reports of the Deep Sea Drilling Project, 30. U.S. Government Printing Office, Washington, D.C., pp. 539--548. Burckle, L.H., 1972. Late Cenozoic planktonic diatom zones from the eastern equatorial Pacific. Nova Hedwigia, 39: 217--246. Burckle, L.H., 1978. Early Miocene to Pliocene diatom datum levels for the equatorial Pacific. In: Proc. Second Working Group Meeting, Biostratigraphic Datum-Planes of the Pacific Neogene, IGCP Project 114. Geol. Res. Dev. Cent. Indones., Spec. Publ., 1, pp. 25--44. Burckle, L.H., Clarke, D.B. and Shackleton, N.J., 1978. Isochronous last-abundant-appearance datum (LAAD) of the diatom Hemidiscus karstenii in the sub-Antarctic. Geology, 6: 243--246. Burckle, L.H., Keigwin, L.D. and Opdyke, N.D., 1982. Middle and Late Miocene stable isotope stratigraphy: correlation to the paleomagnetic reversal record. Micropaleontology, 25: 281--293. Caulet, J.P., 1979. Les d~pots ~ radiolaires d'age Pliocene sup~rieur fi Pleistocene darts l'oc4an Indian central: nouvelle zonation biostratigraphique. M~m. Mus. Natl. Hist. Nat. Paris, S~r. C, 43: 119--139. Caulet, J.P., in press. Radiolaria from the southwest Pacific, DSDP Leg 90. In: Initial Reports of the Deep Sea Drilling Project, 90. U.S. Government Printing Office, Washington, D.C., pp. Gartner, S., 1972. Nannofossil biostratigraphy, Leg 22, Deep Sea Drilling Project. In: C.C. Von der Borch, J.G. Sclater et al., Initial Reports of the Deep Sea Drilling Project, 22. U.S. Government Printing Office, Washington, D.C., pp. 577--599. Gartner, S., 1973. Absolute chronology of the Neogene calcareous nannofoasil succession in the equatorial Pacific. Geol. Soc. Am. Bull., 84: 2021--2034.
Godfrey, J.S. and Golding, T.J., 1981. The Sverdrup relation in the Indian Ocean, and the effect of Pacific-Indian throughflow on Indian Ocean circulation and on the east Australian current. J. Phys. Oceanogr., 11: 771--779. Haq, B.U., Worsley, J.R., Burckle, L.H., Douglas, R.G., Keigwin, L.D., Opdyke, N.D., Savin, S.M., Sommer, M.A., Vincent, E. and Woodruff, F., 1980. Late Miocene marine carbon-isotope shift and synchroneity of some phytoplanktic biostratigraphic events. Geology, 8: 427--431. Hays, J.D., Saito, T., Opdyke, N.D. and Burckle, L.H., 1969. Pliocene--Pleistocene sediments of the equatorial Pacific -- Their paleomagnetic, biostratigraphic and climatic record. Geol. Soc. Am. Bull., 80: 1481--1514. Hays, J.D. and Shackleton, N.J., 1976. Globally synchronous extinction of the radiolarian Stylatractus universus. Geology, 4: 649--652. Holdsworth, B.K., 1975. Cenozoic radiolaria biostratigraphy Leg 30: tropical and equatorial Pacific. In: J.E. Andrews, G. Packham et al., Initial Reports of the Deep-Sea Drilling Project, 30. U.S. Government Printing Office, Washington, D.C., pp. 499--537. Johnson, D.A., 1974. Radiolaria from the eastern Indian Ocean, DSDP Leg 22. In: C.C. Von der Borch, J.G. Sclater et al., Initial Reports of the Deep-Sea Drilling Project, 22. U.S. Government Printing Office, Washington, D.C., pp. 521--575. Johnson, D.A. and Knoll, A.H., 1975. Absolute ages of Quaternary radiolarian datum levels in the equatorial Pacific. Quat. Res., 5: 99--110. Johnson, D.A. and Nigrini, C., 1982. Radiolarian biogeography in surface sediments of the eastern Indian Ocean. Mar. Micropaleontol., 7: 237--281. Keigwin, L.D., 1982. Neogene planktonic foraminifers from Deep Sea Drilling Project Sites 502 and 503. In: W.L. Prell, J.V. Gardner et al., Initial Reports of the Deep Sea Drilling Project, 68. U.S. Government Printing Office, Washington, D.C., pp. 269--288. Keller, G. and Barton, J.A., 1983. Paleoceanographic implications of Miocene deep-sea hiatuses. Geol. Soc. Am. Bull., 94: 590--613. Kennett, J.P., 1970. Pleistocene paleoclimates and foraminiferal biostratigraphy in subantarctic deepsea cores. Deep-Sea Res., 17: 125--140. Kennett, J.P., 1973. Middle and late Cenozoic planktonic foraminiferal biostratigraphy of the southwest Pacific, DSDP Leg 21. In: R.E. Burns, J.E. Andrews et al., Initial Reports of the Deep Sea Drilling Project, 21. U.S. Government Printing Office, Washington, D.C., pp. 575--639. Kennett, J.P. and Watkins, N.D., 1974. Late Mioc e n e - E a r l y Pliocene paleomagnetic stratigraphy, paleoclimatology, and biostratigraphy in New
523 Zealand. Geol. Soc. Am. Bull., 85: 1385--1398. Labracherie, M., 1985. Quaternary radiolarians from the equatorial Pacific, Deep Sea Drilling Project, Leg 85. In: Initial Reports of the Deep Sea Drilling Project, 85. U.S. Government Printing Office, Washington, D.C., pp. 499--509. McGowran, B., 1972. Foraminifera. In: C.C. Von der Bomb, J.G. Sclater et al., Initial Reports of the Deep Sea Drilling Project, 22. U.S. Government Printing Office, Washington, pp. 577--599. Miller, K.G., Aubry, M.P., Kahn, M.J., Melillo, A., Kent, D.V. and Berggren, W.A., 1985. Oligocene-Miocene biostratigraphy, magnetostratigraphy, and isotopic stratigraphy of the western North Atlantic. Geology, 13: 257--261. Monechi, S., Bleil, U. and Backman, J., in press. Magnetobiochronology of late Cretaceous--Paleogene and late Cenozoic pelagic sedimentary sequences from the NW Pacific (DSDP Leg 86, Site 577). In: G.R. Heath, L.H. Burckle et al., Initial Reports of the Deep Sea Drilling Project, 86. U.S. Government Printing Office, Washington, D.C. Nigrini, C., 1967. Radiolaria in pelagic sediments from the Indian and Atlantic Oceans. Bull. Scripps Inst. Oceanogr., 11: 1--125. Nigrini, C., 1971. Radiolarian zones in the Quaternary of the equatorial Pacific. In: B.M. Funnell and W.R. Riedel (Editors), The Micropaleontology of Oceans. Cambridge Univ. Press., Cambridge, pp. 443--461. Nigrini, C. and Lombari, G., 1984. A guide to Miocene Radiolaria. Cushman Found. Foraminiferal Res. Spec. Publ., 22: S1--S102, N1--N206. Nigrini, C. and Moore, T.C., 1979. A guide to Modern Radiolaria. Cushman F o u n d a t i o n Foraminiferal Res. Spec. Publ., 16: S1--S142, N1--N104. Piola, A.R. and Gordon, A.L., 1984. Pacific and Indian Ocean upper-layer salinity budget. J. Phys. Oceanogr., 14: 747--753. Poore, R.Z., Tauxe, L., Percival, S.F., LaBrecque, J.L., Wright, R., Peterson, N.P., Smith, C.C., Tucker, P. and Hsu, K.J., 1983. Late Cretaceous'Cenozoic magnetostratigraphic and biostratigraphic correlations for the South Atlantic Ocean, Deep Sea Drilling Project Leg 73. In: K.J. Hsu, J.L. La Brecque et al., Initial Reports of the Deep Sea Drilling Project, 73. U.S. Government Printing Office, Washington, D.C., pp. 645--655. Prell, W.L., Gardner, J.V. et al., 1982. Initial Reports of the Deep Sea Drilling Project, 68. U.S. Government Printing Office, Washington, D.C., 495 pp. Pujos, A., 1985. Cenozoic nannofossils, central equatorial Pacific, DSDP Leg 85. In: Initial Reports of the Deep Sea Drilling Project, 85. U.S. Government Printing Office, Washington, D.C., pp. 581-607.
Riedel, W.R., 1959. Oligocene and Lower Miocene radiolaria in tropical Pacific sediments. Micropaleontology, 5(3): 285--302. Riedel, W.R. and Sanfilippo, A., 1971. Cenozoic radiolaria from the western tropical Pacific, Leg 7. In: E.L. Winterer et al., Initial Reports of the Deep Sea Drilling Project, 7. U.S. Government Printing Office, Washington, D.C., pp. 1529-1672. Riedel, W.R. and Sanfilippo, A., 1978. Stratigraphy and evolution of tropical Cenozoic radiolarians. Micropaleontology, 23: 61--96. Riedel, W.R. and Westberg, M.J., 1982. Neogene radiolarians from the eastern tropical Pacific and Caribbean, Deep Sea Drilling Project Leg 68. In: InitialReports of the Deep Sea DrillingProject, 68. U.S. Government Printing Office, Washington, D.C., pp. 289--300. Rio, D., 1982. The fossil distribution of coccolithophore genus Gephyrocapsa Kamptner and related Plio-Pleistocene chronostratigraphic problems. In: W.L. Prell, J.V. Gardner et al.,Initial Reports of the Deep Sea Drilling Project, 68. U.S. Government Printing Office, Washington, D.C., pp. 325-343. Ryan, W.B.F., Cita, M.B., Rawson, M.D., Burckle, L.H. and Saito, T., 1974. A paleomagnetic assignment of Neogene stage boundaries and the development of isochronous datum planes between the Mediterranean, the Pacific and Indian Oceans in order to investigate the response of the world ocean to the Mediterranean "salinity crisis". Riv. Ital. Paleontol., 80: 631--688. Saito, T., 1975. In: J.E. Andrews, G. Packham et al, Initial Reports of the Deep Sea Drilling Project, 30. U.S. Government Printing Office, Washington, D.C., pp. 252. Saito, T., 1984. Planktonic foraminiferal datum planes for biostratigraphic correlation of Pacific Neogene sequences - - 1982 status report. In: N. Ikebe and R. Tsuchi (Editors), Pacific Neogene Datum Planes. Univ. T o k y o Press, Tokyo, pp. 3-10. Saito, T., 1985. Planktonic foraminiferal biostratigraphy of eastern equatorial Pacific sediments, DSDP Leg 85. In: Initial Reports of the Deep Sea Drilling Project, 85. U.S. Government Printing Office, Washington, D.C., pp. 621--653. Saito, T., Burckle, L.H. and Hays, J.D., 1975. Late Miocene to Pleistocene biostratigraphy of equatorial Pacific sediments. In: T. Saito and L.H. Burckle (Editors), Late Neogene Epoch Boundaries. Micropaleontology Press, New York, N.Y., pp. 226--244. Sanfilippo, A. and Riedel, W.R., 1970. Post-Eocene "closed" theoperid radiolarians. Micropaleontology, 16(4): 446--462.
524 Sanfilippo, A. and Riedel, W.R., 1980. A revised generic and suprageneric classification of the artiscins (Radiolaria). J. Paleontol., 54: 1008-1012. Shafik, S., 1975. Nannofossil biostratigraphy of the southwest Pacific, Deep Sea Drilling Project, Leg 30. In: J.E. Andrews, G. Packham et al., Initial Reports of the Deep Sea Drilling Project, 30. U.S. Government Printing Office, Washington, D.C., pp. 549--598. Srinivasan, M.S. and Kennett, J.P., 1981a. A review of Neogene planktonic foraminiferal biostratigraphy: Applications in the equatorial and South Pacific. In: R.G. Douglas and E.L. Winterer (Editors), Deep Sea Drilling Project: A Decade of Progress. Soc. Econ. Paleontol. Mineral., Spec. Publ., 32: 395--432. Srinivasan, M.S. and Kennett, J.P., 1981b. Neogene
Reference added in proof Mazzei, R., Raffi, I., Rio, D., Hamilton, N. and Cita, M.B., 1979. Calibration of late Neogene calcareous plankton datum planes with the paleomagnetic record of Site 397 and correlation with Moroccan and Mediterranean sections. In: U. yon Rad, W.B.F. Ryan et al., Initial Reports of the Deep Sea Drilling Project, 47. U.S. Government Printing Office, Washington, D.C., pp. 375--389.
planktonic foraminiferal biostratigraphy and evolution: equatorial to subantarctic South Pacific. Mar. Micropaleontol., 6: 499--533. Srinivasan, M.S. and Kennett, J.P., 1983. The Oligocene--Miocene boundary in the South Pacific. Geol. Soc. Am. Bull., 94: 798--812. Theyer, F., Mato, C.Y. and Hammond, S.R., 1978. Paleomagnetic and geochronologic calibration of latest Oligocene to Pliocene radiolarian events, equatorial Pacific. Mar. Micropaleontol., 3: 377-395. Thierstein, H.R., Geitzenauer, K.R., Molfino, B. and Shackleton, N.J., 1977. Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotopes. Geology, 5: 400--404. Westberg, M.J. and Riedel, W.R., 1978. Accuracy of radiolarian correlations in the Pacific Miocene. Micropaleontology, 24: 1--23.