Syntheses and crystal structures of the new compounds BaFe2(SeO3)4, AgFe(SeO3)2 and RbFe(SeO4)(SeO3)

Syntheses and crystal structures of the new compounds BaFe2(SeO3)4, AgFe(SeO3)2 and RbFe(SeO4)(SeO3)

Journal of Alloys and Compounds 308 (2000) 71–76 L www.elsevier.com / locate / jallcom Syntheses and crystal structures of the new compounds BaFe 2...

1MB Sizes 0 Downloads 8 Views

Journal of Alloys and Compounds 308 (2000) 71–76

L

www.elsevier.com / locate / jallcom

Syntheses and crystal structures of the new compounds BaFe 2 (SeO 3 ) 4 , AgFe(SeO 3 ) 2 and RbFe(SeO 4 )(SeO 3 ) Gerald Giester* ¨ Mineralogie und Kristallographie, Geozentrum, Universitat ¨ Wien, Althanstrasse 14, A-1090 Vienna, Austria Institut f ur Received 6 March 2000; accepted 16 March 2000

Abstract Single crystals of the new compounds BaFe 2 (SeO 3 ) 4 , AgFe(SeO 3 ) 2 and RbFe(SeO 4 )(SeO 3 ), have been synthesized at lowhydrothermal conditions. Their structures were determined from CCD X-ray diffraction data: BaFe 2 (SeO 3 ) 4 : space group P2 /n, ˚ b 596.31(1)8, V5557.0(2) A ˚ 3 , Z52, R 1 5 0.020. AgFe(SeO 3 ) 2 : space group Pna21 , a510.098(2), b55.238(1) c510.595(2) A, 3 ] ˚ ˚ a513.975(3), b55.249(1) c57.609(2) A, V5558.2(2) A , Z54, R 1 50.020. RbFe(SeO 4 )(SeO 3 ): space group R3m, a55.339(1), 3 ˚ V51040.2(3) A ˚ , Z56, R 1 5 0.034.  2000 Elsevier Science S.A. All rights reserved. c541.206(8) A, Keywords: BaFe 2 (SeO 3 ) 4 ; AgFe(SeO 3 ) 2 ; RbFe(SeO 4 )(SeO 3 ); Crystal structure

1. Introduction In the course of experiments to investigate selenites of first row transition metal elements, BaFe 2 (SeO 3 ) 4 , AgFe(SeO 3 ) 2 and RbFe(SeO 4 )(SeO 3 ) were also obtained. These compounds belong to a large group of Fe 31 bearing selenites, studied in detail within the last few years [1–3 and references cited therein]. The crystal structure of BaFe 2 (SeO 3 ) 4 is related to those of the previously described selenites KFe 2 (SeO 2 OH)(SeO 3 ) 3 and SrCo 2 (SeO 2 OH) 2 (SeO 3 ) 2 [4]. In the text, these compounds will be abbreviated as BAFE, AGFE, RBFE, KFE and SRCO.

2. Experimental

2.1. Preparation Synthesis of the title compounds was done by a lowhydrothermal technique successfully used at our institute to grow single crystals of a large suite of selenites: the starting materials are filled in PTFE vessels of 3–50 cm 3 capacity, adding water in filling rates ranging from 10–90

*E-mail address: [email protected] (G. Giester).

(vol.%). The vessels are inserted in steel autoclaves, heated to temperatures up to 500 K, kept constant for a few hours to weeks, and then slowly cooled to room temperature. The mother liquid is removed from the final products, and water, diluted methanol or acetone are added. The crystals are treated for a few minutes in an ultrasonic cleaner, separated and dried at 330 K. Details of the syntheses of BAFE, AGFE and RBFE are given in Table 1.

2.2. X-ray diffraction studies The single crystal experiments were performed with a Nonius KappaCCD diffractometer at room temperature. Information on crystal data, procedures of measurements and refinements are compiled in Table 1. Programs used are DENZO-SMN [5], SHELXS97 [6] and SHELXL97 [7]. Refined structure parameters as well as interatomic distances and bond angles are listed in Tables 2 and 3, respectively.

3. Results and discussion The crystal structure of BAFE (see Fig. 1) is closely related to those of KFE and SRCO [4]. Interpolyhedral connectivity is the same — BAFE too can be derived from the hypothetic structure model [4] of SrFe 2 (SeO 3 ) 4 in space group P2 /m (Fig. 2). Differences are characterized

0925-8388 / 00 / $ – see front matter  2000 Elsevier Science S.A. All rights reserved. PII: S0925-8388( 00 )00848-3

72

G. Giester / Journal of Alloys and Compounds 308 (2000) 71 – 76

Table 1 Crystal data and details of the intensity measurements and structure refinements for BAFE, AGFE and RBFE BAFE

AGFE

RBFE

Temperature (K) / heating period Colour of crystals Coprecipitates

BaCO 3 , SeO 2 , FeC 2 O 4 ?2H 2 O 490 / 1 week Yellow BaSeO 3

Ag 2 CO 3 , SeO 2 , FeC 2 O 4 ?2H 2 O 500 / 1 week Yellow Fe 2 O(SeO 3 ) 2 , Fe 2 (SeO 3 ) 3 ?H 2 O FeH(SeO 3 ) 2

Rb 2 CO 3 , SeO 3 , FeC 2 O 4 ?2H 2 O 490 / 2 weeks Green-yellow None

Crystal data Space group ˚ a (A) ˚ b (A) ˚ c (A) b (8) ˚ 3) V (A Z rcalc (g cm 23 ) m (MoKa) (cm 21 )

P2 /n 10.098(2) 5.238(1) 10.595(2) 96.31(1) 557.0(2) 2 4.51 192

Pna21 13.975(3) 5.249(1) 7.609(2) 558.2(2) 4 4.97 191

1040.2(3) 6 3.94 196

60 1629 1583 91 0.0083(5) 0.020 0.053

60 1522 1491 93 0.0029(3) 0.020 0.048

60 465 460 30 0.0020(3) 0.034 0.091

0.025, 0.25

0.017, 1.6

0.01, 26.0

20.9 / 1.8

20.9 / 1.2

22.2 / 0.8

Synthesis Starting materials

Data collection and refinement 2umax (8) Unique data set data with Fo . 4s (Fo ) Variables Extinction coefficient R 1 [for Fo . 4s (Fo )] wR 2 [for all F 2o ] R 1 5 S uuFo u 2 uFc uu / S uFo u wR 2 5 [Sw(F 2o 2 F 2c )2 / SwF 4o ] 1 / 2 w 5 1 / [s 2 (F 2o ) 1 (a 3 P)2 1 b 3 P] P 5 h[max of (0 or F 2o )] 1 2F 2c j / 3 ˚ 23 ) Drmin / max (eA

a, b 5

by the loss of a part of the symmetry elements occurring in the model structure type. The compensation of charges within the group is realized by the ratio of (SeO 2 OH)- and (SeO 3 ) anions. Consequently, BAFE should be capable to adopt the SrFe 2 (SeO 3 ) 4 type, but in the real BAFE structure this concept is only partly fulfilled. The barium atoms (symmetry 2) are 10-coordinated ˚ similar (Ba–O bond lengths are in the range 2.75–3.25 A), to the potassium atoms in KFE. The crystal structure of AgFe(SeO 3 ) 2 differs from the structure type of the compounds KFe(SeO 3 ) 2 [9] and NaFe(SeO 3 ) 2 [10], which both are isotypic, by the way of linking the selenite groups and FeO 6 octahedra. Remarkably, AGFE [with doubled formula Ag 2 Fe 2 (SeO 3 ) 4 ] shows some relationships with the compounds of the SrFe 2 (SeO 3 ) 4 type. The charge compensation is done by additional silver atoms (see Fig. 3a and b), causing a reorientation of part of the selenite groups. The silver atoms have a distorted octahedral coordination (Ag–O5 ˚ the three nearest 2.41, 2.43, 2.51, 2.60, 2.72, 2.79 A), oxygen atoms are in almost planar coordination (bond

] R3 m 5.339(1) 41.206(8)

˚ angle sum O–Ag–O5359.68, aplanarity 0.088(3) A). ˚ apart. Further oxygen atoms are as far as 3.6 A RbFe(SeO 4 )(SeO 3 ) belongs to a quite new structure type among compounds of ferric iron which contain selenite groups. Up to now, only a few examples of 22 22 selenites are known to have both (SeO 3 ) and (SeO 4 ) anions. Representatives are Pb 2 Cu 2 (OH) 4 (SeO 3 )(SeO 4 ) [11], Li 2 Cu 3 (SeO 3 ) 2 (SeO 4 ) 2 [12], Fe(SeO 2 OH)(SeO 4 )? H2O [13], Er(SeO 3 )(SeO 4 ) 0.5 ?H 2 O [14], and La(SeO 2 OH)(SeO 4 )?2H 2 O [15]. Within the framework structure of RbFe(SeO 4 )(SeO 3 ) sheets parallel to (001) can be emphasized, which are built up by FeO 6 octahedra, linked via the SeO 3 and SeO 4 groups; they are intercalated by the Rb ions (Fig. 4). The ˚ (123) respectively 3.16 and Rb–O bondlengths are 3.21 A ˚ (each 63). Bond angles of the SeO 4 groups are 3.17 A ˚ nearly ideal, the mean Se–O distance is 1.62 A. The kFe–Ol distances of all three investigated com˚ pounds well correspond with the value of 2.013(11) A derived from 50 individual Fe 31 O 6 polyhedra known up to now in selenites.

Table 2 Atomic coordinates and displacement parameters Ueqv with e.s.d. values in parentheses for BAFE, AGFE and RBFE y

z

Ueqv

U11

U22

U33

U23

1/4 0 0 20.02358(3) 0.15797(3) 0.04837(19) 0.32243(19) 0.12175(17) 0.15662(17) 0.06847(17) 0.05553(17)

0.93809(5) 0 1/2 0.49387(5) 0.00647(5) 0.5779(4) 0.0509(4) 0.1881(4) 0.7109(4) 0.6947(4) 0.2124(4)

1/4 1/2 0 0.31726(2) 20.09641(2) 0.18486(16) 20.09930(19) 0.02980(16) 20.03137(19) 0.41760(16) 0.35199(16)

0.01299(9) 0.00913(12) 0.00942(12) 0.00973(8) 0.00998(9) 0.0157(4) 0.0146(4) 0.0135(3) 0.0192(4) 0.0121(3) 0.0128(3)

0.01083(12) 0.0103(3) 0.0104(2) 0.00946(14) 0.00837(14) 0.0223(10) 0.0086(8) 0.0154(8) 0.0134(8) 0.0126(7) 0.0174(8)

0.01560(13) 0.0078(2) 0.0079(2) 0.00886(14) 0.01080(15) 0.0164(10) 0.0182(9) 0.0124(9) 0.0091(9) 0.0100(8) 0.0087(8)

0.01276(12) 0.0097(3) 0.0100(3) 0.01070(15) 0.01060(15) 0.0083(8) 0.0170(9) 0.0127(8) 0.0360(11) 0.0136(8) 0.0132(8)

0 20.00054(16) 20.00044(16) 20.00095(8) 20.00053(8) 0.0008(7) 0.0044(8) 20.0018(7) 0.0043(8) 20.0054(7) 0.0013(7)

0.00233(8) 0.0028(2) 0.0011(2) 0.00040(11) 0.00026(11) 0.0013(7) 0.0019(7) 0.0009(6) 0.0068(8) 0.0007(6) 0.0062(6)

0 0.00013(16) 20.00073(16) 0.00027(8) 0.00025(8) 20.0025(7) 20.0011(7) 0.0027(7) 20.0010(7) 20.0002(7) 0.0015(7)

Ag Fe Se1 Se2 O1 O2 O3 O4 O5 O6

0.37890(3) 0.12599(5) 0.47319(3) 0.27694(3) 0.5876(3) 0.4879(2) 0.4627(2) 0.2616(2) 0.2865(2) 0.1630(3)

0.13675(8) 0.29117(11) 0.30206(8) 0.27260(7) 0.2431(7) 0.5767(6) 0.0891(6) 20.0022(5) 0.4870(6) 0.3314(7)

0.68389(8) 0.69510(13) 0.01300(6) 0.37401(6) 20.0499(5) 0.1279(5) 0.1799(6) 0.2625(5) 0.2053(5) 0.4387(5)

0.02441(11) 0.01168(13) 0.01105(10) 0.01087(10) 0.0157(7) 0.0160(8) 0.0152(6) 0.0146(7) 0.0142(6) 0.0160(7)

0.01268(16) 0.0107(3) 0.0109(2) 0.0103(2) 0.0115(16) 0.0125(15) 0.0153(14) 0.0137(16) 0.0169(14) 0.0151(17)

0.0351(2) 0.0111(3) 0.01104(17) 0.01133(18) 0.0215(17) 0.0137(16) 0.0130(14) 0.0077(14) 0.0114(14) 0.0213(17)

0.0255(2) 0.0133(3) 0.0112(2) 0.0110(2) 0.0140(19) 0.022(2) 0.0174(16) 0.022(2) 0.0143(18) 0.0118(17)

0.0061(2) 0.0004(3) 20.00067(17) 0.00034(18) 0.0000(12) 20.0041(14) 0.0019(15) 20.0022(13) 0.0035(12) 0.0004(13)

20.00149(16) 0.0002(2) 0.0003(2) 20.00026(19) 20.0001(14) 0.0011(13) 0.0007(16) 0.0009(13) 0.0006(14) 0.0033(14)

20.00419(16) 20.0001(2) 20.00053(15) 0.00097(14) 0.0040(12) 0.0009(12) 20.0026(11) 0.0004(11) 20.0014(11) 0.0039(13)

0 0 0 0 0 0 0.1592(5) 0.3278(13)

0 1/2 0.09880(3) 0.22851(2) 0.61347(2) 0.65254(19) 0.20872(10) 0.60040(13)

0.0235(4) 0.0252(4) 0.0131(4) 0.0133(3) 0.0118(3) 0.030(2) 0.0302(12) 0.0507(19)

0.0276(6) 0.0282(6) 0.0110(5) 0.0135(4) 0.0122(4) 0.038(3) 0.051(3) 0.077(4)

0.0276(6) 0.0282(6) 0.0110(5) 0.0135(4) 0.0122(4) 0.038(3) 0.051(3) 0.018(3)

0.0153(6) 0.0192(7) 0.0171(7) 0.0130(4) 0.0110(4) 0.012(3) 0.0170(18) 0.038(3)

0 0 0 0 0 0 0.0001(8) 0.013(2)

0 0 0 0 0 0 20.0001(8) 0.0067(12)

Rb1 Rb2 Fe Se1 Se2 O1 O2 O3

0 0 0 0 0 0 20.1592(5) 0.1639(7)

U13

U12

0.0138(3) 0.0141(3) 0.0055(2) 0.00673(18) 0.00608(18) 0.0191(17) 0.046(3) 0.0090(14)

G. Giester / Journal of Alloys and Compounds 308 (2000) 71 – 76

x Ba Fe1 Fe2 Se1 Se2 O1 O2 O3 O4 O5 O6

73

74

Table 3 ˚ and angles (8) in BAFE, AGFE and RBFE Selected interatomic distances (A) BAFE

AGFE 23 23 23 23 23

2.749(2) 2.806(2) 2.859(2) 2.976(2) 3.252(2) 2.928

Fe1–O5 Fe1–O2 Fe1–O6 kFe1–Ol

23 23 23

1.982(2) 1.995(2) 2.051(2) 2.009

Fe2–O4 Fe2–O1 Fe2–O3 kFe2–Ol

23 23 23

1.987(2) 2.008(2) 2.048(2) 2.014

RBFE

Ag–O2 Ag–O5 Ag–O3 Ag–O6 Ag–O1 Ag–O4 kAg–Ol

2.431(3) 2.447(3) 2.511(3) 2.583(4) 2.713(4) 2.794(3) 2.580

Fe–O4 Fe–O3 Fe–O5 Fe–O2 Fe–O1 Fe–O6 kFe–Ol

1.977(3) 1.999(3) 2.013(3) 2.015(3) 2.021(4) 2.030(4) 2.009

Se1–O5 Se1–O6 Se1–O1 kSe1–Ol

1.698(2) 1.698(2) 1.707(2) 1.701

Se1–O1 Se1–O3 Se1–O2 kSe1–Ol

1.697(4) 1.698(4) 1.698(3) 1.698

O5–Se1–O6 O5–Se1–O1 O6–Se1–O1 kO–Se1–Ol

100.96(9) 95.83(9) 99.74(9) 98.84

O1–Se1–O3 O1–Se1–O2 O3–Se1–O2 kO–Se1–Ol

99.90(16) 100.73(17) 100.61(18) 100.41

Se2–O2 Se2–O4 Se2–O3 kSe2–Ol

1.681(2) 1.695(2) 1.713(2) 1.696

Se2–O4 Se2–O6 Se2–O5 kSe2–Ol

1.687(3) 1.695(3) 1.712(4) 1.698

O2–Se2–O4 O2–Se2–O3 O4–Se2–O3 kO–Se2–Ol

100.72(9) 103.50(9) 100.24(9) 101.49

O4–Se2–O6 O4–Se2–O5 O6–Se2–O5 kO–Se2–Ol

100.50(18) 101.24(18) 99.86(16) 100.53

Rb1–O3 Rb1–O1 kRb1–Ol

63 63

3.157(6) 3.171(2) 3.164

Rb2–O2

123

3.209(2)

Fe–O2 Fe–O3 kFe–Ol

33 33

1.945(5) 2.076(6) 2.011

Se1–O2

33

1.698(5)

O2–Se1–O2

33

98.85(19)

Se2–O1 Se2–O3 kSe2–Ol

33

1.610(8) 1.624(6) 1.621

O1–Se2–O3 O3–Se2–O3 kO–Se2–Ol

33 33

109.4(2) 109.6(2) 109.5

G. Giester / Journal of Alloys and Compounds 308 (2000) 71 – 76

Ba–O6 Ba–O1 Ba–O3 Ba–O5 Ba–O4 kBa–Ol

G. Giester / Journal of Alloys and Compounds 308 (2000) 71 – 76

Fig. 1. Crystal structure of BAFE in a projection parallel to [010]. The drawings are done with the program

75

ATOMS

[8].

Fig. 2. Cell relations and symmetry operators for (a) hypothetic SrFe 2 (SeO 3 ) 4 , (b) BAFE, (c) KFE and (d) SRCO.

76

G. Giester / Journal of Alloys and Compounds 308 (2000) 71 – 76

Fig. 3. Crystal structure of AGFE in projections parallel to (a) [010] and (b) [001].

References [1] G. Giester, Z. Anorg. Allg. Chem. 622 (1996) 1788–1792. [2] G. Giester, Acta Chem. Scand. A51 (1997) 501–503. [3] G. Giester, A. Beran, G.J. Redhammer, J. Sol. St. Chem. 131 (1997) 54–63. [4] G. Giester, M. Wildner, J. Alloys Compd. 239 (1996) 99–102. [5] Denzo SMN, Nonius, Delft, 1998. [6] G.M. Sheldrick, SHELXS-97, a program for the solution of crystal ¨ structures, University Gottingen, Germany, 1997. [7] G.M. Sheldrick, SHELXL-97, a program for crystal structure refine¨ ment, University Gottingen, Germany, 1997. [8] E. Dowty, ATOMS for Windows 5.0, a computer program for displaying atomic structures, Kingsport, TN, 1999.

Fig. 4. Atomic arrangement in RBFE.

[9] [10] [11] [12] [13] [14]

G. Giester, Z. Krist. 207 (1993) 1–7. G. Giester, M. Wildner, J. Alloys Compd. 239 (1996) 99–102. H. Effenberger, Min. Petrol. 36 (1987) 3–12. G. Giester, Mh. Chem. 120 (1989) 661–666. G. Giester, Mh. Chem. 123 (1992) 957–963. R.E. Morris, A.P. Wilkinson, A.K. Cheetham, Inorg. Chem. 31 (1992) 4774–4777. [15] W.T.A. Harrison, Z. Zhang, Eur. J. Solid State Inorg. Chem. 34 (1997) 599–606.