Synthesis and biological activity of tetracyclic carbapenems

Synthesis and biological activity of tetracyclic carbapenems

Bimrgmic & MedicinalChemistryLetters, Vo1.3. No.11. pp. 2193-2198.1993 Riti in Great Britain 0960~894x/93 $6.00 + .oo 0 1993 PergammlPress Lid SYNTH...

354KB Sizes 4 Downloads 159 Views

Bimrgmic & MedicinalChemistryLetters, Vo1.3. No.11. pp. 2193-2198.1993 Riti in Great Britain

0960~894x/93 $6.00 + .oo 0 1993 PergammlPress Lid

SYNTHESIS AND BIOLOGICAL ACTIVITY OF TETRACYCLIC

CARBAPENEMS

G. Schmidt*‘, W. Schr6ck’ and R. Endermann* ‘Chemistry

Science Laboratories

Pharma and ‘Institute of Chemotherapy,

5600 Wuppertal

BAYER AG,

1, Germany

(Received1 April 1993)

Abstract: The synthesis and biological activity of new tetracyclic carbapenem antibiotics 15, 16 and 17 are described. Pharmacokinetic studies in the mouse have shown the pivaloyloxymethyl ester prodrug 18 to have oral activity.

Since the discovery antibacterial

1’ in 1976. a number of other thienamycin

potency have been found in nature, for example epithienamycins,

asparenomycins,’ thienamycin’

of thienamycin

pluracidomycind

and the carbapenems

2: in combination

A disadvantage the metabolites

and Gram-negative

Carbapenems

generally possess a broad

bacteria. Formimidoylthienamycin

or imipenem

with cilastatin, is marketed as a drug for severe hospital infections.

formed

cause nephrotoxicity.

DHP-I-stable

combination

carbapenems

are consequently

For clinical use, imipenem

with cilastatin - a specific renal dehydropeptidase a subject of therapeutic

of a substituent

DHP-ase stability, as exemplified the additional

olivanic acids,2 carpetimycins,’

of imipenem is that it is rapidly degraded in the kidney by dehydropeptidase

The introduction

of very high

of the PS groupp and many total synthesis studies on

and syntheses of novel carbapenems* have been published.

spectrum of activity against Gram-positive

derivatives

into the l-position

by meropenem

therefore

I (DHP-I),”

and

had to be developed

in a

inhibitor. Dehydropeptidase-stable

research. of the carbapenem

skeleton considerably

3,” which can be administered

use of a DHP-ase inhibitor.

2193

as a single-entity

improves the drug without

2194

G.SCHMIDT~~

al.

OH

Tricyclic tetracyclic

carbapenems thienamycin

have already been described derivatives

by Christensen,”

Tamburini13 and Perboni14 and some

by Sendai” and Gerlach.‘6

The present study describes tetracyclic

carbapenems

of structure 4 which potentially

should be more stable

to DHP-ase I.

X = -CH,-, -CH,CH,-o-, -sY = -CH=CH-, -S-

pure azetidinone 5,” the tetracychc

Starting from the known enantiomerically

by aroute shown in Scheme 1 using (lS,5S,6S)-6-[ carboxylic

1(R)-1-hydroxyethyl]thiochromano-[3,4-a]-

were synthesized carbapen-2-em-3-

acid as an example.

Known methods”

were used to carry out the C-C coupling of the 4-acetoxyazetidin-2-one

of the thiochromanone

in the presence

by the hydroxyalkylation 1-yloxoacetate

5 with the enolate

6 under basic catalysis and mild conditions to give a mixture of the a and I3 isomers of

the 4-(oxothiochroman-3-yl)azetidin-2-one in CHJI,

carbapenems

7. This couphng could also be carried out under Lewis acid catalysis

of trimethylsilyl

trifluoromethanesulphonate

of 7 with ally1 glyoxylate

monohydrate

and triethylamme

This was followed

under reflux to give the ally1 azetidm-

8, from which the phosphoranylidenemethyhylazetidin-2-one

10 was obtained after chlorination

and

reaction with triphenylphosphine. As cyclization

by means of the Wittig reaction resulted in undesired

butyldimethylsilyloxyethyl protecting

10, the tert-butyldimethylsilyl

group (TMS) in 12 and cychzation

the carbapenem with toluene/ethyl The configuration couplings

derivative

by-products

at the stage of the tert-

residue was replaced with the trimethylsilyl

was then effected by an intramolecular

Wrttig reaction”

skeleton 13. After elimination of the Th4S protecting group and chromatography

to form

on silica gel

acetate, the ally1 ester 14 was obtained in the form of the isomerrcally pure lS,5S,6S product. of both the isomers

and the chemical

at C-l of the carbapenem

skeleton

shift of the ‘H-NMR signals of the C,-azetidinone.

was derived

from the l-H/S-H

The’H-NMR

signals of the

Tetracyclic carbapenems

2195

b ------a 74%

d 72%

f 50%

---f--4

*

--J---b 34%

41%

i

.

*

26%

Scheme 1. (a) ~S-L~,

-78’%, N, or CF,SO$i(CH,),/Et,N,

-6O*C, N,; (b) (HO),CH-COO-CH,-CH=CH2, toiuene,

2 h reflux, N,; (c) SOCl,, 2,6-lutidine, -20% to room temp., 2 h; (d) Ph,P/dioxane, 2,6-lutidine, room temp., silica gel chromatogr~hy

in toIuene/e~yi acetate; (e) 6 mol. HCl/CH,O~

(f) 3 equiv. Th&chloride/CH$.&,

2 h, room temp., N,;

3 equiv. E&N, 3 h, room temp., N,, anhydrous work-up, silica gel

chromato~r~hy

in toluenefethyl acetate; (S) xylene, hydroquioone, 5 h reflux; (h) py~dini~

s~phonate,

min,

45

room

temp.;

(i) [Ph~P]~Pd(O)~h~P, 0.5 mol.

THP/CHzC1,(1.: I), preparative HPLC in water/acetonit~Ie.

C,H,,COONa

toluene-4-

in ethyl

acetate,

2196

G. SCHMIDTefd.

C,-atom of 14 are shifted to lower field by approx. 0.5 ppm relative to those of the R isomer and generally have a higher coupling constant.‘s

Finally, saponification

of the ally1 ester 1420gave the product 15:’ the sodium

salt of which was purified on RP 18 (Hibar 250-25, Merck) with water containing an overall yield of approx

Table 1: Antibacterial

acetonitrile

as the eluent, in

1 %.

activity (MIC in &ml)

of tetracyclic

carbapenems

compared

with imipenem

Imipenem Organisms

15

16

17

E. coli Neumann

0.5

1

2

( 0.25

E. coli F 14

8

8

16

< 0.25

Klebs. 57 USA

4

4

1

< 0.25

Klebs. 63

2

4

16

5 0.25

Prot. morg. 932

1

2

16

Prot. vulg. N 6

5 0.25

< 0.25

2

4

Prot. mir. 1235

< 0.25

1

Serratia 1600 1

8

32

64

Serratia 16002

16

32

64

0.5

Prot. rettg. 10007

1 16 0.5

2

0.5 0.5 2 4 5 0.25

Enterob. cl. 5744

4

8

32

0.5

Acinetob.

4

16

64

5 025

128

128

128

2

14061

Psdm. aerug. F 41 Staph. aur. 133

< 0.25

1

0.5

Staph. 25455

5 0.25

1

05

Staph. 25470

8

MICs (Minimal Inhibitory agar.

Organisms

Concentrations)

from overnight

the agar plates containing

32

were determined

128 by the agar dilution technique

cultures were diluted I:500 and inoculated by a mulnpoint

serial dilutions of the antibiotics.

5 025 1. 0.25 32 on Isosensitest inoculator on

2197

Tetracyclic carbapenems

The synthetic route described in Scheme 1 for the compound 15 was also chosen for the preparation of 16 and 17. Of the carbapenem derivatives represented, the compound 15 achieves the in vitro activity of imipenem 2 on Staphylococci, Streptococci and Proteus.

Against Gram-negative bacteria such as E. coli, Klebsiella and

Pseudomonas, 15 has a weaker activity than imipenem (see Table 1).

To improve the oral absorption, the pivaloyloxymethyl esters of the tetracyclic carbapenem derivatives were prepared. After oral administration of the pivaloyl ester 18 of the parent substance 15 to mice

(50 mg/kg), m~mum

serum levels of 7.1 pg!‘ml after 15 min and urine recovery values of 8.2% were

measured. Thus the serum levels and recovery values are well above those of the parent substance 15. The principle of the prodrug form, successfully established with cephalosporins:2

could achieve therapeutic

significance for carbapenems in the future.

References and Notes

1. Albers-Schl)nberg, G.; Arisen, B.H.; Hensens, O.D.; Hi&field,

J.; Hoogsteen, K.; Kaczka, E.A.; Rhodes,

R.E.; Kahan, J.S.; Kahan, F.M.; Ratcliffe, R.W.; Walton, E.; Ruswinkle, L.J.; Morin, R.B.; Christensen, B.G. J. Am. Chem. Sot. 197S,tOiI,6491. 2. (a) Brown, A.G.; Corbett, D.F.; Eghngton, A.J.; Howarth, T.T. J. Chem. SW. Chem. Commun. 1977, 523. (b) Brown, A.G.; Corbett, D.F.; Eglington, A.J.; Howarth, T.T. J. Antibiot. 1979, 32, 961. 3. Nakayama, M.; Iwasaki, A.; Kimura, S.; Mizoguchi, T.; Tanabe, S.; Murakami, A.; Watanabe, I.; Okuchi, M.; Itoh, H.; Saino, Y.; Kobayashi, F.; Mori, T. J. Antibiot. 1980, 33, 1388. 4. (a) Tanaka, K.; Shoji, J.; Tend, Y.; Tsuji, N.; Kondo, E.; Mayama, M.; Kawamura, Y.; Hattori, T.; Matsumoto, K.; Yoshida, T. J. Antibiot. 1981, 34, 909. 5. Tsuji, N.; Nagashima, K.; Kobayashi, M.; Term, Y.; Matsumoto, K.; Kondo, E. J: Antibiot. 1982, 35, 536. 6. Okamura, K.; Hirata, S.; Okumura, Y.; Fukagawa, Y.; Shimauchi, Y.; Kouno, K.; Ishikura, T. J. Antibiot. 1978, 31, 480. 7. Ratcliffe, R.W.; Albers-Schonberg, G. in Chemistry and Biology of JLLactam Antibiotics; Morin, R.B.;

G. SCHMIDTer al.

2198

German, M., Eds.; Academic 8.

Press: New York, 1982, Vol. 2, pp. 227-3 13.

Salzmann, T.N.; Ninno, F.P ; Greenlee, M.L.; Guthikonda, R.N.; Quesada, M.L.; Schmitt, S.M.; Herrmann, J.J.; Woods, M.F. in Recent Advances in the Chemistry of]-Lactam R., Eds.; Royal Society of Chemistry:

9.

(a) Merck&Co.,

Inc. Eur.Pat.Appl.

Alestig, K.; Bjbmegard, Kropp, H.; Meisinger, W.J.; Wildonger,

London,

1989; Special Publication

No. 70, pp. 171-189

EP 6639, 1979; Chem Abstr. 1980, 93, 155845~ (b) Norrby, S.R.;

B., Burman, L.A.; Ferber, F.; Huber, J.L.; Jones, K.H.; K&m, M.A.P; Sundelof, J.G

K.J.; Miller, T.W.;

A.K.; Hendlin, D.; Mochales,

B.G. J. Med. Chem

1979, 22, 1435.

R; Currie, S.A ; Jackson, M.; Stapley, E.O.; Miller, T.W ; Miller,

S.; Hemandez,

S.; Woodruff,

11. Neu, H.C.; Novelli, A.; Chin, N.-X. Antimicrob B.G.

F.M.; Kahan, J.S.;

Antimicrob. Agents Chemother. 1983, 23, 300. (c) Leanza,

Christensen,

10. Kahan, J.S.; Kahan, F.M.; Goegelman,

12. Heck, J.V.; Christensen,

Antibiotics; Bentley, P.H.; Southgate,

Tetrahedron

H.B.; Bimbaum,

J. J. Antibrot. 1979, 32, I

Agents Chemother. 1989, 33, 1009.

Lett. 1981, 22, 5027

13. Glaxo S.p.A., Eur.Pat. Appl. EP 416953, 1990; Chem Abstr. 1992, 116, 235337t. 14. Glaxo S.p.A., Eur.Pat.Appl.

EP 502468, 1992; Chem Abstr. 1993, 118, 80719j

15. Takeda Chem. Ind., Eur.Pat.Appl.

EP 422596, 1990; Chem. Abstr. 1991, 115, 2796928.

16. Hoechst AG, Eur. Pat. Appl. EP 517065, 1992, Chem. Abstr. 1993, 118, 168890u. 17. Ciba-Geigy

AG, Eur.Pat.Appl.

EP 126709, 1986; Derwent 1985, 84, 296085/48

18. Reider, P.J.; Rayford, R.; Grabowski, 19. (a) Baxter, A.J.G.; Ponsford, A.J.G.; Davis, P.; Ponsford, 20. McCombie,

E.J.J Tetrahedron Lett. 1982, 23, 379.

R.J.; Southgate, R. J. Chem. Sot

Chem. Commun

1980, 429.

(b) Baxter,

R J.; Southgate, R Tetrahedron Lett. 1980, 21, 5071.

SW.; Ganguly, A.K., Girijavallabhan,

V.M.; Jeffrey, P.D.; Lin, S , Pinto, P. Tetrahedron Left.

1981, 22, 3489. 21. The analytical Compound

data are as follows.

14:

‘H-NMR (CDCI,):

1.39 (d, 3H, C&-CH),

lH, 6-H), 3.22-3.41 (m, 2H, S-C&CH), Hz), 4.68-4.86 (m, 2H, C&-CH=CH,),

2.44 (d, lH, CH,-CH-OH),

3 02 (dd, lH, S-CH,-C&I), 3.25 (dd,

4.23-4.33 (m, lH, CH,-CII), 4.40 (dd, lH, 5-H, J = 10.6 Hz, 3.7 5.22-5 40 (m, 2H, CH,-CH=CI-I*), 5.89-6 01 (m, lH, CH,-CH=CH,),

6.98-7.20 (m, 3H, ArH), 7.53 (m, lH, ArH). MS. m/z 358 (M+H). Compound

15:

‘H-NMR (DMSO):

1.14 (d, 3H, CH,-CH), 3.10-3.50 (m, 3H, S-CII,-CII),

CH,-CH), 4.41 (dd, lH, 5-H), 695-7.10

(m, 3H, ArH), 7.45 (m, lH, ArH).

FAB MS: m/z 362 (M+Na). 22. Glaxo Lab., DE-Patent

3.60 (dd, lH, 6-H), 4 25 (m, lH,

2706413, 1977;Chem. Abstr. 1977, 87, 184523~