P(2)-O(21) P(2)-O(22) P(2)-O(23) P(2)-O(24)
P(4)-O(41) P(4)-O(42) P(4)-O(43) P(4)-O(44) < P(4)-O>
1.547(2) 1.549(3) 1.525(3) 1.514(3) 1.533(3)
1.984(3) 1.996(3) 2.012(3) 2.063(3) 2.219(3) 2.054(3)
2.305(3) 2.484(3) 2.513(3) 2.555(3) 2.571(3) 2.583(3) 2.985(4) 2.571(4)
1.510(3) 1.517(3) 1.527(3) 1.563(3) 1.529(3)
Mg(6)-O(41) Mg(6)-O(24) Mg(6)-O(21) Mg(6)-O(44) Mg(6)-O(33)
Na(1)-O(42) Na(1)-O(64) Na(1)-O(42) Na(1)-O(63) Na(1)-O(41) Na(1)-O(61) Na(1)-O(61)
P(3)-O(31) P(3)-O(32) P(3)-O(33) P(3)-O(34)
1.544(2) 1.528(3) 1.547(3) 1.543(3) 1.540(3)
Mg(7)-O(34) Mg(7)-O(14) Mg(7)-O(12) Mg(7)-O(54) Mg(7)-O(22)
2.027(3) 2.081(3) 2.091(3) 2.094(3) 2.108(3) 2.08(3)
1.526(3) 1.552(3) 1.536(3) 1.523(3) 1.534(3)
2.002(3) 2.012(3) 2.015(3) 2.103(3) 2.245(3) 2.075(3)
2.470(3) 2.470(3) 2.470(3) 2.659(3) 2.659(3) 2.659(3) 2.826(3) 2.826(3) 2.826(3) 2.651(3)
P(5)-O(51) P(5)-O(52) P(5)-O(53) P(5)-O(54)
Mg(8)-O(34) Mg(8)-O(63) Mg(8)-O(53) Mg(8)-O(43) Mg(8)-O(41)
Na(2)-O(14) Na(2)-O(14) Na(2)-O(14) Na(2)-O(23) Na(2)-O(23) Na(2)-O(23) Na(2)-O(22) Na(2)-O(22) Na(2)-O(22)
P(6)-O(61) P(6)-O(62) P(6)-O(63) P(6)-O(64)
1.518(3) 1.533(3) 1.554(2) 1.542(2) 1.536(3)
Hasna Jerbi et al., Synthesis and structural characterization of a new yttrium phosphate: Na2.5Y0.5Mg7(PO4)6 with …
485
10–1 nm) are close to that 2.08×10–1 nm reported for the five coordinated Mg2+ ion in NaMg4(PO4)3[33]. The two distinct yttrium atoms are octahedrally coordinated with a single Y–O distance of 2.226(3)×10–1 nm for Y(1) and 2.206(2)×10–1 nm for Y(2), close to that 2.250×10–1 nm observed for the six coordinated Y3+ in KYP2O7[34]. The only disordered site in the structure (Na,Y) has occupancy factors of 5/6 for Na and 1/6 for Y. These values were imposed by the electrical neutrality condition. Similar distribution between Na+ and Y3+ has already been observed in molybdates and oxyapatite compounds[35,36]. This site is eight coordinated with (Na,Y)-O distances in the range 2.361(3)×10–1–2.809(3)×10–1 nm, showing that the (Na,Y)O8 polyhedron is highly distorted. The average distance <(Na,Y)–O>=2.615(4)×10–1 nm is between 2.347×10–1 nm observed for eight-coordinated Y3+ in Na2Y(MoO4)(PO4)[37] and 2.698×10–1 nm reported for Na+ with the same coordination in Na4CaFe4(PO4)6[38]. The six crystallographically distinct PO4 tetrahedra have P–O distances in the range 1.510(3)×10–1–1.563(3)×10–1 nm and their overall value of 1.534×10–1 nm is in a good agreement with 1.537×10–1 nm, predicted by Baur for the monophosphate groups[39]. The environments of the three crystallographic distinct pure Na sites were determined assuming a maximum cation-oxygen distance Lmax=3.13×10–1 nm, suggested by Donnay and Allmann[40]. The Na(1) environment is consisted by seven oxygen atoms with Na-O distances varying from 2.305(3)×10–1 to 2.985(4)×10–1 nm. That of Na(2) is composed by nine oxygen atoms at distances ranging from 2.470(3)×10–1 to 2.826(3)×10–1 nm. Na(3) is bounded to only six oxygen atoms with two Na–O distances of 2.427(3)×10–1 nm and 2.438(3)×10–1 nm.
The charge distribution (CD) was calculated using the CHARDI-IT program[41] leading to the results given in Table 4. The calculated valences of all the sites are consistent with their formal charges. In particular, the valence of 1.304 calculated for the (Na,Y) site is in a good agreement with 1.331 predicted by the structural refinement. Na2.5Y0.5Mg7(PO4)6 displays strong similarities with the Mg-rich fillowite of related composition, Na4/3Ca4/3 Mg7(PO4)6 reported by Domanskii et al.[15] but it features two differences: the presence of one supplementary site of sodium occupation Na(3) and the distribution of the yttrium over three sites among which one, (Na,Y), is shared with Na. These differences in the cationic distribution in the Na(3) and (Na,Y) sites seem to be correlated with the difference in the geometry of their neighbouring polyhedra (Na(2)O9 and Mg(6)O5 for Na(3) and Mg(4)O6 for (Na,Y)) as shown by a calculation of the bond length deviation (BLD) (Table 5). A 31P NMR spectroscopy study was undertaken to confirm the disorder in the (Na,Y) site. The spectrum, shown in Fig. 5, consists of a broad and dissymmetric signal arising from the overlap of several peaks. Its fit revealed nine resonances at 8.32, 7.57, 4.77, 3.61, 1.84, 0.28, –0.86, –2.39 and –3.52 ppm, which are in a good agreement with the values previously reported for other monophosphates[42,43]. The large number of observed peaks, and therefore phosphorus environments, compared to six crystallographic P sites can be assigned to the disorder in the (Na,Y) site. In fact, as illustrated by Fig. 6, among the six P sites, three (P(1), P(3) and P(5)) have the (Na,Y) site as a first-neighbour cation. As
Table 4 Charge distribution (CD) sum calculation of Na2.5Y0.5 Mg7(PO4)6*
Site
n
Ca(1)
8
0.2663
4.32
(Na,Y) 8
0.2615
4.81
Cation (Na,Y) Y(1) Y(2) Na(1) Na(2) Na(3) Mg(1) Mg(2) Mg(3) Mg(4) Mg(5) Mg(6) Mg(7) Mg(8) Mg(9) P(1) P(2) P(3) P(4) P(5) P(6)
Ca(2)
6
0.2324
0
Y(1)
6
0.2226
0
Ca(3)
6
0.2208
0
Y(2)
6
0.2206
0
Na(1)
7
0.2536
3.75
Na(1)
7
0.2571
4.74
Na(2)
9
0.2652
1.34
Na(2)
9
0.2651
4.57
Na(3)
–
–
–
Na(3)
6
0.2432
0.22
Mg(1) 6
0.2087
5.15
Mg(1)
6
0.2074
5.3
Mg(2) 6
0.2056
1.77
Mg(2)
6
0.2069
1.42
Mg(3) 6
0.2114
5.29
Mg(3)
6
0.2081
3.43
Mg(4) 6
0.2141
8.45
Mg(4)
6
0.2165
4.12
Mg(5) 6
0.2133
2.11
Mg(5)
6
0.2124
2.68
Mg(6) 5
0.2088
7.03
Mg(6)
5
0.2054
4.13
Mg(7) 5
0.2067
1.56
Mg(7)
5
0.208
1.02
Mg(8) 5
0.2075
3.03
Mg(8)
5
0.2075
3.79
Mg(9) 5
0.211
3.84
Mg(9)
5
0.2089
3.59
P(1)
4
0.1534
0.49
P(1)
4
0.1534
0.53
P(2)
4
0.1533
1.12
P(2)
4
0.1533
0.94
P(3)
4
0.1532
1.33
P(3)
4
0.1529
1.09
P(4)
4
0.1537
0.47
P(4)
4
0.154
0.32
P(5)
4
0.1536
0.42
P(5)
4
0.1534
0.28
P(6)
4
0.1531
1.42
P(6)
4
0.1536
0.73
q 1.331 3.000 3.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 5.000 5.000 5.000 5.000 5.000 5.000
Anion O(11) O(12) O(13) O(14) O(21) O(22) O(23) O(24) O(31) O(32) O(33) O(34) O(41) O(42) O(43) O(44) O(51) O(52) O(53) O(54) O(61) O(62) O(63) O(64) V=0.05 V=0.10 * Q: computed charge; q: formal oxidation number; Charge dispersion:
Q 1.304 3.085 3.006 0.965 0.954 0.969 2.054 2.033 1.997 2.007 2.061 2.050 1.953 1.973 1.912 5.087 5.045 5.052 4.988 5.035 4.882
q –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000 –2.000
Q –1.826 –1.882 –2.093 –2.093 –1.945 –2.065 –2.124 –1.829 –1.945 –1.969 –1.919 –2.117 –2.058 –2.141 –1.828 –2.008 –1.999 –1.837 –2.007 –2.105 –1.996 –2.128 –2.120 –1.966
Table 5 Geometry parameters of the cationic sites in Na2.5Y0.5 Mg7(PO4)6 and Na4/3Ca4/3Mg7(PO4)6* Na4/3Ca4/3Mg7(PO4)6
100 *BLD = n
Na2.5Y0.5Mg7(PO4)6
¦
n i 1
BLD/%
M O M O
Site
n
i
M O
%, where n is the number of bonds and
(M–O) is the central cation-oxygene length
486
JOURNAL OF RARE EARTHS, Vol. 28, No. 4, Aug. 2010
apatite NaPb9(PO4)6F(H2O)0.33[44]. It is worth pointing out that the great complexity of the structure did not permit any attribution of the observed peaks to corresponding phosphorus sites.
3 Conclusions
Fig. 5 The 31P NMR spectrum for Na2.5Y0.5Mg7 (PO4)6 and its deconvolution
a consequence, each of them, leads to two distinct local environments whether the (Na,Y) site is occupied by Na+ or Y3+. Similar phenomena have already been observed in the
Na2.5Y0.5Mg7(PO4)6 was synthesized by both the flux and the Pechini techniques and shown to belong to the fillowite type phosphates. Compared to the Mg containing fillowite with related composition Na4/3Ca4/3Mg7(PO4)6 this structure is distinguished by the presence of one supplementary Na site and the disorder in an other site (Na,Y). This disorder revealed by the X-ray study was confirmed by a charge distribution calculation and a 31P NMR spectroscopy study.
Fig. 6 Cationic environments of the phosphorus sites Acknowledgments: The authors are grateful to Pr. Fourati of the Sciences University of Sfax, Tunisia, for the 31P NMR measurements.
References: [1] Brush G J, Dana E S. On the mineral locality of Fairfield County, Connecticut, with the description of two additional new species. American Journal of Science, 1879, 117: 359. [2] Brush G J, Dana E S. On the mineral locality of Fairfield County, Connecticut: Fifth paper. American Journal of Science, 1890, 139: 201. [3] Fisher D J. Dickinsonites, fillowite, and alluaudite. Am. Mineral., 1965, 50: 1647. [4] Fansolet A M, Fontan F, Keller P, Antenucci D. La série johnsomervilleïte-fillowite dans les associations de phosphates de pegmatites granitiques de l’Afrique Centrale. Canad. Min-
eral., 1998, 36: 355. [5] Araki T, Moore P B. Fillowite, Na2Ca(Mn,Fe)2+7(PO4)6: its crystal structure. Am. Mineral., 1981, 66: 827. [6] Ma Z, Schi N, Ye D. Mineralogy and crystal structure determination of Mg-fillowite. Science in China Series D: Earth Sciences, 2005, 48: 635. [7] London D, Burt D M. Alteration of spodumene, montebrasite, and lithiophilite in pegmatites of the white Picacho District, Arizona. Am. Mineral., 1982, 67: 97. [8] Livingstone A. Johnsomervilleïte, a new transition-metal phosphate mineral from Loch Quoich area, Scotland. Mineral. Mag., 1980, 43: 833. [9] Grew E S, Armbruster T, Medenbach O, Yates M G, Christopher J C. Stornesite-(Y), (Y, Ca)ƶ2Na6(Ca,Na)8(Mg,Fe)43 (PO4)36, the first terrestrial Mg-dominant member of the fillowite group, from granulite-facies paragneiss in the Larsemann Hills, Prydz Bay, East Antarctica. Am. Mineral., 2006,
Hasna Jerbi et al., Synthesis and structural characterization of a new yttrium phosphate: Na2.5Y0.5Mg7(PO4)6 with … 91: 1412. [10] Olsen E J, Kracher A, Davis A M, Steele I M, Hutcheon I D, Bunch T E. The phosphates of IIIAB iron meteorites. Meteoritics and Planetary Science, 1999, 34: 285. [11] Sugiura N, Hoshino H. Mn-Cr chronology of five IIIAB iron meteorites. Meteoritics and Planetary Science, 2003, 38: 117. [12] McCoy T J, Steele I M, Keil K, Leonard B F, Endress M. Chladniite, Na2CaMg7(PO4)6: A new mineral from the Calton (IIICD) iron meteorite. Am. Mineral., 1994, 79: 375. [13] Floss C. Fe, Mg, Mn-bearing phosphates in the GRA 95209 meteorite: Occurences and mineral chemistry. Am. Mineral., 1999, 84: 1354. [14] Olsen E J, Steele I M. Galileiite: A new meteorite phosphate mineral. Meteoritics and Planetary Science, 1997, 32(supplement): A155. [15] Domanskii A I, Smolin YU I, Shepelev YU F, Majling J. Determination of crystal structure of triple magnesium calcium sodium orthophosphate Mg21Ca4Na4(PO4)14. Solviet Phys. Crystallogr., 1983, 27: 535. [16] Antenucci D, Tarte P, Fransolet A M. The synthetic phosphate NaCaCdMg2(PO4)3: first experimental evidence of a reversible alluaudite-fillowite polymorphisme. Neues Jahrbuch fûr Mineralogie, Monatshefte, 1996. 289. [17] Keller P, Lissner F, Hatert F, Schleid T. Na4(Na,Mn)4Mn22 (PO4)18, eine isotype Verbindung der FillowitJohnsomervilleite-Reihe. Zeitschrift für Kristallograhie, 2001, 18 (Supplement): 150. [18] Hatert F, Fransolet A M. Preliminary data on the crystal chemistry of synthetic fillowite-type phosphates. Berchte der deutschen Mineralogischen Gesellschaft, Beihefte zim. Eur. J. Mineral., 2003, 15: 76. [19] Hatert F. Ph. D. Cristallochimie et synthèse hydrothermale d’alluaudite dans le système Na-Mn-Fe-P-O: contribution au problème de la genèse de ces phosphates dans les prgmatites granitique, Thesis. University of Liège, Belgium, 2002. [20] Keller P, Hatert F, Lissner F, Schleid T, Fransolet A M. Hydrothermal synthesis and crystal structure of Na(Na,Mn)7Mn22(PO4)18·0.5H2O, a new compound of fillowite structure type. Eur. J. Mineral., 2006, 18: 765. [21] Blasse G, Grabmaier B C. Luminescent Materials. Springer Verlag, 1994. [22] Pan Y, Zhang Q, Jiang Z. Synthesis and photoluminescence of Eu3+ and Mn2+ doped double phosphates KMLa(PO4)2 (M=Zn, Mg). Mater. Sci. Eng. B, 2006, 133: 186. [23] Zhu J, Cheng W D, Wu D S, Zhang H, Tong Y N, Zhao D. Potassium gadolinium phosphate with a tunnel structure: Synthesis, structure, and optical properties of K3Gd5(PO4)6. Cryst. Growth Des., 2006, 6: 1649. [24] Bayramian A J, Bibeau C, Schaffers K I, Marshall C D, Payne S A. Gain saturation measurements of ytterbium-doped Sr5(PO4)3 F. Appl. Optics, 2000, 39: 982. [25] Roisnel T, Rodríguez-Carvajal J. WinPLOTR: a Windows tool for powder diffraction patterns analysis. Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7) Delhez R, Mittenmeijer E J, Ed. 2000. 118.
487
[26] North A C T, Philips D C, Mattews F S. A semi-empirical method of absorption correction. Acta Cryst. A, 1968, 24: 351. [27] Altomare A, Cascarano G, Giacovazzo C, Guagliardi A. Completion and refinement of crystal structures with SIR92. J. Appl. Crystallogr., 1993, 26: 343. [28] Sheldrick G M. SHELXL97, A program for the solution of the crystal structures, University of Göttingen, 1997. [29] International Table for X-ray crystallography, Vol. IV. Birmingham: Kynoch Press, 1974. [30] Massiot D, Fayon F, Capron M, King I, Le Clavé S, Alonso B, Durand J O, Bujoli B, Gan Z, Hoatson G. Magn. Reson. Chem., 2002, 40: 70. [31] Okado K, Ossaka J. Structures of potassium sodium sulphate and tripotassium sodium disulphate Acta Crystallographica B, 1980, 36: 919. [32] Jaulmes S, Elfkir A, Quarton M, Brunet F, Chopin C. Structure cristalline de la phase haute température et haute pression de Mg3(PO4)2. J. Solid State Chem., 1997, 129: 341. [33] Ben Amara M, Vlasse M, Olazcuaga R, Le Flem J, Hagenmuler P. Structure de l'orthophosphate triple de magnésium et de sodium, NaMg4(PO4)3. Acta Cryst. C, 1983, 39: 936. [34] Hamady A, Zid M F, Jouini T. Structure crystalline de KYP2O7. J. Solid State Chem., 1994, 113: 120. [35] Stedman N J, Cheetham A K, Battle P D. Crystal structures of two sodium yttrium molybdates: NaY(MoO4)2 and Na5Y (MoO4)4. J. Mater. Chem., 1994, 4: 707. [36] Gunawardane R P, Howie R A, Glasser F P. Structure of the Oxyapatite NaY9(SiO4)6 O2. Acta Cryst. B, 1982, 38: 1564. [37] Ben Amara M, Dabbabi M. Structure du molybdophosphate d`yttrium et sodium Na2Y(MoO4)(PO4). Acta Cryst. C, 1987, 43: 616. [38] Hidouri M, Lajmi B, Wattiaux A, Fournés L, Darriet J, Ben Amara M. Characterization by X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy of a new alluaudite-like phosphate: Na4CaFe4(PO4)6. J. Solid State Chem., 2004, 177: 55. [39] Baur W H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Cryst. Sect. B, 1974, 30: 1195. [40] Donnay G, Allmann R. How to recognize O2–, OH–, and H2O in crystal structures determined by X-rays. Am. Mineral., 1970, 55: 1003. [41] Nespolo M. CHARDI-IT. A program to compute charge distributions and bond valences in non-molecular crystalline structures. LCM3B, University Henri Poincaré Nancy I, France, 2001. [42] Jakeman R J B, Cheetham A K. Combined single-crystal Xray diffraction and magic angle spinning NMR study of .alpha.-CaZn2(PO4)2. J. Am. Chem. Soc., 1988, 110: 1140. [43] Louati B, Hlel F, Guidara K, Gargouri M. Analysis of the effects of thermal treatment on CaHPO4 by 31P NMR spectroscopy. Journal Alloys and Compounds, 2005, 394: 13. [44] Toumi M, Mhiri T. Rietveld refinement and spectroscopic studies of sodium lead fluoroapatite lacunaire synthesized by hydrothermal method. Mater. Res. Bull., 2008, 43: 1346.