Synthesis of asymmetric 1-amino-2-phenylcyclopropanecarboxylic acids by diastereoselective cyclopropanation of highly functionalized homochiral olefines

Synthesis of asymmetric 1-amino-2-phenylcyclopropanecarboxylic acids by diastereoselective cyclopropanation of highly functionalized homochiral olefines

Tetrahedron Letters,Vo1.30,No.23,pp Printed in Great Britain SYNTHESIS BY OF ASYMMETRIC 3101-3104,1989 l-AMINO-2-PHENYLCYCLOPROPANECARBOXYLIC DI...

238KB Sizes 3 Downloads 68 Views

Tetrahedron Letters,Vo1.30,No.23,pp Printed in Great Britain

SYNTHESIS BY

OF

ASYMMETRIC

3101-3104,1989

l-AMINO-2-PHENYLCYCLOPROPANECARBOXYLIC

DIASI-EREOSELECTIVE

CYCLOPROPANATION HOMOCHIRAL

Ma Dolores

Fernandez,

Eldiberto

Instituto

de Quimica

Aba&aot

-

0040-4039/89 $3.00 + -00 Maxwell Pergamon Macmillan P~C

FUNCTIONALIZED

OLEFINES

Ma Pilar

de Frutos,

Fernindez-Alvarez,

Organica,

OF HIGHLY

ACIDS

Jose

and Manuel

L. Marco,

BernabC*

CSIC, Juan de la Cierva

3, 28006 Madrid,

Spain.

benzy.Liddened.iktiop.ipe~az.inine and c( -benzoykmLnotizomtihane @J.&J kiyh to good tinte4eomeC..c 4aLia ad crpkopqaazoLine de,tiuativecr which, on photo.tqnA and acid hydtloLqh.in 06 Me tre.nu&@ ~p.i~ocyc~op4opy~ compounder gave, cespectiviveeq, (+Iand i-l-1-amino-2-phevly&qcLop4opantca4boxqLk acidn.

c&nam~c

tfomockinad

e&tend

XQ.RCRukth

have attracted special interest l-amino-l-cyclopropanecarboxylic acids I-9 Although several procedures for the preparation of their documented biological activity. 6-16 class of aminoacids have been described, an inexpensive and general synthetic method

During

the

because of this

last

for producing

years,

enantiomeric

pure

forms

of these

compounds

is still

lacking.

We have reported a simple method to produce racemic (Z)- and (E)-l-amino-2-arylcyclo11 starting from inexpensive 4-arylidene-oxazolones. This still appeared propanecarboxylic acids, convenient syntons

approach were

cyclopropanation,

overall

yield

single usual

to

key step

treatment

of the

On the other gave

91% of the

photolytic cyclopropyl silica

treatment

modifications which

(>95 %) of

was

the

reacted

with

corresponding

spirocyclopropane

homochiral of the

acid

easily

(Sa),

cleavage

of the

ester

6 (Scheme

II).

diastereoisomers,

gel (3 % MeOH/CH2C12).

amino-2-phenylcyclopropanecarboxylic

which

pyrazoline were

separated

Acid hydrolysis acid

the

starting

asymmetric

3101

the

resulting

(Z)-oxazolone

on photolysis

in the

of

57% of

by medium

pressure

ester

mixture

70% with

the

(+)-lstarting

(-)-N-methylephedrine

diazomethane a

of

solid.

lb with

gave

and

2 I7 in an almost

of 4 yielded

from

of the

major

L-proline,

give 70% of an

319 which

Cycloaddition

of the

(Sb).

to

hydrolysis

isolated

mixture

with

(la)

pyrazoline

similar

resulting

of induce

gave diketopiperazine diazomethane

4. Acid

at pH =8 and recrystallization hand,

could

process.

I). This

90% of the

by precipitation

pertinent

substituents

( Z ) -2-methyl-4-benzylideneoxazolone

amino-2phenyl-cyclopropanecarboxylic L-proline

provided

homochiral

N-acetyl-phenyldehydroalanyl-L-proline

of 72%, (Scheme

diastereoisomer

include

in the

of

resulting

way produced

synthesis,

asymmetric

in order

the

Thus, cyclisation

for

made

as a

mixture column

and of

subsequent

both

possible

chromatography

7a (66 %) produced

65 % of (-)-l-

on

3102

SCHEME

I”’

1892o

rib 0

a,b

Ph

Ni

0

CH3

(a) r-t.;

NaOH; I9

(d)

S-Proline,

H20-acetone,

hv, benzene,

7 h.;

(e)

r.t. 12 h.; fb) 6N

HCl-HOAc,

SCHEME

(a>

(-)-N-~ethylephedrine,

benzene

6 h.; (c)

6N

HNa, THF, HCl-dioxane,

r-t, 2 h.;

100°C,

17 h.

Iib,

(b)

Ac20,

r-t. 48 h.;

100°C,

24 h.

(cf

CHZN2/benzene,

3 days,

1852o

(1)

CH2N2/C13CH,

-20°,

3.5 days.

(2)

hv,

3103

The chemical graphic

depicted

shifts

of

analysis

absolute

the

of

Further

configuration

diastereoisomers

deacetylated studies

4.

on the

of

of

compounds

compound

3 - 7

4, and

later

were

estimated

corroborated

‘H-NMR

from

by

X-ray

crystallo-

21

scope

and

limitations

of

the

method

are

under

way.

Acknowledgments The QuImica cicin

authors

Organica,

y Ciencia

wish

to

express

Universidad for

de

scholarships

their

appreciation

Zaragoza,

(M.D.F.

Spain,

and

to

for

M.P.F.)

helpful

and

C.

Prof.

Cativiela,

discussions;

DGICYT

Departamento

to

(Grant

Ministerio

PR

de

84-0089)

for

de Educa-

financial

support.

References 1.

(a)

2.

K.

and

notes

R. J. Breckenridge,

(b)

C. J. Suckling, Shiraishi,

BLoiae. Chem. 3.

Ang.gew. Chem.

K.

Konoma,

1979,

43,

C. Walsh,

R. A. Pascal,

1981,

7509.

20,

H.

R. Raines,

(b)

I. Arenal,

(a)

M. C. Pirrung,

_T. Am. Chem.

(b)

M. C. Pirrung,

G.

N. Kurokawa,

8.

K.

9.

M. Bernab6,

10.

11.

Cuevas,

Yamanoi,

Y. 0.

(a)

S. W. King,

1983,

Ohfune,

A.

Anger.

Chern.

Itit.

1985,

T&rahedaon

M. Adlington,

B. J.

Rawlings,

Tti4ahcd4on

Lti.

1988,

E.

M. Holt,

C.

C. H.

Stammer,

K. I. Varughese,

C. H.

Stammer,

&id.

(d)

L.

(a)

I. Arenal,

(b)

M. Holt,

M. Bernabe,

I. Arenal,

M. Bernab6,

M. L.

13.

C. Cativiela,

14.

T.

Wakamiya,

Y. Oda,

U.

Schijllkopf,

M. Hauptreif,

25,

192.

therein. P. Sakai,

Agtti.

C.

1988,

Mapelli,

Q&n.

M. Homma,

1979,

75,

Biochemtiint4y

977.

L&did. 1983,

79C,

65.

Iti.

Ed.

26,

Eq!L.

27,

C. H.

53,

1985,

24,

1044.

83. Le*;t.

1985,

26,

481.

537.

J.

Med.

ibid.

Chem.

1979,

J.

045.

1984,

49,

14,

Chem.

35. 1982,

47,

3270.

1634.

992.

Stammer,

J.

Chem.

E. Fernandez-Alvarez,

M. L. Izquierdo,

E. Fernindez-Alvarez,

S. Penad&,

Sot.

Chem.

S. Penad&,

Cotnmun. 1988, _7.

252.

tfti~0cyc-e.

607.

12.

Izquierdo,

references

Nishiyama,

A. Krantz,

H. Stammer,

M. Bland,

20,

N.

M. Gibello,

Em.

A. Bartolussi,

1983,

537 and

Te.&ahedton

E. Fernandez-Alvarez,

J. M. Riordan,

E.

5665.

105, 7207.

J.

Chem.

15.

Sot.

M. McGeehan,

Cuevas,

An.

(b)

Elrod,

27,

D. Dikskit,

(c)

F.

42,

Sakamura,

E. Fernandez-Alvarez,

Ohfune,

R.

1988, K.

E. Fernandez-Alvarez,

M. Bernabe,

Y.

Enge.

M. Johnston,

5.

J. E. Baldwin,

1986,

1753.

M. Bernabe,

7.

Ed.

A. Ichibara,

(a)

0.

Int.

Sato,

4.

6.

Ttimhedmn

C. J_ Suckling,

I. Arenal, M. D. Diaz

M. Bernabe, de

Villegas,

H. Fujita,

T.

J. Dippel,

E. Fern&ndez-Alvarez, E.

Mel&ndez,

Shiba,

M. Nieger,

1985,

Ttiaahedaon

Tettahednon

Ttitahedeon

SynZhesA

LeM.

E. Egert,

1985,

1986,

42,

583.

1986,

27,

2143.

Anyew.

Chem.

773.

Iti.

40,

Ed.

215.

EngL. 1986,

3104

16.

U. Schijllkopf,

B. Hupfeld,

17.

H. Poisel,

18.

All new compounds 1 H-NMR parameters

U. Schmidt,

(m, 3H, proline); J = 8.0 Hz);

R. Gull,

Chm.

of selected

4: d (C13CD);

propane,

IR and

derivatives

2.30 (s, 3H, CH3);

cu. 3.68 (m,

2.67 (dd,

6.7 Hz); 1.90 (dd, 6H (CH3)2N);

proline);

ca. 2.2 (m,

, J = 7.0, J = 9.8 Hz); ca.3.56

cu. 7.2 (m, SH, arom.). ca. 7.25 (m,

lH,

NH);

2.30 (dd,

cu.7.3

(m,

7.0, J = 8.4 Hz); 1.94

J = 9.6,

and

1~1~

Compound J = 7.0,

of relevant

KdUeS

[a]“,” +570 (c 0.28, C13CH). Compound 4: mp 144T;

(c 0.69, (dec.);

(Received

[a]‘,’

will be reported in

(dd,

(d,

lH,

5b: 6 (D20); J = 9.8 Hz);

4.11 (dd, lH, proline,

compounds

analysis were

3: mp 171-3OC;

3H, CH3, 2.32

J= (s,

J = 9.3, J = 8.1 Hz); 6.00 arom.).

Compound

%Z 6

J = 6.0, J = 8.0 Hz); 2.29 cu. 2.83 (m,

lH,

J = 4.8

CH-CH3);

Hz);

6.17

(s,

lH,

cyclopropane,

J =

lH,

cyclopropane,

J =

of the

crude reaction mixtures.

as foIIows:

comnound

[a]:

(c 0.22, C13CH). Com-

-266’

5a: mp 201°C

(c 1.1,

C13CH).

7b: syrup;

not

-103O (C 0.76, H20).

(d,

1.80 (dd,

C13CH). Compound

1989)

cycle-

3.15 (dd,

Compound

UK 6 March

Com-

lH,

cyclopropane);

CH-Ph,

(c 1.1, Cl CH). 2s3 6: 63-5’C; [a) u +95’

soon elsewhere.

(dd,

J =

J = 6.5, J = 9.8 Hz);

0.98

lH,

cyclopropane,

6.00

H-NMR

-270°

H 0). Compound 225 \a] D -12.50 (c 4.3,

mp 199oC (dec.); Details

[e]g

7% 6 (Ci3CD);

J = 6.0, J = 9.6 Hz);

Melting

points

lH,

Hz);

20.

J = 7.8,

pyrazohne,

1.66 (dd, lH, cyclopropane,

lH, cyclopropane,

9.8, J = 8.4 Hz); CU. 7.3 (m, SH, arom.). Diastereomeric ratios were determined by 1

cu. 2.0

CH-Ph,

2.31

( m, 2H, proline);

cu. 7.3 (m, lSH,

19.

Relevant

(m, SH, arom.).

lH, cyclopropane,

Hz); 2.30

1.88 (dd,

cyclopropane,

ca.7.2

NH);

J = 8.0

15H, arom.).

(dd,

lH,

2H, proline);

3.08 (dd,

iH, cyclopropane,

cyclopropane,

(dd,

5.10 (dd, lH,

5a: 6 (D20)

Compound

J = 6.0, J=8.1

J = 4.2 Hz); 6.19 (s, broad,

(s, 6H, (CH3)2N);

3.66

data.

3: 6 (C13CD):

J = 7.0, J = 9.6 Hz); 3.03 (dd, lH, cyclopropane,

SH, arom.).

(C13CD); 1.01 (d, 3H, CH3, J = 6.8 Hz);

3.05 (dd,

Compound

lH, cyciopropane,

lH, cyclopropane,

compound

J= 9.0, J= 18.0 Hz);

ca. 2.82 (m, lH, Cff -CH3);

(d, lH, OCH-Ph,

21.

lH,

2.3 (m,

(m, 2H, proline);

lH, cyclopropane

J = 8.3, J= 9.6 Hz);

pound

or HRMS analytical

as follows:

cu.. 3.82 (m, 2H, proline);

lH, pyrazoline,

ca.2.0

elementary

were

ca.

lH, proline);

J = 7.0, J = 8.3 Hz); 1.80 (dd,

5%;

Ed. EngL. 1986, 25, 1754.

lti.

J = 6.5; J = 7.0 Hz); 2.33 (s, 3H, CH3); 2.60 (dd,

J = 7.9, J = 7.7 Hz);

broad,

&cm.

Be&. 1973, 106, 3408.

gave satisfactory

7.8, J = 18.0 Hz); 5.28 (dd, pound

AWE.

Compound

further

(dec.); 7a:

purified.

2: mn 163-

[o]~$ +105’ mp

119-22OC

Compound

5b: