Synthesis of Higher Alcohols from Syngas over Ni—Mo Catalysts. Effect of Methanol or Ethylene

Synthesis of Higher Alcohols from Syngas over Ni—Mo Catalysts. Effect of Methanol or Ethylene

A. Holmen et al. (Editors), Natural Gas Conversion 1991 Elsevier Science Publishers B.V., Amsterdam 349 SYNTHESIS OF HIGHER ALCOHOLS FROM SYNGAS OVE...

393KB Sizes 0 Downloads 101 Views

A. Holmen et al. (Editors), Natural Gas Conversion 1991 Elsevier Science Publishers B.V., Amsterdam

349

SYNTHESIS OF HIGHER ALCOHOLS FROM SYNGAS OVER Ni-Mo CATALYSTS.

EFFECT

OF METHANOL OR ETHYLEN 3. BARRAULT'* and L. FROBST'

' L a b o r a t o i r e de Catalyse en Chimie Organique, U.R.A. C.N.R.S. 40, Avenue du Recteur Pineau 66022 P o i t i e r s C$dex (France) 2U.F. S. C. (Brasil)

-

-

Chemistry

Department,

66000 F l o r i a n o p o l i s ,

DO 350,

Santa Catarina,

SUMMARY B i m e t a l l i c Ni-Mo c a t a l y s t s promoted w i t h potassium supported on manganese oxide or more p a r t i c u l a r l y on z i n c oxide are a c t i v e and select i v e f o r t h e conversion o f syngas i n t o l i g h t alcohols. These a l c o h o l s c o u l d be v i a a CO i n s e r t i o n i n t o a m e t a l - a l k y l bond or v i a an h y d r o f o r m y l a t i o n type r e a c t i o n . Indeed t h e r a t e o f hydrocarbon and s p e c i a l l y o f a l c o h o l formation a r e g r e a t l y enhanced by t h e a d d i t i o n o f o l e f i n s . INTRODUCTION Some works r e l a t e d t h e s y n t h e s i s o f oxygenated compounds from carbon o x i d e ( s ) i n t h e presence o f n i c k e l c a t a l y s t s . T. Hayasaka and a l .

(ref.1)

showed t h a t t h e support played a s i g n i f i c a n t r o l e on t h e c a t a l y t i c prop e r t i e s of

nickel.

Methanol

and C2+

Tatsumi and a l . found t h a t t h e a d d i t i o n

o f an a l c a l i n e element or/and a group increased

the

formation

of

superficial

particles

of

VIII metal t o molybdenum c a t a l y s t

a l c o h o l from syngas

2 , 3 ) . According

(ref.

t h i s s e l e c t i v i t y c o u l d be t h e r e s u l t o f t h e formation

Mo-NI

; the

formed when n i c k e l

~ i l methanol e is t h e o n l y product i n t h e

i s supported on t i t a n i a ,

presence o f Ni-ZnO c a t a l y s t s . T.

t o these authors,

a l c o h o l s are

alloy

presence

i n the

of

vicinity

potassium

o f n i c k e l and molybdenum

decreasing

the

reduction r a t e

o f molybdenum oxide. The c a t a l y s t s u r f a c e w i l l present two types o f a c t i v e c e n t e r s b o t h i n m e t a l l i c and oxide

states.

On t h e f i r s t

type t h e r e w i l l occur a

d i s s o c i a t i v e adsorption o f CO w h i l e on t h e o t h e r CO w i l l be m o l e c u l a r l y adsorbed and used e i t h e r

for

methanol

formation

of

for

insertion i n

hydrocarbon species r e s u l t i n g i n t h e f o r m a t i o n o f higher alcohols. main d i f f i c u l t i e s of

i)the s u p e r f i c i a l s i t e d e n s i t y ,

types o f s i t e s and

ii)t h e r a t i o between t h e two

iii) t h e homogeneity i n the d i s t r i b u t i o n o f these

a c t i v e centers.

*

The

i n the p r e p a r a t i o n o f such c a t a l y s t s are the c o n t r o l

Author t o whom correspondence should be adressed.

350 In t h i s study,

we r e p o r t r e s u l t s o b t a i n e d w i t h nickel-molybdenum

s u p p o r t e d e i t h e r on a r e d u c i b l e o x i d e (MnOx) or on a b a s i c o x i d e (ZnO). Moreover we i n v e s t i g a t e d t h e e f f e c t s o f m e t h a n o l and e t h y l e n e i n o r d e r t o explain the modification of the s e l e c t i v i t y . METHODS C a t a l y s t s were p r e p a r e d by a c o p r e c i p i t a t i n g ( r e f . 4 ) or impregnat i n g n i c k e l , nickel-molybdenum, or Ni/Mo a l c a l i n e p r e c u r s o r s on s u p p o r t s . The powders were h e a t e d i n a o v e n a t 12OOC f o r 12h b e f o r e c a l c i n a t i o n in

a i r a t 45OOC f o r 4h. Z i n c o x i d e ( 3 3 m2g-’) 2 -1 (53 m g ) were u s e d a s s u p p o r t s .

and manganese d i o x i d e

The s y n t h e s i s r e a c t i o n was c a r r i e d o u t i n a tubular reactor, p r e s s u r e (5-MR)

stainless

-

steel

c o n t a i n i n g 10 o r 2 0 g p e l l e t i z e d c a t a l y s t s , u n d e r p l a c e d i n a flow a p p a r a t u s . B e f o r e r e a c t i o n , c a t a l y s t s

nere r e d u c e d by H2 u n d e r a t m o s p h e r i c p r e s s u r e a t a t e m p e r a t u r e between 4 O O O C and 500OC. A l l t h e p r o d u c t s were a n a l y z e d i n t h e g a s p h a s e t h r o u g h

h e a t e d l i n e s or i n t h e l i q u i d p h a s e a f t e r c o o l i n g down t o 2OoC, u s i n g g a s c h r o m a t o g r a p h y methods (TCD and FID) ( r e f . 5 ) . RESULTS 1 ) N i c k e l and molybdenum s u p p o r t e d o n ZnO o r Mn02

Whatever t h e s u p p o r t , T a b l e 1 shows t h a t n i c k e l c a t a l y s t s a r e more a c t i v e t h a n molybdenum c a t a l y s t s .

Nevertheless

the alcohol s e l e c t i v i t y

is much more i m p o r t a n t w i t h molybdenum t h a n w i t h n i c k e l . c a n o b s e r v e w i t h Mo-supported

catalysts that

p r o d u c t w i t h Mo-ZnO c a t a l y s t s and manganese d i o x i d e i s u s e d

as a

Moreover we

i ) methanol is t h e major

i i ) h i g h e r a l c o h o l s a r e formed when support.

(Even w i t h Ni-Mn02 c a t a l y s t s

t h e r e is a s i g n i f i c a n t f r a c t i o n o f C2+ a l c o h o l s ) .

A t t h e same time it c a n a l s o be n o t i c e d t h a t

c2

and C3 h y d r o c a r b o n s

a r e formed e s p e c i a l l y when N i and Mo a r e s u p p o r t e d on manganese d i o x i d e

2 ) E f f e c t o f t h e a d d i t i o n o f molybdenum t o s u p p o r t e d n i c k e l c a t a l y s t s A l l t h e r e s u l t s i n T a b l e 2 were o b t a i n e d a f t e r c a t a l y s t s t a b i l i z a t i o n (30 t o 50 h o u r s ) . When Mn02 is u s e d a s s u p p o r t , a d e c r e a s e o f h y d r o c a r b o n s e l e c t i v i t y and an i n c r e a s e o f molybdenum t o n i c k e l .

alcohol s e l e c t i v i t y a r e observed a f t e r addition of I n t h e c a s e of

ZnO s u p p o r t e d c a t a l y s t s t h e same

phenomena c a n b e n o t i c e d a s t h e s e w i t h n i c k e l c a t a l y s t s .

In both cases

a s y n e r g e t i c e f f e c t i n C2+ a l c o h o l f o r m a t i o n i s o b t a i n e d a f t e r a d d i t i o n

351

TABLE 2 E f f e c t of molybdenum a d d i t i v e or t h e c a t a l y t i c p r o p e r t i e s of Ni(Co) supported on Mn02 or ZnO i n (CO, H2) r e a c t i o n .

Reaction

c o n d i t i o n s : P = 5.0 MPa, H

Catalyst

21(-0 = 2 , T = 25ooc, W/F = 1 g h 1-1

Ni3k7-MnO2

Ni3M07-ZnO

21.4 7.6

25.6 0.2

4.0 4.0

Ni3M07K1-Zn0 Ni7M03-Zn0 Co 3Mo 7 -ZnO

Selectivity ( C atom % )

CH4 C2H4

19.5 7.4

20.0

10.0

3.4

9.4

-

1.3

5.6

4.5

2.0

5.8

3.5

c4+ MeOH

14.0 29.5

3.9 41.4

8.0 19.4

2.3 49.7

4.5 47.2

EtOH nprOH

15.8 2.3

9.2 4.0

19.5 14.9

10.6 2.1

6.5 1.8

50.0

33.0

42.0

‘96 C3H6

19.6 4.4 8.1 4.1

............................................................................... S e l e c t i v i t y C02 ( % )

50.0

36.0

352

of molybdenum which i s p a r t i c u l a r l y important with Mn02 - supported c a t lysts. On t h e o t h e r hand t h e i n c r e a s e of n i c k e l c o n t e n t (7% i n s t e a d of 3%) o r t h e replacedment o f n i c k e l by c o b a l t d e c r e a s e s t h e a c t i v i t y : alcohols/hydrocarbons,

without changing s i g n i f i c a n t l y t h e r a t i o

but

d e c r e a s i n g t h e C2+ a l c o h o l s e l e c t i v i t y .

3 ) I n f l u e n c e of K a d d i t i o n to Ni-Mo/ZnO c a t a l y s t a d d i t i o n of

After a catalyst

the total

g r e a t l y enhanced

a small

percentage

a c t i v i t y and

(Table 2).

Indeed

potassium t o s u c h

(1%) of

t h e C2+

alcohol s e l e c t i v i t y a r e

the r a t i o

(C2+/C,)alcohols

from 0.32 t o 1.8 Moreover i t can a l s o be observed t h a t

varies

i ) the ratio

ii) t h e o l e f i n f r a c t i o n i n C2+ hydrocarbons (c.?+/cl) hydrocarbons and a r e i n c r e a s e d ( f o r s i m i l a r CO c o n v e r s i o n s ) by t h e presence o f potassium (Table 2 ) ; s o t h a t t h e formation of C2+ a l c o h o l s could be d i r e c t l y r e l a t e d t o t h a t of o l e f i n s . Moreover when i n c r e a s i n g t h e c o n t a c t time, t h e hydrocarbons s e l e c t i v i t y and t h e methanol s e l e c t i v i t y d e c r e a s e when t h e

c2+ a l c o h o l

formation s i g n i f i c a n t l y i n c r e a s e s .

4 ) I n f l u e n c e o f methanol o f e t h y l e n e on t h e a l c o h o l formation On account of t h e above r e s u l t s , t h e

c2+

a l c o h o l s could be formed

e i t h e r by 0x0 r e a c t i o n s of o l e f i n s or by homologation o f methanol (and o t h e r a l c o h o l s ) though t h i s r e a c t i o n is more improbable. Moreover previous

work

c a r r i e d o u t i n our

laboratory

with o t h e r c a t a l y s t s

show

t h a t oxygenated compounds would b e formed by CO i n s e r t i o n i n t o a "metalcarbon

bond" ( 6 ) .

The i n v e s t i g a t i o n s on t h e e f f e c t o f methanol i n t h e (CO, H2) r e a c t i o n showed t h a t whatever t h e c a t a l y s t used f o r t h e r e a c t i o n t h e C2+ alcohol

formation is not modified.

W e observed only

some changes i n

t h e hydrocarbon r e p a r t i t i o n ( r e f . 5). On t h e c o n t r a r y t h e a d d i t i o n of e t h y l e n e during t h e syngas t r a n s formation a f f e c t s t h e a l c o h o l s e l e c t i v i t y and p r o d u c t i v i t y . I n presence of molybdenum c a t a l y s t s e s p e c i a l l y with Mo-ZnO, methanol was t h e major product b e f o r e t h e a d d i t i o n o f e t h y l e n e (Table 1 ) . After

i)

adding C2H4 t o syngas ( p a r t i a l p r e s s u r e

0.131,

o f n propanol and a l s o of C3 hydrocarbons was ii)

a significant increase

obtained (Table 3 ) .

With Ni-Mo c a t a l y s t s s i m i l a r r e s u l t s a r e observed b u t t h e r e s u l t s

p r e s e n t e d i n Table 3 g i v e rise t o more comments

: Indeed with c a t a -

l y s t s supported on Mn02 t h e i n c r e d s e o f n propanol s e l e c t i v i t y is very s i g n i f i c a n t b u t t h e r e a c t i v i t y of e t h y l e n e i s less so than with c a t a l y s t s supported on z i n c oxide.

On t h e s e l a t t e r c a t a l y s t s we observed

b o t h a s i g n i f i c a n t i n c r e a s e of a c t i v i t y and of C3 (hydrocarbon + a l c o h o l )

353 TABLE 3 I n f l u e n c e o f e t h y l e n e i n (Co, H2) r e a c t i o n . r e a c t i o n c o n d i t i o n s : P = 5.0 MPa, H2/C0 = 2,

T = 25OoC, W/F = 1 g h 1-I.

a) Ethylene percentage i n reagents (CO + H2 + C2H4). b ) SC02 =

C02/C02 + C hyd.

c ) Ethylene/ethane r a t i o d u r i n g t h e r e a c t i o n .

Catalyst

Mol 0-ZnO

Ni3M07-MnOq

E t h y l e n e ( a ) (%)

0

A c t i v i t y (X103)

0.3

1.2

0.06

0.08 2.3

0

13

13

Ni3Mo7-ZnO

0

Ni3Mo7K1 -ZnO 13

13

0

12.0

1.1

2.0 3.8

mole h-lg-lcatal. Selectivity

CH4

19.1

2.1

23.4

1.2

21.8

5.0

28.4

C atom (%)

C3H6

1.3

9.3

7.5

1.3

6.3

2.6

1.4

3.9

5.0

6.2

2.0

23.0

-

-

2.3

1.0

3.8

5.8

11.0

0.6

5.9

2.0

4.3

1.6

-

5.6

4.9

0.8

3.4

7.3

-

3.2

&OH 70.0

Without(C02 and C2 j C3H8 CC4 C5-C7

12.0

33.3

11.7

21.8

8.1

46.0

3.4

EtOH

1.4

0.5

17.3

9.2

21.8

9.4

10.0

2.0

nprOH

0.8

42.0

2.5

74.8

16.9

40.0

4.4

72.0

(C4-Cg)OH

-

-

-

-

20.3

-

4.0

Selectivity C O ~ ( ~ )

30.0 0.27

C,H,/C,H,(~)

4.5 1.65

50.0 1.9

0.8 50.0 11.5

2.2

4.5 14.3

3.7

36.0 0.02

0.035

TABLE 4 I n f l u e n c e o f e t h y l e n e on r a t i o of f o r m a t i o n of C3 hydrocarbons and n propanol. ( b ) and ( a ) before and a f t e r e t h y l e n e a d d i t i o n .

Reactions c o n d i t i o n s : see

Table 3. Catalyst

Ni3M07-Mn02 Ni3Mo7-ZnO

Ni3Mo7KI-ZnO

Rate o f propene and propane formation

Rate o f n propanol formation

mole h - l g - ’ c a t a l (X104)

mole h-lg-lcatal.

(b)

2.25

(a)

1.0

(b)

0.45

31.0

(a)

2.0

14.4

(b)

1 .o

2.5

(a)

4.3

48.0

10-2

0.75 60.0

( ~ 1 0 ~ )

354 s e l e c t i v i t y . The i n c r e a s e o f C3 h y d r o c a r b o n s e l e c t i v i t y is more s i g n i f i c a n t w i t h Mo-ZnO c a t a l y s t t h a n w i t h NiMo(K)-ZnO c a t a l y s t s , which s u g g e s t s t h a t n i c k e l or mixed (Ni-Mo) sites a r e n e c e s s a r y for CO i n s e r I n f a c t when n i c k e l i s added t o Mo-ZnO, n p r o p a n o l s e l e c t i v i t y

tion.

i s l a r g e l y i n c r e a s e d t o t h e d e t r i m e n t o f p r o p a n e and propene. Moreover

when p o t a s s i u m is added t o Ni-Mo/ZnO,

(C5-C7)

and

C2H4

into

s y n g a s so t h a t t h e r e i s a l w a y s a r e l a t i o n between h y d r o c a r b o n

and

higher

alcohols

alcohol

productions.

ethylene addition particularly

higher hydrocarbons

are formed a f t e r i n t r o d u c t i o n o f

(C,-C,)

Table 4 shorn

on t h e r a t e s o f

on t h e r a t e o f

t h e very s i g n i f i c a n t e f f e c t p r o p e n e and propane

of

f o r m a t i o n and

n p r o p a n o l f o r m a t i o n which is i n c r e a s e d

by a 70 t o 80 f a c t o r d e p e n d i n g o n t h e c a t a l y s t .

This r e s u l t c l e a r l y

d e m o n s t r a t e s t h e r e a c t i v i t y of o l e f i n s i n 0x0 t y p e r e a c t i o n s w i t h n i c k e l molybdenum c a t a l y s t s . L a s t l y i t is i n t e r e s t i n g a l s o t o n o t e t h a t t h e s e s p e c i f i c p r o p e r t i e s may b e t h e r e s u l t o f t h e low h y d r o g e n a t i n g p r o i n c o m p a r i s o n of c h a i n g r o w t h v i a h y d r o c a r b o n s p e c i e s o r / a n d

perties

CO i n s e r t i o n .

The r e s u l t s o f T a b l e 3 i n d i c a t e t h a t C2H,+ added t o s y n g a s

never

during the reaction

is

e n t i r e l y hydrogenated

a s was i n d i c a t e d

i n numerous works p u b l i s h e d p r e v i o u s l y .

CONCLUSION I n t h i s work we e m p h a s i z e d t h e d e t e r m i n i n g e f f e c t o f t h e s u p p o r t

of molybdenum and o f a l c a l i n e o n t h e a c t i v i t y and t h e s e l e c t i v i t y o f nickel

c a t a l y s t s i n syngas conversion.

Both a s e l e c t i v i t y i n

(C,-C3)

a l c o h o l s h i g h e r t h a n 60% and a s i g n i f i c a t i v e p r o d u c t i v i t y a r e o b t a i n e d with

d N i Mo

clearly

K/ZnO c a t a l y s t .

demonstrated

that

The e x p e r i m e n t s c a r r i e d out w i t h e t h y l e n e

i) h i g h e r

o l e f i n i n 0x0 t y p e r e a c t i o n and

alcohol

formation

i i ) hydrocarbons

can

involve

( i - e p r o p e n e and

p r o p a n e ) c a n b e formed v i a r e a c t i o n o f e t h a n e or C2 s u r f a c e s p e c i e s w i t h C1

fragment s u r f a c e a s p r e v i o u s l y proposed

by B a s s e t

and c o l l .

( r e f . 7 , 8). According

t o models o f promoted nickel-molybdenum o x i d e s p r o p o s e d 9 ) t h e s i m u l t a n e o u s f o r m a t i o n o f mixed o x i d e s

i n the literature (ref.

close t o o r d e c o r a t e d by some n i c k e l p a r t i c l e s c o u l d e x p l a i n t h e s p e c i f i c p r o p e r t i e s of such c a t a l y s t s .

But t h e r o l e o f t h e s u p p o r t is n o t

c l e a r ; p r e l i m i n a r y XPS c h a r a c t e r i z a t i o n s showing s i g n i f i c a n t m o d i f i c a t i o n s o f t h e s u r f a c e c o m p o s i t i o n w i t h t h e change o f s u p p o r t ( r e f . 10).

355 REFERENCES 1 2 3 4

5 6 a)

7

b)

8

9 10

Hayasaka, Y. Ohbayashi, S . Uchiyama and N. Kawata i n Proc. gth I n t . Cong. Ca ta l. , Calgary, Canada, 3une 26-3uly 1 , 1988, M.3. P h i l l i p s and M. Ternan (Ed) 2 (1988) 521. T. Tatsumi, A. Muramatsu and H. Tominaga, A p p l . Catal., 34 (1987) 77. T. Tatsumi, A. Muramatsu, K. Yokota and H. Tominaga, 3. C a t a l . , 115 (1989) 388. M.P. Astier, G. D j i and S.3. Teichner, Ann. Chim. F r . , 12 (1987) 337. L. Probs t , t h e s i s , P o i t i e r s (Fra nc e ), 1989. H. Derule, t h e s i s P o i t i e r s (Fra nc e ) 1989. M. Blanchard, H. Derule and P. Canesson, Catal. Lett., 2 (1989) 319. M. Leconte, A. Theolier and 3.M. Basset, 3. Mol. C a t a l . , 28 (1985) 217. E. Rodriguez, M. Leconte, 3.M. B a sset, K. Tanaka, 3. C a t a l . , 119 (1989) 230. H. Topsoe, B.S. Clausen, C a ta l. Rev., Sci. Eng. 26(3-4) (1984) 395. 3. B a r r a u l t , L. Probst, unpublished results. T.