Synthesis of selected aminodeoxy analogs of globotriosylceramide

Synthesis of selected aminodeoxy analogs of globotriosylceramide

www.elsevier.nl/locate/carres Carbohydrate Research 322 (1999) 190–200 Synthesis of selected aminodeoxy analogs of globotriosylceramide Henrik C. Ha...

205KB Sizes 1 Downloads 82 Views

www.elsevier.nl/locate/carres

Carbohydrate Research 322 (1999) 190–200

Synthesis of selected aminodeoxy analogs of globotriosylceramide Henrik C. Hansen, Go¨ran Magnusson * Organic Chemistry 2, Center for Chemistry and Chemical Engineering, Lund Uni6ersity, PO Box 124, SE-221 00 Lund, Sweden Received 6 May 1999; accepted 13 August 1999

Abstract Four aminodeoxy analogs of globotriosylceramide (6¦-, 4¦-, 2¦-, and 6%-aminodeoxy) were synthesized by glycosylation of 3-O-benzoylated azidosphingosine with the corresponding aminodeoxy-globotriose trichloroacetimidate, followed by reduction of the azido group, N-acylation with 1-adamantaneacetic acid, and removal of the protecting groups. © 1999 Elsevier Science Ltd. All rights reserved. Keywords: Globotriosylceramide aminodeoxy analogs

1. Introduction In the previous paper [1], we described the synthesis of some aglycon analogs of globotriosylceramide [Gal-a-(1 “4)Gal-b(1 “4)Glc-b-(1 “Cer), Gb3], including the adamantylceramide analog 1 (Fig. 1). Compound 1 was originally obtained [2] by hydrolysis of the amide group of Gb3 followed by N-acylation with 1-adamantaneacetic acid. This semisynthetic compound was found to be an efficient inhibitor of verotoxin binding [2]. We have also reported the synthesis of four aminodeoxy analogs of Gb3 [3]. Computer docking of Gb3 and verotoxin b subunit revealed a close proximity between some hydroxyl groups of Gb3 to carboxyl groups in the b subunit [4], indicating that exchange of these hydroxyl groups for amino groups might * Corresponding author. Tel.: +46-46-222-8215; fax: + 46-46-222-8209. E-mail address: [email protected] (G. Magnusson)

give salt bridges in the molecular complex. As an attempt to increase the inhibitory power, combination of the adamantylceramide aglycon with aminodeoxy saccharides furnished compounds 2–5 as a novel set of Gb3 analogs (Fig. 1). We now report the synthesis of 2–5. The exploitation of 2–5 as inhibitors of globotriose-binding proteins will be reported in due course. 2. Results and discussion Synthesis of compounds 2–5.—The known [3] azido-functionalized 2-(trimethylsilyl)ethyl (Me3SiEt) globotriosides 6a–d were each Odebenzoylated with methanolic sodium methoxide and the purified products were hydrogenated under slightly acidic conditions (H2, Pd–C, EtOH, 0.1 M HCl) in order both to remove the O-benzyl protecting groups and reduce the azido groups to amino groups. The crude amines were dissolved in methanol containing a small amount of triethylamine, and the slightly basic mixtures were treated with

0008-6215/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. PII: S 0 0 0 8 - 6 2 1 5 ( 9 9 ) 0 0 2 3 1 - 1

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

191

Fig. 1. Inhibition of globotriose-binding proteins.

CF3COSEt [5] to yield the corresponding crude N-trifluoroacetyl derivatives. Treatment with acetic anhydride in pyridine and chromatography of the crude materials then furnished 7a–d (Scheme 1) in 54–67% overall yields over four reaction steps. Compounds 7a–d were each treated with CF3COOH in CH2Cl2 for 40 min, and chromatography of the crude materials yielded the hemiacetals 8a–d (Scheme 1) in 81–95% yields. Treatment of 8a–d with Cl3CCN in dichloromethane [6] in the presence of diazabicycloundecane (DBU), and chromatography of the crude materials gave the trichloroacetimidates 9a–d (Scheme 1) in 73– 83% yields. Compounds 9a–d were somewhat labile under the acidic conditions of silica chromatography. Consequently, a small amount of triethylamine was added to the eluent, which permitted purification to a degree of \90%. Glycosylation of 3-O-benzoylated azidosphingosine [7] was performed by treatment with compounds 9a–d and BF3·OEt2 in dry dichloromethane. Chromatography of the crude materials gave the azidosphingosinyl Gb3 derivatives 10a–d (Scheme 2) in 63–65% yields. The azido groups of 10a–d were reduced by treatment with hydrogen sulfide in pyridine– water mixture. The crude amines were dissolved in dichloromethane and acylated with 1-adamantaneacetic acid in the presence of N(3 - dimethylaminopropyl) - N% - ethylcarbodiimide (EDC). Chromatography of the crude

materials gave the N-adamantaneacetyl-Gb3 derivatives 11a–d (Scheme 2) in 75–87% yields. The N-trifluoroacetyl, O-acetyl and O-benzoyl protecting groups of 11a–d were removed by treatment with aqueous sodium hydroxide in methanol, and the crude materials were chromatographed on a reverse phase (C18) column, using a watermethanol gradient, which furnished the globotriosylceramide analogs 2–5 (Scheme 2 and Fig. 1) in 73–84% yields (purity \90%). Attempted chromatography on silica gel was unsuccessful. The polarity profiles of 2–5 made it difficult to obtain high-quality 1H NMR spectra, probably due to micelle formation. 3. Experimental General experimental procedures and methods were as described previously [3]. The compounds 1 [1] and 6a–d [3] have been reported. (2 S,3 R,4 E) -2 -(1 -Adamantaneacetamido) -3 hydroxy - octadec - 4 - enyl (a - D - galactopyran osyl) - (1 “ 4) - (6 -amino- 6 -deoxy-b- D -galactopyranosyl) -(1 “ 4) -b-D-glucopyranoside (2).— Compound 11a (5.5 mg, 0.004 mmol) was dissolved in MeOH (5 mL), aq NaOH (1 M, 0.5 mL) was added, and the mixture was stirred at room temperature (rt) for 18 h. The reaction mixture was neutralized with Duolite C436 (H+) resin, filtered, and concd. The residue was chromatographed on a reversephase column (Varian Mega Bond Elut C18 (water–MeOH 1:0 “8:2 “6:4“4:6“2:8“

192

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

Scheme 1. (i) NaOMe, MeOH, 22 °C, 14–18 h; (ii) H2, Pd – C, EtOH, 0.1 M HCl, 22 °C, 14 – 18 h; (iii) CF3COSEt, MeOH, Et3N, 0 °C, 6 h; (iv) Ac2O, pyridine, 22 °C, 16 h; (v) CF3COOH, CH2Cl2, 22 °C, 40 min; (vi) Cl3CCN, CH2Cl2, DBU, 0 °C, 1 h.

0:1, 6 mL of each) to give 2 (2.5 mg, 73%); 1 [a]22 H NMR (3:1 D +20° (c 0.1, MeOH); CD3OD–D2O): d (assignments of aglycon protons are shown in italic) 5.69–5.78 (m, 1 H, H-5), 5.45 (br dd, 1 H, J 7.7, 15.4 Hz, H-4), 4.46, 4.34 (br d, 1 H each, J 7.9 and 7.6 Hz, H-1,1%), 4.27 (br t, 1 H, J 6.2 Hz, H-5¦), 3.10 –4.22 (m), 0.8–2.20 (m, 46 H); HRMS Anal. Calcd for C48H84O17N2Na [M+Na]: 983.5668. Found: 983.5658. (2 S,3 R,4 E) -2 -(1 -Adamantaneacetamido) -3 hydroxy-octadec-4 -enyl (2 -amino-2 -deoxy-a-

- galactopyranosyl) - (1 “ 4) - (b - D - galactopyranosyl) -(1 “ 4) -b-D-glucopyranoside (3).— Compound 11b (10 mg, 0.007 mmol) was treated essentially as described in the preparation of 2, thus yielding 3 (5.2 mg, 84%); [a]22 D +10° (c 0.3, MeOH); 1H NMR (3:1 CD3OD– D2O): d (assignments of aglycon protons are shown in italic) 5.65–5.77 (m, 1 H, H-5), 5.46 (dd, 1 H, J 7.8, 15.3 Hz, H-4), 3.10–4.47 (m), 0.80–2.20 (m, 46 H); HRMS Anal. Calcd for C48H84O17N2Na [M+Na]: 983.5668. Found: 983.5692. D

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

193

Scheme 2. (i) (2S,3R,4E)-2-azido-3-(benzoyloxy)-4-octadecen-1-ol, BF3OEt2, CH2Cl2, 22 °C, 1.5 h; (ii) H2S, pyridine, H2O, 0 °C, 1 h“ 22 °C, 44 h; (iii) adamantaneacetic acid, EDC, CH2Cl2, 22 °C, 16 h; (iv) NaOH, H2O, MeOH, 22 °C, 18 h.

(2 S,3 R,4 E) -2 -(1 -Adamantaneacetamido) -3 hydroxy - octadec - 4 - enyl (4 - amino - 4 - deoxya-D - galactopyranosyl) - (1 “ 4) - (b - D - galactopyranosyl) -(1 “ 4) -b-D-glucopyranoside (4).— Compound 11c (11 mg, 0.007 mmol) was treated essentially as described in the preparation of 2, thus yielding 4 (5.4 mg, 78%); [a]22 D + 17° (c 0.5, MeOH); 1H NMR (3:1 CD3OD– D2O): d (assignments of aglycon protons are shown in italic) 5.63–5.76 (m, 1 H, H-5), 5.42 –5.51 (m, 1 H, H-4), 4.31 (br d, 1 H, J 7.9 Hz, H-1% or H-1), 3.10–4.45 (m), 0.80–2.20 (m, 46 H); HRMS Anal. Calcd for C48H84O17N2Na [M+Na]: 983.5668. Found: 983.5652. (2 S,3 R,4 E) -2 -(1 -Adamantaneacetamido) -3 hydroxy-octadec-4-enyl (6-amino-6-deoxy-a-Dgalactopyranosyl) - (1 “ 4) - (b - D - galactopyr(5).— anosyl) -(1 “ 4) -b-D-glucopyranoside Compound 11d (18 mg, 0.012 mmol) was treated essentially as described in the preparation of 2, which gave 5 (8 mg, 73%); [a]22 D +4° (c 0.5, MeOH); 1H NMR (3:1 CD3OD–D2O):

d (assignments of aglycon protons are shown in italic) 7.90 (m, 1 H, NHCO), 5.66–5.78 (m, 1 H, H-5), 5.45 (br dd, 1 H, J 7.6, 15.1 Hz, H-4), 4.44, 4.34 (br d, 1 H each, J 7.6 and 7.8 Hz, H-1,1%), 3.20–4.35 (m), 2.73–2.89 (m, 2 H), 0.80–2.20 (m, 46 H); HRMS Anal. Calcd for C48H84O17N2Na [M+Na]: 983.5668. Found: 983.5686. 2 -(Trimethylsilyl)ethyl (2,3,4,6 -tetra-Oacetyl-a- D -galactopyranosyl) - (1 “ 4) - (2,3 -diO - acetyl - 6 - deoxy - 6 - trifluoroacetamido - b - D galactopyranosyl) - (1 “ 4) - 2,3,6 - tri - O - acetyl b-D-glucopyranoside (7a).—Compound 6a [3] (200 mg, 0.132 mmol) was treated with 0.5 M methanolic NaOMe for 18 h and the reaction mixture was neutralized with Duolite C436 (H+) resin, filtered, and concentrated. The residue was chromatographed (SiO2, 20:10:3 toluene–EtOAc–MeOH) and the product was dissolved in a mixture of EtOH (10 mL) and 0.1 M aqueous HCl (1.1 mL) and hydrogenated (Pd–C, H2, 1 atm) for 14 h. The reaction mixture was filtered through Celite

194

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

and concentrated. The residue was dissolved in MeOH (10 mL) and Et3N (0.05 mL), cooled to 0 °C, and CF3COSEt (0.06 mL, 0.47 mmol) was added. The mixture was stirred under N2 while slowly allowed to attain rt. After 6 h, toluene (5 mL) was added and the mixture was concd. The residue was treated with a 1:1 mixture of Ac2O and pyridine (10 mL) for 16 h and the mixture was co-concd with toluene. The residue was chromatographed (1:1 EtOAc–heptane) to give 7a 1 (77 mg, 54%); [a]22 D +59° (c 1.0, CHCl3); H NMR (CDCl3): d 7.64 (br d, 1 H, J 5.4 Hz, NH), 5.54 (br d, 1 H, J 3.2 Hz, H-4¦), 5.34 (dd, 1 H, J 3.3, 11.0 Hz, H-3¦), 5.23 (dd, 1 H, J 3.4, 11.0 Hz, H-2¦), 5.16 (br t, 1 H, J 8.2 Hz, H-3), 5.10 (dd, 1 H, J 7.5, 10.5 Hz, H-2%), 4.97 (d, 1 H, J 3.4 Hz, H-1¦), 4.94 (dd, 1 H, J 7.1, 8.2 Hz, H-2), 4.74 (dd, 1 H, J 2.6, 10.5 Hz, H-3%), 4.60 (d, 1 H, J 7.4 Hz, H-1%), 4.53 (d, 1 H, J 6.9 Hz, H-1), 4.49–4.55 (m, 1 H, H-6), 4.47 (br t, 1 H, J 7.1 Hz, H-5¦), 4.18 (dd, 1 H, J 8.2, 10.8 Hz, H-6¦), 4.04–4.14 (m, 3 H, H-4%,6¦,6), 3.88–4.00 (m, 2 H, H-4 and OCH2CH2Si), 3.84 (ddd, 1 H, J 2.0, 8.7, 14.0 Hz, H-6%), 3.65–3.77 (m, 2 H, H-5,5%), 3.47– 3.62 (m, 2 H, H-6% and OCH2CH2Si), 2.14, 2.10, 2.09, 2.07, 2.06, 2.05, 1.98 (7 s, 27 H, OAc), 0.84–1.03 (m, 2 H, CH2Si), 0.01 (s, 9 H, SiMe3); 13C NMR (CDCl3): d 171.12, 171.10, 171.0, 170.9, 170.6, 170.5, 170.4, 170.2, 169.4, 158.3 (q), 116.2 (q), 100.6, 100.5, 100.2, 78.4, 76.1, 73.8, 72.8, 72.7, 72.1, 69.14, 69.12, 68.3, 68.0, 67.5, 63.2, 61.0, 41.2, 21.4, 21.3, 21.25, 21.20, 21.19, 21.12, 21.06, 21.04, 20.97, 18.3, −1.0; HRMS Anal. Calcd for C43H62O25F3NSiNa [M+Na]: 1100.3230. Found: 1100.3198. 2 -(Trimethylsilyl)ethyl (3,4,6 -tri-O-acetyl-2 deoxy- 2 -trifluoroacetamido-a- D -galactopyranosyl) - (1 “ 4) - (2,3,6 -tri-O-acetyl-b- D -galactopyranosyl) - (1 “ 4) - 2,3,6 - tri - O - acetyl - b - D glucopyranoside (7b).—Compound 6b [3] (220 mg, 0.144 mmol) was treated essentially as described in the preparation of 7a, thus yielding 7b (97 mg, 63%); [a]22 +28° (c 1.0, D CHCl3); 1H NMR (CDCl3): d 7.55 (d, 1 H, J 8.5 Hz, NH), 5.56 (br d, 1 H, J 2.9 Hz, H-4¦), 5.36 (dd, 1 H, J 3.1, 11.6 Hz, H-3¦), 5.23 (t, 1 H, J 9.2 Hz, H-3), 5.13 (dd, 1 H, J 7.5, 10.9 Hz, H-2%), 5.06 (d, 1 H, J 3.5 Hz, H-1¦),

4.83–4.90 (m, 2 H, H-3%,2), 4.57 (d, 1 H, J 7.5 Hz, H-1’), 4.55–4.62 (m, 2 H, incl. H-2¦), 4.52 (br t, 1 H, J 6.5 Hz, H-5¦), 4.47 (d, 1 H, J 8.0 Hz, H-1), 4.43 (dd, 1 H, J 6.0, 11.2 Hz), 4.04–4.17 (m, 3 H), 4.05 (d, 1 H, J 2.0 Hz, H-4%), 3.87–3.98 (m, 2 H), 3.76–3.83 (m, 2 H, incl. H-4), 3.64–3.70 (m, 1 H), 3.57 (dt, 1 H, J 6.5, 9.8 Hz, OCH2CH2Si), 2.16, 2.08, 2.07, 2.055, 2.050, 2.04, 2.025, 2.00 (8 s, 27 H, OAc), 0.84–1.01 (m, 2 H, CH2Si), 0.00 (s, 9 H, SiMe3); 13C NMR (CDCl3): d 171.4, 171.2, 170.74, 170.69, 170.6, 170.5, 170.4, 170.0, 169.5, 158.1 (q), 116.0 (q), 100.5, 100.2, 99.2, 75.3, 73.0, 72.9, 72.6, 72.1, 69.7, 67.9, 67.7, 67.6, 67.2, 63.2, 60.8, 60.6, 50.1, 21.27, 21.25, 21.17, 21.16, 21.10, 20.98, 20.97, 20.93, 18.3, −1.0; HRMS calcd for C43H62O25F3NSiNa [M +Na]: 1100.3230, found 1100.3250. 2 -(Trimethylsilyl)ethyl (2,3,6 -tri-O-acetyl-4 deoxy-4 -trifluoroacetamido-a-D-galactopyranosyl) - (1 “ 4) - (2,3,6 -tri-O-acetyl-b- D -galactopyranosyl) - (1 “ 4) - 2,3,6 - tri - O - acetyl - b - D glucopyranoside (7c).—Compound 6c [3] (165 mg, 0.11 mmol) was treated essentially as described in the preparation of 7a, thus yielding 7c (112 mg, 67%); [a]21 D +29° (c 1.0, CHCl3); 1H NMR (CDCl3): d 6.75 (d, 1 H, J 9.2 Hz, NH), 5.38 (dd, 1 H, J 4.2, 11.1 Hz, H-3¦), 5.20 (t, 1 H, J 9.1 Hz, H-3), 5.08 (dd, 1 H, J 7.7, 10.9 Hz, H-2%), 5.00 (d, 1 H, J 3.8 Hz, H-1¦), 4.93 (dd, 1 H, J 3.8, 11.1 Hz, H-2¦), 4.88 (dd, 1 H, J 8.0, 9.4 Hz, H-2), 4.82–4.89 (m, 1 H, H-4¦), 4.69 (dd, 1 H, J 2.5, 10.9 Hz, H-3%), 4.60–4.65 (m, 1 H, H-5¦), 4.53 (d, 1 H, J 7.7 Hz, H-1%), 4.50 (d, 1 H, J 7.9 Hz, H-1), 4.46 (dd, 1 H, J 2.0, 11.4 Hz, H-6), 4.42 (dd, 1 H, J 6.4, 11.0 Hz, H-6%), 4.24 (dd, 1 H, J 7.3, 11.6 Hz, H-6¦), 4.18 (dd, 1 H, J 4.3, 11.7 Hz, H-6¦), 4.15 (dd, 1 H, J 6.9, 11.0 Hz, H-6%), 4.11 (dd, 1 H, J 5.5, 11.8 Hz, H-6), 4.06 (br d, 1 H, J 2.3 Hz, H-4%), 3.95 (dt, 1 H, J 5.7, 9.8 Hz, OCH2CH2Si), 3.75–3.83 (m, 2 H, H-4,5%), 3.64 (ddd, 1 H, J 1.9, 5.4, 9.7 Hz, H-5), 3.57 (dt, 1 H, J 6.8, 9.8 Hz, OCH2CH2Si), 2.11, 2.090, 2.086, 2.075, 2.062, 2.059, 2.036, 2.00 (8 s, 27 H, OAc), 0.84–1.01 (m, 2 H, CH2Si), 0.00 (s, 9 H, SiMe3); 13C NMR (CDCl3): d 171.2, 171.1, 170.92, 170.90, 170.6, 170.14, 170.11, 169.4, 158.2 (q), 116.1 (q), 101.4, 100.3, 99.9, 78.1, 77.0, 73.8, 73.4, 72.8, 72.3, 72.1, 69.2, 69.15, 67.9, 67.7, 66.4,

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

62.8, 61.8, 61.7, 50.5, 21.4, 21.3, 21.22, 21.15, 21.12, 21.07, 21.0, 20.9, 18.3, −1.0; HRMS Anal. Calcd for C43H62O25F3NSiNa [M +Na]: 1100.3230. Found: 1100.3247. 2 -(Trimethylsilyl)ethyl (2,3,4 -tri-O-acetyl-6 deoxy-6 -trifluoroacetamido-a-D-galactopyranosyl) - (1 “ 4) - (2,3,6 -tri-O-acetyl-b- D -galactopyranosyl) - (1 “ 4) - 2,3,6 - tri - O - acetyl - b - D glucopyranoside (7d).—Compound 6d [3] (51 mg, 0.033 mmol) was treated essentially as described in the preparation of 7a, thus yielding 7d (22.5 mg, 63%); [a]22 D +49° (c 0.5, CHCl3); 1H NMR (CDCl3): d 7.40–7.48 (m, 1 H, NH), 5.45 (bd, 1 H, J 3.4 Hz, H-4¦), 5.39 (dd, 1 H, J 3.4, 10.9 Hz, H-3¦), 5.20 (t, 1 H, J 9.2 Hz, H-3), 5.15 (dd, 1 H, J 3.5, 10.9 Hz, H-2¦), 5.12 (dd, 1 H, J 7.7, 11.1 Hz, H-2%), 5.02 (d, 1 H, J 3.5 Hz, H-1¦), 4.91 (dd, 1 H, J 8.0, 9.5 Hz, H-2), 4.72 (dd, 1 H, J 2.2, 11.1 Hz, H-3%), 4.54 (d, 1 H, J 7.7 Hz, H-1%), 4.50 (d, 1 H, J 7.9 Hz, H-1), 4.39–4.51 (m, 3 H, H-5¦,6%,6), 4.18 (dd, 1 H, J 6.8, 11.1 Hz, H-6%), 4.14 (dd, 1 H, J 5.4, 11.8 Hz, H-6), 4.03 (br d, 1 H, J 2.1 Hz, H-4%), 3.97 (dt, 1 H, J 5.7, 10.2 Hz, OCH2CH2Si), 3.76–3.86 (m, 3 H, H4,5%,6¦), 3.66 (ddd, 1 H, J 1.9, 5.3, 9.8 Hz, H-5), 3.58 (dt, 1 H, J 6.7, 9.9 Hz, OCH2CH2Si), 3.39 (br dt, 1 H, J 5.3, 13.5 Hz, H-6¦), 2.20, 2.13, 2.11, 2.10, 2.095, 2.075, 2.06, 2.045, 1.99 (9 s, 27 H, OAc), 0.83–1.02 (m, 2 H, CH2Si), 0.02 (s, 9 H, SiMe3); 13C NMR (CDCl3): d 171.00, 170.97, 170.94, 170.8, 170.6, 170.4, 170.13, 170.10, 100.97, 100.5, 99.8, 77.6, 76.8, 73.6, 73.4, 73.0, 72.3, 72.1, 69.6, 69.4, 68.1, 68.0, 67.4, 62.7, 62.1, 39.0, 21.4, 21.3, 21.21, 21.19, 21.1, 18.3, −1.0; HRMS Anal. Calcd for C43H62O25F3NSiNa [M+Na]: 1100.3230. Found: 1100.3210. (2,3,4,6 -Tetra-O-acetyl-a- D -galactopyranosyl) - (1 “ 4) - (2,3 -di-O-acetyl- 6 -deoxy- 6 -trifluoroacetamido-b-D-galactopyranosyl) -(1“4) -2,3,6 -tri-O-acetyl-b-D-glucopyranose (8a).— Compound 7a (47 mg, 0.044 mmol) was dissolved in a mixture of CH2Cl2 (1 mL) and trifluoroacetic acid (2 mL) and stirred at rt for 40 min, then co-concd with n-propyl acetate (5 mL) and toluene (2 ×5 mL) [8]. The residue was chromatographed (3:1 EtOAc–heptane) to give 8a (40.3 mg, 95%); HRMS Anal. Calcd for C38H50O25F3NNa [M+Na]: 1000.2522. Found: 1000.2504.

195

(3,4,6 -Tri-O-acetyl-2 -deoxy-2 -trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) - (2,3,6 tri - O - acetyl - b - D - galactopyranosyl) - (1 “ 4) 2,3,6 -tri-O-acetyl-b-D-glucopyranose (8b).— Compound 7b (55 mg, 0.051 mmol) was treated essentially as described in the preparation of 8a, thus yielding 8b (47.1 mg, 94%); HRMS Anal. Calcd for C38H50O25F3NNa [M+Na]: 1000.2522. Found: 1000.2526. (2,3,6 - Tri - O - acetyl - 4 - deoxy - 4 - trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) (2,3,6 - tri - O - acetyl - b - D - galactopyranosyl) (1 “ 4) - 2,3,6 -tri-O-acetyl-b- D -glucopyranose (8c).—Compound 7c (90 mg, 0.083) was treated essentially as described in the preparation of 8a, thus yielding 8c (66 mg, 81%); HRMS Anal. Calcd for C38H50O25F3NNa [M+Na]: 1000.2522. Found: 1000.2508. (2,3,4 -Tri-O-acetyl- 6 -deoxy- 6 -trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) - (2,3,6 tri - O - acetyl - b - D - galactopyranosyl) - (1 “ 4) 2,3,6 -tri-O-acetyl-b-D-glucopyranose (8d).— Compound 7d (54 mg, 0.05 mmol) was treated essentially as described in the preparation of 8a, thus yielding 8d (45.8 mg, 93%); HRMS Anal. Calcd for C38H50O25F3NNa [M+Na]: 1000.2522. Found: 1000.2504. (2,3,4,6 -Tetra-O-acetyl-a- D -galactopyranosyl) - (1 “ 4) - (2,3 -di-O-acetyl- 6 -deoxy- 6 -trifluoroacetamido-b- D -galactopyranosyl) - (1 “ 4) - 2,3,6 - tri - O - acetyl - a - D - glucopyranosyl tri chloroacetimidate (9a).—Compound 8a (64 mg, 0.065 mmol) was dissolved in a mixture of CH2Cl2 (3 mL) and Cl3CCN (0.20 mL, 2 mmol) and cooled to 0 °C under N2. Diazabicycloundecane (DBU, 0.020 mL, 0.13 mmol) was added and after 1 h the reaction mixture was concd. The residue was chromatographed (1:1 EtOAc–heptane, 3% Et3N) to give 9a (61 mg, 83%; purity: 90%). 1H NMR (CDCl3): d 8.66 (s, 1 H, NH), 7.64 (br d, 1 H, J 5.7 Hz, NHCO), 6.49 (d, 1 H, J 4.1 Hz, H-1), 5.54 (br d, 1 H, J 3.1 Hz, H-4¦), 5.44 (br t, 1 H, J 8.0 Hz, H-3), 5.35 (dd, 1 H, J 3.3, 11.0 Hz, H-3¦), 5.29 (dd, 1 H, J 4.2, 8.4 Hz, H-2), 5.24 (dd, 1 H, J 3.4, 11.0 Hz, H-2¦), 5.13 (dd, 1 H, J 7.5, 10.5 Hz, H-2%), 4.98 (d, 1 H, J 3.3 Hz, H-1¦), 4.77 (dd, 1 H, J 2.7, 10.4 Hz, H-3%), 4.64 (d, 1 H, J 7.5 Hz, H-1%), 4.40–4.51 (m, 2 H, incl. H-5¦), 4.05–4.24 (m, 5 H, incl. H4%,5), 3.92–4.01 (m, 1 H, H-4), 3.72–3.89 (m,

196

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

2 H), 3.47–3.61 (m, 1 H), 2.15, 2.13, 2.115, 2.10, 2.09, 2.075, 2.070, 2.06, 1.99 (9 s, 27 H, OAc); 13C NMR (CDCl3): d 171.1, 171.0, 170.9, 170.8, 170.54, 170.48, 170.2, 169.5, 161.1, 158.2 (q), 116.2 (q), 101.4, 100.2, 93.3, 78.4, 76.0, 73.6, 72.9, 71.4, 69.2, 69.1, 68.9, 68.3, 68.0, 67.4, 62.4, 60.9, 41.0, 21.33, 21.26, 21.2, 21.13, 21.07, 21.03, 21.00; HRMS Anal. Calcd for C40H50O25N2Cl3F3Na [M+Na]: 1143.1618. Found: 1143.1611. (3,4,6 -Tri-O-acetyl- 2 -deoxy- 2 -trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) - (2,3,6 tri - O - acetyl - b - D - galactopyranosyl) - (1 “ 4) 2,3,6 - tri - O - acetyl - a - D - glucopyranosyl tri chloroacetimidate (9b).—Compound 8b (45 mg, 0.046 mmol) was treated essentially as described in the preparation of 9a, thus yielding 9b (37 mg, 73%); [a]22 +62° (c 1.0, D CHCl3); 1H NMR (CDCl3): d 8.67 (s, 1 H, NH), 7.43 (d, 1 H, J 8.4 Hz, NHCO), 6.49 (d, 1 H, J 3.8 Hz, H-1), 5.54–5.62 (m, 2 H, H-4¦,3), 5.36 (dd, 1 H, J 3.1, 11.6 Hz, H-3¦), 5.15 (dd, 1 H, J 7.5, 10.7 Hz, H-2%), 5.09 (d, 1 H, J 3.9 Hz, H-1¦), 5.06 (dd, 1 H, J 3.8, 9.9 Hz, H-2), 4.87 (dd, 1 H, J 2.5, 10.8 Hz, H-3%), 4.63 (d, 1 H, J 7.6 Hz, H-1%), 4.44–4.65 (m, 4 H, incl. H-2¦), 4.05–4.24 (m, 4 H), 4.05 (d, 1 H, J 2.2 Hz, H-4%), 3.80–3.96 (m, 3 H, incl. H-4), 2.17, 2.09, 2.085, 2.080, 2.06, 2.05, 2.015 (7 s, 27 H, OAc); 13C NMR (CDCl3): d 171.4, 171.2, 170.8, 170.7, 170.6, 170.5, 170.4, 169.9, 169.4, 161.4, 100.8, 99.3, 93.3, 76.6, 75.3, 72.8, 71.9, 71.4, 70.7, 69.8, 69.6, 67.8, 67.7, 67.2, 62.6, 60.7, 60.4, 50.4, 21.31, 21.27, 21.22, 21.11, 21.00, 20.98, 20.95, 20.9; HRMS Anal. Calcd for C40H50O25N2Cl3F3Na [M+Na]: 1143.1618. Found: 1143.1606. (2,3,6 -Tri-O-acetyl- 4 -deoxy- 4 -trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) - (2,3,6 tri - O - acetyl - b - D - galactopyranosyl) - (1 “ 4) 2,3,6 - tri - O - acetyl - a - D - glucopyranosyl tri chloroacetimidate (9c).—Compound 8c (65 mg, 0.066 mmol) was treated essentially as described in the preparation of 9a, thus yielding 9c (61 mg, 83%); [a]22 D +197° (c 0.1, 1 CHCl3); H NMR (CDCl3): d 8.07 (s, 1 H, NH), 6.60 (br d, 1 H, J 9.0 Hz, NHCO), 6.50 (d, 1 H, J 3.7 Hz, H-1), 5.58 (t, 1 H, J 9.6 Hz, H-3), 5.41 (dd, 1 H, J 4.1, 11.2 Hz, H-3¦), 5.07 –5.14 (m, 2 H, H-2%,2), 5.05 (d, 1 H, J 3.8 Hz, H-1¦), 4.93 (dd, 1 H, J 3.7, 11.2 Hz,

H-2¦), 4.86 (br dd, 1 H, J 3.7, 9.2 Hz, H-4¦), 4.73 (dd, 1 H, J 2.3, 10.8 Hz, H-3%), 4.62–4.67 (m, 1 H), 4.57 (d, 1 H, J 7.8 Hz, H-1%), 4.45–4.52 (m, 2 H), 4.11–4.31 (m, 6 H, incl. H-5), 4.04 (br d, 1 H, J 2.2 Hz, H-4%), 3.89 (t, 1 H, J 9.2 Hz, H-4), 3.80 (t, 1 H, J 6.9 Hz), 2.12, 2.110, 2.105, 2.100, 2.08, 2.065, 2.055, 2.025, 2.02 (9 s, 27 H, OAc); 13C NMR (CDCl3): d 171.0, 170.9, 170.8, 170.6, 170.1, 169.4, 161.4, 158.3 (q), 116.1 (q), 101.5, 99.9, 93.3, 78.1, 76.5, 73.4, 72.1, 71.3, 70.33, 70.26, 69.3, 67.7, 66.4, 62.1, 61.7, 61.6, 50.6, 21.4, 21.3, 21.21, 21.15, 21.1, 21.0; HRMS Anal. Calcd for C40H50O25N2Cl3F3Na [M+Na]: 1143.1618. Found: 1143.1611. (2,3,4 -Tri-O-acetyl- 6 -deoxy- 6 -trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) - (2,3,6 tri - O - acetyl - b - D - galactopyranosyl) - (1 “ 4) 2,3,6 - tri - O - acetyl - a - D - glucopyranosyl tri chloroacetimidate (9d).—Compound 8d (45 mg, 0.046 mmol) was treated essentially as described in the preparation of 9a, thus yielding 9d (42.9 mg, 83%; purity: \90%). 1H NMR (CDCl3): d 8.67 (s, 1 H, NH), 7.35– 7.44 (m, 1 H, NHCO), 6.50 (d, 1 H, J 3.8 Hz, H-1), 5.55 (t, 1 H, J 9.7 Hz, H-3), 5.45 (br d, 1 H, J 3.2 Hz, H-4¦), 5.39 (dd, 1 H, J 3.4, 10.9 Hz, H-3¦), 5.10–5.18 (m, 2 H, H-2%,2¦), 5.08 (dd, 1 H, J 3.8, 10.2 Hz, H-2), 5.03 (d, 1 H, J 3.5 Hz, H-1¦), 4.71 (dd, 1 H, J 2.0, 11.1 Hz, H-3%), 4.56 (d, 1 H, J 7.7 Hz, H-1%), 4.37–4.53 (m, 3 H, incl. H-5¦), 4.10–4.24 (m, 3 H), 4.04 (br d, 1 H, J 1.9 Hz, H-4%), 3.76–3.91 (m, 3 H, incl. H-4,6¦), 2.19, 2.12, 2.105, 2.100, 2.07, 2.06, 2.02, 1.99 (8 s, 27 H, OAc); 13C NMR (CDCl3): d 171.0, 170.9, 170.8, 170.6, 170.1, 170.0, 161.4, 158.0 (q), 116.0 (q), 101.2, 99.8, 93.3, 77.6, 76.3, 73.6, 72.4, 71.4, 70.2, 70.0, 69.5, 69.4, 68.2, 68.1, 67.4, 62.04, 61.99, 39.1, 21.4, 21.3, 21.2, 21.11, 21.06, 20.9; HRMS Anal. Calcd for C40H50O25N2Cl3F3Na [M+ Na]: 1143.1618. Found: 1143.1621. (2 S,3 R,4 E) - 2 - Azido - 3 - benzoyloxyoctadec 4 -enyl (2,3,4,6 -tetra-O-acetyl-a- D -galactopyranosyl) - (1 “ 4) - (2,3 - di - O - acetyl - 6 - deoxy - 6 trifluoroacetamido - b - D - galactopyranosyl) (1 “ 4) -2,3,6 -tri-O-acetyl-b-D-glucopyranoside (10a).—Compound 9a (6.5 mg, 0.006 mmol) and (2S,3R,4E)-2-azido-3-(benzoyloxy)-4-octadecen-1-ol [7] (5 mg, 0.012 mmol) were dissolved in dry CH2Cl2 (3 mL). Molecular sieves

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

AW-300 (100 mg) were added, the mixture was stirred for 20 min, and BF3·OEt2 (0.0012 mL, 0.01 mmol) was added. The reaction mixture was stirred at rt for 1.5 h, filtered through Celite, washed with a saturated aqueous NaHCO3, dried, and concd. The residue was chromatographed (1:1 EtOAc–heptane) to give 10a (5 mg, 63%); [a]22 D +44° (c 0.7, CHCl3); 1H NMR (CDCl3): d (assignments of aglycon protons are shown in italic) 8.04–8.08 (m, 2 H, Ar–H), 7.56–7.63 (m, 2 H, NH and Ar–H), 7.44–7.50 (m, 2 H, Ar–H), 5.94 (dt, 1 H, J 6.8, 15.0 Hz, H-5), 5.63 (dd, 1 H, J 4.1, 8.1 Hz, H-3), 5.51–5.60 (m, 3 H, incl. H-4¦, H-4), 5.35 (dd, 1 H, J 3.3, 11.1 Hz, H-3¦), 5.24 (dd, 1 H, J 3.4, 11.1 Hz, H-2¦), 5.21 (t, 1 H, J 7.6 Hz, H-3), 5.11 (dd, 1 H, J 7.5, 10. 5 Hz, H-2%), 4.95–5.01 (m, 2 H, H-1¦, H-2), 4.75 (dd, 1 H, J 2.7, 10.5 Hz, H-3%), 4.61 (2 d, 1 H each, J 6.2, 7.5 Hz, H-1,1%), 4.43–4.52 (m, 2 H, incl. H-5¦), 4.19 (dd, 1 H, J 8.2, 10.8 Hz), 4.07 –4.14 (m, 2 H, incl. H-4), 4.04 (dd, 1 H, J 5.8, 12.0 Hz), 3.87–4.00 (m, 3 H, H-1, H-2, H-4), 3.84 (dq, 1 H, J 2.2, 14.1 Hz), 3.67–3.77 (m, 2 H), 3.62 (dd, 1 H, J 3.4, 10.1 Hz, H-1), 3.48 –3.58 (m, 1 H), 2.15, 2.13, 2.12, 2.10, 2.07, 2.065, 2.055, 2.03, 1.995 (9 s, 27 H, OAc), 1.20–1.45 (m, 24 H,CH2), 0.89 (t, 3 H, J 6.9 Hz, CH3); 13C NMR (CDCl3): d 171.2, 171.0, 170.9, 170.6, 170.4, 170.3, 169.4, 165.5, 139.4, 133.7, 130.3, 130.2, 128.9, 123.1, 101.0, 100.9, 100.2, 78.5, 75.9, 75.0, 73.8, 73.3, 72.8, 72.7, 71.8, 69.2, 69.1, 68.9, 68.3, 68.0, 67.5, 63.9, 62.9, 60.9, 41.3, 32.8, 32.4, 30.1, 30.0, 29.83, 29.79, 29.6, 29.1, 23.1, 21.3, 21.2, 21.12, 21.08, 21.05, 20.96, 14.6; HRMS Anal. Calcd for C63H87O27F3N4Na [M+Na]: 1411.5407. Found: 1411.5432. (2 S,3 R,4 E) - 2 - Azido - 3 - benzoyloxyoctadec 4 -enyl (3,4,6 -tri-O-acetyl- 2 -deoxy- 2 -trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) (2,3,6 - tri - O - acetyl - b - D - galactopyranosyl) (1 “ 4) - 2,3,6 -tri-O-acetyl-b- D -glucopyranoside (10b).—Compound 9b (20 mg, 0.018 mmol) was treated essentially as described in the preparation of 10a, thus yielding 10b (16.3 mg, 65%); [a]22 +13° (c 1.0, CHCl3); 1H D NMR (CDCl3): d (assignments of aglycon protons are shown in italic) 8.03–8.08 (m, 2 H, Ar-H), 7.55–7.62 (m, 1 H, Ar–H), 7.43– 7.50 (m, 3 H, Ar–H, NH), 5.93 (dt, 1 H, J 6.7,

197

14.9 Hz, H-5), 5.51–5.64 (m, 3 H, H-4¦,4,3), 5.36 (dd, 1 H, J 3.1, 11.6 Hz, H-3¦), 5.24 (t, 1 H, J 9.0 Hz, H-3), 5.14 (dd, 1 H, J 7.5, 10.8 Hz, H-2%), 5.07 (d, 1 H, J 3.5 Hz, H-1¦), 4.93 (br t, 1 H, J 8.5 Hz, H-2), 4.87 (dd, 1 H, J 2.5, 10.8 Hz, H-3%), 4.49–4.63 (m, 5 H, incl. H1,1%,2¦,5¦), 4.44 (dd, 1 H, J 5.9, 11.1 Hz), 4.01–4.19 (m, 4 H, incl. H-4%), 3.77–3.97 (m, 5 H, incl. H-4), 3.66–3.73 (m, 1 H), 3.60 (dd, 1 H, J 5.7, 10.3 Hz), 2.17, 2.085, 2.080, 2.06, 2.045, 2.03, 2.015 (7 s, 27 H, OAc), 1.21–1.43 (m, 24 H,CH2), 0.89 (t, 3 H, J 6.8 Hz, CH3); 13 C NMR (CDCl3): d 171.3, 171.2, 170.74, 170.69, 170.65, 170.47, 170.4, 170.0, 169.5, 165.5, 139.5, 133.7, 130.3, 130.2, 128.9, 123.1, 100.6, 100.5, 99.2, 77.0, 75.3, 75.1, 73.2, 72.9, 72.7, 72.3, 72.1, 69.6, 68.7, 67.8, 67.7, 67.2, 63.9, 63.0, 60.7, 60.6, 50.2, 32.8, 32.4, 30.1, 30.0, 29.83, 29.79, 29.6, 29.1, 23.1, 21.3, 21.2, 21.1, 21.0, 14.6; HRMS Anal. Calcd for C63H87O27F3N4Na [M+Na]: 1411.5407. Found: 1411.5449. (2 S,3 R,4 E) - 2 - Azido - 3 - benzoyloxyoctadec 4 -enyl (2,3,6 -tri-O-acetyl- 4 -deoxy- 4 -trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) (2,3,6 - tri - O - acetyl - b - D - galactopyranosyl) (1 “ 4) -2,3,6 -tri-O-acetyl-b-D-glucopyranoside (10c).—Compound 9c (17 mg, 0.015 mmol) was treated essentially as described in the preparation of 10a, thus yielding 10c (13.5 mg, 1 64%); [a]22 D +14° (c 1.0, CHCl3); H NMR (CDCl3): d (assignments of aglycon protons are shown in italic) 8.03–8.08 (m, 2 H, Ar– H), 7.55–7.62 (m, 1 H, Ar–H), 7.43–7.50 (m, 2 H, Ar–H), 6.65 (d, 1 H, J 9.2 Hz, NH), 5.93 (dt, 1 H, J 6.8, 15.0 Hz, H-5), 5.51–5.64 (m, 2 H, H-3,4), 5.39 (dd, 1 H, J 4.1, 11.1 Hz, H-3¦), 5.21 (t, 1 H, J 8.9 Hz, H-3), 5.09 (dd, 1 H, J 7.8, 10.9 Hz, H-2%), 5.02 (d, 1 H, J 3.8 Hz, H-1¦), 4.90–4.97 (m, 2 H, H-2,2¦), 4.85 (br dd, 1 H, J 2.9, 9.0 Hz, H-4¦), 4.71 (dd, 1 H, J 2.4, 10.9 Hz, H-3%), 4.60–4.66 (m, 1 H, H-5¦), 4.55 (d, 2 H, J 7.7 Hz, H-1,1%), 4.40– 4.50 (m, 2 H), 4.01–4.29 (m, 5 H, incl. H4%,6¦), 3.75–3.97 (m, 4 H, incl. H-2), 3.66 (ddd, 1 H, J 2.0, 5.4, 9.8 Hz), 3.59 (dd, 1 H, J 5.8, 10.3 Hz), 2.015, 2.045, 2.055, 2.07, 2.09, 2.10 (6 s, 27 H, OAc), 1.20–1.45 (m, 24 H, CH2), 0.89 (t, 3 H, J 6.9 Hz, CH3); 13C NMR (CDCl3): d 171.1, 171.0, 170.9, 170.8, 170.6, 170.2, 170.09, 170.08, 169.5, 165.5, 139.5,

198

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

133.7, 130.3, 130.2, 128.9, 123.1, 101.5, 100.7, 99.9, 78.1, 76.8, 75.1, 73.7, 73.3, 73.0, 72.1, 72.0, 69.21, 69.15, 68.8, 67.7, 66.3, 63.9, 62.5, 61.8, 61.7, 50.5, 32.8, 32.4, 30.11, 30.09, 30.08, 30.02, 29.83, 29.78, 29.6, 29.1, 23.1, 21.4, 21.2, 21.13, 21.07, 20.99, 20.96, 20.9, 14.6; HRMS Anal. Calcd for C63H87O27F3N4Na [M+Na]: 1411.5407. Found: 1411.5370. (2 S,3 R,4 E) - 2 - Azido - 3 - benzoyloxyoctadec 4 -enyl (2,3,4 -tri-O-acetyl- 6 -deoxy- 6 -trifluoroacetamido - a - D - galactopyranosyl) - (1 “ 4) (2,3,6 - tri - O - acetyl - b - D - galactopyranosyl) (1 “ 4) -2,3,6 -tri-O-acetyl-b-D-glucopyranoside (10d).—Compound 9d (28 mg, 0.025 mmol) was treated essentially as described in the preparation of 10a, thus yielding 10d (22.5 mg, 64%); [a]22 +34° (c 1.0, CHCl3); 1H D NMR (CDCl3): d (assignments of aglycon protons are shown in italic) 8.02–8.09 (m, 2 H, Ar–H), 7.55–7.62 (m, 1 H, Ar–H), 7.43– 7.50 (m, 2 H, Ar–H), 7.37–7.43 (m, 1 H, H-6¦ and NH), 5.93 (br dt, 1 H, J 6.7, 15.0 Hz, H-5), 5.61 (dd, 1 H, J 4.1, 8.1 Hz, H-3), 5.50 –5.60 (m, 1 H, H-4), 5.45 (br d, 1 H, J 3.2 Hz, H-4¦), 5.38 (dd, 1 H, J 3.4, 10.9 Hz, H-3¦), 5.20 (t, 1 H, J 9.1 Hz, H-3), 5.08–5.17 (m, 2 H, H-2%,2¦), 5.02 (d, 1 H, J 3.5 Hz, H-1¦), 4.96 (dd, 1 H, J 7.7, 9.2 Hz, H-2), 4.71 (dd, 1 H, J 2.1, 11.1 Hz, H-3%), 4.55 (d, 1 H, J 7.7 Hz, H-1%), 4.54 (d, 1 H, J 7.7 Hz, H-1), 4.37 –4.51 (m, 3 H, incl. H-5¦), 4.17 (dd, 1 H, J 6.8, 11.2 Hz), 4.07 (dd, 1 H, J 5.4, 12.0 Hz), 4.03 (br d, 1 H, J 2.0 Hz, H-4%), 3.75–3.98 (m, 5 H, incl. H-2, and H-4,6¦), 3.67 (ddd, 1 H, J 2.0, 5.4, 9.9 Hz, H-5 or H-5%), 3.60 (dd, 1 H, J 5.7, 10.3 Hz), 3.38 (br dt, 1 H, J 5.3, 13.6 Hz, H-6¦), 2.19, 2.105, 2.09, 2.075, 2.06, 1.99 (6 s, 27 H, OAc), 1.20–1.45 (m, 24 H, CH2), 0.89 (t, 3 H, J 6.9 Hz, CH3); 13C NMR (CDCl3): d 171.03, 170.95, 170.9, 170.8, 170.6, 170.4, 170.1, 170.0, 165.5, 157.9 (q), 139.5, 133.7, 130.3, 130.2, 128.9, 123.1, 116.2 (q), 101.1, 100.8, 99.9, 76.6, 75.1, 73.4, 73.1, 72.4, 71.8, 69.5, 69.4, 68.8, 68.1, 67.4, 63.9, 62.5, 62.1, 39.0, 32.8, 32.4, 30.11, 30.09, 30.08, 30.01, 29.83, 29.78, 29.6, 29.1, 23.1, 21.4, 21.2, 21.07, 21.06, 14.6; HRMS Anal. Calcd for C63H87O27F3N4Na [M+Na]: 1411.5407. Found: 1411.5414. (2 S,3 R,4 E) - 2 - (1 -Adamantaneacetamido) - 3 (benzoyloxy) -octadec- 4 -enyl (2,3,4,6 -tetra-O-

acetyl-a- D -galactopyranosyl) - (1 “ 4) - (2,3 -diO - acetyl - 6 - deoxy - 6 - trifluoroacetamido - b - D galactopyranosyl) - (1 “ 4) - 2,3,6 - tri - O - acetyl b-D-glucopyranoside (11a).—Compound 10a (7 mg, 0.005 mmol) was dissolved in a pyridine–water (6:1, 6 mL) mixture and cooled to 0 °C. H2S was bubbled through the mixture for 1 h at 0 °C and the mixture was kept under H2S for 44 h. Residual H2S was removed with a stream of N2 for 1 h, the mixture was concd with toluene, and the residue was kept under vacuum overnight. The residue was dissolved in CH2Cl2 (2 mL) and N-(3-dimethylaminopropyl)-N%-ethylcarbodiimide (EDC, 20 mg, 0.1 mmol) and 1adamantaneacetic acid (20 mg, 0.1 mmol) were added. The reaction mixture was stirred at rt for 16 h and the solvent was removed. The residue was chromatographed (1:1 EtOAc–heptane) to give 11a (5.8 mg, 75%); 1 [a]22 D +46° (c 0.5, CHCl3); H NMR (CDCl3): d (assignments of aglycon protons are shown in italic) 8.00–8.05 (m, 2 H, Ar–H), 7.53–7.64 (m, 2 H, Ar–H and NHCOCF3), 7.42–7.48 (m, 2 H, Ar–H), 5.90 (dt, 1 H, J 6.8, 15.2 Hz, H-5), 5.69 (d, 1 H, J 9.0 Hz, NH) 5.61 (t, 1 H, J 6.9 Hz, H-3), 5.53–5.56 (m, 1 H, H-4¦), 5.51 (br dd, 1 H, J 7.3, 15.3 Hz, H-4), 5.35 (dd, 1 H, J 3.3, 11.0 Hz, H-3¦), 5.23 (dd, 1 H, J 3.4, 11.0 Hz, H-2¦), 5.16 (t, 1 H, J 7.7 Hz, H-3), 5.09 (dd, 1 H, J 7.5, 10.5 Hz, H-2%), 4.98 (d, 1 H, J 3.2 Hz, H-1¦), 4.96 (dd, 1 H, J 6.4, 7.9 Hz, H-2), 4.74 (dd, 1 H, J 2.7, 10.5 Hz, H-3%), 4.58 (d, 1 H, J 7.3 Hz, H-1%), 4.56 (d, 1 H, J 6.2 Hz, H-1), 4.44–4.55 (m, 2 H, H-2 and H-5¦), 4.38 (dd, 1 H, J 2.3, 11.9 Hz, H-6%), 4.19 (dd, 1 H, J 8.2, 10.8 Hz, H-6¦), 4.08–4.13 (m, 2 H, incl. H-4%), 4.04 (dd, 1 H, J 4.2, 10.4 Hz, H-6¦), 3.95 (dd, 1 H, J 6.0, 11.9 Hz, H-6%), 3.91 (br t, 1 H, J 8.2 Hz, H-4), 3.78–3.86 (m, 1 H), 3.74 (br d, 1 H, J 9.4 Hz), 3.61–3.69 (m, 2 H, incl. H-5%), 3.50–3.59 (m, 1 H), 1.90–2.16 (m, 32 H), 1.57–1.75 (m, 12 H), 1.20–1.40 (m, 24 H), 0.89 (t, 3 H, J 6.9 Hz, CH3); 13C NMR (CDCl3): d 171.1, 170.9, 170.6, 170.2, 169.4, 165.7, 138.0, 133.5, 130.7, 130.0, 128.8, 124.9, 101.1, 100.9, 100.2, 78.4, 76.0, 74.3, 73.7, 73.3, 72.9, 72.8, 72.0, 69.2, 69.0, 68.3, 68.2, 68.0, 67.4, 63.0, 60.9, 52.3, 51.3, 48.5, 43.0, 42.7, 41.2, 37.1, 33.2, 32.8, 32.4, 30.1, 29.9, 29.8, 29.7, 29.3, 29.0, 23.1, 21.3, 21.2, 21.1, 21.0,

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

14.6; HRMS Anal. Calcd for C75H105O28F3N2Na [M+Na]: 1561.6704. Found: 1561.6681. (2 S,3 R,4 E) - 2 - (1 -Adamantaneacetamido) - 3 (benzoyloxy) - octadec - 4 - enyl (3,4,6 - tri - O acetyl- 2 -deoxy- 2 -trifluoroacetamido-a- D -galactopyranosyl) - (1 “ 4) - (2,3,6 - tri - O - acetyl - b D -galactopyranosyl) - (1 “ 4) - 2,3,6 -tri-O-acetylb-D-glucopyranoside (11b).—Compound 10b (16 mg, 0.012 mmol) was treated essentially as described in the preparation of 11a, thus yielding 11b (13.3 mg, 75%); [a]22 D +29° (c 1.0, CHCl3); 1H NMR (CDCl3): d (assignments of aglycon protons are shown in italic) 8.01–8.06 (m, 2 H, Ar–H), 7.54–7.61 (m, 1 H, Ar–H), 7.41 –7.49 (m, 3 H, Ar–H and NHCOCF3), 5.89 (br dt, 1 H, J 6.6, 15.3 Hz, H-5), 5.67 (d, 1 H, J 9.0 Hz, NH), 5.61 (br t, 1 H, J 6.8 Hz, H-3), 5.57 (br d, 1 H, J 2.7 Hz, H-4¦), 5.50 (br dd, 1 H, J 7.2, 15.4 Hz, H-4), 5.36 (dd, 1 H, J 3.1, 11.6 Hz, H-3¦), 5.23 (t, 1 H, J 9.1 Hz, H-3), 5.12 (dd, 1 H, J 7.5, 10.8 Hz, H-2%), 5.07 (d, 1 H, J 3.5 Hz, H-1¦), 4.82–4.93 (m, 2 H, H-2,3%), 4.57 (d, 1 H, J 7.5 Hz, H-1%), 4.47 (d, 1 H, J 7.7 Hz, H-1), 4.40–4.63 (m, 5 H, incl. H-2¦, H-2), 4.09–4.20 (m, 2 H), 4.05 (br d, 1 H, J 2.4 Hz, H-4%), 3.88–4.05 (m, 3 H), 3.79 (t, 1 H, J 9.3 Hz, H-4), 3.75–3.84 (m, 1 H), 3.62 –3.70 (m, 2 H), 1.85–2.19 (m, 32 H), 1.56 –1.76 (m, 12 H), 1.18–1.40 (m, 24 H), 0.89 (t, 3 H, J 6.8 Hz, CH3); 13C NMR (CDCl3): d 171.3, 171.2, 170.9, 170.8, 170.7, 170.6, 170.5, 170.2, 170.1, 169.4, 165.6, 137.8, 133.5, 130.7, 130.1, 128.8, 125.0, 100.6, 100.4, 99.3, 77.3, 76.9, 75.5, 74.3, 73.2, 72.7, 72.6, 72.5, 72.1, 69.6, 68.0, 67.8, 67.7, 67.2, 63.0, 60.7, 60.6, 52.3, 51.3, 50.3, 43.0, 37.1, 33.2, 32.8, 32.4, 30.11, 30.05, 29.9, 29.8, 29.7, 29.3, 29.0, 23.1, 21.3, 21.2, 21.12, 21.08, 21.00, 20.97, 20.95, 14.6; HRMS Anal. Calcd for C75H105O28F3N2Na [M+Na]: 1561.6704. Found: 1561.6681. (2 S,3 R,4 E) - 2 - (1 -Adamantaneacetamido) - 3 (benzoyloxy) - octadec - 4 - enyl (2,3,6 - tri - O acetyl- 4 -deoxy- 4 -trifluoroacetamido-a- D -galactopyranosyl) - (1 “ 4) - (2,3,6 - tri - O - acetyl - b D -galactopyranosyl) - (1 “ 4) - 2,3,6 -tri-O-acetylb-D-glucopyranoside (11c).—Compound 10c (13.3 mg, 0.01 mmol) was treated essentially as described in the preparation of 11a, thus yielding 11c (12.8 mg, 87%); [a]22 D +24° (c 1.0,

199

CHCl3); 1H NMR (CDCl3): d (assignments of aglycon protons are shown in italic) 7.99–8.05 (m, 2 H, Ar–H), 7.54–7.60 (m, 1 H, Ar–H), 7.41–7.47 (m, 2 H, Ar–H), 6.66 (d, 1 H, J 9.1 Hz, NHCOCF3), 5.89 (br dt, 1 H, J 6.7, 15.2 Hz, H-5), 5.67 (d, 1 H, J 9.0 Hz, NH), 5.59 (br t, 1 H, J 6.9 Hz, H-3), 5.50 (br dd, 1 H, J 7.3, 15.3 Hz, H-4), 5.38 (dd, 1 H, J 4.1, 11.1 Hz, H-3¦), 5.19 (t, 1 H, J 9.1 Hz, H-3), 5.07 (dd, 1 H, J 7.7. 10.9 Hz, H-2%), 5.02 (d, 1 H, J 3.8 Hz, H-1¦), 4.88–4.96 (m, 2 H, H-2,2¦), 4.84 (br dd, 1 H, J 3.5, 9.0 Hz, H-4¦), 4.70 (dd, 1 H, J 2.4, 10.9 Hz, H-3%), 4.59–4.65 (m, 1 H, H-5¦), 4.51, 4.49 (d, 1 H each, J 7.5 and 7.6 Hz, H-1% or H-1), 4.46–4.53 (m, 1 H), 4.44 (dd, 1 H, J 6.4, 11.1 Hz), 4.35 (br d, 1 H, J 12.0 Hz), 4.26 (dd, 1 H, J 7.4, 11.1 Hz, H-6¦), 4.18 (dd, 1 H, J 4.1, 11.5 Hz, H-6¦), 4.12 (dd, 1 H, J 7.1, 11.0 Hz), 3.94–4.06 (m, 3 H, incl. H-4%), 3.74–3.82 (m, 2 H, incl. H-4), 3.56– 3.68 (m, 2 H), 1.85–2.13, 1.55–1.75, 1.20– 1.40 (m, 68 H), 089 (t, 3 H, J 6.9 Hz, CH3); 13 C NMR (CDCl3): d 171.1, 171.0, 170.9, 170.8, 170.6, 170.2, 170.0, 169.5, 165.6, 137.9, 133.5, 130.7, 130.0, 128.8, 125.0, 101.4, 100.7, 99.9, 78.1, 76.8, 74.3, 73.4, 73.3, 73.0, 72.2, 72.1, 69.2, 68.0, 67.7, 66.3, 62.6, 61.7, 52.3, 51.3, 50.6, 43.0, 37.1, 33.2, 32.8, 32.4, 30.1, 29.9, 29.8, 29.7, 29.3, 29.0, 23.1, 21.4, 21.23, 21.15, 21.1, 21.0, 20.9, 14.6; HRMS Anal. Calcd for C75H105O28F3N2Na [M+Na]: 1561.6704. Found: 1561.6721. (2 S,3 R,4 E) - 2 - (1 -Adamantaneacetamido) - 3 (benzoyloxy) - octadec - 4 - enyl (2,3,4 - tri - O acetyl- 6 -deoxy- 6 -trifluoroacetamido-a- D -galactopyranosyl) - (1 “ 4) - (2,3,6 - tri - O - acetyl - b D -galactopyranosyl) - (1 “ 4) - 2,3,6 -tri-O-acetylb-D-glucopyranoside (11d).—Compound 10d (20 mg, 0.014 mmol) was treated essentially as described in the preparation of 11a, thus yielding 11d (18.6 mg, 84%); [a]22 D +45° (c 1.2, CHCl3); 1H NMR (CDCl3): d (assignments of aglycon protons are shown in italic) 7.99–8.06 (m, 2 H, Ar–H), 7.53–7.61 (m, 1 H, Ar–H), 7.39–7.48 (m, 3 H, Ar–H, NHCOCF3), 5.89 (br dt, 1 H, J 6.6, 15.3 Hz, H-5), 5.67 (d, 1 H, J 9.1 Hz, NH), 5.60 (br t, 1 H, J 6.9 Hz, H-3), 5.45–5.54 (m, 1 H, H-4), 5.44 (br d, 1 H, J 3.3 Hz, H-4¦), 5.38 (dd, 1 H, J 3.4, 10.9 Hz, H-3¦), 5.18 (t, 1 H, J 9.2 Hz, H-3), 5.11–5.17

200

H.C. Hansen, G. Magnusson / Carbohydrate Research 322 (1999) 190–200

(m, 1 H, H-2¦), 5.10 (dd, 1 H, J 7.7, 11.1 Hz, H-2%), 5.01 (d, 1 H, J 3.4 Hz, H-1¦), 4.93 (dd, 1 H, J 7.9, 9.4 Hz, H-2), 4.70 (dd, 1 H, J 2.0, 11.0 Hz, H-3%), 4.51 (d, 1 H, J 7.8 Hz, H-1%), 4.49 (d, 1 H, J 7.8 Hz, H-1), 4.46–4.55 (m, 1 H, H-2), 4.32–4.46 (m, 3 H, incl. H-5¦), 4.18 (dd, 1 H, J 6.7, 11.2 Hz, H-6¦), 3.94–4.06 (m, 3 H, incl. H-4%), 3.74–3.86 (m, 3 H, incl. H-4,6¦), 3.57–3.68 (m, 2 H), 3.32–3.42 (m, 1 H), 2.20–1.85 (m, 32 H), 1.55–1.75 (m, 12 H), 1.18–1.40 (m, 24 H), 0.89 (t, 3 H, J 6.8 Hz, CH3); 13C NMR (CDCl3): 171.00, 170.95, 170.9, 170.8, 170.6, 170.3, 170.1, 165.6, 157.9 (q), 138.0, 133.5, 130.7, 130.0, 128.8, 125.0, 116.2 (q), 101.0, 100.8, 99.8, 76.9, 76.5, 74.2, 73.4, 73.2, 73.1, 72.4, 72.1, 69.5, 69.4, 68.1, 68.0, 67.4, 62.5, 62.1, 52.3, 51.2, 43.0, 39.0, 37.1, 33.2, 32.8, 32.4, 30.10, 30.05, 29.9, 29.8, 29.7, 29.3, 29.0, 23.1, 21.4, 21.22, 21.19, 21.15, 21.07, 14.6; HRMS Anal. Calcd for C75H105O28F3N2Na [M+Na]: 1561.6704. Found: 1561.6696.

.

Acknowledgements This work was supported by the Swedish Natural Science Research Council and the National Institutes of Health (NIH, USA). References [1] H.C. Hansen, G. Magnusson, Carbohydr. Res., 322 (1999) 181 – 189. [2] M. Mylvaganam, C.A. Lingwood, Biochem. Biophys. Res. Commun., in press. [3] H.C. Hansen, G. Magnusson, Carbohydr. Res., 322 (1999) 166 – 180. [4] P.-G. Nyholm, G. Magnusson, Z. Zheng, R. Norel, B. Binnington-Boyd, C.A. Lingwood, Chem. Biol., 3 (1996) 263–275. [5] T.L. Lowary, O. Hindsgaul, Carbohydr. Res., 251 (1994) 33 – 67. [6] R.R. Schmidt, W. Kinzy, Ad6. Carbohydr. Chem. Biochem., 50 (1994) 21 – 123. [7] (a) R.R. Schmidt, P. Zimmermann, Angew. Chem., Int. Ed. Engl., 25 (1986) 725 – 726. (b) Y. Ito, M. Kiso, A. Hasegawa, J. Carbohydr. Chem., 8 (1989) 285 – 294. [8] K. Jansson, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnusson, J. Dahme´n, G. Noori, K. Stenvall, J. Org. Chem., 53 (1988) 5629 – 5647.