SYNTHESIS OF THE PHOSPHORUS–NITROGEN SKELETON

SYNTHESIS OF THE PHOSPHORUS–NITROGEN SKELETON

Chapter 4 SYNTHESIS OF THE PHOSPHORUS-NITROGEN SKELETON A . General Survey of Synthetic Routes A l a r g e n u m b e r of p h o s p h o r u s - n i...

2MB Sizes 198 Downloads 594 Views

Chapter 4 SYNTHESIS OF THE

PHOSPHORUS-NITROGEN

SKELETON

A . General Survey of Synthetic Routes A l a r g e n u m b e r of p h o s p h o r u s - n i t r o g e n c o m p o u n d s h a v e b e e n d e s c r i b e d in the literature. S o m e are prepared by direct synthesis, a n d others are obtained by substitution reactions performed o n suitable precursors. In this chapter w e will c o n s i d e r t h e d i r e c t s y n t h e s i s r o u t e s , a n d s u b s t i t u t i o n p r o c e s s e s will b e d i s c u s s e d in C h a p t e r s 5 t h r o u g h 1 4 . A l t h o u g h m a n y d i r e c t s y n t h e t i c r o u t e s t o p h o s p h o r u s - n i t r o g e n c o m p o u n d s h a v e b e e n d e s c r i b e d , m o s t of t h e s e m e t h o d s fall i n t o a few g e n e r a l c a t e g o r i e s , a n d t h e s e a r e c o n s i d e r e d b e l o w in t u r n . O n e reaction, the t r e a t m e n t of h a l o p h o s p h o r a n e s with a m m o n i u m halides, h a s b e e n s t u d i e d so extensively t h a t , in a d d i t i o n t o b e i n g m e n t i o n e d in t h e g e n e r a l s u r v e y , it is c o n s i d e r e d in g r e a t e r d e t a i l in S e c t i o n B .

1. S y n t h e s i s o f C y c l o - a n d

a. Interaction

Polyphosphazenes

of Halophosphoranes

with Ammonium

H a l o p h o s p h o r a n e s react with a m m o n i u m phazenes, according to the general e q u a t i o n

Halides

h a l i d e s t o yield

cyclophos-

1 - 7 1

η R P X + η N H X -> (NPR )„ + An HX 2

3

4

2

T h e g r o u p R can be chloro, b r o m o , or an organic unit, and the halogen atom, X , c a n b e c h l o r o o r b r o m o . T y p i c a l l y , t h e r e a c t i o n t a k e s p l a c e in a b o i l i n g h a l o genated solvent such as s-tetrachloroethane or chlorobenzene. Cyclic trimers a n d t e t r a m e r s a r e u s u a l l y f o r m e d in t h e g r e a t e s t yields, a l t h o u g h s m a l l e r 97

98

4.

SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON

a m o u n t s o f cyclic p e n t a m e r s , h e x a m e r s , e t c . , a n d l i n e a r species c a n a l s o b e isolated. T h e m o s t extensively s t u d i e d r e a c t i o n is t h e o n e b e t w e e n p h o s p h o r u s p e n t a c h l o r i d e a n d a m m o n i u m c h l o r i d e t o yield t h e s t a b l e , w h i t e , c r y s t a l l i n e h e x a chlorocyclotriphosphazene, (NPC1 ) , and octachlorocyclotetraphosphazene, ( N P C 1 ) 4 . ~ T h e o v e r a l l r e a c t i o n s c h e m e is 2

1

3

3 5

2

η PC1 + η NH C1 5

^ > (NPC1 ) + (NPCI ) + · · ·

4

2

3

2

4

T h i s is o n e of t h e m o s t i m p o r t a n t r e a c t i o n s in p h o s p h a z e n e c h e m i s t r y , since it c o m p r i s e s t h e c h e a p e s t a n d m o s t c o n v e n i e n t first s t e p t o t h e s y n t h e s i s of t h e m a j o r i t y of c y c l o - a n d p o l y p h o s p h a z e n e s . I t is a l s o t h e b a s i s o f a m a n u f a c t u r i n g p r o c e s s for c h l o r o c y c l o p h o s p h a z e n e s . 1 3 - 2 2

A s i m i l a r r e a c t i o n is e m p l o y e d for t h e p r e p a r a t i o n of zenes. T h e g e n e r a l e q u a t i o n is

bromophospha-

4 0 - 5 1

η PBr + η Br + η NH Br 3

2

4

~~ " > (NPBr ) + (NPBr ) + · · · 4

HBr

2

3

2

4

T h e l o w e r b r o m o c y c l o p h o s p h a z e n e s a r e s t a b l e , w h i t e , c r y s t a l l i n e solids. T h e y a r e m o r e sensitive t o a t m o s p h e r i c m o i s t u r e t h a n a r e t h e c h l o r o d e r i v a t i v e s . A l t h o u g h fewer cyclic b r o m o p h o s p h a z e n e h o m o l o g u e s h a v e b e e n r e p o r t e d t h a n for t h e ( N P C 1 ) „ o r ( N P F ) „ series, species u p t o t h e cyclic h e x a m e r h a v e been d e s c r i b e d a n d h i g h e r cyclic h o m o l o g u e s u n d o u b t e d l y c a n b e i s o l a t e d . 2

2

4 8 , 4 9

M i x e d c h l o r o - b r o m o c y c l o p h o s p h a z e n e s a r e p r e p a r e d b y t h e u s e of a n a p p r o p r i a t e m i x t u r e of p h o s p h o r u s h a l i d e a n d a m m o n i u m h a l i d e , a s i l l u s t r a t e d by the following e q u a t i o n : 4 3

3 PC1 + 3 Br + 3 NH Br 3

2

4

^ " ^ " ^ S

N P C l B r + 12 HX 3

110°C

3

2

4

Phosphorus tribromide, phosphorus pentachloride, and a m m o n i u m chloride give N P C l B r , w h i l e p h o s p h o r u s t r i c h l o r i d e , b r o m i n e , a n d a m m o n i u m b r o ­ m i d e yield N P C l B r . 3

3

4

2

4 3

3

3

2

4

O r g a n o c y c l o p h o s p h a z e n e s are synthesized by similar m e t h o d s . For e x a m p l e , l , 3 , 5 - t r i p h e n y l - l , 3 , 5 - t r i c h l o r o c y c l o t r i p h o s p h a z e n e is p r e p a r e d f r o m phenyltetrachlorophosphorane and a m m o n i u m chloride, according to the reaction 5 3 - 6 9

Ph 3 PhPCl + 3 NH C1 4

4

>

CL I P\ Ph' ^

x

/

C1 l| / P h Ρ C1 X

+ 12 HC1 (Refs. 57, 60, 65)

99

A. GENERAL S U R V E Y OF SYNTHETIC R O U T E S

S i m i l a r l y , d i p h e n y l t r i c h l o r o p h o s p h o r a n e a n d a m m o n i u m c h l o r i d e yield fully phenylated cyclophosphazenes by the overall process η Ph PCl + η NH C1 2

3

An

> (NPPh ) + (NPPh ) +

H C l

4

2

3

2

4

(Refs. 54, 55) O t h e r related reactions are η PhPBr + η Br 4- η NH Br 2

2

4

4

"

H B r

>

(NPBrPh) + (NPBrPh) 3

4

(Refs. 63, 64) η Me PCl + η NH C1 2

3

η Et PCl + 4n N H 2

*" ' > (NPMe ) + (NPMe ) 4 (Ref. 67) H C

4

3

2

3

2

4

(NPEt ) + 3/i NH C1

3

2

n

4

(Ref. 68) 3 M e N P C l + 12 N H 2

4

> [NP(CI)NMe ] + 9 NH C1

3

2

7

2

3

(Ref. 39)

4

-4/7HC1

"(C F ) PC1 + «NH C1 3

3

> [NP(C F ) ] + [NP(C F ) ]

4

3

7

2

3

3

7

2

(Ref. 69a)

4

A m o r e d e t a i l e d c o n s i d e r a t i o n of t h i s r e a c t i o n is given in S e c t i o n Β of t h i s chapter. b . Cyclization

of Linear

Phosphorus-Nitrogen

Compounds

Cyclophosphazenes are formed when a linear p h o s p h a z e n e with terminal a m i n o groups reacts with a h a l o p h o s p h o r a n e . " 7 2

T h e r e a r e a n u m b e r of

7 7

v a r i a t i o n s t o t h i s t y p e of s y n t h e s i s , b u t t y p i c a l e x a m p l e s a r e s h o w n in t h e following scheme: Ph P.^N.-^PPh 2

I

'C1 2

G

pels

Ph P^^PPh 2

-HCl

I

I NH

NH

2

2

2

(Ref. 73)

II

cK

x

ci

I Me PCl 2

3

— — — >

Ph.P^^PPh, I II Ν Me^

x

(Ref. 76)

Me

In o n e e x p e r i m e n t , r e p o r t e d by H e r r i n g a n d D o u g l a s , p h a z e n e salt, I, w a s p r e p a r e d

by t h e r e a c t i o n

of

7 4

p h o r a n e , P h P C l , w i t h a m m o n i a in c h l o r o f o r m s o l u t i o n . 2

3

the d i a m i n o p h o s -

diphenyltrichlorophos­ 5 9

C o m p o u n d 1 is

a w h i t e , c r y s t a l l i n e solid, w h i c h m e l t s at 2 4 5 ° - 2 4 6 C . It is s u r p r i s i n g l y s t a b l e c

100

4.

SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON

in t h e a t m o s p h e r e . A 1:1 m o l a r m i x t u r e o f I a n d p h o s p h o r u s p e n t a c h l o r i d e w a s h e a t e d i n v a c u u m a t 135°C f o r 16 h o u r s . T h e p r o d u c t w a s r e c r y s t a l l i z e d f r o m p e t r o l e u m e t h e r t o give a 2 5 % yield o f w h i t e c r y s t a l s o f 1,1-dichloro3,3,5,5-tetraphenylcyclotriphosphazene, II. Interestingly enough, the reactions of I w i t h d i p h e n y l t r i c h l o r o p h o s p h o r a n e , P h P C l , 2

phenyltetrachlorophos-

3

p h o r a n e , P h P C l , o r p h o s p h o r u s p e n t a c h l o r i d e yield significant q u a n t i t i e s o f 4

the appropriate cyclote/raphosphazene. Ph P^Nr^PPh 2

I

' C l + 2 Ph PCl

NH ci 4

e

2

2

3

-HCl

I

NH

NH

2

•>

(NPPh ) 2

(Ref. 74)

4

2

T h e a m m o n i u m c h l o r i d e r e q u i r e d f o r t h e s y n t h e s i s is t h o u g h t t o b e f o r m e d d u r i n g side r e a c t i o n s . O n e of the c o m p o u n d s prepared by this route, l,l-dichloro-/m/?5 -3,5-bis,

( 4 - m e t h y l p h e n y l ) - 3 , 5 - d i p h e n y l c y c l o t r i p h o s p h a z e n e , is t h e first r e p o r t e d o p t i c ­ ally active c y c l o t r i p h o s p h a z e n e . T h e c o m p o u n d w a s s y n t h e s i z e d f r o m t h e o p t i c a l l y a c t i v e p h o s p h a z e n e salt s h o w n . Ph

6

NH

NH

2

6

4

4

/Ph

MeC H

C H Me

MeC H » - P — Ν — P — Ph 6

7 2

Cl

e

PCI5

pir I

4HC1

cr

2

C H Me 6

4

(Ref. 72)

ci


I

II

NH

2

Ph P^ ^PPh N

2

RP(OPh)

2PhOH

2

2

2

NH

Ph

I

PPh

II

2

.N

(Ref. 75) w h e r e R is O P h , M e , o r E t . If c o m p o u n d I r e a c t s w i t h t h e h a l i d e o f a n e l e m e n t o t h e r t h a n p h o s p h o r u s , mixed h e t e r o a r o m a t i c rings c a n b e p r e p a r e d . F o r example, with b o r o n tri­ chloride, t h e following reaction takes place: [ + BCI3

Ph F

'PPh

2

II

HN CI

2

+ 3 HCl

(Ref. 77)

A.

c. Thermal

101

G E N E R A L S U R V E Y OF S Y N T H E T I C R O U T E S

Decomposition

of

Azidophosphines

T h i s r e a c t i o n r o u t e utilizes t h e m e t a t h e t i c a l e x c h a n g e b e t w e e n a h a l o p h o s p h i n e a n d a m e t a l a z i d e , f o l l o w e d b y careful d e c o m p o s i t i o n o f t h e r e s u l t a n t azidophosphine. T h e o v e r a l l r e a c t i o n s c h e m e is a s f o l l o w s : 7 8 - 8 5

R PCl + N a N 2

~

3

N a C 1

>

R PN 2

>

3

(R PN)„ + / i N 2

2

This reaction can b e used t o p r e p a r e a variety of cyclo- and p o l y p h o s p h a z e n e s , as illustrated b y t h e following e q u a t i o n s : -LiCl

(CF ) PC1 4- LiN 3

2

PBr + N a N 3

50°-60°C

> (CF ) PN

3

3

-NaBr

3

1A

^

>

0t

2

— NaCl

2

3

n

o

o

_

1

7

5



3

JO m m

[Br PN ]

IOJ —loi C

PhPCl + N a N

2

o

> [(CF ) PN]„ + « N

>

3

3

2

(Br PN)„ + / i N 2

[PhClPN ] -> (PhClPN) + η N

>

3

C

n

2

(Ref. 79) (Ref. 78)

2

(Ref. 78)

2

-NaCl

Ph PCl + N a N 2

> [Ph PN ] -> (Ph PN) + 4 N

165°-167°C

3

2

3

2

4

(Ref. 78)

2

Cl Ph P=N—P—Ph 2

2 Ph PCl + 2 PhPCl + 4 N a N 2

2

>

3

I Ν

II

+4N

II Ν

(Ref. 81)

2

I

Ph—Ρ—N=P Ph I

2

Cl Ph PCl + Me SiN 2

3

3

Me SiCl 3

> Ph PN 2

25°C

3

-> (Ph PN) + 3 N 2

3

(Ref. 83)

2

S o m e idea of the required reaction conditions can b e obtained from the p r o ­ cedure reported by Tesi, H a b e r , a n d D o u g l a s . Bis(trifluoromethyl)chlorophosphine, ( C F ) P C 1 , w a s treated with lithium azide a t 0 ° C for 24 hours. D i s t i l l a t i o n in vacuo t h e n yielded a b o u t 7 0 % o f t h e highly e x p l o s i v e bis(trifluoromethyl)azidophosphine, ( C F ) P N . T h i s m a t e r i a l is a v i o l e n t d e t o n a t o r even a t l i q u i d n i t r o g e n t e m p e r a t u r e s . H o w e v e r , s l o w d e c o m p o s i t i o n of t h e a z i d e a t 5 0 ° - 6 0 ° C a t 37 m m p r e s s u r e c a u s e d e l i m i n a t i o n o f n i t r o g e n a n d formation of a white, waxy p o l y p h o s p h a z e n e of formula [ ( C F ) P N ] . A s shown by Herring, i s o l a t i o n o f t h e i n t e r m e d i a t e a z i d o p h o s p h i n e is u n ­ n e c e s s a r y i n o t h e r r e a c t i o n s since, f o r e x a m p l e , d i r e c t a d d i t i o n o f s m a l l q u a n ­ tities o f s o d i u m a z i d e t o m o l t e n d i p h e n y l c h l o r o p h o s p h i n e gives a m i x t u r e o f d i p h e n y l p h o s p h a z e n e s directly. 7 9

3

2

3

2

3

3

2

n

7 8

d. Dehydrohalogenation

of

Aminochlorophosphoranes

A m i n o d i c h l o r o p h o s p h o r a n e s , R P ( C 1 ) N H , can be dehydrohalogenated in t h e p r e s e n c e o f a t e r t i a r y a m i n e t o yield a c y c l o - o r p o l y p h o s p h a z e n e . 2

2

2

8 6 - 9 0

102

4.

SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON

A p p r o p r i a t e a m i n o d i c h l o r o p h o s p h o r a n e s for t h i s r e a c t i o n c a n b e s y n t h e s i z e d either by oxidative chlorination of a m i n o p h o s p h i n e s (phosphinamides o r p h o s p h i n o u s amides), o r b y chlorination of p h o s p h i n i c amides. T h e general r e a c t i o n s e q u e n c e is R PNH 2

2

\ci

2

V

-2HC1

Ο

R P(C1 )NH 2

R PNH 2

2

2

>

E t a N

(R PN)„ 2

2

In this reaction, t h e a m i n o d i c h l o r o p h o s p h o r a n e apparently functions as a phosphinimine hydrochloride with t h e structure [ R P ( C 1 ) N H ] C R T h e s c o p e o f this s y n t h e t i c r o u t e is i l l u s t r a t e d b y t h e f o l l o w i n g r e a c t i o n s e q u e n c e s : @

2

2

- 2 HCl

(CF ) PNH + Cl -> (CF ) P(C1 )NH 3

2

2

2

3

2

2



2

[(CF ) PN] , ,„ 3

2

3

4

(Refs. 86, 87)

- 2 HCl

( C F ) P N H + Cl 3

7

2

2

2

(C F ) P(C1 )NH 3

7

2

2

( C F ) P N H + Cl -> (C F ) P(C1 )NH 6

5

2

2

2

6

5

2

2

2

> [(C F ) PN]

3

> [(C F ) PN]

3

3

- 2 HCl 2

7

2

(Refs. 86, 87) 6

5

2

(Ref. 90) -POCI3

-2

Ph P(0)NH + PCI5 2

> Ph P(Cl )NH

2

2

2

HCl

> (Ph PN)

2

2

3 a n d 4

(Ref. 89) D e h y d r o h a l o g e n a t i o n c a n b e effected w i t h a s t r o n g b a s e s u c h as t r i e t h y l a m i n e , or, as in t h e latter reaction, simply b y heating in v a c u u m . e. Interaction amine

of Chlorophosphines

with Chloramine

or Ammonia

and Chlor-

Sisler a n d c o - w o r k e r s have shown that diarylchlorophosphines can b e converted t o cyclophosphazenes by treatment with chloramine (scheme l ) , o r w i t h a m m o n i a a n d c h l o r a m i n e ( s c h e m e 2 ) . T w o different r e a c t i o n p a t h 9 1 - 9 3

9 2

9 1

R P(C1 )NH 2

NH C1 "(1)

2

2

^

2

R PC1 2

NH.Cl

R PNH 2

2

[R P(NH ) ]®C1 2

2

G

2

w a y s a p p a r e n t l y exist. B o t h r o u t e s h a v e b e e n u s e d t o p r e p a r e t h e p h e n y l c y c l o phosphazenes, ( N P P h ) . Reaction scheme 1 resembles that discussed a b o v e i n S e c t i o n d. H o w e v e r , t h e s e c o n d s t e p o f r o u t e 1 p r o c e e d s t h r o u g h t h e 2

3 a n d 4

103

A. G E N E R A L S U R V E Y OF S Y N T H E T I C R O U T E S

intermediate f o r m a t i o n of linear p h o s p h a z a n e s , such as P h P ( N H ) ( C l ) N H P 2

2

( C l ) P h , a n d a m m o n o l y s i s leads t o t h e f o r m a t i o n of [ P h P ( N H ) N P ( N H ) 2

2

2

2

2

P h ] C l . T h i s l a t t e r c o m p o u n d w a s a l s o i s o l a t e d f r o m r e a c t i o n 2. T h u s , t h e r e @

G

2

is a s t r o n g r e l a t i o n s h i p b e t w e e n s e q u e n c e 2 a n d t h e r e a c t i o n s d i s c u s s e d i n Section b a b o v e . T h e c h l o r a m i n e - a m m o n i a m i x t u r e used in r o u t e 2 w a s pre­ p a r e d b y t h e g a s - p h a s e r e a c t i o n o f c h l o r i n e w i t h excess a m m o n i a , a n d t h i s m i x t u r e w a s b u b b l e d t h r o u g h a solution of d i p h e n y l c h l o r o p h o s p h i n e in tetrachloroethane. f. Pyrolysis

of a Diorganophosphonium

Halide

T h i s r o u t e utilizes p a r t of t h e s e q u e n c e o u t l i n e d i n r o u t e 2 o f S e c t i o n e a b o v e . Thus, intermediate molecular weight poly(dimethylphosphazenes) containing ~ 1 2 0 repeating units have been p r e p a r e d by the pyrolysis of d i m e t h y l d i a m i n o phosphonium chloride.

T h e o v e r a l l r e a c t i o n s c h e m e is

9 4

200°C

Az[Me P(NH ) ]®Cl 2

2

> (Me PN)„ + η NH C1

0

2

2

4

T h e m e c h a n i s m p r o b a b l y proceeds t h r o u g h t h e p r i o r f o r m a t i o n of [ M e P ( N H ) - - ^ N - - ^ P ( N H ) M e ] © C l followed by cyclization t o cyclophosphazenes and subsequent polymerization. 0

2

2

2

g. Dehydrohalogenation

2

of a

Cyclophosphazane

Cyclouf/phosphazanes (prepared by m e t h o d s t o be described later) c a n be d e h y d r o h a l o g e n a t e d t o yield c y c l o t r i - o r h i g h e r c y c l o p h o s p h a z e n e s , a s s h o w n in t h e f o l l o w i n g e x a m p l e s . T h e d e g r e e o f p o l y m e r i z a t i o n o f t h e l a t t e r p r o d u c t was not reported. 9 5

F

Ph

I

H Ν—PPh

2

Ph P—NH

2

-HF (CsF in benzene)

2

F

2

I

HN-PPh p

h . Miscellaneous

n

ρ

-HP

(

P

H

P

P

N

(CsF in dimethyl sulfoxide)

Syntheses

It h a s b e e n r e p o r t e d t h a t c h l o r o c y c l o p h o s p h a z e n e s c a n a l s o b e p r e p a r e d b y the t r e a t m e n t of p h o s p h o r u s p e n t a c h l o r i d e with a m m o n o b a s i c mercuric

104

4 . SYNTHESIS OF T H E P H O S P H O R U S - N I T R O G E N SKELETON

chloride, N H H g C l , a n d by t h e reaction of phosphoryl nitride with chlorine 2

at temperatures above 8 0 0 ° C .

Poly(chlorofluorophosphazene) (III) c a n

9 6 - 9 9

be prepared by ammonolysis of F P ( 0 ) — Ο — P ( 0 ) F 2

thesis r o u t e Ο

Ο II -NH40PF2

Ο

Il I I

F P—O—PF 2

2

via t h e following syn­

:

9 9 a

+ 2NH

2

o >

3

O

I

H NPF 2

pcis Γϊϊϊά*

II CI P=NPF 3

2

2

-P(0)F C1 200°C -P(0)C1 N 2

3

2

(NPFC1)„ III

2. SYNTHESIS OF CYCLOPHOSPHAZANES A N D M O N O P H O S P H A Z A N E S

a. By Rearrangement

of Hydroxy-

or

Alkoxyphosphazenes

T h e hydrolysis of halocyclotri- a n d t e t r a p h o s p h a z e n e s results in the forma­ t i o n o f h y d r o x y p h o s p h a z e n e s (see C h a p t e r 5). S u c h c o m p o u n d s c a n r e a r r a n g e spontaneously to cyclophosphazanes (IV and V ) ,

Cl

/ C I

x

11 X I

CkJ c

,

ΗΟ HCX

X

-

P

^

C1

S

Χ

I

below.

Ο

ΗΝ

NH

O H OH

HO

as shown

HO

/ O H

II /

1 0 0 - 1 1 5

HO^

X

N Η

P

V

IV

CI

I

OH

CI

I

I

II

II

Ν

I

Cl—Ρ—N=P—Cl

Cl

CI

I

HO—P=N—P—OH

CI—P=N—P—CI Ν

OH

H 0 2

N

N

OH

H 0=P—N—P—OH

I

OH

I

I

ΗΝ

NH

I

HO—P—N=P—OH

I

O

II

I

I

HO—Ρ—N—P=0

OH

II

O

S t a b l e salts o f t h e h y d r o x y p h o s p h a z a n e s c a n a l s o b e i s o l a t e d .

H

1 OH

A.

GENERAL SURVEY OF SYNTHETIC

105

ROUTES

Similarly, alkyl g r o u p m i g r a t i o n occurs from oxygen to nitrogen when alkoxycyclophosphazenes are heated at 160°-200°C. Alkyl halides are catalysts for t h i s r e a c t i o n . RO

/ O R

X

R

Heat

R O

X

R N T



Π / O R

RO^| 1 N

X

\ ^ °

O

OR

P

V

N R


I Ν

.OR %

Q

T h e r e a r r a n g e m e n t t a k e s p l a c e w h e n R is M e , Et, «-Pr, /-Pr, o r b e n z y l , b u t it d o e s n o t o c c u r w h e n R is p h e n y l o r t r i f l u o r o e t h y l . T h e r e a c t i o n is c o n ­ s i d e r e d in m o r e d e t a i l in C h a p t e r 13. 116

b . Reactions

of Halophosphorus

Compounds

with

Amines

B o t h t h e cyclic d i m e r i c p h o s p h a z a n e , V I , a n d t h e t r i p l e r i n g s t r u c t u r e , V I I , h a v e b e e n i s o l a t e d f r o m t h e r e a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h m e t h y l ammonium chloride. Triple ring c o m p o u n d s similar to VII, b u t with 1 1 7 , 1 1 8

®

PC1 + MeNH Cl° 5

-HCl

χ

>

3

Me Me 9 Me Me / Ν Nv I . N . /NL α 3 ΡΓ / P C 1 ! C1 P^ ^ P ^ ^ P ^ > C 1 3

3

Me

Me

VI C O or S 0 described.

2

3

Me VII

u n i t s in p l a c e of t h e t e r m i n a l P C 1

3

groups, have also been

1 1 9 , 1 1 9 a

I n t h e p r e s e n c e of t r a c e s of w a t e r , p h o s p h o r u s p e n t a c h l o r i d e r e a c t s w i t h m e t h y l a m m o n i u m c h l o r i d e t o yield a c o m p o u n d w h i c h is believed t o h a v e a cage structure ( V I I I ) .

1 2 0

The

3 1

P N M R s p e c t r u m s h o w e d a singlet a t + 7 4 . 3

p p m , w h i c h is c o n s i s t e n t w i t h t h e c a g e s t r u c t u r e . C o m p o u n d V I c a n a l s o b e

MeN

Ρ Cl

NMe 2

VIII

106

4.

SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N

SKELETON

o b t a i n e d f r o m t h e r e a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h m e t h y l a m i n e . It is a c r y s t a l l i n e solid w h i c h m e l t s a t 178°C. T h e s a m e t y p e o f r e a c t i o n o c c u r s w i t h a r y l c h l o r o p h o s p h o r a n e s . F o r ex­ ample, p h e n y l t e t r a c h l o r o p h o s p h o r a n e reacts with an alkylammonium c h l o r i d e t o yield a c y c l o d i p h o s p h a z a n e ( I X ) . These materials are colorless, 1 2 1

Ph

I

-HCl

2 PhPCI + 2 AlkNH Cl 4

3

C1 P—NAlk "I I AlkN—PC1 -P( 2



2

I

Ph IX crystalline substances which are readily hydrolyzed by a t m o s p h e r i c moisture. T h e y c a n n o t b e d e p o l y m e r i z e d t o t h e m o n o p h o s p h a z e n e in b o i l i n g b e n z e n e . H o w e v e r , d i p h e n y l t r i c h l o r o p h o s p h o r a n e r e a c t s w i t h a m i n e s t o f o r m saltlike c o m p o u n d s of f o r m u l a [ P h P ( C l ) — N H R ] © C l . e

1 2 1 a

2

P h o s p h o r u s p e n t a f l u o r i d e r e a c t s w i t h s e c o n d a r y a m i n e s t o yield first a n adduct and then a m o n o p h o s p h a z a n e . 1 2 2

PF + H N R 5

F PNHR

2

5

A m o n o p h o s p h a z a n e is a l s o f o r m e d i n t e r a c t s with a p r i m a r y a m i n e .

Heat

——>

2

F P—NR 4

— Hr

when

2

phenyltetrafluorophosphorane

1 2 3

®

PhPF + 2 MeNH 4

PhF P—NHMe + MeNH Cl

2

3

Q

3

P h o s p h o r u s p e n t a c h l o r i d e r e a c t s w i t h a m i n o m e t h a n e s u l f o n i c acid t o give a solid cyclic d i m e r i c p h o s p h a z a n e ( X ) by t h e p r o c e s s 1 2 4

PC1 + H N C H S 0 H 5

2

2

-S0

2

3

>

2

C1 P—NCHoCl | | C1CH N—PC1 3 3

2

3

X T h i s p r o d u c t is a c o l o r l e s s , c r y s t a l l i n e c o m p o u n d , m . p . 1 4 0 ° - 1 4 1 ° C , w h i c h is r a p i d l y d e c o m p o s e d by t r a c e s of m o i s t u r e . C o m p o u n d V I is f o r m e d by t h e i n t e r a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h 7V,7V'-dimethylsulfamide. T h e cyclohexyl ester of d i c h l o r o p h o s p h o r i c acid r e a c t s w i t h c y c l o h e x y l a m i n e Ο

II

ο Il RO—PC1 + H N R 2

2

_

H C 1

>

ROP-NR I I RN—POR XI

I

o

A.

GENERAL SURVEY OF SYNTHETIC

t o yield a c y c l o d i p h o s p h a z a n e w i t h s t r u c t u r e X I .

Similarly, t h i o p h o s p h o r y l

1 2 5

c h l o r i d e i n t e r a c t s w i t h a n i l i n e h y d r o c h l o r i d e t o yield X I I .

1 2 6

Finally, phos-

PhHNP—NPh | | + 10 HCl PhN—PNHPh

4[PhNH ]®Cl + 2 S=PC1 -> Q

3

107

ROUTES

3

S XII

p h o r u s t r i c h l o r i d e r e a c t s w i t h p r i m a r y a m i n e s , s u c h as a n i l i n e , t o yield c y c l o d i p h o s p h a z a n e s s u c h as X I I I a n d X I V . 2PhNH + 2PCl 2

_HCI

'

1 2 7

It s h o u l d be n o t e d t h a t s i m i l a r

1 2 8

C1P—NPh , I I ^ > PhN—PCI

RHNP—NPh | | PhN—PNHR

R N H

3

c

XIII

XIV

r e a c t i o n s a r e e m p l o y e d for t h e s y n t h e s i s of c y c l o d i p h o s p h a z a n e s a n d m o n o p h o s p h a z e n e s ( p h o s p h i n i m i n e s ) . W h e t h e r d i m e r i z a t i o n of t h e

monophos-

p h a z e n e o c c u r s a p p e a r s t o d e p e n d p a r t l y o n steric f a c t o r s . c. Reactions

of Phosphorus

Halides

with Silicon-Nitrogen

Compounds

128-133

S c h m u t z l e r a n d M a c D i a r m i d h a v e s h o w n t h a t t h e s i l i c o n - n i t r o g e n b o n d in s i l y l a m i n e s o r s i l a z a n e s c a n b e cleaved by f l u o r o p h o s p h o r a n e s t o yield m o n o p h o s p h a z a n e s or cyclodiphosphazanes. T h e following e q u a t i o n s illustrate this method. PF + Me NSiMe 5

2

3

-> F P—NMe + Me SiF 4

2

(Ref. 129)

3

PF + Et NSiMe -> F P—NEt + Me SiF 5

2

3

4

PhPF + Me NSiMe 4

2

2

(Refs. 95, 130)

3

PhF P—NMe + Me SiF

3

3

2

3

(Ref. 130)

F P—NMe \ \ + 4 Me SiF (Refs. 129, 131) MeN—PF 3

2 PF + 2 MeN(SiMe ) 5

3

>

2

3

3

2 PhPF + 2 MeN(SiMe ) 4

3

>

2

PhF P—NMe \ \ + 4 Me SiF (Ref. 131) MeN—PF Ph 2

3

2

T h e f o u r - m e m b e r e d r i n g s y s t e m s a r e sufficiently s t a b l e t o b e distilled o r s u b ­ limed. T h e y are also hydrolytically s t a b l e . However, cyclization does not o c c u r if t w o p h e n y l g r o u p s a r e p r e s e n t o n p h o s p h o r u s , a n d a m o n o p h o s p h a z e n e is f o r m e d i n s t e a d . 1 3 1

Ph PF + MeN(SiMe ) 2

3

2

2

P h F P = N M e + 2 Me SiF 2

3

(Ref. 95)

108 *Η,

4.

3 1

P , and

1 9

SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON

F N M R spectroscopy have been used to confirm the structures

of m o s t of t h e a b o v e c o m p o u n d s . A r e l a t e d c y c l o t r i p h o s p h a z a n e s y n t h e s i s i n v o l v e s t h e i n t e r a c t i o n of p h o s ­ phorus trichloride with a disilazane,

1 3 1

as in t h e e q u a t i o n CI

3 PC1 + 3 EtN(SiMe ) 3

3

EtN 2

NEt

6 Me SiCl 3

C1P . / P C 1 N

Et T h i s c o m p o u n d is u n s t a b l e i n m o i s t a i r . I n a closely r e l a t e d p r o c e s s , d i c h l o r o t r i f l u o r o p h o s p h o r a n e r e a c t s w i t h t h e b i s ( t r i m e t h y l s i l y l ) d e r i v a t i v e o f Ν,,/V'-dimethylsulfamide ( X V ) t o yield t h e m o n o c y c l i c a n d bicyclic p h o s p h a z a n e c o m p o u n d s X V I a n d X V I I b y t h e following s e q u e n c e : 1 3 3

Me Me Si—Nk C1 PF + ^S0 Me Si—Ν Me

Me -Me SiCl

3

2

3

F P^

3

S0

3

2

3

2

Me

XV

XVI -Me SiF 3

Me ^N /P: ^N" ; s o 2 Me F Me Me

o s; 2

v

XVII d. Pyrolysis

of Amino-Phosphorus

Compounds

S o m e very e a r l y p h o s p h a z a n e s y n t h e s e s fall i n t o t h i s c a t e g o r y . F o r e x a m p l e , t h e p y r o l y t i c c o n d e n s a t i o n of C l P ( 0 ) N H P h t o t h e c y c l o d i p h o s p h a z a n e X V I I I was reported by Stokes in 1 8 9 3 . F u r t h e r r e a c t i o n of t h i s p r o d u c t w i t h a m i n e 2

1 3 4

CI

CI

I

2 0=P—CI I

- 2 HCl

i

*

0=P—NPh

I I

PhN—P=0

NHPh

I

CI XVIII h y d r o c h l o r i d e results in t h e replacement of t h e halogen a t o m s a n d t h e forma­ t i o n o f species s u c h a s [ R ' N H ( 0 ) P — N P h ] . « M o r e r e c e n t l y , it h a s b e e n r e p o r t e d t h a t t h e p y r o l y s i s o f p e n t a f l u o r o p h e n y l 1 3 5

2

1 3 6

109

A. GENERAL SURVEY OF SYNTHETIC ROUTES

d i a m i n o p h o s p h i n e s results in t h e elimination of pentafluorobenzene a n d t h e formation

of a

possible

C F P. 6

cyclodiphosphazane

-NHCH Ph

2

2

5

NHCH Ph

0

0

o

However,

1 3 7

this

PhCH NHP—NCH Ph 2

C

~ 6F H C

2

(ΧΓΧ).

2

PhCH N—PNHCH Ph

5

2

2

XIX m a t e r i a l is u n s t a b l e in s o l u t i o n . T h e t h e r m a l d e c o m p o s i t i o n o f o r g a n o p h o s p h o r u s triamides also results in t h e formation of c y c l o p h o s p h a z a n e dimers. 1 3 8 , 1 3 8 a

Ο 2 0=P(NHR)

Heat 3

I

RHNP—NR I I 4-2 R N H RN—PNHR

2

Ο Ο NR

2

Heat

I

2 0=P(NHR)

2

RHNP—NR I I 4-2 R N H RN—PNHR 2

I

ο e. Miscellaneous

Phosphazane

Syntheses

B i s ( t r i f l u o r o m e t h y l ) c h l o r a m i n e o r t h e b r o m o a n a l o g u e r e a c t w i t h tris( t r i f l u o r o m e t h y l ) p h o s p h i n e t o yield a m o n o p h o s p h a z a n e b y t h e p r o c e s s 1 3 9

(CF ) NC1 + (CF ) P -> (CF ) N—P(CF ) + CF C1 3

2

3

3

3

2

3

2

3

A m o n o p h o s p h a z a n e is a l s o f o r m e d b y t h e f o l l o w i n g r e a c t i o n ^S0 C1 PC1 V H N ^ 2

5

^so ci

1 4 0

:

_HCI ^S0 C1 — C I P — N ^ 2

4

so ci

2

2

T h i s is a m o i s t u r e - s e n s i t i v e c o m p o u n d . F i n a l l y , t r i s ( d i e t h y l a m i n o ) p h o s p h i n e i n t e r a c t s w i t h a n i l i n e o r t o l u i d i n e t o give t h e c y c l o d i p h o s p h a z a n e (PhHNP—NPh) . 1 4 1

2

3. S y n t h e s i s o f M o n o p h o s p h a z e n e s ( P h o s p h i n i m i n e s ) a n d H i g h e r L i n e a r Phosphazenes

M a n y different r e a c t i o n s h a v e b e e n d e s c r i b e d f o r t h e p r e p a r a t i o n o f m o n o ­ phosphazenes a n d related linear c o m p o u n d s . " T h e following sections s e p a r a t e t h e s e a p p r o a c h e s i n t o b r o a d r e a c t i o n classes, a l t h o u g h it s h o u l d b e 1 4 2

2 0 8

110

4.

SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON

e m p h a s i z e d t h a t c e r t a i n m o n o p h o s p h a z e n e s y n t h e s e s follow p r o c e s s e s s i m i l a r t o t h o s e m e n t i o n e d p r e v i o u s l y for t h e p r e p a r a t i o n of c y c l o p h o s p h a z e n e s o r cyclophosphazanes. a. Reaction

of Chlorophosphoranes

with Ammonium

Chloride

T h e i n t e r a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h a m m o n i u m c h l o r i d e u s u a l l y yields l i n e a r p h o s p h a z e n e s a s well as c y c l o p h o s p h a z e n e s . The m e c h a n i s t i c significance of t h i s fact will b e d i s c u s s e d later. Several l i n e a r species have been isolated by Becke-Goehring a n d c o - w o r k e r s , but the p r i m a r y r e a c t i o n is a s f o l l o w s : 2 5 , 1 4 2 - 1 5 0

2 5 , 1 4 2 - 1 4 7

3

[CI P=N—ρα ] [ρα ] + 4 φ

P C I + NH4C1 - >

3

5

θ

3

HCI

6

T h e s y n t h e s i s is c a r r i e d o u t in a s j y r a - t e t r a c h l o r o e t h a n e - n i t r o b e n z e n e s o l v e n t system a t 8 0 ° - 1 4 0 ° C , a n d t h e p h o s p h a z e n e salt crystallizes f r o m t h e s o l v e n t as w h i t e n e e d l e s w h i c h m e l t a t 3 1 0 ° - 3 1 5 ° C . T h e c o m p o u n d is e x c e p t i o n a l l y sensitive t o h y d r o l y s i s . T h e P N M R s p e c t r u m s h o w s t w o p e a k s (at —21.4 a n d + 3 0 5 . 0 p p m relative t o 8 5 % H P 0 ) w i t h a n i n t e n s i t y r a t i o of 2 : 1 . L o n g e r - c h a i n species, s u c h as [ C 1 P = N — P C 1 = N — P C 1 ] ® [ P C 1 P , a r e f o r m e d b y successive c h a i n - b u i l d i n g steps w i t h a m m o n i u m c h l o r i d e a n d phosphorus pentachloride, a n d t h e s e c o m p o u n d s c a n a l s o b e identified b y P N M R s p e c t r a . F o r e x a m p l e , t h e t r i p h o s p h a z e n e salt s h o w n a b o v e yields a triplet s p e c t r u m ; o n e - o f t h e s e lines is r e s o l v a b l e t o a d o u b l e t ( P C 1 ) , o n e t o a triplet ( P C 1 ) , a n d o n e is u n r e s o l v e d ( P C 1 ) . A s d i s c u s s e d l a t e r ( S e c t i o n B ) , l i n e a r c h l o r o p h o s p h a z e n e s of t h i s t y p e a r e believed t o b e i n t e r m e d i a t e s f o r m e d d u r i n g t h e s y n t h e s i s of c y c l o p h o s p h a z e n e s , since a m m o n o l y s i s of t h e l i n e a r c o m p o u n d s r e s u l t s in t h e f o r m a t i o n of c y c l o p h o s p h a z e n e s . I t is a l s o k n o w n t h a t liquid a m m o n i a r e a c t s w i t h p h o s p h o r u s p e n t a c h l o r i d e t o yield t h e l i n e a r aminophosphazene X X by the p r o c e s s 3 1

3

4

3

2

3

6

1 4 5

3 1

3

0

2

2 5

6

5 9 , 1 4 2 , 1 4 7

2 PCI5 + 16 N H

-> [ ( N H ) P — N — P ( N H ) l C l e

3

2

3

2

3

e

+ 9 NH C1 4

XX

O n e of t h e p r o d u c t s i s o l a t e d f r o m t h e r e a c t i o n b e t w e e n p h o s p h o r u s p e n t a ­ c h l o r i d e a n d a m m o n i a is t e t r a a m i n o p h o s p h o n i u m c h l o r i d e ( X X I ) . This p r o d u c t c a n b e c o n d e n s e d w i t h p h o s p h o r u s p e n t a c h l o r i d e t o yield a b r a n c h e d c h l o r o p h o s p h a z e n e salt. 1 5 1

A m o d i f i c a t i o n of t h e p h o s p h o r u s p e n t a c h l o r i d e - a m m o n i u m c h l o r i d e r e ­ a c t i o n t a k e s p l a c e w h e n m e t a l h a l i d e s s u c h as S b C l , S b C l , A1C1 , A l B r , B C 1 , B F , T i C l , Z n C l , F e C l , C u C l , o r T1C1 a r e p r e s e n t . Linear phos­ phazenes are obtained which are end-capped by the metal halide component. F o r e x a m p l e , c o m p o u n d s of c o m p o s i t i o n ( N = P C l ) „ S b C l a r e f o r m e d w h e n antimony trichloride, p h o s p h o r u s pentachloride, a n d a m m o n i u m chloride 3

5

1 5 2 ,

3

3

4

2

3

2

3

1 5 3

3

3

A .

G E N E R A L

S U R V E Y

NH PC1 + 8 N H 5

-4NH Cl

O F

3

111

R O U T E S

2

H N—Ρ—NH

4

S Y N T H E T I C

2

NH

2

Cl

4 PCI5

e

- 8 HCl

2

Cl

XXI

I

Cl—P—Cl Cl

N

1

1

Cl 1

Cl—P=N—P=N—P—Cl I

I

Cl

N

,

Cl

0

I

Cl

Cl—P—Cl I

Cl r e a c t in t r i c h l o r o b e n z e n e . C o m p o u n d s of t h i s t y p e a r e t h e r m a l l y s t a b l e oils which are apparently resistant to polymerization a b o v e 500°C. T h e y are very easily h y d r o l y z e d , h o w e v e r . Linear, phenyl-substituted phosphazenes can be isolated from the reactions of p h e n y l c h l o r o p h o s p h o r a n e s w i t h a m m o n i u m c h l o r i d e . T h u s , t h e f o l l o w i n g reactions are k n o w n to occur: 2 Ph PCl + NH4CI -> [Ph ClP=N—PClPh ]®Cl + 4 HCl

(Refs. 58, 154)

2 PhPCl + NH4CI -> [PhCl P=N—PCl Ph]®Cl + 4 HCl

(Ref. 155)

e

2

3

2

2

e

4

2

2

T h e i n t e r a c t i o n of d i p h e n y l t r i c h l o r o p h o s p h o r a n e w i t h a m m o n i u m c h l o r i d e t a k e s p l a c e in t e t r a c h l o r o e t h a n e a t 130°C. T h e t e t r a p h e n y l d i p h o s p h a z e n e salt f o r m s c o l o r l e s s c r y s t a l s in 9 0 % yield. T h e r e a c t i o n of p h e n y l t e t r a c h l o r o p h o s p h o r a n e w i t h a m m o n i u m c h l o r i d e a l s o t a k e s p l a c e in h o t t e t r a c h l o r o e t h a n e , a n d t h e l i n e a r d i p h e n y l p h o s p h a z e n e salt c a n b e o b t a i n e d in 60 % yield a s w h i t e crystals, m . p . 210°C. Similar p r o d u c t s are obtained w h e n phenyldichlorophosphine interacts with nitrogen trichloride. 1 5 5

PhPCl

NCI3 2

[PhCl P=N—PCl Ph]®Cl 4- [PhCl P=N—P(ClPh) =N—PCl Ph]®Cl + e

2

e

2

2

2

[PhCl P=N—P(ClPh)=N—P(ClPh)=N—PCl Ph]®Cl 2

2

e

etc.

Related linear phosphazenes are formed when tetraphenyldiphosphine re­ a c t s w i t h a g a s e o u s m i x t u r e of a m m o n i a a n d c h l o r a m i n e according to the following reaction s c h e m e : 1 5 6

Ph P—PPh 2

NH C1 + NH 2

2

3

[PH (NH )P=N—Ρ(ΝΗ )ΡΗ ] α φ

2

2

2

2

θ

+ Ph (NH ) P®Cl 2

2

2

Q

112

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S - N I T R O G E N

S K E L E T O N

or when diphenylchlorophosphine interacts with hydrazine h y d r o c h l o r i d e .

1 5 7

H NNH HCI 2

2

Ph PCl



2

[Ph (NH )P=N—PPh =N—P(NH )Ph]®Cl 2

2

2

e

2

T h i s l a t t e r p r o d u c t is a w h i t e s o l i d , m . p . 2 8 5 ° C . W h e n h e a t e d i n v a c u u m a t 2 8 0 ° - 3 0 5 ° C a t r e d u c e d p r e s s u r e it f o r m s

hexaphenylcyclotriphosphazene,

(NPPh ) . 2

3

b . Treatment

of Cyclophosphazenes

with Inorganic

Halides

P h o s p h o r u s pentachloride reacts with hexachlorocyclotriphosphazene

or

o c t a c h l o r o c y c l o t e t r a p h o s p h a z e n e t o yield l i n e a r p h o s p h a z e n e s b y t h e p r o r P

o 1 3 , 18, 158, 159 R

Cl

2

PC1

C1 P^ /PC1 2

F o r example, M o r a n Cl

e

1 5 9

N

5

->

[Cl(Cl P==N) PCl ]®Cl 2

n

e

3

2

has reported that the c o m p o u n d [C1(C1 P=N) PC1 ]®2

3

3

c a n b e p r e p a r e d b y h e a t i n g ( N P C 1 ) w i t h P C 1 in a n a p p r o x i m a t e l y 1.0 t o 2

3

5

1.9 m o l a r r a t i o a t 2 5 0 ° C for 11 h o u r s . T h e y e l l o w p r o d u c t is i n s o l u b l e in b e n ­ z e n e a n d h e x a n e a n d it m e l t s a t 9 5 ° - 9 6 ° C . A n o t h e r y e l l o w solid c o m p o u n d , [ C 1 ( C 1 P = N ) P C 1 ] ® C 1 , is o b t a i n e d after 0

2

4

3

100 h o u r s r e a c t i o n . W h e n

the

( N P C 1 ) t o PCI5 r a t i o is 5 : 1 , oily h i g h e r l i n e a r p o l y m e r s a r e f o r m e d , a n d t h e s e 2

3

polymerize to high polymers when heated above 300°C. A mechanism p r o ­ p o s e d for t h e i n i t i a l a t t a c k b y P C 1

5

on (NPC1 ) 2

3

includes an electrophilic

a t t a c k at nitrogen by the [ P C 1 ] c o m p o n e n t of the [PC1 ] [PC1 ]~ complex, +

+

4

followed

by ring cleavage

4

of the resultant Cl

2 PC1 + (NPC1 ) 5

2

3

I

6

cyclophosphazene

cation.

1 5 9

2

©

2

PC1

PCl e

II

C1 P^PC1 4

6

2

J

[C1 P=N—PC1 =N—PC1 =N—PCl ]®[PCl ] 3

2

2

3

e

6

T r e a t m e n t of t h e s e l i n e a r species w i t h a l u m i n u m t r i c h l o r i d e o r b o r o n t r i ­ c h l o r i d e r e s u l t s in t h e r e p l a c e m e n t of t h e [ P C 1 ] ~ a n i o n b y [A1C1 ]~ o r [BC1 ]~ 6

4

4

a n i o n s . T h i s t r e a t m e n t e n h a n c e s t h e t h e r m a l s t a b i l i t y of t h e l i n e a r p h o s p h a ­ zenes.

1 5 9

I t is a l s o w o r t h w h i l e t o n o t e t h a t c h l o r o c y c l o p h o s p h a z e n e s

apparently

u n d e r g o ring cleavage with a l u m i n u m chloride a n d other metal h a l i d e s , and that ( N P F ) 2

3

a p p e a r s to be cleaved by cesium f l u o r i d e .

1 6 0 3

1 8 , 1 6 0

Octaphenyl-

A .

G E N E R A L

S U R V E Y

O F

S Y N T H E T I C

113

R O U T E S

cyclotriphosphazene, ( N P P h ) , also reacts with p h o s p h o r u s pentachloride to 2

give l i n e a r d e r i v a t i v e s . c. Reaction

of Amino

4

1 6 1

Compounds

with Phosphorus

Pentachloride ' * 162 1

4

T h i s s y n t h e s i s r o u t e , g e n e r a l l y k n o w n a s t h e K i r s a n o v r e a c t i o n , c a n b e for­ m u l a t e d in g e n e r a l t e r m s b y t h e e q u a t i o n PC1 + R N H 5

C1 P=NR + 2 HCl

2

(Ref. 162)

3

T h e g r o u p R can be varied over a considerable range, as illustrated by the following e q u a t i o n s : PCI5 + PhNH -> C l P = N P h + 2 HCl 2

(Refs. 166, 167)

3

PCI5 + RCONH -> C l P = N C O R + 2 HCl 2

PCI5 + P h S 0 N H 2

(Ref. 168)

3

-> C1 P=N—S0 —Ph + 2 HCl

2

3

PCI5 + NH OH

C l P = N O H + 2 HCl

2

(Ref. 170)

3

2 PC1 + N H S 0 H -> C1 P=N—S0 C1 + 3 HCl + POCl 5

2

3

3

PCI5 + H NP(0)(OPh) 2

(Ref. 169)

2

2

(Refs. 171, 172)

3

CI P=N—P(0)(OPh) + 2 HCl

2

3

(Ref. 173)

2

PCI5 + H NP(S)(OPh) -> C1 P=N—P(S)(OPh) + 2 HCl 2

2

2 PCI5 + S 0 ( N H ) 2

2

3 PCI5 + H NP(0)(OH) 2

(Ref. 173)

2

-> C 1 P = N — S 0 — N = P C 1 + 4 HCl

2

2

3

3

2

(Ref. 174)

3

-> C1 P=N—P(0)C1 + 4 HCl + 2 POCl 3

2

3

(Ref. 175)

2 PCI5 + RP(0)(OAlk)NH -> C1 P=NP(0)C1R + 2 HCl + POCl + AlkCl 2

3

3

(Ref. 176) F PC1 + H N S 0 F -> F P = N S 0 F + 2 HCl

(Ref. 177)

F PC1 + H NPOF

(Ref. 177)

3

2

3

2

2

2

3

2

F P-=NPOF + 2 HCl

2

3

F PC1 + H NP(S)F -> F P = N P ( S ) F + 2 HCl 3

2

2

2

3

(Ref. 177)

2

Ph PCl + H NPh -> P h P = N P h + 2 HCl 3

2

2

(Refs. 178-180)

3

Ph PCl + H N — S 0 — C H M e -> P h C l P = N — S 0 — C H M e + 2 HCl (Ref. 181) 2

3

2

2

6

4

Ph PCl + H NOSC H N0 -
2

2

6

4

2

2

2

6

4

P h P = N S O C H N 0 + POPh + 2 HCl 3

6

4

2

3

(Ref. 182) Ph PCl + H NC(S)NHPh -> Ph P=NC(S)NPhH + 2 HCl 3

2

2

(Ref. 183)

3

I n a closely r e l a t e d p r o c e s s , p h o s p h o r u s p e n t a c h l o r i d e , p h o s p h o r u s tri­ chloride, and hydroxylamine hydrochloride react according to the s c h e m e 1 8 4

2 PC1 + PCI5 + 2[H NOHl®Cl 3

3

Q

-> C1 P=NP(0)C1 + 4 HCl + 4 NH C1 + POCl 3

2

4

3

I t s h o u l d b e n o t e d t h a t t h e m a j o r i t y of a r o m a t i c a m i n e s r e a c t w i t h p h o s ­ p h o r u s p e n t a c h l o r i d e t o f o r m d i m e r s of s t r u c t u r e ( C 1 P — N A r ) (i.e., c y c l o diphosphazanes) rather than m o n o m e r s . Only weakly basic amines form stable 3

2

114

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S - N I T R O G E N

S K E L E T O N

monophosphazenes. H o w e v e r , r e p l a c e m e n t of o n e c h l o r i n e a t o m in C l P = N A r b y a n o r g a n i c u n i t s h a r p l y r e d u c e s t h e t e n d e n c y for d i m e r i z a t i o n . A n u m b e r of p h o s p h a z e n e s t h a t w e r e o r i g i n a l l y t h o u g h t t o b e m o n o m e r i c h a v e s u b s e q u e n t l y b e e n s h o w n t o b e cyclic d i m e r s . 1 6 7

3

d. Interaction

of a Tertiary

Phosphine

or a Halophosphine

with an

Azide

T h i s r e a c t i o n r o u t e w a s u s e d b y S t a u d i n g e r for t h e e a r l y s y n t h e s i s of m o n o ­ phosphazenes. I t r e q u i r e s t h e r e a c t i o n of a t e r t i a r y p h o s p h i n e w i t h a n o r g a n i c a z i d e in e t h e r , a c c o r d i n g t o t h e f o l l o w i n g g e n e r a l s e q u e n c e : 1 8 5 ,

1 8 6

R P + R'N 3

3

-> R P N — N = N — N R ' -> R P = N R ' + N 3

3

2

R and R' can be aromatic or aliphatic. W h e n aliphatic groups are present on n i t r o g e n , t h e c o m p o u n d s a r e v e r y sensitive t o m o i s t u r e , a n d t h e a p p r o p r i a t e phosphine oxide and amine are formed by hydrolysis. However, when a r o m a t i c g r o u p s a r e a t t a c h e d t o n i t r o g e n , t h e d e r i v a t i v e s s h o w m o r e stability t o w a t e r b u t c a n still b e h y d r o l y z e d b y d i l u t e a c i d . It is of i n t e r e s t t h a t P h P = N P h is p a l e yellow in c o l o r , w h e r e a s P h P = N H , P h P = N E t , P h P = N C O P h , a n d m a n y other m o n o p h o s p h a z e n e s are colorless. 1 8 7

3

3

3

3

P h o s p h o r u s ylides a l s o r e a c t w i t h o r g a n i c a z i d e s t o yield m o n o p h o s p h a z e n e s according to the p r o c e s s 1 8 8

P h P = C H R + 2 PhN -> P h P = N P h + P h N = C H R + 2 N 3

3

3

2

It h a s r e c e n t l y b e e n s h o w n t h a t silyl a z i d e s c a n a l s o b e e m p l o y e d for s y n t h e s e s of t h i s t y p e .

1 8 9 , 1 9 0

T h u s , tertiary phosphines react with trimethylsilyl azide to

yield m o n o p h o s p h a z e n e s by t h e p r o c e s s Me0H-H S0

_ N,

R P + Me SiN 3

3

2 3

2

-> R P = N S i M e 3

4



3

3

R P = N H + MeOSiMe 3

3

-20°C

iV-Silylated a m i n o p h o s p h a z e n e s a r e f o r m e d w h e n t r i m e t h y l s i l y l a z i d e r e a c t s with a m i n o p h o s p h i n e s . Phenyl azide interacts with p h o s p h o r u s trichloride o r w i t h p h e n y l c h l o r o p h o s p h i n e s t o give 7V-phenyl m o n o p h o s p h a z e n e s , 1 9 1

1 9 2

PC1 + PhN -> C l P = N P h + N 3

3

3

2

PhPCl + PhN -> PhCl P=NPh + N

2

Ph PCl + PhN -> Ph ClP=NPh + N

2

2

2

3

2

3

2

and diphenylphosphinyl azide undergoes a reaction with diphenylchlorop h o s p h i n e t o f o r m a l i n e a r p h o s p h a z e n e of s t r u c t u r e P h ( 0 ) P [ N = P P h ] C l . T h i s is a w h i t e , c r y s t a l l i n e s u b s t a n c e , m . p . 1 4 5 ° - 1 4 6 ° C . D i p h e n y l p h o s p h i n y l a z i d e also r e a c t s w i t h d i p h e n y l p h o s p h i n e a c c o r d i n g t o t h e s e q u e n c e 1 9 3

2

2

3

1 9 4

Ph PH + Ph P(0)N 2

2

~ "> N

3

Ph P(0)NHPPh 2

p h 2 P ( Q ) N 3 2

>

Ph P(0)NHPPh =NP(0)Ph 2

2

2

A .

G E N E R A L

S U R V E Y

O F

S Y N T H E T I C

115

R O U T E S

T h e p r o d u c t of t h i s r e a c t i o n t a u t o m e r i z e s t o P h P ( 0 ) [ N = P P h ] — O H . A n a d d i t i o n a l m o d i f i c a t i o n of t h e a r y l a z i d e r o u t e i n v o l v e s t h e r e a c t i o n o f this reagent with a bis(dialkylamino)chlorophosphine ( X X I I ) . T h e p h o s 2

ArN

2

^NAr

3

Et NHN

U> ( R N ) P ^ , Cl

(R N) PC1 2

2

XXII

2



2

3

,

3

^

2

2

I

I

I

N

3

XXIV

OR

2

I

(RO) PNHAr' 2

ArN=P—N=P—NHAr' < NR

^NAr

TX

(R N) P:f

XXIII NR

2

'

OR

2

XXV p h o r o d i a m i d a m i d i c c h l o r i d e ( X X I I I ) is t h e n c o n v e r t e d t o t h e a z i d e ( X X I V ) with t r i e t h y l a m m o n i u m azide, and subsequent treatment with a dialkylarylp h o s p h o r a m i d i t e yields t h e l i n e a r d i p h o s p h a z e n e X X V . A z i d e s of t y p e X X I V a r e r e p o r t e d t o b e light y e l l o w l i q u i d s w h i c h a r e sufficiently s t a b l e t o b e v a c u u m - d i s t i l l e d o r h e a t e d a t 100°C for 3 h o u r s w i t h o u t d e c o m p o s i t i o n . 1 9 5

e. The Reaction

of Tertiary

Phosphines

with Other

Reagents

C h l o r a m i n e T , 0 , 7 V - d i b e n z o y l h y d r o x y l a m i n e , 2- o r 4 - b r o m o a n i l i n e , a n d chloramine followed by «-butyllithium, react with ter/-phosphines t o give phosphazenes according to the following e q u a t i o n s : R P 4 Na C l N S 0 C H M e -> R P = N — S 0 C H Me 4 NaCl

(Ref. 196)

Ph P + PhCON(H)OCOPh

(Ref. 197)

3

2

6

4

3

2

3

2

6

3

[Ph P—NHPh]®Br

4

2 5

2

2

25

N a Q H

>

Ph P=NPh 3

— NaBr

[C H PMe NH ]®Cl 12

25

2

C H PMe =NHLiCl 12

e

3

C, H PMe 4NH Cl 2

4

Ph P=NCOPh 4 PhCOOH

3

Ph P 4- H N C H B r

6

n-BuLi

e

2

> C H PMe =NH

2

(Ref. 198)

1 2

2 5

2

(Ref. 191)

T h e d i m e t h y l d o d e c y l p h o s p h a z e n e f o r m e d in t h e l a t t e r r e a c t i o n d e c o m p o s e s w i t h w a t e r t o give a m m o n i a a n d t h e p h o s p h i n e o x i d e . f. Miscellaneous

Routes

to Linear

Phosphazenes

T h e f o l l o w i n g a r e a n u m b e r of r e a c t i o n s w h i c h d o n o t fall r e a d i l y i n t o t h e above categories. (1) P h o s p h a z e n e s a r e f o r m e d q u a n t i t a t i v e l y w h e n 7 V - a c y l a m i d o t r i p h e n y l phosphiniminium bromides are d e h y d r o h a l o g e n a t e d . 1 9 9

[Ph PNHNHC(0)R]®Br® 3

~

H B r

Et N 3

>

Ph P=NNHC(0)R 3

116

4.

SYNTHESIS OF T H E P H O S P H O R U S - N I T R O G E N

SKELETON

(2) T e t r a s u l f u r t e t r a n i t r i d e r e a c t s w i t h p h e n y l d i c h l o r o p h o s p h i n e t o yield a linear d i p h o s p h a z e n e

t o g e t h e r w i t h l o n g e r - c h a i n species.

2 0 0

S N + PhPCl -> [PhCl P=N—PCl Ph]®[PCl ] + PhP(S)Cl + PhCl P=N—P(S)ClPh e

4

4

2

2

2

6

2

2

(3) P h o s p h o r u s t r i c h l o r i d e a n d d i n i t r o g e n t e t r o x i d e r e a c t t o f o r m a p h o s ­ phazene.

2 0 1

PCI3 + N 0 2

-> C 1 P = N — P ( 0 ) C 1

4

3

(4) M o n o t h i o p h o s p h o r i c

acid

+ PCI5 + N O C 1

2

triamide reacts with

c h l o r i d e t o yield p h o s p h a z e n e s a l t s , a s in t h e e q u a t i o n

5SP(NH ) 2

C1 P=N\

Ν—PCI

3

phosphorus

3

[PCl ]

3

CI

^N=PC1

penta­

2 0 2

e

6

3

(5) O r g a n o m e t a l l i c p h o s p h a z e n e s c a n b e p r e p a r e d b y t h e f o l l o w i n g syn­ thetic s e q u e n c e ,

2 0 3 - 2 0 5

-NH4CI

(Me C) PCl + 2 N H 3

2

(Me C) PNHLi 3

—> (Me C) P—NH

3

3

M e 3 M C I

2

(Me C) P—NH—MMe 3

2

n-BuLi

>

3

'



2

(Me C) P—NH—MMe n

3

2

2

(Me C) PNHLi 3

2

(Me C) P—NLi—MMe M'Me

B u L l >

3

2

2

3

3

Me^M'Cl

(Me C) P—NLi—MMe 3

2

1

y

3

(Me C) P=N—MMe 3

2

3

w h e r e M is Si o r G e , a n d M ' is Si, G e , o r S n . (6) A m o n o p h o s p h a z e n e is f o r m e d w h e n reacts with 7V-methyl-hexamethyldisilazane.

diphenyltrifluorophosphorane

95

Ph PF + MeN(SiMe ) -* P h F P = N M e + 2 Me SiF 2

3

3

2

2

3

(7) M o n o p h o s p h a z e n e s c a n a l s o b e i s o l a t e d f r o m t h e r e a c t i o n o f p h o s ­ p h o r u s pentachloride with a n aryl-7V-dichlorosulfonamide.

206

P C 1 + C l N S 0 A r -> 2 Cl + C l P = N S 0 A r 5

2

2

2

3

2

(8) T r i a r y l p h o s p h i t e s a r e c o n v e r t e d t o m o n o p h o s p h a z e n e s b y t h e f o l l o w i n g process

2 0 7

:

NCI

NP(OAr)

il

Cl* - i î Î U

li

AlkC—NH + P(OAr) 2

AlkC—NH 3

N=P(OAr)

9 3

2

-HCl

I AlkC=NH

3

117

A. GENERAL S U R V E Y OF SYNTHETIC R O U T E S

(9) I t h a s b e e n s h o w n t h a t t h e r e a c t i o n b e t w e e n t h i o p h o s p h o r i c t r i s ( i s o t h i o c y a n a t e ) a n d c h l o r i n e l e a d s t o t h e f o r m a t i o n of 7 V - t r i c h l o r o m e t h y l t r i c h l o r o phosphazene.

2 0 8

S = P ( N C S ) + Cl -> C1 P=N—CC1 + SC1 + S C1 + Cl—S—CC1 3

2

3

3

2

2

2

3

(10) Sulfur o x i d e ( f l u o r o s u l f o n y l ) i m i d e r e a c t s w i t h p h o s p h o r u s p e n t a b r o m i d e t o yield P - t r i b r o m o - 7 V - f l u o r o s u l f o n y l m o n o p h o s p h a z e n e . 208a

F S 0 N = S = 0 + PBr -> F S 0 N = P B r + SOBr 2

5

2

3

2

(11) F i n a l l y , a m i n o p h o s p h i n e s of f o r m u l a R P — N H R ' ( w h e r e R = P h o r 2

O E t , a n d R ' = P h o r Pr") r e a c t r a p i d l y w i t h c a r b o n t e t r a c h l o r i d e o r b r o m o t r i c h l o r o m e t h a n e t o give m o n o p h o s p h a z e n e s . R P—NHR' + CCI4 -> Ph P(Cl)NHPh-CCl 2

4.

2

2

2 0 9

-> Ph P(Cl)=NPh + CHC1 2

2

S Y N T H E S I S OF S O M E M I S C E L L A N E O U S P H O S P H O R U S - N I T R O G E N C O M P O U N D S

P h o s p h o r u s p e n t a c h l o r i d e r e a c t s w i t h A ^ W - d i m e t h y l u r e a t o yield a h e t e r o ­ cyclic m o l e c u l e w h i c h c o n t a i n s p h o s p h o r u s , n i t r o g e n , a n d c a r b o n . 2 1 0

.Cl

Ο

PCI5 + OC(NHMe)

MeN"

s

C1^®^C1

NMe

MeN

I

2

+

c^

NMe

P s

I

ci-

I

X

Me

Me

XXVI

XXVII

A n o t h e r i n t e r e s t i n g series of h e t e r o c y c l i c s y s t e m s is f o r m e d w h e n p h o s p h o r i c dichlorides interact with Λ^Ν'-dimethylalkylenediamines. 211

Me

Me

Ο

II ^ C l

RP.

XI

ΗΝ

+

χ

HN'

.(CH )„

2Et N

2

3

„ 1 >•

HCl

CK

.N.

^ P ^ >CH )„ R N^ 2

I

I

Me (λ =

1

Me

or 2).

B i s ( d i p h e n y l p h o s p h i n o ) a m i n e s r e a c t w i t h c h l o r a m i n e a n d a m m o n i a in t h e m a n n e r shown by the e q u a t i o n

2 1 2

NH /PPh RN. ^PPh

2

+2NH C1 + NH 2

2

3

RN.

.PPh

2

"PPh

2

C l + NH4CI e

NH

2

118

4.

SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON

It is a l s o w o r t h w h i l e t o n o t e t h a t t h e l i n e a r p h o s p h a z e n e f o r m e d b y t h e i n t e r a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h sulfuryl a m i d e c a n b e cyclized w i t h h e x a m e t h y l d i s i l a z a n e o r a m m o n i a t o yield t w o n o v e l h e t e r o a r o m a t i c systems, X X V I I I and X X I X 2 1 3

PC1 + H N — S 0 — N H 5

2

2

o

-> C I P = N — S 0 — N = P C 1

2

3

2

3

o

2

N ^ N C1 P^ /PC1 2

2

N ^ N

N

I

2

NH4

II

(NH ) P^

2

P(NH )

2

2

2

Me XXVIII

XXIX

A n u m b e r of o t h e r i n t e r a c t i o n s w h i c h i n v o l v e t h e s y n t h e s i s of p h o s p h o r u s nitrogen-sulfur ring systems have been r e p o r t e d .

Ph / NBr P^ Me S^ + ^CH Ν Br Ρ Ph

Ph Ν—Ρ / \ Me S CH W / Ν—Ρ Ph . 2

2

2

2 1 4

2

2

2

2ΒΓ

2

2

120°C hv

Ph Ν—Ρ // "\\ Me—S ;CH 2

Ν—Ρ Ph

NH,

/

Ph N =Ρ

2

\

S CH / W N - -P Ph

-NH Br 4

2

2

Ph ^N—Br Me S:^ + NH ^N—Br Ρ Ph

Ph Ν—Ρ

2

2

2

-HBr

//

Br

2

J

2

N\

Me S ΪΝ W Ν—Ρ Ph 2

2

Br-

Θ

A.

119

GENERAL SURVEY OF SYNTHETIC ROUTES

S c h m i d p e t e r a n d c o - w o r k e r s h a v e r e p o r t e d a series of s y n t h e s e s w h i c h give rise t o d i p h o s p h a - s - t r i a z i n e s

(XXX).

2 1 5

2 2 1

These reactions are

outlined

below. R I

[C1 P=N—C=NPCl ]®SbCl ® 3

3

6

NH4CI

R

I

R

2

P^ /PR N

2

XXX R

RNHCH=NR

I

H NC=NH/or 1 [H NC—NH ] C1

,-RNH

2

+

2

R' R [CI—P--=N—P—C11 CI2

2

2

2

NH

+

3

-HCl

R' R H NP=N—P=NH 2

2

2

R = P h or Cl A r e l a t e d e i g h t - m e m b e r e d r i n g s y s t e m ( X X X I ) is f o r m e d b y t h e f o l l o w i n g 222.

reaction s e q u e n c e ^ : NP(OAr)

NX

I

I!

3

[ArCNH l®X® 2

ArCNH + P(OAr') 2

-HCl

3

Et N 3

- Ar'OH

X = Cl or Br

Ar

Ar

I

A r

O

ι ^OAr'

Ι

Ο -

P

Ν'

- N = C I

Ar XXXI

N

H

.C=N. ^P(OAr)

I

II

(ArO) P " N = C " Ν 2

I

Ar

2

120

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S - N I T R O G E N

S K E L E T O N

F i n a l l y , a t t e n t i o n is d i r e c t e d t o t h e " p h o s p h a m s " w h i c h a r e p h o s p h o r u s n i t r o g e n c o m p o u n d s of c o m p o s i t i o n P N H . 2

2 2 3

They are formed during the

a m m o n o l y s i s of p h o s p h o r u s p e n t a c h l o r i d e , o r b y p y r o l y s i s o f a m i n o c y c l o phosphazenes. [(NH ) P-N] 2

2

-> [(NPNH) L, + 3 N H

3

3

3

P h o s p h a m s can be decomposed thermally to triphosphorus

pentanitride,

( P N ) „ , a n d p h o s p h o r u s nitride, (PN)„. 3

5

B . The Reaction between Halophosphoranes and Ammonium H a l i d e s

1.

E X P E R I M E N T A L

A

N

D

M A N U F A C T U R I N G

C O N S I D E R A T I O N S

It w a s m e n t i o n e d e a r l i e r t h a t t h e r e a c t i o n b e t w e e n p h o s p h o r u s p e n t a ­ c h l o r i d e a n d a m m o n i u m c h l o r i d e t o yield c h l o r o p h o s p h a z e n e s c o m p r i s e s o n e o f t h e m o s t i m p o r t a n t s y n t h e t i c r e a c t i o n s in t h i s field. F o r t h i s r e a s o n , t h e f o l l o w i n g d e t a i l e d e x p e r i m e n t a l o u t l i n e is given. a. Synthesis of (7VTC/ ) , ( 7 V P C / ) , and Higher Homologues t o r y p r o c e d u r e b a s e d o n ref. 13) 2

3

2

(Standard labora­

4

A 2-liter flask is fitted w i t h a reflux c o n d e n s e r a n d is c h a r g e d w i t h p h o s p h o r u s p e n t a c h l o r i d e (625.5 g, 3.0 m o l e s ) , a m m o n i u m c h l o r i d e (176.5 g, 3.3 m o l e s ) , a n d ^ m - t e t r a c h l o r o e t h a n e (1.0 liter). T h e m i x t u r e is h e a t e d a t t h e reflux t e m p e r a t u r e of t h e s o l v e n t for 7.5 h o u r s , d u r i n g w h i c h t i m e h y d r o g e n c h l o r i d e (12.0 m o l e s ) is e v o l v e d . H y d r o g e n c h l o r i d e f u m e s c a n b e r e m o v e d b y a w a t e r s c r u b b e r device c o n n e c t e d t o t h e c o n d e n s e r o u t l e t . A f t e r c o m p l e t i o n o f t h e r e a c t i o n , t h e w a r m s o l u t i o n is filtered t o r e m o v e a m m o n i u m c h l o r i d e (20.0 g ) , a n d t h e s o l v e n t is r e m o v e d b y d i s t i l l a t i o n a t r e d u c e d p r e s s u r e . T h e r e s i d u e after d i s t i l l a t i o n is a b r o w n " b u t t e r y " m i x t u r e of oil a n d c r y s t a l s (326.5 g, 9 3 . 9 % ) . R e p e a t e d e x t r a c t i o n of t h i s m i x t u r e w i t h p e t r o l e u m ( b . p . 4 0 ° - 6 0 ° C ) yields a m i x t u r e of cyclic ( N P C 1 ) „ o l i g o m e r s (235.5 g, 66.9 % ) , a n d t h e r e s i d u e is a light b r o w n m i x t u r e of oily l i n e a r species (88.0 g, 2 7 % ) . T h e l o w e r cyclic c h l o r o ­ phosphazenes are quite stable to atmospheric moisture, whereas the linear a n a l o g u e s h y d r o l y z e slowly. 2

I n a t y p i c a l p r e p a r a t i o n , t h e cyclic o l i g o m e r f r a c t i o n c o n s i s t s of a b o u t 37 % ( N P C 1 ) , 2 8 % ( N P C 1 ) , a n d 3 5 % h i g h e r cyclic ( N P C 1 ) „ species. S e v e r a l m e t h o d s a r e a v a i l a b l e for t h e s e p a r a t i o n of t h i s m i x t u r e . F r a c t i o n a l s u b l i m a ­ t i o n o r d i s t i l l a t i o n p e r m i t s a facile s e p a r a t i o n of t r i m e r f r o m h i g h e r h o m o ­ l o g u e s . F r a c t i o n a l c r y s t a l l i z a t i o n f r o m light p e t r o l e u m o r ^ - h e p t a n e p r o v i d e s a l a b o r i o u s b u t effective m e a n s of s e p a r a t i o n of t h e l o w e r h o m o l o g u e s . A n a d d i ­ t i o n a l s e p a r a t i o n m e t h o d r e p o r t e d b y P a d d o c k a n d c o - w o r k e r s is a s f o l l o w s . 2

3

2

4

2

1 3

Β .

T H E

R E A C T I O N

B E T W E E N

H A L O P H O S P H O R A N E S

A

N

D

A M M O N I U M

H A L I D E S

121

A m i x t u r e o f p r e d o m i n a n t l y cyclic c h l o r o p h o s p h a z e n e s ( 7 7 5 0 g) is e x t r a c t e d w i t h 16.5 liters o f 4 0 ° - 6 0 ° C b . p . p e t r o l e u m t o o b t a i n 19.5 liters o f a s o l u ­ t i o n o f cyclic species ( 5 7 0 0 g c o n s i s t i n g o f 35 % t r i m e r a n d 22 % t e t r a m e r ) a n d i n s o l u b l e l i n e a r species (2050 g). T h e p e t r o l e u m s o l u t i o n is e x t r a c t e d b a t c h e s w i t h 9 8 . 7 % sulfuric a c i d (2300 m l ) i n a t h r e e - s t a g e

in

fractionation

s c h e m e . T r i m e r is d i s s o l v e d p r e f e r e n t i a l l y b y t h e a c i d a n d is r e c o v e r e d f r o m it b y d i l u t i n g t h e a c i d s o l u t i o n t o a p p r o x i m a t e l y 6 0 % sulfuric a c i d a n d b a c k e x t r a c t i n g t h e p r e c i p i t a t e d t r i m e r w i t h fresh p e t r o l e u m .

Fractional

crys­

t a l l i z a t i o n f r o m t h i s s o l u t i o n t h e n gives t r i m e r (1060 g ) , m . p . 112°, a n d a m i x e d p o l y m e r f r a c t i o n (690 g ) . C r y s t a l l i z a t i o n of t h e sulfuric a c i d - i n s o l u b l e p o r t i o n yields t e t r a m e r (712 g ) , m . p . 122°, 515 g o f a 6 9 % t r i m e r , 2 0 % t e t r a m e r m i x ­ t u r e , 808 g of a m i x t u r e o f oil a n d c r y s t a l s , a n d 1915 g of a l i g h t y e l l o w oil. T h e oily f r a c t i o n s a r e distilled a t r e d u c e d p r e s s u r e t o yield p e n t a m e r , h e x a m e r , h e p t a m e r , a n d octamer. After

final

recrystallizations from

petroleum

or

Η - h e p t a n e , t h e t r i m e r m e l t s a t 112.8° a n d t h e t e t r a m e r a t 122.8°.

b . Modified

Synthesis for Optimization

Paddock and co-workers

1 3

of Cyclic Chlorophosphazene

Formation

h a v e a l s o s h o w n t h a t t h e yield o f cyclic c h l o r o ­

p h o s p h a z e n e s c a n b e i m p r o v e d d r a m a t i c a l l y a t t h e e x p e n s e of t h e oily l i n e a r species b y m a i n t a i n i n g a n excess o f a m m o n i u m c h l o r i d e i n t h e

reaction

m i x t u r e . F o r e x a m p l e , p h o s p h o r u s p e n t a c h l o r i d e (62.5 g, 0.3 m o l e ) a n d a m m o ­ n i u m c h l o r i d e (176.5 g, 3.3 m o l e s ) w e r e h e a t e d in b o i l i n g .yyra-tetrachloroe t h a n e , 1.0 liter). T h e refluxing s o l v e n t w a s r e t u r n e d t o t h e r e a c t i o n vessel t h r o u g h a b e d o f p h o s p h o r u s p e n t a c h l o r i d e (563 g, 2.7 m o l e s ) w h i c h w a s slowly e x t r a c t e d i n t o t h e r e a c t i o n m i x t u r e d u r i n g a p e r i o d of 6 h o u r s . A f t e r a t o t a l r e a c t i o n t i m e of 7.5 h o u r s , 11 m o l e s (92 % ) of h y d r o g e n c h l o r i d e h a d b e e n e v o l v e d a n d a 21.7 g excess o f a m m o n i u m c h l o r i d e r e m a i n e d . T h e s o l u t i o n yielded 322.3 g ( 9 2 . 6 % ) o f cyclic species w h i c h c o n s i s t e d of a p p r o x i m a t e l y 5 4 % of t r i m e r , 1 1 . 4 % of t e t r a m e r , a n d 2 9 % o f h i g h e r cyclic species. S i m i l a r results were obtained w h e n w a r m p h o s p h o r u s pentachloride solution was a d d e d slowly t o t h e r e a c t i o n m i x t u r e . I t s h o u l d b e n o t e d t h a t a n excess o f p h o s p h o r u s p e n t a c h l o r i d e in t h e r e a c t i o n m i x t u r e f a v o r s t h e f o r m a t i o n

of

l i n e a r species r a t h e r t h a n cyclic c o m p o u n d s a n d t h a t t r e a t m e n t o f cyclic c h l o r o ­ p h o s p h a z e n e s w i t h p h o s p h o r u s p e n t a c h l o r i d e gives l i n e a r c o m p o u n d s

of

formula ( N P C l ) P C l . 2

n

Emsley a n d U d y

5

2 2 4

have pointed out that the a m m o n i u m chloride particle

size h a s a g r e a t e r influence o n t h e c o u r s e of t h e r e a c t i o n t h a n t h e r a t e of a d d i ­ t i o n of p h o s p h o r u s

pentachloride. T h e use of

finely

divided

ammonium

c h l o r i d e i n c r e a s e s t h e r e a c t i o n r a t e a n d f a v o r s t h e f o r m a t i o n of cyclic c h l o r o ­ p h o s p h a z e n e s . R e a c t i o n t i m e s a s s h o r t as 2.5 h o u r s h a v e b e e n

reported.

T h i s influence is a r e s u l t of t h e fact t h a t a m m o n i u m c h l o r i d e is v i r t u a l l y

122

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S — N I T R O G E N

S K E L E T O N

i n s o l u b l e in s - t e t r a c h l o r o e t h a n e a n d s u r f a c e effects a r e i m p o r t a n t . R e a c t i o n s carried o u t at high dilutions favor the f o r m a t i o n of ( N P C 1 ) at the expense of l i n e a r p r o d u c t s . 2

c. Solvents

and

3

Catalysts

.sym-Tetrachloroethane h a s been used as a solvent for the p h o s p h o r u s p e n t a c h l o r i d e - a m m o n i u m c h l o r i d e r e a c t i o n since t h e p i o n e e r i n g w o r k of S c h e n k a n d R o m e r in 1 9 2 4 . T h e a d v a n t a g e s o f t h i s m a t e r i a l a s a r e a c t i o n m e d i u m i n c l u d e its h i g h b o i l i n g p o i n t , its r e l a t i v e i n e r t n e s s t o r e a c t a n t s a n d p r o d u c t s , a n d t h e fact t h a t it is a s o l v e n t for p h o s p h o r u s p e n t a c h l o r i d e a n d c h l o r o p h o s p h a z e n e s . H o w e v e r , . y y r a - t e t r a c h l o r o e t h a n e is relatively e x p e n s i v e , highly toxic, a n d inconvenient to r e m o v e by distillation. F o r these reasons, a t t e m p t s h a v e b e e n m a d e t o find m o r e s u i t a b l e r e a c t i o n m e d i a a n d t o d i s c o v e r c a t a l y s t s for t h e s y n t h e s i s . 8

M o n o c h l o r o b e n z e n e is less t o x i c t h a n t e t r a c h l o r o e t h a n e , it is c h e a p e r , a n d it h a s a l o w e r b o i l i n g p o i n t . H o w e v e r , a t least 2 5 t o 30 h o u r s a r e r e q u i r e d b e f o r e t h e r e a c t i o n is c o m p l e t e a t t h e b o i l i n g p o i n t o f t h i s s o l v e n t . It h a s b e e n shown that the addition of 1-10% of a n h y d r o u s metal chlorides reduces the r e a c t i o n t i m e t o 5 t o 10 h o u r s in c h l o r o b e n z e n e o r 2 t o 4 h o u r s in .syra-tetrachloroethane. Suitable chlorides include stannic chloride, magnesium chloride, zinc chloride, and titanium t e t r a c h l o r i d e . ' Molybdenum pentachloride h a s a m a r k e d c a t a l y t i c e f f e c t . Q u i n o l i n e a l s o a c t s a s a c a t a l y s t in c h l o r o ­ b e n z e n e , a n d r e a c t i o n t i m e s o f 8 h o u r s h a v e b e e n r e p o r t e d . It h a s a l s o b e e n r e p o r t e d t h a t p h o s p h o r u s o x y c h l o r i d e ( o r r e a g e n t s s u c h a s w a t e r , w h i c h will give rise t o P O C l in t h e r e a c t i o n m i x t u r e ) r e d u c e t h e r e a c t i o n t i m e in symt e t r a c h l o r o e t h a n e t o 3.5 h o u r s . N i t r o b e n z e n e c a n a l s o b e u s e d a s a m e d i u m for t h e s y n t h e s i s a t t e m p e r a t u r e s in t h e 1 4 0 ° - 1 5 0 ° C r e g i o n . T h e r e a c t i o n a p p a r e n t l y r e q u i r e s 5 - 6 h o u r s for c o m p l e t i o n u n d e r t h e s e c o n d i t i o n s . 1 4

1 4

3 1

38

3 6

3

3 2

3 5

d. Solid-State

Reactions

I n 1942 S t e i n m a n , S c h i r m e r , a n d A u d r i e t h r e p o r t e d a c o n v e n i e n t s y n t h e s i s of chlorophosphazenes using n o solvent at a l l . T h e technique involved the heating of an intimate mixture of p h o s p h o r u s pentachloride a n d a m m o n i u m c h l o r i d e in a l a r g e d i a m e t e r ( 3 5 - 5 0 m m ) P y r e x glass test t u b e . T h e o u t e r s e c t i o n of the t u b e contained a m m o n i u m chloride only. After 4 - 6 h o u r s at 145°160°C, a 9 0 - 9 5 % c o n v e r s i o n t o cyclic c h l o r o p h o s p h a z e n e s w a s o b t a i n e d . T h i s r e a c t i o n h a s b e e n r e i n v e s t i g a t e d m o r e r e c e n t l y in t h e U S S R , w h e r e yields of u p t o 85 % w e r e r e p o r t e d . I n view of t h e s e r e p o r t s , s o l i d - s t a t e r e a c t i o n s w o u l d a p p e a r t o p r o v i d e a c o n v e n i e n t s m a l l - s c a l e r o u t e for t h e p r e p a r a t i o n of chlorophosphazenes. 1 0

3 4 , 3 7

Β .

T H E

R E A C T I O N

e. Safety

B E T W E E N

H A L O P H O S P H O R A N E S

A

N

D

A M M O N I U M

H A L I D E S

123

Considerations

A l t h o u g h s m a l l - s c a l e l a b o r a t o r y p r e p a r a t i o n s o f c h l o r o p h o s p h a z e n e s offer n o particular hazards, a d e q u a t e care should be taken to prevent inhalation of r e a c t i o n p r o d u c t s a n d s o l v e n t s . ^ m - T e t r a c h l o r o e t h a n e is a p o w e r f u l i n h a l a ­ t i o n p o i s o n a n d a d e q u a t e v e n t i l a t i o n is r e q u i r e d for l a r g e - s c a l e h a n d l i n g o f t h i s m a t e r i a l . T h e c o n s i d e r a b l e q u a n t i t i e s of h y d r o g e n c h l o r i d e e v o l v e d f r o m t h e s e syntheses present a serious problem, and water extractors and scrubbers are n e c e s s a r y t o p r e v e n t d i s c o m f o r t t o p e r s o n n e l a n d severe c o r r o s i o n of f u m e h o o d s , etc. T h e l o w e r c h l o r o p h o s p h a z e n e s ( p a r t i c u l a r l y t h e t r i m e r ) h a v e a relatively h i g h v a p o r p r e s s u r e a t r o o m t e m p e r a t u r e , a n d t h e y c a n b e d e t e c t e d by their rather pleasant " o r g a n i c " odor. However, precautions should be taken t o a v o i d i n h a l a t i o n o f t h e v a p o r , o r e x p o s u r e of t h e eyes t o it. E v e n s m a l l c o n c e n t r a t i o n s c a u s e p r o l o n g e d i r r i t a t i o n o f t h e eye m e m b r a n e s , a n d m a n y r e s e a r c h e r s h a v e c o m p l a i n e d o f " c o n j u n c t i v i t i s " several d a y s after e x p o s u r e to the trimer. T e m p o r a r y t h r o a t and lung irritation has also been reported f o l l o w i n g i n h a l a t i o n o f t h e s e c o m p o u n d s . It follows t h a t c h l o r o p h o s p h a z e n e s s h o u l d n e v e r b e h e a t e d a n d v o l a t i l i z e d in t h e o p e n l a b o r a t o r y . L a r g e q u a n t i t i e s of chlorophosphazenes should be handled with a d e q u a t e ventilation and with t h e u s e of p r o t e c t i v e c l o t h i n g . f. The Manufacture

of

Chlorophosphazenes

Several c o m p a n i e s have u n d e r t a k e n the m a n u f a c t u r e of hexachlorocyclot r i p h o s p h a z e n e , a n d a n u m b e r of p a t e n t s c o v e r i n g c o m m e r c i a l p r o c e s s e s h a v e been i s s u e d . I n g e n e r a l , t h e m a n u f a c t u r i n g p r o c e s s a p p e a r s t o follow t h e s a m e p r o c e d u r e s as the laboratory-scale p r e p a r a t i o n s described above. T h e p a t e n t l i t e r a t u r e stresses t h e n e e d for a s l o w a d d i t i o n of p h o s p h o r u s p e n t a ­ c h l o r i d e t o a n excess o f a m m o n i u m c h l o r i d e in ^ m - t e t r a c h l o r o e t h a n e in o r d e r t o i m p r o v e t h e yield of cyclic r a t h e r t h a n l i n e a r s p e c i e s . T h e u s e of m e t a l h a l i d e s a s c a t a l y s t s a n d t h e u s e of c h l o r o b e n z e n e a s a s o l v e n t h a v e a l s o b e e n d e s c r i b e d in p a t e n t s p e c i f i c a t i o n s . A f u r t h e r m o d i f i c a t i o n i n v o l v e s t h e u s e of c h l o r i n e a n d p h o s p h o r u s t r i c h l o r i d e in p l a c e o f p h o s p h o r u s p e n t a ­ chloride. 1 4 - 2 2

1 4 , 1 5 , 1 6

14

2 0

N o s e r i o u s t e c h n o l o g i c a l p r o b l e m s a r e i n v o l v e d in s c a l i n g u p t h e l a b o r a t o r y r e a c t i o n , a n d l a r g e - s c a l e s y n t h e s e s c a n b e c a r r i e d o u t in t h e l a b o r a t o r y o r p i l o t p l a n t . T h e m o s t s e r i o u s p r o b l e m is c o n n e c t e d w i t h t h e i s o l a t i o n a n d purifica­ t i o n of t h e p r o d u c t s . F o r t h i s r e a s o n , c r u d e m i x t u r e s of c h l o r o p h o s p h a z e n e s c a n b e p r o d u c e d q u i t e c h e a p l y , b u t t h e p u r e cyclic t r i m e r is e x p e n s i v e . O n e p a t e n t h a s s u g g e s t e d t h a t p u r i f i c a t i o n m a y b e effected b y t h e r m a l d e p o l y m e r i z a t i o n o f t h e c r u d e m i x t u r e t o yield d i s t i l l a b l e t r i m e r a n d t e t r a m e r . Dif­ f e r e n t i a l p a r t i t i o n i n g of t h e c h l o r o p h o s p h a z e n e s b e t w e e n a n i n e r t o r g a n i c sol­ v e n t a n d a s t r o n g m i n e r a l acid is a l s o s u g g e s t e d a s a p u r i f i c a t i o n p r o c e s s . 2 1

1 7

124

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S - N I T R O G E N

S K E L E T O N

All t h e a b o v e f a c t o r s a r e of s o m e c o n s e q u e n c e in view of t h e c o m m e r c i a l p o t e n t i a l of m a n y of t h e p h o s p h a z e n e d e r i v a t i v e s d e r i v e d f r o m h e x a c h l o r o c y c l o t r i p h o s p h a z e n e . I n fact, t h e l a c k o f a n i n e x p e n s i v e r o u t e f o r t h e m a n u ­ f a c t u r e of c h l o r o p h o s p h a z e n e s h a s b e e n t h e p r i n c i p a l b o t t l e n e c k for a n u m b e r of i m p o r t a n t t e c h n o l o g i c a l p r o c e s s e s . g.

Bromophosphazenes

B r o m o p h o s p h a z e n e s a r e s y n t h e s i z e d w i t h t h e u s e of t h e s a m e g e n e r a l t e c h ­ n i q u e a s d e s c r i b e d a b o v e f o r c h l o r o p h o s p h a z e n e s . H o w e v e r , since p h o s p h o r u s p e n t a b r o m i d e is u n s t a b l e , t h e s y n t h e s i s is u s u a l l y c o n d u c t e d b y a d d i t i o n of b r o m i n e t o a m i x t u r e of p h o s p h o r u s t r i b r o m i d e a n d a m m o n i u m b r o m i d e in a h o t s o l v e n t . L o s s of p h o s p h o r u s b r o m i d e s b y s u b l i m a t i o n is a v o i d e d b y slowly raising the reaction t e m p e r a t u r e to ~140°C. T h e following experimental p r o ­ c e d u r e is b a s e d o n t h e o n e r e p o r t e d b y J o h n a n d M o e l l e r . 4 6

A m i x t u r e of p h o s p h o r u s t r i b r o m i d e (300 g, 1.1 m o l e ) , b r o m i n e (200 g, 1.25 m o l e ) , a n d a m m o n i u m b r o m i d e (300 g, 3.06 m o l e ) in s j r a - t e t r a c h l o r o e t h a n e (600 m l ) is h e a t e d t o 1 4 0 ° - 1 4 2 ° C o v e r a p e r i o d of 5 d a y s . T h e t e m p e r a t u r e is m a i n t a i n e d a t 142°C for 2 d a y s , a n d a d d i t i o n a l b r o m i n e (150 g, 0.94 m o l e ) is a d d e d . A f t e r c o m p l e t i o n o f t h e r e a c t i o n , u n r e a c t e d a m m o n i u m b r o m i d e is filtered off a n d t h e s o l v e n t is r e m o v e d b y d i s t i l l a t i o n t o l e a v e 255.2 g o f c r u d e b r o m o p h o s p h a z e n e s . E x t r a c t i o n w i t h h o t b e n z e n e r e m o v e s cyclic t r i m e r a n d t e t r a m e r , a n d s o l v e n t e v a p o r a t i o n f o l l o w e d b y s u b l i m a t i o n yields 119 g ( 5 2 . 5 % ) of a t r i m e r - t e t r a m e r m i x t u r e . A m o d i f i c a ­ t i o n of t h e r e a c t i o n b y a d d i t i o n of a p h o s p h o r u s t r i b r o m i d e - b r o m i n e m i x t u r e t o a m m o n i u m b r o m i d e a n d t e t r a c h l o r o e t h a n e a t 1 3 2 ° - 1 3 4 ° C yields 89.9 g (36.9 % ) of a t r i m e r - t e t r a m e r m i x t u r e . It s h o u l d b e n o t e d t h a t t h e m o n o p h o s p h a z e n e N P B r P B r is f o r m e d in s u b s t a n t i a l yields in t h e s e r e a c t i o n s . T h e cyclic t r i m e r - t e t r a m e r m i x t u r e c a n b e s e p a r a t e d i n t o its c o m p o n e n t s b y frac­ tional sublimation or recrystallization from petroleum ether. Bromocyclop h o s p h a z e n e s a r e less s t a b l e t o a t m o s p h e r i c m o i s t u r e t h a n t h e c h l o r o - d e r i v a tives, a n d p u r i f i c a t i o n p r o c e d u r e s s h o u l d b e c o n d u c t e d w i t h o u t excessive d e l a y . B r o m o c y c l o p h o s p h a z e n e s a r e u s e d in t h e m a n u f a c t u r e of h a l o g e n l a m p s . 2

5

2 2 4 a

s y m - T e t r a b r o m o e t h a n e c a n b e e m p l o y e d a s a s o l v e n t in p l a c e of t e t r a c h l o r o ­ e t h a n e . I n fact, e v i d e n c e exists t h a t h a l o g e n e x c h a n g e o c c u r s in t h e l a t t e r sol­ v e n t t o give m i x e d c h l o r o b r o m o p h o s p h a z e n e s . A s m e n t i o n e d earlier, h y b r i d halocyclophosphazenes are formed by related reactions. Mixed c h l o r o b r o m o species s u c h a s t h e s e c a n b e s e p a r a t e d effectively b y v a p o r - p h a s e c h r o m a t o ­ g r a p h y u s i n g a silicone oil s u b s t r a t e . 4 6

4 9

h.

Organophosphazenes

T h e p r e p a r a t i o n of o r g a n o c y c l o p h o s p h a z e n e s f r o m o r g a n o h a l o p h o s p h o r anes a n d a m m o n i u m halides follows the s a m e general techniques as outlined

Β. THE REACTION BETWEEN H A L O P H O S P H O R A N E S A N D A M M O N I U M HALIDES

125

a b o v e for h a l o p h o s p h a z e n e s y n t h e s i s . F o r e x a m p l e , t h e f o l l o w i n g p r e p a r a t i o n of ( N P C l P h ) w a s r e p o r t e d by G r u s h k i n , S a n c h e z , a n d R i c e . 6 5

3 a n d 4

A s o l u t i o n of P h P C l (358 g, 210 m o l e s ) in c h l o r o b e n z e n e (2 liters) is c h l o r i n a t e d u n t i l it is b r i g h t yellow in c o l o r , a n d n i t r o g e n is b u b b l e d t h r o u g h u n t i l t h e yellow c o l o r h a s d i s a p p e a r e d . T h i s s o l u t i o n of P h P C l is t h e n a d d e d slowly o v e r 12 h o u r s t o a s u s p e n s i o n of a m m o n i u m c h l o r i d e (214 g, 4.0 m o l e s ) in b o i l i n g c h l o r o b e n z e n e (8 liters). H y d r o g e n c h l o r i d e is t h e n r e m o v e d by a s t r e a m of n i t r o g e n . After a f u r t h e r 12 h o u r s of r e a c t i o n , t h e a m m o n i u m c h l o r i d e is r e m o v e d by filtration. R e m o v a l of a p p r o x i m a t e l y 75 % of t h e s o l v e n t f r o m t h e filtrate c a u s e s a slow p r e c i p i t a t i o n of cyclic t r i m e r s a n d t e t r a m e r s . T h e s e a r e s e p a r a t e d by a r a t h e r a r d u o u s series of crystalliza­ t i o n s f r o m fl-pentane. It s h o u l d b e n o t e d t h a t s u c h p r e p a r a t i o n s a r e c o m p l i ­ c a t e d c o n s i d e r a b l y if g e o m e t r i c i s o m e r s as well a s species w i t h different r i n g sizes a r e p r e s e n t , as in t h e p r e s e n t case. S e p a r a t i o n of cis a n d trans i s o m e r s c a n often b e a c c o m p l i s h e d by careful r e c r y s t a l l i z a t i o n s e q u e n c e s . T h e c o m p o u n d s are quite stable to atmospheric moisture. 2

4

2.

REACTION MECHANISMS

T h e s y n t h e s e s o u t l i n e d a b o v e c a n b e s u m m a r i z e d by t h e g e n e r a l e q u a t i o n η R PX + η N H X -* (R PN)„ + 4n HX 2

3

4

2

w h e r e R is h a l o g e n o r a n o r g a n i c g r o u p , a n d X is h a l o g e n . I n t h e s u b s e q u e n t d i s c u s s i o n it will b e a s s u m e d t h a t t h e g e n e r a l r e a c t i o n m e c h a n i s m s a r e s i m i l a r i r r e s p e c t i v e of t h e n a t u r e of R o r X . It m u s t be p o i n t e d o u t , h o w e v e r , t h a t m o s t of t h e m e c h a n i s t i c i n f o r m a t i o n a b o u t t h i s r e a c t i o n h a s b e e n d e r i v e d from s y s t e m s w h e r e R is c h l o r i n e . T h e f o l l o w i n g e x p e r i m e n t a l facts a r e k n o w n a b o u t this r e a c t i o n : (1) A l t h o u g h t h e m a i n r e a c t i o n l e a d s t o t h e f o r m a t i o n of cyclic p h o s p h a ­ z e n e s of s t r u c t u r e ( N P X ) „ , l i n e a r p h o s p h a z e n e species a r e n e a r l y a l w a y s formed at the same time. F o r example, the reaction between PC1 and N H C 1 in ^ m - t e t r a c h l o r o e t h a n e yields identifiable oily l i n e a r species of s t r u c t u r e s C1 P=N—PC1 =N—PC1 , C1 P(NPC1 ). = N — P C 1 , [C1 P=N— PC1 ]©[PC1 P a n d [ C 1 P = N — P C 1 = N — P C l ] ® [ P C I ] . ' ' ' Simi­ larly, t h e r e a c t i o n b e t w e e n p h o s p h o r u s t r i b r o m i d e , b r o m i n e , a n d a m m o n i u m b r o m i d e yields species w h i c h c o r r e s p o n d t o t h e s t r u c t u r e s [ B r P = N — P B r ] ® B r and B r P N P B r . F u r t h e r m o r e , a c o m p o u n d , which may have the structure [ P h B r P = N — P B r P h ] B r w a s i s o l a t e d f r o m t h e r e a c t i o n of p h e n y l d i b r o m o p h o s p h i n e a n d b r o m i n e w i t h a m m o n i u m b r o m i d e , a n d species of t h e t y p e s [Ph ClP=N—PClPh ]©Cl and [ P h C l P = N — P C l P h p C l are formed w h e n a m m o n i u m c h l o r i d e r e a c t s with diphenyltrichlorophosphorane, 2

5

1 4 2

3

2

4

1 3

3

2

1 0

4

e

3

6

3

2

3

2 5

3

2 6

3

5

@

2

G

2

6 4

e

2

2

e

2

1 4 3

1 4 6

6

0

2

4

2

3

126

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S - N I T R O G E N

S K E L E T O N

P h P C l , or with phenyltetrachlorophosphorane, P h P C l . 2

3

4

5 8 ,

154

*

1 5 5

Linear

p h o s p h a z e n e s s u c h a s t h e s e a r e believed t o b e i n t e r m e d i a t e s in t h e s y n t h e s i s of cyclophosphazenes. Becke-Goehring and co-workers have provided evidence for t h e i o n i c s t r u c t u r e s o f m a n y o f t h e s e l i n e a r p h o s p h a z e n e s . T h e s e s t r u c t u r e s are comparable to the P C l

@ 4

PCl

f o r m u l a t i o n for p h o s p h o r u s p e n t a c h l o r i d e .

e 6

(2) Cyclic p h o s p h a z e n e s a r e f o r m e d w h e n l i n e a r species of t h e t y p e d e s c r i b e d a b o v e a r e h e a t e d in ^ m - t e t r a c h l o r o e t h a n e , p a r t i c u l a r l y in t h e p r e s e n c e o f a m m o n i u m h a l i d e o r a m m o n i a . F o r e x a m p l e , ( N P C 1 ) c a n b e f o r m e d directly 2

from

3

[C1 P=N—PC1 =N—PC1 P[PC1 P, and (NPC1 ) 3

2

[C1 P=N—PCl ]®Cl 3

3

6

2

and ammonium chloride.

e

3

4

is f o r m e d

from

2 6

(3) A s d i s c u s s e d earlier, if t h e r e a c t i o n b e t w e e n p h o s p h o r u s p e n t a c h l o r i d e a n d a m m o n i u m c h l o r i d e is c o n d u c t e d in s u c h a w a y t h a t a m m o n i u m c h l o r i d e is a l w a y s in excess, cyclic c h l o r o p h o s p h a z e n e s a r e f o r m e d in h i g h yields. If p h o s p h o r u s p e n t a c h l o r i d e is in excess, t h e l i n e a r species a r e f o r m e d in g r e a t e r amounts.

1 3

(4) L i n e a r p h o s p h a z e n e s c a n b e f o r m e d b y t h e t r e a t m e n t o f c y c l o p h o s p h a ­ zenes with p h o s p h o r u s p e n t a c h l o r i d e .

1 3

F o r example, a n intimate mixture of

( N P C 1 ) a n d P C 1 yields a m i x t u r e o f l i n e a r p h o s p h a z e n e s a t 3 5 0 ° C . L i n e a r 2

3

5

species of s t r u c t u r e C 1 P — ( N P C 1 ) „ N H a r e f o r m e d w h e n p h o s p h o r u s p e n t a ­ 3

2

c h l o r i d e a n d a m m o n i u m c h l o r i d e r e a c t in a n a u t o c l a v e in t h e a b s e n c e o f sol­ vent. (5) A m m o n i a c a n r e p l a c e a m m o n i u m c h l o r i d e in several of t h e s y n t h e t i c reactions with h a l o p h o s p h o r a n e s . F o r instance, diphenyltrichlorophosphora n e , P h P C I , r e a c t s w i t h l i q u i d a m m o n i a a t —4 0 ° C t o yield d i p h e n y l c y c l o p h o s p h a z e n e s , ( N P P h ) „ , plus a m m o n i u m c h l o r i d e . Similarly, M e N P C l reacts with a m m o n i a to form ( N P ( C l ) N M e ) . 2 4

2

3

5 4

2

2

4

3 9

2

3

T h e a b o v e facts s t r o n g l y f a v o r a m e c h a n i s m in w h i c h l i n e a r p h o s p h a z e n e s a r e f o r m e d a s i n t e r m e d i a t e s , p r i o r t o f o r m a t i o n of t h e cyclic species. A mechanism which has gained wide acceptance was proposed by BeckeGoehring and co-workers. F o r convenience, three steps c a n be f o r m u l a t e d for t h e o v e r a l l r e a c t i o n . T h e s e a r e m o n o p h o s p h a z e n e f o r m a t i o n , l i n e a r p o l y ­ merization, a n d cyclization. 2 5 , 2 6

a. Monophosphazene

Formation

P h o s p h o r u s pentachloride a n d a m m o n i u m chloride are assumed to function as t h e ionized a n d dissociated forms, respectively. PC1 ^ PC1 + PC1 5

NH4CI ^

4

NH

3

6

+ HCl

Β .

T H E

R E A C T I O N

B E T W E E N

H A L O P H O S P H O R A N E S

A

N

D

A M M O N I U M

H A L I D E S

127

A m m o n i a then reacts with the P C 1 cation according to the sequence 4

[PCl NPCl ] + NH

C1 P=NH + 2 HCl + PC1

e

4

6

3

3

5

P a d d o c k a n d S e a r l e suggested t h a t the t r i c h l o r o m o n o p h o s p h a z e n e could a l s o b e p r o d u c e d t h r o u g h t h e i n t e r m e d i a t e f o r m a t i o n of a m m o n i u m h e x a c h l o r o p h o s p h a t e , [NH ]®[PC1 P, which w o u l d be formed directly from P C 1 a n d NH4CI. 1 2

4

b . Linear

6

5

Polymerization

T h e m o n o p h o s p h a z e n e is t h e n believed t o r e a c t first w i t h [ P C l ] ® [ P C l ] a n d t h e n w i t h a m m o n i a in a c h a i n - l e n g t h e n i n g s e q u e n c e . e

4

6

C1 P=NH + [PCl ]®[PCl ] -> [C1 P=N—PCl ]®[PCl ] + HCl e

3

4

e

6

3

[C1 P=N—PCl ]®[PCl ] + N H 3

6

6

-> C1 P=N—PC1 =NH + 3 HCl + PC1

e

3

3

3

3

2

5

A v a r i e t y of c h a i n - g r o w i n g s t e p s a r e t h e n p o s s i b l e , i n c l u d i n g [C1 P=N—PC1 ]® + C1 P=NH -> [C1 P=N—PC1 =N—PC1 ]® + HCl 3

3

3

3

2

3

C1 P=N—PC1 =NH + [PCl ] "> [C1 P=N—PC1 =N—PC1 ]® + HCl e

3

2

4

3

2

3

C1 P=N—PC1 =NH + [C1 P=N—PC1 ]® -> [C1 P=
2

3

3

3

2

2

3

T h u s , g r o w t h of t h e c h a i n s t o c o n t a i n t h r e e , f o u r , five, six, o r a h i g h e r n u m b e r of p h o s p h o r u s a t o m s can be readily u n d e r s t o o d . In practice, the c o m p o u n d [ C 1 P = N — P C 1 ] [ P C 1 ] is t h e first species d e t e c t e d , ' and Emsley a n d Udy h a v e s h o w n t h a t it is f o r m e d in o v e r 80 % yield w i t h i n 80 m i n u t e s of t h e s t a r t of t h e r e a c t i o n a n d t h a t it is a l m o s t i n s o l u b l e in t h e m e d i u m . B e c a u s e of t h i s h e t e r o g e n e i t y , t h e n e x t h i g h e r m e m b e r s of t h e series, [ C 1 P = N — P C 1 = Ν — P C 1 ] [ P C 1 ] and [ C 1 P = N — P C 1 = N — P C 1 = N — P C 1 ] ® [ P C 1 ] , are f o r m e d o n l y slowly. @

3

0

3

2 2 5

2 2 6

6

2 2 5

3

φ

c.

2

0

3

0

6

3

2

2

3

6

Cyclization

C y c l i z a t i o n of t h e c h a i n is p o s s i b l e w h e n a t e r m i n a l N H g r o u p is p r e s e n t . S u c h a s i t u a t i o n c a n arise w h e n e v e r a c a t i o n - a n i o n c o m p l e x r e a c t s w i t h a m m o n i a or a m m o n i u m chloride. [C1 P=N—PC1 =N—PCl ]®[PCl ] + NH C1 -> e

3

2

3

6

4

C1 P=N—PC1 =N—PC1 =NH + 3 HCl + PC1 3

2

2

Cl C1 P=N—PC1 =N—PC1 =NH 3

2

2

-HCl



2

I || ChP^PCl,

5

128

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S - N I T R O G E N

S K E L E T O N

T h u s , c y c l i z a t i o n w o u l d b e f a v o r e d b y a n excess o f a m m o n i u m h a l i d e a n d r e t a r d e d b y a n excess o f p h o s p h o r u s p e n t a c h l o r i d e . A n a l t e r n a t i v e a n d p r o b a b l y m o r e likely c y c l i z a t i o n m e c h a n i s m is o n e in w h i c h cyclic t r i m e r is f o r m e d f r o m t h e l i n e a r tetramer b y loss o f a P C 1 ® cation. 4

2 2 5

Cl P®—CI

Cl ρ

2

C I

2

P ^ P C I

2

2

CI P^ ^PCI 2

N

2

T h e r e l a t i v e p r o p o r t i o n s o f cyclic t r i m e r , t e t r a m e r , p e n t a m e r , e t c . , in t h e final r e a c t i o n m i x t u r e d e p e n d p a r t l y o n t h e a m o u n t s of l i n e a r p r e c u r s o r s p r e s e n t a n d , in t u r n , o n t h e efficiency of t h e c h a i n g r o w t h . R e m o v a l of s o m e l i n e a r species f r o m t h e r e a c t i o n p h a s e b e c a u s e o f t h e i r i n s o l u b i l i t y m u s t a l s o affect t h e final r a t i o s of cyclic species. F u r t h e r m o r e , t h e r e l a t i v e a m o u n t s of t h e v a r i o u s cyclic c o m p o u n d s will d e p e n d o n t h e steric a n d statistical ease of cycli­ z a t i o n of t h e l i n e a r p r e c u r s o r . T h i s u n d o u b t e d l y p r o v i d e s a n e x p l a n a t i o n for t h e fact t h a t cyclic d i m e r s a r e n o t i s o l a t e d , a n d t h a t t h e cyclic t r i m e r a n d t e t r a m e r a r e u s u a l l y f o r m e d in g r e a t e r a m o u n t s t h a n h i g h e r cyclic c o m p o u n d s . S t e r i c f a c t o r s i n v o l v i n g t h e side g r o u p ( R o r h a l o g e n ) m a y influence t h e rela­ tive e a s e of c y c l i z a t i o n t o t r i m e r s a n d t e t r a m e r s . I t a l s o s e e m s r e a s o n a b l e t o s u p p o s e t h a t c y c l i z a t i o n is f a v o r e d b y t h e p r e s e n c e o f s o l v e n t s in v i e w o f t h e k n o w n effects of d i l u t i o n o n t h e c y c l i z a t i o n c o n s t a n t s of m a n y p o l y m e r s .

REFERENCES

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

J. Liebig, Ann. Chem. 11, 139 (1834). C. Gerhardt, Ann. Chim. Phys. [3] 18, 188 (1846); C. R. Acad. Sci. 22, 856 (1846). A. Laurent, C. R. Acad. Sci. 31, 356 (1850). H. N. Stokes, Amer. Chem. J. 17, 275 (1895). H. N. Stokes, Chem. Ber. 28, 437 (1895). H. N. Stokes, Amer. Chem. J. 19, 782 (1897). A. Besson and G. Rosset, C. R. Acad. Sci. 143, 37 (1906). R. Schenck and G. Rorner, Chem. Ber. 57B, 1343 (1924). H. Moureu and P. Rocquet, Bull. Soc. Chim. Fr. [5] 3, 821 (1936). R. Steinman, F. B. Schirmer, and L. F. Audrieth, / . Amer. Chem. Soc. 64, 2377 (1942). L. F. Audrieth, R. Steinman, and A. D. F. Toy, Chem. Rev. 43, 109 (1943). N. L. Paddock and H. T. Searle, Advan. Inorg. Chem. Radiochem. 1, 347 (1959). L. G. Lund, N. L. Paddock, J. E. Proctor, and H. T. Searle, / . Chem. Soc, London p. 2542 (1960). Albright and Wilson, Mfg. Ltd., Brit. Pats. 905,314 and 905,315 (1962). Albright and Wilson, Mfg. Ltd., Brit. Pats. 1,011,237 (1965); 1,017,375 (1966). Albright and Wilson, Mfg. Ltd., Aust. Pats. 230,487 and 233,600 (1958). Albright and Wilson, Mfg. Ltd., U.S. Pat. 3,008,799 (1961). Albright and Wilson, Mfg. Ltd., Can. Pat. 614,267 (1961).

R E F E R E N C E S

129

19. Frenc h Pat . 1,382,95 4 (1964) ; Chem. Abstr. 63 , ll,797 g (1965) . 20. Albrigh t an d Wilson , Mfg . Ltd. ,an d Hooke r Chemica l Corp .Fr . Pat . 1,331,07 8 (1965) . 21. M . C . Taylor , U.S . Pat . 2,872,28 3 (1959) . 22. Compagni e Français e d e Matière s Colorantes , Brit . Pat . 774,69 4 (1957) ; U.S . Pat . 2,782,133 (1957) . 23. F . G . R . Gimblett , Chem. Ind. (London) p . 36 5 (1958) . 24. M . Becke-Goehrin g an d G . Koch , Chem. Ber. 92 , 118 8 (1959) . 25. M . Becke-Goehrin g an d E . Fluck , Angew. Chem. 74 , 38 2 (1962) . 26. M . Becke-Goehrin g an d W . Lehr , Z. Anorg. Allg. Chem. 327 , 12 8 (1964) . 27. M . Yokoyama , / . Chem. Soc. Jap., Pure Chem. Sect. 80 , 118 9 (1959) . 28. H . Sait o an d M . Kajiwara , / . Chem. Soc. Jap., Ind. Chem. Sect. 66 , 61 8 (1963) . 29. E . Kobayashi , / . Chem. Soc. Jap., Ind. Chem. Sect. 69 , 61 8 (1966) . 30. E . Kobayashi , / . Chem. Soc. Jap., Pure Chem. Sect. 87 , 13 5 (1966) . 31. E . Kobayashi , / . Chem. Soc. Jap., Ind. Chem. Sect. 70 , 62 8 (1967) . 32. J . Emsle y an d P . B . Udy , Chem. Commun, p . 63 3 (1967) . 33. S . M . Zhivukhin , Zh. Neorg. Khim. 6 , 241 4 (1961) . 34. S . M . Zhivukhin , V . B . Tolstoguzov , V . V . Kireev , an d K . G . Kuznetsova , Russ. J. Inorg. Chem. 10 , 17 8 (1965) . 35. M . A . Glushkova , M . M . Ershova , an d Yu . A . Buslaev , Russ. J. Inorg. Chem. 10 , 106 0 (1965). 36. S . M . Zhivukhin , V . B . Tolstoguzov , an d M . M . Levitskii , Zh. Neorg. Khim. 6 , 241 4 (1961). 37. S . M . Zhivukhin , V . V . Kireev , G . S . Kolesnikov , V . P . Popilin , an d E . A . Filippov , Russ. J. Inorg. Chem. 14 , 54 8 (1969) . 38. R . W . Jenkin s an d S . Lanoux , / . Inorg. Nucl. Chem. 32 , 245 3 (1970) . 39. A . Schmidpeter , C . Weingand , an d E . Hafner-Roll , Z . Naturforsch. B 24 , 79 9 (1969) . 40. A . Besson , C. R. Acad. Sci. 114 , 147 9 (1892) . 41. H . Bode , Z . Anorg. Allg. Chem. 252 , 11 3 (1943) . 42. H . Bode , Angew. Chem. 61 , 43 8 (1949) . 43. R . G . Rice , L . W . Daasch , J . R . Holden , an d E . J . Kohn , / . Inorg. Nucl. Chem. 5 , 19 0 (1958). 44. K . Joh n an d T . Moeller , / . Amer. Chem. Soc. 82 , 264 7 (1960) . 45. Ν. E. Bean and R. A. Shaw, Chem. Ind. (London) p. 1189 (1960). 46. K. John and T. Moeller, / . Inorg. Nucl. Chem. 22, 199 (1961). 47. T. Moeller and P. Nannelli, Inorg. Chem. 2, 659 (1963). 48. G. E. Coxon, D. B. Sowerby, and G. C. Tranter, / . Chem. Soc, London p. 5697 (1965). 49. G. E. Coxon and D. B. Sowerby, J. Chem. Soc, A p. 1566 (1967). 50. E. Steger and J. Rost, J. Inorg. Nucl. Chem. 25, 732 (1963). 51. H. Rotzche, R. Stahlberg, and E. Steger, / . Inorg. Nucl. Chem. 28, 687 (1966). 52. G. E. Coxon, T. F. Palmer, and D. B. Sowerby, Inorg. Nucl. Chem. Lett. 2, 215 (1966). 53. H. Bode and H. Bach, Chem. Ber. 75B, 215 (1942). 54. C. P. Haber, D. L. Herring, and E. A. Lawton,/. Amer. Chem. Soc 80, 2116 (1958). 55. C. P. Haber, E. A. Lawton, and C. G. Fitzgerald, U.S. Pat. 2,853,517 (1958). 56. R. A. Shaw and C. Stratton, Chem. Ind. (London) p. 52 (1959). 57. R. A. Shaw and C. Stratton, J. Chem. Soc, London p. 5004 (1962). 58. V. V. Korshak, I. A. Gribova,T. V. Artamonova, and A. N. Bushmarina, Vysokomole. Soedin. 2, No. 3, 377 (1960). 59. I. I. Bezman and J. H. Smalley, Chem. Ind. (London) p. 839 (1960). 60. F. S. Humiec and I. I. Bezman, J. Amer. Chem. Soc. 83, 2210 (1961). 61. I. I. Bezman, U.S. Pat. 3,098,871 (1963).

130

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S - N I T R O G E N

S K E L E T O N

62. T. Moeller and P. Nannelli, Inorg. Chem. 1, 721 (1962). 63. T. Moeller and P. Nannelli, Inorg. Chem. 2, 659 (1963). 64. P. Nannelli and T. Moeller, Inorg. Chem. 2, 896 (1963). 65. B. Grushkin, M. G. Sanchez, and R. G. Rice, Inorg. Chem. 3, 623 (1964). 66. B. Grushkin, A. J. Berlin, J. L. McClanahan, and R. G. Rice, Inorg. Chem. 5,172 (1966). 67. H. T. Searle, Proc. Chem. Soc, London p. 7 (1959). 68. A. J. Bilbo, Z. Naturforsch. Β 15, 330 (1960). 69. W. R. Grace and Co., Brit. Pat. 981,821 (1965). 69a. V. N. Prons, M. P. Grinblat, and A. L. Klebanskii, / . Gen. Chem. USSR 40, 2108 (1970). 70. H. Saito and M. Kajiwara, / . Chem. Soc. Jap., Ind. Chem. Sect. 66, 618 (1963). 71. M. Yokoyama, A. Fujishiro, H. Saito, and T. Otsuka, Kogyo Kagaku Zasshi 68, 185 (1965). 72. C. D. Schmulbach, C. Derderian, and S. Sahuri, Inorg. Chem. 10, 195 (1971). 73. C. D. Schmulbach and C. Derderian, / . Inorg. Nucl. Chem. 25, 1395 (1963). 74. D. L. Herring and C. M. Douglas, Inorg. Chem. 3, 428 (1964). 75. A. Schmidpeter and J. Ebeling, Angew. Chem., Int. Ed. Engl. 7, 209 (1968). 76. M. Bermann and K. Utvary, J. Inorg. Nucl. Chem. 31, 271 (1969). 77. F. G. Sherif and C. D. Schmulbach, Inorg. Chem. 5, 322 (1966). 78. D. L. Herring, Chem. Ind. (London) p. 717 (1960). 79. G. Tesi, C. P. Haber, and C. M. Douglas, Proc. Chem. Soc, London p. 219 (1960). 80. G. Tesi, C. M. Douglas, and C. P. Haber, U.S. Pat. 3,087,937 (1963). 81. D. L. Herring and C. M. Douglas, Inorg. Chem. 4, 1012 (1965). 82. K. L. Paciorek, U.S. Govt. Res. Rep. AD 276-920 (1962). 83. R. H. Kratzer and K. L. Paciorek, Inorg. Chem. 4, 1767 (1965). 84. K. L. Paciorek and R. H. Kratzer, U.S. Pat. 3,297,751 (1966). 85. W. J. Birdsall, Ph.D. Thesis, The Pennsylvania State Univ., 1971, p. 59. 86. G. Tesi and C. M. Douglas, J. Amer. Chem. Soc. 84, 549 (1962). 87. G. Tesi and C. M. Douglas, U.S. Pat. 3,065,266 (1962). 88. G. Tesi and C. M. Douglas, U.S. Govt. Res. Rep. AD 236-914 (1961). 89. M. Becke-Goehring, U.S. Govt. Res. Rep. AD 642-394 (1965). 90. D. D. Magnelli, G. Tesi, J. U. Lowe, and W. E. McQuiston, Inorg. Chem. 5, 457 (1966). 91. H. H. Sisler, H. S. Ahuja, and N. L. Smith, Inorg. Chem. 1, 84 (1962). 92. I. T. Gibson and H. H. Sisler, Inorg. Chem. 4, 273 (1965). 93. W. R. Grace and Co., Ger. Pat. 1,189,077 (1965). 94. H. H. Sisler, S. E. Frazier, R. G. Rice, and M. G. Sanchez, Inorg. Chem. 5, 326 (1966). 95. R. Schmutzler, Z. Naturforsch. Β 19, 1101 (1964). 96. J. H. Gladstone and J. D. Holmes, / . Chem. Soc, London 17, 225 (1864). 97. J. H. Gladstone and J. D. Holmes, Ann. Chim. Phys. [4] 3, 465 (1864). 98. J. H. Gladstone and J. D. Holmes, Bull. Soc Chim. Fr. [2] 3, 113 (1865). 99. H. Moureu and G. WetrofT, C. R. Acad. Sci. 204, 51 (1937). 99a. S. Kongpricha and W. C. Preusse, Inorg. Chem. 6, 1915 (1967). 100. J. H. Gladstone and J. D. Holmes, / . Chem. Soc, London 17, 225 (1864). 101. H. Schiff, Ann. Chem. Pharm. 103, 168 (1857). 102. H. N. Stokes, Amer. Chem. J. 18, 629 (1896). 103. H. N. Stokes, Amer. Chem. J. 18, 780 (1896). 104. H. N. Stokes, Amer. Chem. J. 20, 740 (1898). 105. H. N. Stokes, Z. Anorg. Chem. 19, 36 (1899). 106. A. M. de Ficquelmont, M. Magat, and L. Ochs, C. R. Acad. Sci. 208, 1900 (1939). 107. M. Yokoyama, H. Cho, and M. Sakuma, Kogyo Kagaku Zasshi 66, 422 (1963). 108. A. Narath, F. H. Lohman, and O. T. Quimby, J. Amer. Chem. Soc 78, 4493 (1956).

R E F E R E N C E S

109. 110. 111. 112. 113. 114. 115. 116. 117.

131

A. Narath, F. H. Lohman, and O. T. Quimby,/. Amer. Chem. Soc. 82,1009 (1960). F. H. Pollard, G. Nickless, and A. M. Bigwood, J. Chromatogr. 11, 534 (1963). F. H. Pollard, G. Nickless, and R. W. Warrender, / . Chromatogr. 9, 485 (1962). F. H. Pollard, G. Nickless, and R. W. Warrender, / . Chromatogr. 9, 493 (1962). M. L. Nielsen and T. J. Morrow, Inorg. Syn. 6, 97 (1960). D. E. C. Corbridge and E. J. Low, J. Chem. Soc, London p. 4555 (1954). K. Lunkwitz and E. Steger, Z. Anorg. Allg. Chem. 358, 111 (1968). B. W. Fitzsimmons, C. Hewlett, and R. A. Shaw,/. Chem. Soc,London p. 4459 (1964). A. C. Chapman, W. S. Holmes, N. L. Paddock, and H. T. Searle,/. Chem. Soc,London p. 1825 (1961). 118. M. Becke-Goehring, L. Leichner, and B. Scharf, Z. Anorg. Allg. Chem. 343,154 (1966). 119. M. Becke-Goehring and H. J. Wald, Z. Anorg. Allg. Chem. 371, 88 (1969). 119a. M. Becke-Goehring and M. R. Wolf, Z. Anorg. Allg. Chem. 373, 245 (1970). 120. M. Becke-Goehring and L. Leichner, Angew. Chem., Int. Ed. Engl. 3, 590 (1964). 121. I. N. Zhmurova, U. I. Dolgushina, and Α. V. Kirsanov, Zh. Obshch. Khim. 37, 1797 (1967). 121a. W. Haubold and M. Becke-Goehring, Z. Anorg. Allg. Chem. 372, 273 (1970). 122. N. H. Brown, G. W. Fraser, and N. W. A. Sharpe, Chem. Ind. {London) p. 367 (1964). 123. R. Schmutzler and G. S. Reddy, Inorg. Chem. 4, 191 (1965). 124. T. Moeller and A. H. Westlake, / . Inorg. Nucl. Chem. 29, 957 (1967). 125. Rottweiler Kunstseidefabrik A. G., Ger. Pat. 1,139,497 (1962). 126. A. Michaelis and W. Kârsten, Chem. Ber. 28, 1237 (1895). 127. A. Michaelis and G. Schroeter, Chem. Ber. 27, 490 (1894). 128. H. W. Gimmel, A. Guenther, and J. F. Morgan, J. Amer. Chem. Soc. 68, 539 (1946). 129. G. C. Demitras, R. A. Kent, and A. G. MacDiarmid, Chem. Ind. (London) p. 1712 (1964). 130. R. Schmutzler, Angew. Chem., Int. Ed. Engl. 3, 753 (1964). 131. R. Schmutzler, Chem. Commun, p. 19 (1965). 132. E. W. Abel and G. Willey, Proc. Chem. Soc, London p. 308 (1962). 133. M. Becke-Goehring and H. Weber, Z. Anorg. Allg. Chem. 365, 185 (1969). 134. H. N. Stokes, Amer. Chem. J. 15, 198 (1893). 135. P. Otto, Chem. Ber. 28, 616 (1895). 136. A. Michaelis and E. Silberstein, Chem. Ber. 29, 716 (1896). 137. M. G. Barlow, M. Green, R. N. Haszeldine, and H. G. Higson, / . Chem. Soc, A p. 1592 (1966). 138. M. Green, R. N. Haszeldine, and G. S. A. Hopkins, / . Chem. Soc, A p. 1766 (1966). 138a. H. Bock and W. Wiegràbe, Chem. Ber. 99, 1068 (1966). 139. H. G. Ang and H. J. Emeleus, / . Chem. Soc, A p. 1334 (1968). 140. G. Peiffer, A. Guillemonat, and J. C. Traynard, C. R. Acad. Sci., Ser. C 266, 400 (1968). 141. J. K. Ruff, Inorg. Chem. 6, 2108 (1967). 142. M. Becke-Goehring, Angew. Chem. 73, 246 (1961). 143. M. Becke-Goehring and W. Lehr, Chem. Ber. 94, 1591 (1961). 144. M. Becke-Goehring, E. Fluck, and W. Lehr, Z. Naturforsch. B 17, 126 (1962). 145. M. Becke-Goehring and W. Lehr, Z. Anorg. Allg. Chem. 325, 287 (1963). 146. M. Becke-Goehring and E. Fluck, Inorg. Syn. 8, 94 (1966). 147. M. Becke-Goehring and B. Scharf, Z. Anorg. Allg. Chem. 353, 320 (1967). 148. W. Lehr and M. Schwartz, Z. Anorg. Allg. Chem. 363, 43 (1968). 149. A. Ya. Yakubovich, Ν. I. Shvetsov, I. V. Lebedeva, and V. S. Yakubovich, Russ. J. Inorg. Chem. 8, 953 (1963). 150. E. Fluck, Z. Anorg. Allg. Chem. 320, 64 (1963).

132

4.

S Y N T H E S I S

O F

T H E

P H O S P H O R U S - N I T R O G E N

S K E L E T O N

151. A. Schmidpeter and C. Weingand, Angew. Chem., Int. Ed. Engl. 8, 615 (1969). 152. J. A. Parkins, WADC Tech. Rep. 59-251 (1959). 153. G. M. Nichols, Rep. Conf. High Temp. Polym. Fluid Res., 1962 ASD-TDR-62-372 (1962); U.S. Pat. 3,249,397 (1966). 154. E. Fluck and F. L. Goldmann, Chem. Ber. 96, 3091 (1963). 155. E. Fluck and R. M. Reinisch, Chem. Ber. 96, 3085 (1963). 156. S. E. Frazier and H. H. Sisler, Inorg. Chem. 5, 925 (1966). 157. E. F. Moran and D. P. Reider, Inorg. Chem. 8, 1550 (1969). 158. E. Fluck, Z. Anorg. Allg. Chem. 315, 191 (1962). 159. E. F. Moran, / . Inorg. Nucl. Chem. 30, 1405 (1968). 160. H. R. Allcock and P. Ostrowski, unpublished work (1968). 160a. W. M. Douglas, M. Cooke, M. Lustig, and J. K. Ruff, Inorg. Nucl. Chem. Lett. 6,409 (1970). 161. C. M. Douglas, U.S. Govt. Res. Rep. AD 276-920 (1962). 162. Α. V. Kirsanov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 646 (1954); Chem. Abstr. 49, 13163 (1955). 163. I. N. Zhmurova, A. P. Martynyuk, and Α. V. Kirsanov, / . Gen. Chem. USSR 37, 1789 (1967). 164. V. A. Shokol, V. F. Gamaleya, and V. P. Kukhar, / . Gen. Chem. USSR 40, 520 (1970). 165. H. W. Roesky and L. F. Grimm, Chem. Ber. 102, 2319 (1969). 166. I. N. Zhmurova and Α. V. Kirsanov, / . Gen. Chem. USSR 31, 3440 (1961). 167. I. N. Zhmurova and Α. V. Kirsanov, J. Gen. Chem. USSR 32, 2540 (1962). 168. V. A. Shokol, V. F. Gamaleya, and G. I. Derkach,/. Gen. Chem. USSR38,1815 (1968). 169. H. J. Bestmann, H. Buckschewski, and H. Leube, Chem. Ber. 92, 1345 (1959). 170. M. Becke-Goehring, W. Gehrmann, and W. Goetze, Z. Anorg. Allg. Chem. 326, 127 (1963). 171. F. Ephraim and M. Gurewitsch, Chem. Ber. 43, 138 (1910). 172. Α. V. Kirsanov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 426 (1950); Chem. Abstr. 45, 1503 (1951). 173. Α. V. Kirsanov and I. N. Zhmurova, Zh. Obshch. Khim. 28, 2478 (1958); Chem. Abstr. 53,3118 (1959). 174. Α. V. Kirsanov,Z/*. Obshch. Khim.22,1346(1952); Chem. Abstr. 47,5836(1953). 175. M. Becke-Goehring, T. Mann, and H. D. Euler, Chem. Ber. 94, 193 (1961). 176. V. A. Shokol, G. A. Golik, and G. I. Derkach, Zh. Obshch. Khim. 38,871 (1968). 177. M. Lustig, Inorg. Chem. 8, 443 (1969). 178. L. Horner and H. Hoffmann, Angew. Chem. 69, 478 (1956). 179. L. Horner and H. Oediger, Ann. Chem. 627, 142 (1959). 180. H. Zimmer and G. Singh, / . Org. Chem. 28, 483 (1963). 181. H. Bock and W. Wiegràbe, Angew. Chem. 74, 327 (1962). 182. I. N. Zhmurova and A. P. Martynyuk, J. Gen. Chem. USSR 31, 2577 (1967). 183. I. N. Zhmurova, A. P. Martynyuk, and G. I. Derkach, / . Gen. Chem. USSR 38, 161 (1968). 184. M. Becke-Goehring and E. Fluck, Inorg. Syn. 8, 92 (1966). 185. H. Staudinger and J. Meyer, Helv. Chim. Acta 2, 635 (1919). 186. H. Staudinger and E. Hauser, Helv. Chim. Acta 4, 861 (1921). 187. I. N. Zhmurova, A. A. Tukhar, and R. I. Yurchenko, / . Gen. Chem. USSR 39, 2150 (1969). 188. H. Staudinger and J. Meyer, Helv. Chim. Acta 2, 619 (1919). 189. L. Birkofer and S. M. Kim, Chem. Ber. 91, 2100 (1964). 190. T. W. Rave and H. R. Hayes, / . Org. Chem. 31, 2894 (1966).

R E F E R E N C E S

191. 192. 193. 194. 195.

133

O. J. Scherer and G. Schieder, / . Organometal. Chem. 19, 315 (1969). R. K. Bunting and C. D. Schmulbach, Inorg. Chem. 5, 533 (1966). K. L. Paciorek, Inorg. Chem. 3, 96 (1964). R. H. Kratzer and K. L. Paciorek, / . Org. Chem. 32, 853 (1967). V. A. Gilyarov, R. V. Kudryavtsev, and M. I. Kabachnik, / . Gen. Chem. USSR 38, 351 (1968). 196. F. G. Mann, / . Chem. Soc., London p. 1209 (1940). 197. H. H. Wassermann and R. C. Koch, Chem. Ind. (London) p. 1014 (1956). 198. L. Horner and H. Hoffmann, Angew. Chem. 69, 478 (1956). 199. C. C. Walker and H. Shechter, / . Amer. Chem. Soc. 90, 5626 (1968). 200. E. Fluck and R. M. Reinisch, Z. Anorg. Allg. Chem. 328, 165 (1964). 201. M. Becke-Goehring, A. Debo, E. Fluck, and W. Goetze, Chem. Ber. 94,1383 (1961). 202. H. P. Latscha, W. Haubold, and M. Becke-Goehring, Z. Anorg. Allg. Chem. 339, 82 (1965). 203. O. J. Scherer and G. Schieder, Angew Chem., Int. Ed. Engl. 7, 75 (1968). 204. O. J. Scherer and P. Klusmann, Angew. Chem., Int. Ed. Engl. 7, 541 (1968); Z. Anorg. Allg. Chem. 370, 171 (1969). 205. O. J. Scherer and G. Schieder, Chem. Ber. 101, 4184 (1968). 206. E. S. Levchenko and Α. V. Kirsanov, Zh. Obshch. Khim. 29, 1813 (1959). 207. G. I. Derkach and M. V. Kolotilo, Zh. Obshch. Khim. 36, 1437 (1966). 208. E. Fluck and F. L. Goldmann, Z. Anorg. Allg. Chem. 356, 307 (1968). 208a. H. W. Roesky, Z. Anorg. Allg. Chem. 367, 151 (1969). 209. R. F. Hudson, R. J. G. Searle, and F. H. Devitt,/. Chem. Soc, Cp. 1001 (1966). 210. H. P. Latscha, Z. Anorg. Allg. Chem. 346, 166 (1966). 211. H. Ulrich, B. Tucker, and A. A. R. Sayigh, / . Org. Chem. 32, 1360 (1967). 212. J. M. Kanamueller and H. H. Sisler, Inorg. Chem. 6, 1765 (1967). 213. M. Becke-Goehring, K. Bayer, and T. Mann, Z. Anorg. Allg. Chem. 346, 143 (1966). 214. R. Appel, D. Hânssgen, and B. Ross, Z. Naturforsch. B 22, 1354 (1967). 215. A. Schmidpeter and J. Ebeling, Angew. Chem. 79, 100 (1967). 216. A. Schmidpeter and J. Ebeling, Angew. Chem. 79, 534 (1967). 217. A. Schmidpeter and J. Ebeling, Chem. Ber. 101, 2602 (1968). 218. A. Schmidpeter and N. Schindler, Z. Anorg. Allg. Chem. 362, 281 (1968). 219. A. Schmidpeter and R. Boehm, Z. Anorg. Allg. Chem. 362, 65 (1968). 220. A. Schmidpeter and J. Ebeling, Chem. Ber. 101, 3883 (1968). 221. A. Schmidpeter and J. Ebeling, Chem. Ber. 101, 815 (1968). 222. M. V. Kolotilo, / . G en. Chem. USSR 35, 1007 (1965). 223. M. C. Miller and R. A. Shaw, / . Chem. Soc, London p. 3233 (1963). 224. J. Emsley and P. B. Udy, / . Chem. Soc, A p. 768 (1971). 224a. J. M. Rees, Lighting Res. TechnoL 2, 257 (1970). 225. J. Emsley and P. B. Udy, / . Chem. Soc, A p. 3025 (1970). 226. G. Wunsch, R. Schiedermaier, V. Kiener, E. Fluck, and G. Heckmann, Chem. Z. 94, 832 (1970).