Chapter 4 SYNTHESIS OF THE
PHOSPHORUS-NITROGEN
SKELETON
A . General Survey of Synthetic Routes A l a r g e n u m b e r of p h o s p h o r u s - n i t r o g e n c o m p o u n d s h a v e b e e n d e s c r i b e d in the literature. S o m e are prepared by direct synthesis, a n d others are obtained by substitution reactions performed o n suitable precursors. In this chapter w e will c o n s i d e r t h e d i r e c t s y n t h e s i s r o u t e s , a n d s u b s t i t u t i o n p r o c e s s e s will b e d i s c u s s e d in C h a p t e r s 5 t h r o u g h 1 4 . A l t h o u g h m a n y d i r e c t s y n t h e t i c r o u t e s t o p h o s p h o r u s - n i t r o g e n c o m p o u n d s h a v e b e e n d e s c r i b e d , m o s t of t h e s e m e t h o d s fall i n t o a few g e n e r a l c a t e g o r i e s , a n d t h e s e a r e c o n s i d e r e d b e l o w in t u r n . O n e reaction, the t r e a t m e n t of h a l o p h o s p h o r a n e s with a m m o n i u m halides, h a s b e e n s t u d i e d so extensively t h a t , in a d d i t i o n t o b e i n g m e n t i o n e d in t h e g e n e r a l s u r v e y , it is c o n s i d e r e d in g r e a t e r d e t a i l in S e c t i o n B .
1. S y n t h e s i s o f C y c l o - a n d
a. Interaction
Polyphosphazenes
of Halophosphoranes
with Ammonium
H a l o p h o s p h o r a n e s react with a m m o n i u m phazenes, according to the general e q u a t i o n
Halides
h a l i d e s t o yield
cyclophos-
1 - 7 1
η R P X + η N H X -> (NPR )„ + An HX 2
3
4
2
T h e g r o u p R can be chloro, b r o m o , or an organic unit, and the halogen atom, X , c a n b e c h l o r o o r b r o m o . T y p i c a l l y , t h e r e a c t i o n t a k e s p l a c e in a b o i l i n g h a l o genated solvent such as s-tetrachloroethane or chlorobenzene. Cyclic trimers a n d t e t r a m e r s a r e u s u a l l y f o r m e d in t h e g r e a t e s t yields, a l t h o u g h s m a l l e r 97
98
4.
SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON
a m o u n t s o f cyclic p e n t a m e r s , h e x a m e r s , e t c . , a n d l i n e a r species c a n a l s o b e isolated. T h e m o s t extensively s t u d i e d r e a c t i o n is t h e o n e b e t w e e n p h o s p h o r u s p e n t a c h l o r i d e a n d a m m o n i u m c h l o r i d e t o yield t h e s t a b l e , w h i t e , c r y s t a l l i n e h e x a chlorocyclotriphosphazene, (NPC1 ) , and octachlorocyclotetraphosphazene, ( N P C 1 ) 4 . ~ T h e o v e r a l l r e a c t i o n s c h e m e is 2
1
3
3 5
2
η PC1 + η NH C1 5
^ > (NPC1 ) + (NPCI ) + · · ·
4
2
3
2
4
T h i s is o n e of t h e m o s t i m p o r t a n t r e a c t i o n s in p h o s p h a z e n e c h e m i s t r y , since it c o m p r i s e s t h e c h e a p e s t a n d m o s t c o n v e n i e n t first s t e p t o t h e s y n t h e s i s of t h e m a j o r i t y of c y c l o - a n d p o l y p h o s p h a z e n e s . I t is a l s o t h e b a s i s o f a m a n u f a c t u r i n g p r o c e s s for c h l o r o c y c l o p h o s p h a z e n e s . 1 3 - 2 2
A s i m i l a r r e a c t i o n is e m p l o y e d for t h e p r e p a r a t i o n of zenes. T h e g e n e r a l e q u a t i o n is
bromophospha-
4 0 - 5 1
η PBr + η Br + η NH Br 3
2
4
~~ " > (NPBr ) + (NPBr ) + · · · 4
HBr
2
3
2
4
T h e l o w e r b r o m o c y c l o p h o s p h a z e n e s a r e s t a b l e , w h i t e , c r y s t a l l i n e solids. T h e y a r e m o r e sensitive t o a t m o s p h e r i c m o i s t u r e t h a n a r e t h e c h l o r o d e r i v a t i v e s . A l t h o u g h fewer cyclic b r o m o p h o s p h a z e n e h o m o l o g u e s h a v e b e e n r e p o r t e d t h a n for t h e ( N P C 1 ) „ o r ( N P F ) „ series, species u p t o t h e cyclic h e x a m e r h a v e been d e s c r i b e d a n d h i g h e r cyclic h o m o l o g u e s u n d o u b t e d l y c a n b e i s o l a t e d . 2
2
4 8 , 4 9
M i x e d c h l o r o - b r o m o c y c l o p h o s p h a z e n e s a r e p r e p a r e d b y t h e u s e of a n a p p r o p r i a t e m i x t u r e of p h o s p h o r u s h a l i d e a n d a m m o n i u m h a l i d e , a s i l l u s t r a t e d by the following e q u a t i o n : 4 3
3 PC1 + 3 Br + 3 NH Br 3
2
4
^ " ^ " ^ S
N P C l B r + 12 HX 3
110°C
3
2
4
Phosphorus tribromide, phosphorus pentachloride, and a m m o n i u m chloride give N P C l B r , w h i l e p h o s p h o r u s t r i c h l o r i d e , b r o m i n e , a n d a m m o n i u m b r o m i d e yield N P C l B r . 3
3
4
2
4 3
3
3
2
4
O r g a n o c y c l o p h o s p h a z e n e s are synthesized by similar m e t h o d s . For e x a m p l e , l , 3 , 5 - t r i p h e n y l - l , 3 , 5 - t r i c h l o r o c y c l o t r i p h o s p h a z e n e is p r e p a r e d f r o m phenyltetrachlorophosphorane and a m m o n i u m chloride, according to the reaction 5 3 - 6 9
Ph 3 PhPCl + 3 NH C1 4
4
>
CL I P\ Ph' ^
x
/
C1 l| / P h Ρ C1 X
+ 12 HC1 (Refs. 57, 60, 65)
99
A. GENERAL S U R V E Y OF SYNTHETIC R O U T E S
S i m i l a r l y , d i p h e n y l t r i c h l o r o p h o s p h o r a n e a n d a m m o n i u m c h l o r i d e yield fully phenylated cyclophosphazenes by the overall process η Ph PCl + η NH C1 2
3
An
> (NPPh ) + (NPPh ) +
H C l
4
2
3
2
4
(Refs. 54, 55) O t h e r related reactions are η PhPBr + η Br 4- η NH Br 2
2
4
4
"
H B r
>
(NPBrPh) + (NPBrPh) 3
4
(Refs. 63, 64) η Me PCl + η NH C1 2
3
η Et PCl + 4n N H 2
*" ' > (NPMe ) + (NPMe ) 4 (Ref. 67) H C
4
3
2
3
2
4
(NPEt ) + 3/i NH C1
3
2
n
4
(Ref. 68) 3 M e N P C l + 12 N H 2
4
> [NP(CI)NMe ] + 9 NH C1
3
2
7
2
3
(Ref. 39)
4
-4/7HC1
"(C F ) PC1 + «NH C1 3
3
> [NP(C F ) ] + [NP(C F ) ]
4
3
7
2
3
3
7
2
(Ref. 69a)
4
A m o r e d e t a i l e d c o n s i d e r a t i o n of t h i s r e a c t i o n is given in S e c t i o n Β of t h i s chapter. b . Cyclization
of Linear
Phosphorus-Nitrogen
Compounds
Cyclophosphazenes are formed when a linear p h o s p h a z e n e with terminal a m i n o groups reacts with a h a l o p h o s p h o r a n e . " 7 2
T h e r e a r e a n u m b e r of
7 7
v a r i a t i o n s t o t h i s t y p e of s y n t h e s i s , b u t t y p i c a l e x a m p l e s a r e s h o w n in t h e following scheme: Ph P.^N.-^PPh 2
I
'C1 2
G
pels
Ph P^^PPh 2
-HCl
I
I NH
NH
2
2
2
(Ref. 73)
II
cK
x
ci
I Me PCl 2
3
— — — >
Ph.P^^PPh, I II Ν Me^
x
(Ref. 76)
Me
In o n e e x p e r i m e n t , r e p o r t e d by H e r r i n g a n d D o u g l a s , p h a z e n e salt, I, w a s p r e p a r e d
by t h e r e a c t i o n
of
7 4
p h o r a n e , P h P C l , w i t h a m m o n i a in c h l o r o f o r m s o l u t i o n . 2
3
the d i a m i n o p h o s -
diphenyltrichlorophos 5 9
C o m p o u n d 1 is
a w h i t e , c r y s t a l l i n e solid, w h i c h m e l t s at 2 4 5 ° - 2 4 6 C . It is s u r p r i s i n g l y s t a b l e c
100
4.
SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON
in t h e a t m o s p h e r e . A 1:1 m o l a r m i x t u r e o f I a n d p h o s p h o r u s p e n t a c h l o r i d e w a s h e a t e d i n v a c u u m a t 135°C f o r 16 h o u r s . T h e p r o d u c t w a s r e c r y s t a l l i z e d f r o m p e t r o l e u m e t h e r t o give a 2 5 % yield o f w h i t e c r y s t a l s o f 1,1-dichloro3,3,5,5-tetraphenylcyclotriphosphazene, II. Interestingly enough, the reactions of I w i t h d i p h e n y l t r i c h l o r o p h o s p h o r a n e , P h P C l , 2
phenyltetrachlorophos-
3
p h o r a n e , P h P C l , o r p h o s p h o r u s p e n t a c h l o r i d e yield significant q u a n t i t i e s o f 4
the appropriate cyclote/raphosphazene. Ph P^Nr^PPh 2
I
' C l + 2 Ph PCl
NH ci 4
e
2
2
3
-HCl
I
NH
NH
2
•>
(NPPh ) 2
(Ref. 74)
4
2
T h e a m m o n i u m c h l o r i d e r e q u i r e d f o r t h e s y n t h e s i s is t h o u g h t t o b e f o r m e d d u r i n g side r e a c t i o n s . O n e of the c o m p o u n d s prepared by this route, l,l-dichloro-/m/?5 -3,5-bis,
( 4 - m e t h y l p h e n y l ) - 3 , 5 - d i p h e n y l c y c l o t r i p h o s p h a z e n e , is t h e first r e p o r t e d o p t i c ally active c y c l o t r i p h o s p h a z e n e . T h e c o m p o u n d w a s s y n t h e s i z e d f r o m t h e o p t i c a l l y a c t i v e p h o s p h a z e n e salt s h o w n . Ph
6
NH
NH
2
6
4
4
/Ph
MeC H
C H Me
MeC H » - P — Ν — P — Ph 6
7 2
Cl
e
PCI5
pir I
4HC1
cr
2
C H Me 6
4
(Ref. 72)
ci
-isomer A related reaction involves t h e interaction of a linear p h o s p h a z e n e with a phosphonite, as shown in t h e following e q u a t i o n : Ph P=N—PPh 2
I
II
NH
2
Ph P^ ^PPh N
2
RP(OPh)
2PhOH
2
2
2
NH
Ph
I
PPh
II
2
.N
(Ref. 75) w h e r e R is O P h , M e , o r E t . If c o m p o u n d I r e a c t s w i t h t h e h a l i d e o f a n e l e m e n t o t h e r t h a n p h o s p h o r u s , mixed h e t e r o a r o m a t i c rings c a n b e p r e p a r e d . F o r example, with b o r o n tri chloride, t h e following reaction takes place: [ + BCI3
Ph F
'PPh
2
II
HN CI
2
+ 3 HCl
(Ref. 77)
A.
c. Thermal
101
G E N E R A L S U R V E Y OF S Y N T H E T I C R O U T E S
Decomposition
of
Azidophosphines
T h i s r e a c t i o n r o u t e utilizes t h e m e t a t h e t i c a l e x c h a n g e b e t w e e n a h a l o p h o s p h i n e a n d a m e t a l a z i d e , f o l l o w e d b y careful d e c o m p o s i t i o n o f t h e r e s u l t a n t azidophosphine. T h e o v e r a l l r e a c t i o n s c h e m e is a s f o l l o w s : 7 8 - 8 5
R PCl + N a N 2
~
3
N a C 1
>
R PN 2
>
3
(R PN)„ + / i N 2
2
This reaction can b e used t o p r e p a r e a variety of cyclo- and p o l y p h o s p h a z e n e s , as illustrated b y t h e following e q u a t i o n s : -LiCl
(CF ) PC1 4- LiN 3
2
PBr + N a N 3
50°-60°C
> (CF ) PN
3
3
-NaBr
3
1A
^
>
0t
2
— NaCl
2
3
n
o
o
_
1
7
5
—
3
JO m m
[Br PN ]
IOJ —loi C
PhPCl + N a N
2
o
> [(CF ) PN]„ + « N
>
3
3
2
(Br PN)„ + / i N 2
[PhClPN ] -> (PhClPN) + η N
>
3
C
n
2
(Ref. 79) (Ref. 78)
2
(Ref. 78)
2
-NaCl
Ph PCl + N a N 2
> [Ph PN ] -> (Ph PN) + 4 N
165°-167°C
3
2
3
2
4
(Ref. 78)
2
Cl Ph P=N—P—Ph 2
2 Ph PCl + 2 PhPCl + 4 N a N 2
2
>
3
I Ν
II
+4N
II Ν
(Ref. 81)
2
I
Ph—Ρ—N=P Ph I
2
Cl Ph PCl + Me SiN 2
3
3
Me SiCl 3
> Ph PN 2
25°C
3
-> (Ph PN) + 3 N 2
3
(Ref. 83)
2
S o m e idea of the required reaction conditions can b e obtained from the p r o cedure reported by Tesi, H a b e r , a n d D o u g l a s . Bis(trifluoromethyl)chlorophosphine, ( C F ) P C 1 , w a s treated with lithium azide a t 0 ° C for 24 hours. D i s t i l l a t i o n in vacuo t h e n yielded a b o u t 7 0 % o f t h e highly e x p l o s i v e bis(trifluoromethyl)azidophosphine, ( C F ) P N . T h i s m a t e r i a l is a v i o l e n t d e t o n a t o r even a t l i q u i d n i t r o g e n t e m p e r a t u r e s . H o w e v e r , s l o w d e c o m p o s i t i o n of t h e a z i d e a t 5 0 ° - 6 0 ° C a t 37 m m p r e s s u r e c a u s e d e l i m i n a t i o n o f n i t r o g e n a n d formation of a white, waxy p o l y p h o s p h a z e n e of formula [ ( C F ) P N ] . A s shown by Herring, i s o l a t i o n o f t h e i n t e r m e d i a t e a z i d o p h o s p h i n e is u n n e c e s s a r y i n o t h e r r e a c t i o n s since, f o r e x a m p l e , d i r e c t a d d i t i o n o f s m a l l q u a n tities o f s o d i u m a z i d e t o m o l t e n d i p h e n y l c h l o r o p h o s p h i n e gives a m i x t u r e o f d i p h e n y l p h o s p h a z e n e s directly. 7 9
3
2
3
2
3
3
2
n
7 8
d. Dehydrohalogenation
of
Aminochlorophosphoranes
A m i n o d i c h l o r o p h o s p h o r a n e s , R P ( C 1 ) N H , can be dehydrohalogenated in t h e p r e s e n c e o f a t e r t i a r y a m i n e t o yield a c y c l o - o r p o l y p h o s p h a z e n e . 2
2
2
8 6 - 9 0
102
4.
SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON
A p p r o p r i a t e a m i n o d i c h l o r o p h o s p h o r a n e s for t h i s r e a c t i o n c a n b e s y n t h e s i z e d either by oxidative chlorination of a m i n o p h o s p h i n e s (phosphinamides o r p h o s p h i n o u s amides), o r b y chlorination of p h o s p h i n i c amides. T h e general r e a c t i o n s e q u e n c e is R PNH 2
2
\ci
2
V
-2HC1
Ο
R P(C1 )NH 2
R PNH 2
2
2
>
E t a N
(R PN)„ 2
2
In this reaction, t h e a m i n o d i c h l o r o p h o s p h o r a n e apparently functions as a phosphinimine hydrochloride with t h e structure [ R P ( C 1 ) N H ] C R T h e s c o p e o f this s y n t h e t i c r o u t e is i l l u s t r a t e d b y t h e f o l l o w i n g r e a c t i o n s e q u e n c e s : @
2
2
- 2 HCl
(CF ) PNH + Cl -> (CF ) P(C1 )NH 3
2
2
2
3
2
2
•
2
[(CF ) PN] , ,„ 3
2
3
4
(Refs. 86, 87)
- 2 HCl
( C F ) P N H + Cl 3
7
2
2
2
(C F ) P(C1 )NH 3
7
2
2
( C F ) P N H + Cl -> (C F ) P(C1 )NH 6
5
2
2
2
6
5
2
2
2
> [(C F ) PN]
3
> [(C F ) PN]
3
3
- 2 HCl 2
7
2
(Refs. 86, 87) 6
5
2
(Ref. 90) -POCI3
-2
Ph P(0)NH + PCI5 2
> Ph P(Cl )NH
2
2
2
HCl
> (Ph PN)
2
2
3 a n d 4
(Ref. 89) D e h y d r o h a l o g e n a t i o n c a n b e effected w i t h a s t r o n g b a s e s u c h as t r i e t h y l a m i n e , or, as in t h e latter reaction, simply b y heating in v a c u u m . e. Interaction amine
of Chlorophosphines
with Chloramine
or Ammonia
and Chlor-
Sisler a n d c o - w o r k e r s have shown that diarylchlorophosphines can b e converted t o cyclophosphazenes by treatment with chloramine (scheme l ) , o r w i t h a m m o n i a a n d c h l o r a m i n e ( s c h e m e 2 ) . T w o different r e a c t i o n p a t h 9 1 - 9 3
9 2
9 1
R P(C1 )NH 2
NH C1 "(1)
2
2
^
2
R PC1 2
NH.Cl
R PNH 2
2
[R P(NH ) ]®C1 2
2
G
2
w a y s a p p a r e n t l y exist. B o t h r o u t e s h a v e b e e n u s e d t o p r e p a r e t h e p h e n y l c y c l o phosphazenes, ( N P P h ) . Reaction scheme 1 resembles that discussed a b o v e i n S e c t i o n d. H o w e v e r , t h e s e c o n d s t e p o f r o u t e 1 p r o c e e d s t h r o u g h t h e 2
3 a n d 4
103
A. G E N E R A L S U R V E Y OF S Y N T H E T I C R O U T E S
intermediate f o r m a t i o n of linear p h o s p h a z a n e s , such as P h P ( N H ) ( C l ) N H P 2
2
( C l ) P h , a n d a m m o n o l y s i s leads t o t h e f o r m a t i o n of [ P h P ( N H ) N P ( N H ) 2
2
2
2
2
P h ] C l . T h i s l a t t e r c o m p o u n d w a s a l s o i s o l a t e d f r o m r e a c t i o n 2. T h u s , t h e r e @
G
2
is a s t r o n g r e l a t i o n s h i p b e t w e e n s e q u e n c e 2 a n d t h e r e a c t i o n s d i s c u s s e d i n Section b a b o v e . T h e c h l o r a m i n e - a m m o n i a m i x t u r e used in r o u t e 2 w a s pre p a r e d b y t h e g a s - p h a s e r e a c t i o n o f c h l o r i n e w i t h excess a m m o n i a , a n d t h i s m i x t u r e w a s b u b b l e d t h r o u g h a solution of d i p h e n y l c h l o r o p h o s p h i n e in tetrachloroethane. f. Pyrolysis
of a Diorganophosphonium
Halide
T h i s r o u t e utilizes p a r t of t h e s e q u e n c e o u t l i n e d i n r o u t e 2 o f S e c t i o n e a b o v e . Thus, intermediate molecular weight poly(dimethylphosphazenes) containing ~ 1 2 0 repeating units have been p r e p a r e d by the pyrolysis of d i m e t h y l d i a m i n o phosphonium chloride.
T h e o v e r a l l r e a c t i o n s c h e m e is
9 4
200°C
Az[Me P(NH ) ]®Cl 2
2
> (Me PN)„ + η NH C1
0
2
2
4
T h e m e c h a n i s m p r o b a b l y proceeds t h r o u g h t h e p r i o r f o r m a t i o n of [ M e P ( N H ) - - ^ N - - ^ P ( N H ) M e ] © C l followed by cyclization t o cyclophosphazenes and subsequent polymerization. 0
2
2
2
g. Dehydrohalogenation
2
of a
Cyclophosphazane
Cyclouf/phosphazanes (prepared by m e t h o d s t o be described later) c a n be d e h y d r o h a l o g e n a t e d t o yield c y c l o t r i - o r h i g h e r c y c l o p h o s p h a z e n e s , a s s h o w n in t h e f o l l o w i n g e x a m p l e s . T h e d e g r e e o f p o l y m e r i z a t i o n o f t h e l a t t e r p r o d u c t was not reported. 9 5
F
Ph
I
H Ν—PPh
2
Ph P—NH
2
-HF (CsF in benzene)
2
F
2
I
HN-PPh p
h . Miscellaneous
n
ρ
-HP
(
P
H
P
P
N
(CsF in dimethyl sulfoxide)
Syntheses
It h a s b e e n r e p o r t e d t h a t c h l o r o c y c l o p h o s p h a z e n e s c a n a l s o b e p r e p a r e d b y the t r e a t m e n t of p h o s p h o r u s p e n t a c h l o r i d e with a m m o n o b a s i c mercuric
104
4 . SYNTHESIS OF T H E P H O S P H O R U S - N I T R O G E N SKELETON
chloride, N H H g C l , a n d by t h e reaction of phosphoryl nitride with chlorine 2
at temperatures above 8 0 0 ° C .
Poly(chlorofluorophosphazene) (III) c a n
9 6 - 9 9
be prepared by ammonolysis of F P ( 0 ) — Ο — P ( 0 ) F 2
thesis r o u t e Ο
Ο II -NH40PF2
Ο
Il I I
F P—O—PF 2
2
via t h e following syn
:
9 9 a
+ 2NH
2
o >
3
O
I
H NPF 2
pcis Γϊϊϊά*
II CI P=NPF 3
2
2
-P(0)F C1 200°C -P(0)C1 N 2
3
2
(NPFC1)„ III
2. SYNTHESIS OF CYCLOPHOSPHAZANES A N D M O N O P H O S P H A Z A N E S
a. By Rearrangement
of Hydroxy-
or
Alkoxyphosphazenes
T h e hydrolysis of halocyclotri- a n d t e t r a p h o s p h a z e n e s results in the forma t i o n o f h y d r o x y p h o s p h a z e n e s (see C h a p t e r 5). S u c h c o m p o u n d s c a n r e a r r a n g e spontaneously to cyclophosphazanes (IV and V ) ,
Cl
/ C I
x
11 X I
CkJ c
,
ΗΟ HCX
X
-
P
^
C1
S
Χ
I
below.
Ο
ΗΝ
NH
O H OH
HO
as shown
HO
/ O H
II /
1 0 0 - 1 1 5
HO^
X
N Η
P
V
IV
CI
I
OH
CI
I
I
II
II
Ν
I
Cl—Ρ—N=P—Cl
Cl
CI
I
HO—P=N—P—OH
CI—P=N—P—CI Ν
OH
H 0 2
N
N
OH
H 0=P—N—P—OH
I
OH
I
I
ΗΝ
NH
I
HO—P—N=P—OH
I
O
II
I
I
HO—Ρ—N—P=0
OH
II
O
S t a b l e salts o f t h e h y d r o x y p h o s p h a z a n e s c a n a l s o b e i s o l a t e d .
H
1 OH
A.
GENERAL SURVEY OF SYNTHETIC
105
ROUTES
Similarly, alkyl g r o u p m i g r a t i o n occurs from oxygen to nitrogen when alkoxycyclophosphazenes are heated at 160°-200°C. Alkyl halides are catalysts for t h i s r e a c t i o n . RO
/ O R
X
R
Heat
R O
X
R N T
•
Π / O R
RO^| 1 N
X
\ ^ °
O
OR
P
V
N R
I Ν
.OR %
Q
T h e r e a r r a n g e m e n t t a k e s p l a c e w h e n R is M e , Et, «-Pr, /-Pr, o r b e n z y l , b u t it d o e s n o t o c c u r w h e n R is p h e n y l o r t r i f l u o r o e t h y l . T h e r e a c t i o n is c o n s i d e r e d in m o r e d e t a i l in C h a p t e r 13. 116
b . Reactions
of Halophosphorus
Compounds
with
Amines
B o t h t h e cyclic d i m e r i c p h o s p h a z a n e , V I , a n d t h e t r i p l e r i n g s t r u c t u r e , V I I , h a v e b e e n i s o l a t e d f r o m t h e r e a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h m e t h y l ammonium chloride. Triple ring c o m p o u n d s similar to VII, b u t with 1 1 7 , 1 1 8
®
PC1 + MeNH Cl° 5
-HCl
χ
>
3
Me Me 9 Me Me / Ν Nv I . N . /NL α 3 ΡΓ / P C 1 ! C1 P^ ^ P ^ ^ P ^ > C 1 3
3
Me
Me
VI C O or S 0 described.
2
3
Me VII
u n i t s in p l a c e of t h e t e r m i n a l P C 1
3
groups, have also been
1 1 9 , 1 1 9 a
I n t h e p r e s e n c e of t r a c e s of w a t e r , p h o s p h o r u s p e n t a c h l o r i d e r e a c t s w i t h m e t h y l a m m o n i u m c h l o r i d e t o yield a c o m p o u n d w h i c h is believed t o h a v e a cage structure ( V I I I ) .
1 2 0
The
3 1
P N M R s p e c t r u m s h o w e d a singlet a t + 7 4 . 3
p p m , w h i c h is c o n s i s t e n t w i t h t h e c a g e s t r u c t u r e . C o m p o u n d V I c a n a l s o b e
MeN
Ρ Cl
NMe 2
VIII
106
4.
SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N
SKELETON
o b t a i n e d f r o m t h e r e a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h m e t h y l a m i n e . It is a c r y s t a l l i n e solid w h i c h m e l t s a t 178°C. T h e s a m e t y p e o f r e a c t i o n o c c u r s w i t h a r y l c h l o r o p h o s p h o r a n e s . F o r ex ample, p h e n y l t e t r a c h l o r o p h o s p h o r a n e reacts with an alkylammonium c h l o r i d e t o yield a c y c l o d i p h o s p h a z a n e ( I X ) . These materials are colorless, 1 2 1
Ph
I
-HCl
2 PhPCI + 2 AlkNH Cl 4
3
C1 P—NAlk "I I AlkN—PC1 -P( 2
•
2
I
Ph IX crystalline substances which are readily hydrolyzed by a t m o s p h e r i c moisture. T h e y c a n n o t b e d e p o l y m e r i z e d t o t h e m o n o p h o s p h a z e n e in b o i l i n g b e n z e n e . H o w e v e r , d i p h e n y l t r i c h l o r o p h o s p h o r a n e r e a c t s w i t h a m i n e s t o f o r m saltlike c o m p o u n d s of f o r m u l a [ P h P ( C l ) — N H R ] © C l . e
1 2 1 a
2
P h o s p h o r u s p e n t a f l u o r i d e r e a c t s w i t h s e c o n d a r y a m i n e s t o yield first a n adduct and then a m o n o p h o s p h a z a n e . 1 2 2
PF + H N R 5
F PNHR
2
5
A m o n o p h o s p h a z a n e is a l s o f o r m e d i n t e r a c t s with a p r i m a r y a m i n e .
Heat
——>
2
F P—NR 4
— Hr
when
2
phenyltetrafluorophosphorane
1 2 3
®
PhPF + 2 MeNH 4
PhF P—NHMe + MeNH Cl
2
3
Q
3
P h o s p h o r u s p e n t a c h l o r i d e r e a c t s w i t h a m i n o m e t h a n e s u l f o n i c acid t o give a solid cyclic d i m e r i c p h o s p h a z a n e ( X ) by t h e p r o c e s s 1 2 4
PC1 + H N C H S 0 H 5
2
2
-S0
2
3
>
2
C1 P—NCHoCl | | C1CH N—PC1 3 3
2
3
X T h i s p r o d u c t is a c o l o r l e s s , c r y s t a l l i n e c o m p o u n d , m . p . 1 4 0 ° - 1 4 1 ° C , w h i c h is r a p i d l y d e c o m p o s e d by t r a c e s of m o i s t u r e . C o m p o u n d V I is f o r m e d by t h e i n t e r a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h 7V,7V'-dimethylsulfamide. T h e cyclohexyl ester of d i c h l o r o p h o s p h o r i c acid r e a c t s w i t h c y c l o h e x y l a m i n e Ο
II
ο Il RO—PC1 + H N R 2
2
_
H C 1
>
ROP-NR I I RN—POR XI
I
o
A.
GENERAL SURVEY OF SYNTHETIC
t o yield a c y c l o d i p h o s p h a z a n e w i t h s t r u c t u r e X I .
Similarly, t h i o p h o s p h o r y l
1 2 5
c h l o r i d e i n t e r a c t s w i t h a n i l i n e h y d r o c h l o r i d e t o yield X I I .
1 2 6
Finally, phos-
PhHNP—NPh | | + 10 HCl PhN—PNHPh
4[PhNH ]®Cl + 2 S=PC1 -> Q
3
107
ROUTES
3
S XII
p h o r u s t r i c h l o r i d e r e a c t s w i t h p r i m a r y a m i n e s , s u c h as a n i l i n e , t o yield c y c l o d i p h o s p h a z a n e s s u c h as X I I I a n d X I V . 2PhNH + 2PCl 2
_HCI
'
1 2 7
It s h o u l d be n o t e d t h a t s i m i l a r
1 2 8
C1P—NPh , I I ^ > PhN—PCI
RHNP—NPh | | PhN—PNHR
R N H
3
c
XIII
XIV
r e a c t i o n s a r e e m p l o y e d for t h e s y n t h e s i s of c y c l o d i p h o s p h a z a n e s a n d m o n o p h o s p h a z e n e s ( p h o s p h i n i m i n e s ) . W h e t h e r d i m e r i z a t i o n of t h e
monophos-
p h a z e n e o c c u r s a p p e a r s t o d e p e n d p a r t l y o n steric f a c t o r s . c. Reactions
of Phosphorus
Halides
with Silicon-Nitrogen
Compounds
128-133
S c h m u t z l e r a n d M a c D i a r m i d h a v e s h o w n t h a t t h e s i l i c o n - n i t r o g e n b o n d in s i l y l a m i n e s o r s i l a z a n e s c a n b e cleaved by f l u o r o p h o s p h o r a n e s t o yield m o n o p h o s p h a z a n e s or cyclodiphosphazanes. T h e following e q u a t i o n s illustrate this method. PF + Me NSiMe 5
2
3
-> F P—NMe + Me SiF 4
2
(Ref. 129)
3
PF + Et NSiMe -> F P—NEt + Me SiF 5
2
3
4
PhPF + Me NSiMe 4
2
2
(Refs. 95, 130)
3
PhF P—NMe + Me SiF
3
3
2
3
(Ref. 130)
F P—NMe \ \ + 4 Me SiF (Refs. 129, 131) MeN—PF 3
2 PF + 2 MeN(SiMe ) 5
3
>
2
3
3
2 PhPF + 2 MeN(SiMe ) 4
3
>
2
PhF P—NMe \ \ + 4 Me SiF (Ref. 131) MeN—PF Ph 2
3
2
T h e f o u r - m e m b e r e d r i n g s y s t e m s a r e sufficiently s t a b l e t o b e distilled o r s u b limed. T h e y are also hydrolytically s t a b l e . However, cyclization does not o c c u r if t w o p h e n y l g r o u p s a r e p r e s e n t o n p h o s p h o r u s , a n d a m o n o p h o s p h a z e n e is f o r m e d i n s t e a d . 1 3 1
Ph PF + MeN(SiMe ) 2
3
2
2
P h F P = N M e + 2 Me SiF 2
3
(Ref. 95)
108 *Η,
4.
3 1
P , and
1 9
SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON
F N M R spectroscopy have been used to confirm the structures
of m o s t of t h e a b o v e c o m p o u n d s . A r e l a t e d c y c l o t r i p h o s p h a z a n e s y n t h e s i s i n v o l v e s t h e i n t e r a c t i o n of p h o s phorus trichloride with a disilazane,
1 3 1
as in t h e e q u a t i o n CI
3 PC1 + 3 EtN(SiMe ) 3
3
EtN 2
NEt
6 Me SiCl 3
C1P . / P C 1 N
Et T h i s c o m p o u n d is u n s t a b l e i n m o i s t a i r . I n a closely r e l a t e d p r o c e s s , d i c h l o r o t r i f l u o r o p h o s p h o r a n e r e a c t s w i t h t h e b i s ( t r i m e t h y l s i l y l ) d e r i v a t i v e o f Ν,,/V'-dimethylsulfamide ( X V ) t o yield t h e m o n o c y c l i c a n d bicyclic p h o s p h a z a n e c o m p o u n d s X V I a n d X V I I b y t h e following s e q u e n c e : 1 3 3
Me Me Si—Nk C1 PF + ^S0 Me Si—Ν Me
Me -Me SiCl
3
2
3
F P^
3
S0
3
2
3
2
Me
XV
XVI -Me SiF 3
Me ^N /P: ^N" ; s o 2 Me F Me Me
o s; 2
v
XVII d. Pyrolysis
of Amino-Phosphorus
Compounds
S o m e very e a r l y p h o s p h a z a n e s y n t h e s e s fall i n t o t h i s c a t e g o r y . F o r e x a m p l e , t h e p y r o l y t i c c o n d e n s a t i o n of C l P ( 0 ) N H P h t o t h e c y c l o d i p h o s p h a z a n e X V I I I was reported by Stokes in 1 8 9 3 . F u r t h e r r e a c t i o n of t h i s p r o d u c t w i t h a m i n e 2
1 3 4
CI
CI
I
2 0=P—CI I
- 2 HCl
i
*
0=P—NPh
I I
PhN—P=0
NHPh
I
CI XVIII h y d r o c h l o r i d e results in t h e replacement of t h e halogen a t o m s a n d t h e forma t i o n o f species s u c h a s [ R ' N H ( 0 ) P — N P h ] . « M o r e r e c e n t l y , it h a s b e e n r e p o r t e d t h a t t h e p y r o l y s i s o f p e n t a f l u o r o p h e n y l 1 3 5
2
1 3 6
109
A. GENERAL SURVEY OF SYNTHETIC ROUTES
d i a m i n o p h o s p h i n e s results in t h e elimination of pentafluorobenzene a n d t h e formation
of a
possible
C F P. 6
cyclodiphosphazane
-NHCH Ph
2
2
5
NHCH Ph
0
0
o
However,
1 3 7
this
PhCH NHP—NCH Ph 2
C
~ 6F H C
2
(ΧΓΧ).
2
PhCH N—PNHCH Ph
5
2
2
XIX m a t e r i a l is u n s t a b l e in s o l u t i o n . T h e t h e r m a l d e c o m p o s i t i o n o f o r g a n o p h o s p h o r u s triamides also results in t h e formation of c y c l o p h o s p h a z a n e dimers. 1 3 8 , 1 3 8 a
Ο 2 0=P(NHR)
Heat 3
I
RHNP—NR I I 4-2 R N H RN—PNHR
2
Ο Ο NR
2
Heat
I
2 0=P(NHR)
2
RHNP—NR I I 4-2 R N H RN—PNHR 2
I
ο e. Miscellaneous
Phosphazane
Syntheses
B i s ( t r i f l u o r o m e t h y l ) c h l o r a m i n e o r t h e b r o m o a n a l o g u e r e a c t w i t h tris( t r i f l u o r o m e t h y l ) p h o s p h i n e t o yield a m o n o p h o s p h a z a n e b y t h e p r o c e s s 1 3 9
(CF ) NC1 + (CF ) P -> (CF ) N—P(CF ) + CF C1 3
2
3
3
3
2
3
2
3
A m o n o p h o s p h a z a n e is a l s o f o r m e d b y t h e f o l l o w i n g r e a c t i o n ^S0 C1 PC1 V H N ^ 2
5
^so ci
1 4 0
:
_HCI ^S0 C1 — C I P — N ^ 2
4
so ci
2
2
T h i s is a m o i s t u r e - s e n s i t i v e c o m p o u n d . F i n a l l y , t r i s ( d i e t h y l a m i n o ) p h o s p h i n e i n t e r a c t s w i t h a n i l i n e o r t o l u i d i n e t o give t h e c y c l o d i p h o s p h a z a n e (PhHNP—NPh) . 1 4 1
2
3. S y n t h e s i s o f M o n o p h o s p h a z e n e s ( P h o s p h i n i m i n e s ) a n d H i g h e r L i n e a r Phosphazenes
M a n y different r e a c t i o n s h a v e b e e n d e s c r i b e d f o r t h e p r e p a r a t i o n o f m o n o phosphazenes a n d related linear c o m p o u n d s . " T h e following sections s e p a r a t e t h e s e a p p r o a c h e s i n t o b r o a d r e a c t i o n classes, a l t h o u g h it s h o u l d b e 1 4 2
2 0 8
110
4.
SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON
e m p h a s i z e d t h a t c e r t a i n m o n o p h o s p h a z e n e s y n t h e s e s follow p r o c e s s e s s i m i l a r t o t h o s e m e n t i o n e d p r e v i o u s l y for t h e p r e p a r a t i o n of c y c l o p h o s p h a z e n e s o r cyclophosphazanes. a. Reaction
of Chlorophosphoranes
with Ammonium
Chloride
T h e i n t e r a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h a m m o n i u m c h l o r i d e u s u a l l y yields l i n e a r p h o s p h a z e n e s a s well as c y c l o p h o s p h a z e n e s . The m e c h a n i s t i c significance of t h i s fact will b e d i s c u s s e d later. Several l i n e a r species have been isolated by Becke-Goehring a n d c o - w o r k e r s , but the p r i m a r y r e a c t i o n is a s f o l l o w s : 2 5 , 1 4 2 - 1 5 0
2 5 , 1 4 2 - 1 4 7
3
[CI P=N—ρα ] [ρα ] + 4 φ
P C I + NH4C1 - >
3
5
θ
3
HCI
6
T h e s y n t h e s i s is c a r r i e d o u t in a s j y r a - t e t r a c h l o r o e t h a n e - n i t r o b e n z e n e s o l v e n t system a t 8 0 ° - 1 4 0 ° C , a n d t h e p h o s p h a z e n e salt crystallizes f r o m t h e s o l v e n t as w h i t e n e e d l e s w h i c h m e l t a t 3 1 0 ° - 3 1 5 ° C . T h e c o m p o u n d is e x c e p t i o n a l l y sensitive t o h y d r o l y s i s . T h e P N M R s p e c t r u m s h o w s t w o p e a k s (at —21.4 a n d + 3 0 5 . 0 p p m relative t o 8 5 % H P 0 ) w i t h a n i n t e n s i t y r a t i o of 2 : 1 . L o n g e r - c h a i n species, s u c h as [ C 1 P = N — P C 1 = N — P C 1 ] ® [ P C 1 P , a r e f o r m e d b y successive c h a i n - b u i l d i n g steps w i t h a m m o n i u m c h l o r i d e a n d phosphorus pentachloride, a n d t h e s e c o m p o u n d s c a n a l s o b e identified b y P N M R s p e c t r a . F o r e x a m p l e , t h e t r i p h o s p h a z e n e salt s h o w n a b o v e yields a triplet s p e c t r u m ; o n e - o f t h e s e lines is r e s o l v a b l e t o a d o u b l e t ( P C 1 ) , o n e t o a triplet ( P C 1 ) , a n d o n e is u n r e s o l v e d ( P C 1 ) . A s d i s c u s s e d l a t e r ( S e c t i o n B ) , l i n e a r c h l o r o p h o s p h a z e n e s of t h i s t y p e a r e believed t o b e i n t e r m e d i a t e s f o r m e d d u r i n g t h e s y n t h e s i s of c y c l o p h o s p h a z e n e s , since a m m o n o l y s i s of t h e l i n e a r c o m p o u n d s r e s u l t s in t h e f o r m a t i o n of c y c l o p h o s p h a z e n e s . I t is a l s o k n o w n t h a t liquid a m m o n i a r e a c t s w i t h p h o s p h o r u s p e n t a c h l o r i d e t o yield t h e l i n e a r aminophosphazene X X by the p r o c e s s 3 1
3
4
3
2
3
6
1 4 5
3 1
3
0
2
2 5
6
5 9 , 1 4 2 , 1 4 7
2 PCI5 + 16 N H
-> [ ( N H ) P — N — P ( N H ) l C l e
3
2
3
2
3
e
+ 9 NH C1 4
XX
O n e of t h e p r o d u c t s i s o l a t e d f r o m t h e r e a c t i o n b e t w e e n p h o s p h o r u s p e n t a c h l o r i d e a n d a m m o n i a is t e t r a a m i n o p h o s p h o n i u m c h l o r i d e ( X X I ) . This p r o d u c t c a n b e c o n d e n s e d w i t h p h o s p h o r u s p e n t a c h l o r i d e t o yield a b r a n c h e d c h l o r o p h o s p h a z e n e salt. 1 5 1
A m o d i f i c a t i o n of t h e p h o s p h o r u s p e n t a c h l o r i d e - a m m o n i u m c h l o r i d e r e a c t i o n t a k e s p l a c e w h e n m e t a l h a l i d e s s u c h as S b C l , S b C l , A1C1 , A l B r , B C 1 , B F , T i C l , Z n C l , F e C l , C u C l , o r T1C1 a r e p r e s e n t . Linear phos phazenes are obtained which are end-capped by the metal halide component. F o r e x a m p l e , c o m p o u n d s of c o m p o s i t i o n ( N = P C l ) „ S b C l a r e f o r m e d w h e n antimony trichloride, p h o s p h o r u s pentachloride, a n d a m m o n i u m chloride 3
5
1 5 2 ,
3
3
4
2
3
2
3
1 5 3
3
3
A .
G E N E R A L
S U R V E Y
NH PC1 + 8 N H 5
-4NH Cl
O F
3
111
R O U T E S
2
H N—Ρ—NH
4
S Y N T H E T I C
2
NH
2
Cl
4 PCI5
e
- 8 HCl
2
Cl
XXI
I
Cl—P—Cl Cl
N
1
1
Cl 1
Cl—P=N—P=N—P—Cl I
I
Cl
N
,
Cl
0
I
Cl
Cl—P—Cl I
Cl r e a c t in t r i c h l o r o b e n z e n e . C o m p o u n d s of t h i s t y p e a r e t h e r m a l l y s t a b l e oils which are apparently resistant to polymerization a b o v e 500°C. T h e y are very easily h y d r o l y z e d , h o w e v e r . Linear, phenyl-substituted phosphazenes can be isolated from the reactions of p h e n y l c h l o r o p h o s p h o r a n e s w i t h a m m o n i u m c h l o r i d e . T h u s , t h e f o l l o w i n g reactions are k n o w n to occur: 2 Ph PCl + NH4CI -> [Ph ClP=N—PClPh ]®Cl + 4 HCl
(Refs. 58, 154)
2 PhPCl + NH4CI -> [PhCl P=N—PCl Ph]®Cl + 4 HCl
(Ref. 155)
e
2
3
2
2
e
4
2
2
T h e i n t e r a c t i o n of d i p h e n y l t r i c h l o r o p h o s p h o r a n e w i t h a m m o n i u m c h l o r i d e t a k e s p l a c e in t e t r a c h l o r o e t h a n e a t 130°C. T h e t e t r a p h e n y l d i p h o s p h a z e n e salt f o r m s c o l o r l e s s c r y s t a l s in 9 0 % yield. T h e r e a c t i o n of p h e n y l t e t r a c h l o r o p h o s p h o r a n e w i t h a m m o n i u m c h l o r i d e a l s o t a k e s p l a c e in h o t t e t r a c h l o r o e t h a n e , a n d t h e l i n e a r d i p h e n y l p h o s p h a z e n e salt c a n b e o b t a i n e d in 60 % yield a s w h i t e crystals, m . p . 210°C. Similar p r o d u c t s are obtained w h e n phenyldichlorophosphine interacts with nitrogen trichloride. 1 5 5
PhPCl
NCI3 2
[PhCl P=N—PCl Ph]®Cl 4- [PhCl P=N—P(ClPh) =N—PCl Ph]®Cl + e
2
e
2
2
2
[PhCl P=N—P(ClPh)=N—P(ClPh)=N—PCl Ph]®Cl 2
2
e
etc.
Related linear phosphazenes are formed when tetraphenyldiphosphine re a c t s w i t h a g a s e o u s m i x t u r e of a m m o n i a a n d c h l o r a m i n e according to the following reaction s c h e m e : 1 5 6
Ph P—PPh 2
NH C1 + NH 2
2
3
[PH (NH )P=N—Ρ(ΝΗ )ΡΗ ] α φ
2
2
2
2
θ
+ Ph (NH ) P®Cl 2
2
2
Q
112
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S - N I T R O G E N
S K E L E T O N
or when diphenylchlorophosphine interacts with hydrazine h y d r o c h l o r i d e .
1 5 7
H NNH HCI 2
2
Ph PCl
•
2
[Ph (NH )P=N—PPh =N—P(NH )Ph]®Cl 2
2
2
e
2
T h i s l a t t e r p r o d u c t is a w h i t e s o l i d , m . p . 2 8 5 ° C . W h e n h e a t e d i n v a c u u m a t 2 8 0 ° - 3 0 5 ° C a t r e d u c e d p r e s s u r e it f o r m s
hexaphenylcyclotriphosphazene,
(NPPh ) . 2
3
b . Treatment
of Cyclophosphazenes
with Inorganic
Halides
P h o s p h o r u s pentachloride reacts with hexachlorocyclotriphosphazene
or
o c t a c h l o r o c y c l o t e t r a p h o s p h a z e n e t o yield l i n e a r p h o s p h a z e n e s b y t h e p r o r P
o 1 3 , 18, 158, 159 R
Cl
2
PC1
C1 P^ /PC1 2
F o r example, M o r a n Cl
e
1 5 9
N
5
->
[Cl(Cl P==N) PCl ]®Cl 2
n
e
3
2
has reported that the c o m p o u n d [C1(C1 P=N) PC1 ]®2
3
3
c a n b e p r e p a r e d b y h e a t i n g ( N P C 1 ) w i t h P C 1 in a n a p p r o x i m a t e l y 1.0 t o 2
3
5
1.9 m o l a r r a t i o a t 2 5 0 ° C for 11 h o u r s . T h e y e l l o w p r o d u c t is i n s o l u b l e in b e n z e n e a n d h e x a n e a n d it m e l t s a t 9 5 ° - 9 6 ° C . A n o t h e r y e l l o w solid c o m p o u n d , [ C 1 ( C 1 P = N ) P C 1 ] ® C 1 , is o b t a i n e d after 0
2
4
3
100 h o u r s r e a c t i o n . W h e n
the
( N P C 1 ) t o PCI5 r a t i o is 5 : 1 , oily h i g h e r l i n e a r p o l y m e r s a r e f o r m e d , a n d t h e s e 2
3
polymerize to high polymers when heated above 300°C. A mechanism p r o p o s e d for t h e i n i t i a l a t t a c k b y P C 1
5
on (NPC1 ) 2
3
includes an electrophilic
a t t a c k at nitrogen by the [ P C 1 ] c o m p o n e n t of the [PC1 ] [PC1 ]~ complex, +
+
4
followed
by ring cleavage
4
of the resultant Cl
2 PC1 + (NPC1 ) 5
2
3
I
6
cyclophosphazene
cation.
1 5 9
2
©
2
PC1
PCl e
II
C1 P^PC1 4
6
2
J
[C1 P=N—PC1 =N—PC1 =N—PCl ]®[PCl ] 3
2
2
3
e
6
T r e a t m e n t of t h e s e l i n e a r species w i t h a l u m i n u m t r i c h l o r i d e o r b o r o n t r i c h l o r i d e r e s u l t s in t h e r e p l a c e m e n t of t h e [ P C 1 ] ~ a n i o n b y [A1C1 ]~ o r [BC1 ]~ 6
4
4
a n i o n s . T h i s t r e a t m e n t e n h a n c e s t h e t h e r m a l s t a b i l i t y of t h e l i n e a r p h o s p h a zenes.
1 5 9
I t is a l s o w o r t h w h i l e t o n o t e t h a t c h l o r o c y c l o p h o s p h a z e n e s
apparently
u n d e r g o ring cleavage with a l u m i n u m chloride a n d other metal h a l i d e s , and that ( N P F ) 2
3
a p p e a r s to be cleaved by cesium f l u o r i d e .
1 6 0 3
1 8 , 1 6 0
Octaphenyl-
A .
G E N E R A L
S U R V E Y
O F
S Y N T H E T I C
113
R O U T E S
cyclotriphosphazene, ( N P P h ) , also reacts with p h o s p h o r u s pentachloride to 2
give l i n e a r d e r i v a t i v e s . c. Reaction
of Amino
4
1 6 1
Compounds
with Phosphorus
Pentachloride ' * 162 1
4
T h i s s y n t h e s i s r o u t e , g e n e r a l l y k n o w n a s t h e K i r s a n o v r e a c t i o n , c a n b e for m u l a t e d in g e n e r a l t e r m s b y t h e e q u a t i o n PC1 + R N H 5
C1 P=NR + 2 HCl
2
(Ref. 162)
3
T h e g r o u p R can be varied over a considerable range, as illustrated by the following e q u a t i o n s : PCI5 + PhNH -> C l P = N P h + 2 HCl 2
(Refs. 166, 167)
3
PCI5 + RCONH -> C l P = N C O R + 2 HCl 2
PCI5 + P h S 0 N H 2
(Ref. 168)
3
-> C1 P=N—S0 —Ph + 2 HCl
2
3
PCI5 + NH OH
C l P = N O H + 2 HCl
2
(Ref. 170)
3
2 PC1 + N H S 0 H -> C1 P=N—S0 C1 + 3 HCl + POCl 5
2
3
3
PCI5 + H NP(0)(OPh) 2
(Ref. 169)
2
2
(Refs. 171, 172)
3
CI P=N—P(0)(OPh) + 2 HCl
2
3
(Ref. 173)
2
PCI5 + H NP(S)(OPh) -> C1 P=N—P(S)(OPh) + 2 HCl 2
2
2 PCI5 + S 0 ( N H ) 2
2
3 PCI5 + H NP(0)(OH) 2
(Ref. 173)
2
-> C 1 P = N — S 0 — N = P C 1 + 4 HCl
2
2
3
3
2
(Ref. 174)
3
-> C1 P=N—P(0)C1 + 4 HCl + 2 POCl 3
2
3
(Ref. 175)
2 PCI5 + RP(0)(OAlk)NH -> C1 P=NP(0)C1R + 2 HCl + POCl + AlkCl 2
3
3
(Ref. 176) F PC1 + H N S 0 F -> F P = N S 0 F + 2 HCl
(Ref. 177)
F PC1 + H NPOF
(Ref. 177)
3
2
3
2
2
2
3
2
F P-=NPOF + 2 HCl
2
3
F PC1 + H NP(S)F -> F P = N P ( S ) F + 2 HCl 3
2
2
2
3
(Ref. 177)
2
Ph PCl + H NPh -> P h P = N P h + 2 HCl 3
2
2
(Refs. 178-180)
3
Ph PCl + H N — S 0 — C H M e -> P h C l P = N — S 0 — C H M e + 2 HCl (Ref. 181) 2
3
2
2
6
4
Ph PCl + H NOSC H N0 - 3
2
2
6
4
2
2
2
6
4
P h P = N S O C H N 0 + POPh + 2 HCl 3
6
4
2
3
(Ref. 182) Ph PCl + H NC(S)NHPh -> Ph P=NC(S)NPhH + 2 HCl 3
2
2
(Ref. 183)
3
I n a closely r e l a t e d p r o c e s s , p h o s p h o r u s p e n t a c h l o r i d e , p h o s p h o r u s tri chloride, and hydroxylamine hydrochloride react according to the s c h e m e 1 8 4
2 PC1 + PCI5 + 2[H NOHl®Cl 3
3
Q
-> C1 P=NP(0)C1 + 4 HCl + 4 NH C1 + POCl 3
2
4
3
I t s h o u l d b e n o t e d t h a t t h e m a j o r i t y of a r o m a t i c a m i n e s r e a c t w i t h p h o s p h o r u s p e n t a c h l o r i d e t o f o r m d i m e r s of s t r u c t u r e ( C 1 P — N A r ) (i.e., c y c l o diphosphazanes) rather than m o n o m e r s . Only weakly basic amines form stable 3
2
114
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S - N I T R O G E N
S K E L E T O N
monophosphazenes. H o w e v e r , r e p l a c e m e n t of o n e c h l o r i n e a t o m in C l P = N A r b y a n o r g a n i c u n i t s h a r p l y r e d u c e s t h e t e n d e n c y for d i m e r i z a t i o n . A n u m b e r of p h o s p h a z e n e s t h a t w e r e o r i g i n a l l y t h o u g h t t o b e m o n o m e r i c h a v e s u b s e q u e n t l y b e e n s h o w n t o b e cyclic d i m e r s . 1 6 7
3
d. Interaction
of a Tertiary
Phosphine
or a Halophosphine
with an
Azide
T h i s r e a c t i o n r o u t e w a s u s e d b y S t a u d i n g e r for t h e e a r l y s y n t h e s i s of m o n o phosphazenes. I t r e q u i r e s t h e r e a c t i o n of a t e r t i a r y p h o s p h i n e w i t h a n o r g a n i c a z i d e in e t h e r , a c c o r d i n g t o t h e f o l l o w i n g g e n e r a l s e q u e n c e : 1 8 5 ,
1 8 6
R P + R'N 3
3
-> R P N — N = N — N R ' -> R P = N R ' + N 3
3
2
R and R' can be aromatic or aliphatic. W h e n aliphatic groups are present on n i t r o g e n , t h e c o m p o u n d s a r e v e r y sensitive t o m o i s t u r e , a n d t h e a p p r o p r i a t e phosphine oxide and amine are formed by hydrolysis. However, when a r o m a t i c g r o u p s a r e a t t a c h e d t o n i t r o g e n , t h e d e r i v a t i v e s s h o w m o r e stability t o w a t e r b u t c a n still b e h y d r o l y z e d b y d i l u t e a c i d . It is of i n t e r e s t t h a t P h P = N P h is p a l e yellow in c o l o r , w h e r e a s P h P = N H , P h P = N E t , P h P = N C O P h , a n d m a n y other m o n o p h o s p h a z e n e s are colorless. 1 8 7
3
3
3
3
P h o s p h o r u s ylides a l s o r e a c t w i t h o r g a n i c a z i d e s t o yield m o n o p h o s p h a z e n e s according to the p r o c e s s 1 8 8
P h P = C H R + 2 PhN -> P h P = N P h + P h N = C H R + 2 N 3
3
3
2
It h a s r e c e n t l y b e e n s h o w n t h a t silyl a z i d e s c a n a l s o b e e m p l o y e d for s y n t h e s e s of t h i s t y p e .
1 8 9 , 1 9 0
T h u s , tertiary phosphines react with trimethylsilyl azide to
yield m o n o p h o s p h a z e n e s by t h e p r o c e s s Me0H-H S0
_ N,
R P + Me SiN 3
3
2 3
2
-> R P = N S i M e 3
4
•
3
3
R P = N H + MeOSiMe 3
3
-20°C
iV-Silylated a m i n o p h o s p h a z e n e s a r e f o r m e d w h e n t r i m e t h y l s i l y l a z i d e r e a c t s with a m i n o p h o s p h i n e s . Phenyl azide interacts with p h o s p h o r u s trichloride o r w i t h p h e n y l c h l o r o p h o s p h i n e s t o give 7V-phenyl m o n o p h o s p h a z e n e s , 1 9 1
1 9 2
PC1 + PhN -> C l P = N P h + N 3
3
3
2
PhPCl + PhN -> PhCl P=NPh + N
2
Ph PCl + PhN -> Ph ClP=NPh + N
2
2
2
3
2
3
2
and diphenylphosphinyl azide undergoes a reaction with diphenylchlorop h o s p h i n e t o f o r m a l i n e a r p h o s p h a z e n e of s t r u c t u r e P h ( 0 ) P [ N = P P h ] C l . T h i s is a w h i t e , c r y s t a l l i n e s u b s t a n c e , m . p . 1 4 5 ° - 1 4 6 ° C . D i p h e n y l p h o s p h i n y l a z i d e also r e a c t s w i t h d i p h e n y l p h o s p h i n e a c c o r d i n g t o t h e s e q u e n c e 1 9 3
2
2
3
1 9 4
Ph PH + Ph P(0)N 2
2
~ "> N
3
Ph P(0)NHPPh 2
p h 2 P ( Q ) N 3 2
>
Ph P(0)NHPPh =NP(0)Ph 2
2
2
A .
G E N E R A L
S U R V E Y
O F
S Y N T H E T I C
115
R O U T E S
T h e p r o d u c t of t h i s r e a c t i o n t a u t o m e r i z e s t o P h P ( 0 ) [ N = P P h ] — O H . A n a d d i t i o n a l m o d i f i c a t i o n of t h e a r y l a z i d e r o u t e i n v o l v e s t h e r e a c t i o n o f this reagent with a bis(dialkylamino)chlorophosphine ( X X I I ) . T h e p h o s 2
ArN
2
^NAr
3
Et NHN
U> ( R N ) P ^ , Cl
(R N) PC1 2
2
XXII
2
—
2
3
,
3
^
2
2
I
I
I
N
3
XXIV
OR
2
I
(RO) PNHAr' 2
ArN=P—N=P—NHAr' < NR
^NAr
TX
(R N) P:f
XXIII NR
2
'
OR
2
XXV p h o r o d i a m i d a m i d i c c h l o r i d e ( X X I I I ) is t h e n c o n v e r t e d t o t h e a z i d e ( X X I V ) with t r i e t h y l a m m o n i u m azide, and subsequent treatment with a dialkylarylp h o s p h o r a m i d i t e yields t h e l i n e a r d i p h o s p h a z e n e X X V . A z i d e s of t y p e X X I V a r e r e p o r t e d t o b e light y e l l o w l i q u i d s w h i c h a r e sufficiently s t a b l e t o b e v a c u u m - d i s t i l l e d o r h e a t e d a t 100°C for 3 h o u r s w i t h o u t d e c o m p o s i t i o n . 1 9 5
e. The Reaction
of Tertiary
Phosphines
with Other
Reagents
C h l o r a m i n e T , 0 , 7 V - d i b e n z o y l h y d r o x y l a m i n e , 2- o r 4 - b r o m o a n i l i n e , a n d chloramine followed by «-butyllithium, react with ter/-phosphines t o give phosphazenes according to the following e q u a t i o n s : R P 4 Na C l N S 0 C H M e -> R P = N — S 0 C H Me 4 NaCl
(Ref. 196)
Ph P + PhCON(H)OCOPh
(Ref. 197)
3
2
6
4
3
2
3
2
6
3
[Ph P—NHPh]®Br
4
2 5
2
2
25
N a Q H
>
Ph P=NPh 3
— NaBr
[C H PMe NH ]®Cl 12
25
2
C H PMe =NHLiCl 12
e
3
C, H PMe 4NH Cl 2
4
Ph P=NCOPh 4 PhCOOH
3
Ph P 4- H N C H B r
6
n-BuLi
e
2
> C H PMe =NH
2
(Ref. 198)
1 2
2 5
2
(Ref. 191)
T h e d i m e t h y l d o d e c y l p h o s p h a z e n e f o r m e d in t h e l a t t e r r e a c t i o n d e c o m p o s e s w i t h w a t e r t o give a m m o n i a a n d t h e p h o s p h i n e o x i d e . f. Miscellaneous
Routes
to Linear
Phosphazenes
T h e f o l l o w i n g a r e a n u m b e r of r e a c t i o n s w h i c h d o n o t fall r e a d i l y i n t o t h e above categories. (1) P h o s p h a z e n e s a r e f o r m e d q u a n t i t a t i v e l y w h e n 7 V - a c y l a m i d o t r i p h e n y l phosphiniminium bromides are d e h y d r o h a l o g e n a t e d . 1 9 9
[Ph PNHNHC(0)R]®Br® 3
~
H B r
Et N 3
>
Ph P=NNHC(0)R 3
116
4.
SYNTHESIS OF T H E P H O S P H O R U S - N I T R O G E N
SKELETON
(2) T e t r a s u l f u r t e t r a n i t r i d e r e a c t s w i t h p h e n y l d i c h l o r o p h o s p h i n e t o yield a linear d i p h o s p h a z e n e
t o g e t h e r w i t h l o n g e r - c h a i n species.
2 0 0
S N + PhPCl -> [PhCl P=N—PCl Ph]®[PCl ] + PhP(S)Cl + PhCl P=N—P(S)ClPh e
4
4
2
2
2
6
2
2
(3) P h o s p h o r u s t r i c h l o r i d e a n d d i n i t r o g e n t e t r o x i d e r e a c t t o f o r m a p h o s phazene.
2 0 1
PCI3 + N 0 2
-> C 1 P = N — P ( 0 ) C 1
4
3
(4) M o n o t h i o p h o s p h o r i c
acid
+ PCI5 + N O C 1
2
triamide reacts with
c h l o r i d e t o yield p h o s p h a z e n e s a l t s , a s in t h e e q u a t i o n
5SP(NH ) 2
C1 P=N\
Ν—PCI
3
phosphorus
3
[PCl ]
3
CI
^N=PC1
penta
2 0 2
e
6
3
(5) O r g a n o m e t a l l i c p h o s p h a z e n e s c a n b e p r e p a r e d b y t h e f o l l o w i n g syn thetic s e q u e n c e ,
2 0 3 - 2 0 5
-NH4CI
(Me C) PCl + 2 N H 3
2
(Me C) PNHLi 3
—> (Me C) P—NH
3
3
M e 3 M C I
2
(Me C) P—NH—MMe 3
2
n-BuLi
>
3
'
•
2
(Me C) P—NH—MMe n
3
2
2
(Me C) PNHLi 3
2
(Me C) P—NLi—MMe M'Me
B u L l >
3
2
2
3
3
Me^M'Cl
(Me C) P—NLi—MMe 3
2
1
y
3
(Me C) P=N—MMe 3
2
3
w h e r e M is Si o r G e , a n d M ' is Si, G e , o r S n . (6) A m o n o p h o s p h a z e n e is f o r m e d w h e n reacts with 7V-methyl-hexamethyldisilazane.
diphenyltrifluorophosphorane
95
Ph PF + MeN(SiMe ) -* P h F P = N M e + 2 Me SiF 2
3
3
2
2
3
(7) M o n o p h o s p h a z e n e s c a n a l s o b e i s o l a t e d f r o m t h e r e a c t i o n o f p h o s p h o r u s pentachloride with a n aryl-7V-dichlorosulfonamide.
206
P C 1 + C l N S 0 A r -> 2 Cl + C l P = N S 0 A r 5
2
2
2
3
2
(8) T r i a r y l p h o s p h i t e s a r e c o n v e r t e d t o m o n o p h o s p h a z e n e s b y t h e f o l l o w i n g process
2 0 7
:
NCI
NP(OAr)
il
Cl* - i î Î U
li
AlkC—NH + P(OAr) 2
AlkC—NH 3
N=P(OAr)
9 3
2
-HCl
I AlkC=NH
3
117
A. GENERAL S U R V E Y OF SYNTHETIC R O U T E S
(9) I t h a s b e e n s h o w n t h a t t h e r e a c t i o n b e t w e e n t h i o p h o s p h o r i c t r i s ( i s o t h i o c y a n a t e ) a n d c h l o r i n e l e a d s t o t h e f o r m a t i o n of 7 V - t r i c h l o r o m e t h y l t r i c h l o r o phosphazene.
2 0 8
S = P ( N C S ) + Cl -> C1 P=N—CC1 + SC1 + S C1 + Cl—S—CC1 3
2
3
3
2
2
2
3
(10) Sulfur o x i d e ( f l u o r o s u l f o n y l ) i m i d e r e a c t s w i t h p h o s p h o r u s p e n t a b r o m i d e t o yield P - t r i b r o m o - 7 V - f l u o r o s u l f o n y l m o n o p h o s p h a z e n e . 208a
F S 0 N = S = 0 + PBr -> F S 0 N = P B r + SOBr 2
5
2
3
2
(11) F i n a l l y , a m i n o p h o s p h i n e s of f o r m u l a R P — N H R ' ( w h e r e R = P h o r 2
O E t , a n d R ' = P h o r Pr") r e a c t r a p i d l y w i t h c a r b o n t e t r a c h l o r i d e o r b r o m o t r i c h l o r o m e t h a n e t o give m o n o p h o s p h a z e n e s . R P—NHR' + CCI4 -> Ph P(Cl)NHPh-CCl 2
4.
2
2
2 0 9
-> Ph P(Cl)=NPh + CHC1 2
2
S Y N T H E S I S OF S O M E M I S C E L L A N E O U S P H O S P H O R U S - N I T R O G E N C O M P O U N D S
P h o s p h o r u s p e n t a c h l o r i d e r e a c t s w i t h A ^ W - d i m e t h y l u r e a t o yield a h e t e r o cyclic m o l e c u l e w h i c h c o n t a i n s p h o s p h o r u s , n i t r o g e n , a n d c a r b o n . 2 1 0
.Cl
Ο
PCI5 + OC(NHMe)
MeN"
s
C1^®^C1
NMe
MeN
I
2
+
c^
NMe
P s
I
ci-
I
X
Me
Me
XXVI
XXVII
A n o t h e r i n t e r e s t i n g series of h e t e r o c y c l i c s y s t e m s is f o r m e d w h e n p h o s p h o r i c dichlorides interact with Λ^Ν'-dimethylalkylenediamines. 211
Me
Me
Ο
II ^ C l
RP.
XI
ΗΝ
+
χ
HN'
.(CH )„
2Et N
2
3
„ 1 >•
HCl
CK
.N.
^ P ^ >CH )„ R N^ 2
I
I
Me (λ =
1
Me
or 2).
B i s ( d i p h e n y l p h o s p h i n o ) a m i n e s r e a c t w i t h c h l o r a m i n e a n d a m m o n i a in t h e m a n n e r shown by the e q u a t i o n
2 1 2
NH /PPh RN. ^PPh
2
+2NH C1 + NH 2
2
3
RN.
.PPh
2
"PPh
2
C l + NH4CI e
NH
2
118
4.
SYNTHESIS OF THE P H O S P H O R U S - N I T R O G E N SKELETON
It is a l s o w o r t h w h i l e t o n o t e t h a t t h e l i n e a r p h o s p h a z e n e f o r m e d b y t h e i n t e r a c t i o n of p h o s p h o r u s p e n t a c h l o r i d e w i t h sulfuryl a m i d e c a n b e cyclized w i t h h e x a m e t h y l d i s i l a z a n e o r a m m o n i a t o yield t w o n o v e l h e t e r o a r o m a t i c systems, X X V I I I and X X I X 2 1 3
PC1 + H N — S 0 — N H 5
2
2
o
-> C I P = N — S 0 — N = P C 1
2
3
2
3
o
2
N ^ N C1 P^ /PC1 2
2
N ^ N
N
I
2
NH4
II
(NH ) P^
2
P(NH )
2
2
2
Me XXVIII
XXIX
A n u m b e r of o t h e r i n t e r a c t i o n s w h i c h i n v o l v e t h e s y n t h e s i s of p h o s p h o r u s nitrogen-sulfur ring systems have been r e p o r t e d .
Ph / NBr P^ Me S^ + ^CH Ν Br Ρ Ph
Ph Ν—Ρ / \ Me S CH W / Ν—Ρ Ph . 2
2
2
2 1 4
2
2
2
2ΒΓ
2
2
120°C hv
Ph Ν—Ρ // "\\ Me—S ;CH 2
Ν—Ρ Ph
NH,
/
Ph N =Ρ
2
\
S CH / W N - -P Ph
-NH Br 4
2
2
Ph ^N—Br Me S:^ + NH ^N—Br Ρ Ph
Ph Ν—Ρ
2
2
2
-HBr
//
Br
2
J
2
N\
Me S ΪΝ W Ν—Ρ Ph 2
2
Br-
Θ
A.
119
GENERAL SURVEY OF SYNTHETIC ROUTES
S c h m i d p e t e r a n d c o - w o r k e r s h a v e r e p o r t e d a series of s y n t h e s e s w h i c h give rise t o d i p h o s p h a - s - t r i a z i n e s
(XXX).
2 1 5
2 2 1
These reactions are
outlined
below. R I
[C1 P=N—C=NPCl ]®SbCl ® 3
3
6
NH4CI
R
I
R
2
P^ /PR N
2
XXX R
RNHCH=NR
I
H NC=NH/or 1 [H NC—NH ] C1
,-RNH
2
+
2
R' R [CI—P--=N—P—C11 CI2
2
2
2
NH
+
3
-HCl
R' R H NP=N—P=NH 2
2
2
R = P h or Cl A r e l a t e d e i g h t - m e m b e r e d r i n g s y s t e m ( X X X I ) is f o r m e d b y t h e f o l l o w i n g 222.
reaction s e q u e n c e ^ : NP(OAr)
NX
I
I!
3
[ArCNH l®X® 2
ArCNH + P(OAr') 2
-HCl
3
Et N 3
- Ar'OH
X = Cl or Br
Ar
Ar
I
A r
O
ι ^OAr'
Ι
Ο -
P
Ν'
- N = C I
Ar XXXI
N
H
.C=N. ^P(OAr)
I
II
(ArO) P " N = C " Ν 2
I
Ar
2
120
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S - N I T R O G E N
S K E L E T O N
F i n a l l y , a t t e n t i o n is d i r e c t e d t o t h e " p h o s p h a m s " w h i c h a r e p h o s p h o r u s n i t r o g e n c o m p o u n d s of c o m p o s i t i o n P N H . 2
2 2 3
They are formed during the
a m m o n o l y s i s of p h o s p h o r u s p e n t a c h l o r i d e , o r b y p y r o l y s i s o f a m i n o c y c l o phosphazenes. [(NH ) P-N] 2
2
-> [(NPNH) L, + 3 N H
3
3
3
P h o s p h a m s can be decomposed thermally to triphosphorus
pentanitride,
( P N ) „ , a n d p h o s p h o r u s nitride, (PN)„. 3
5
B . The Reaction between Halophosphoranes and Ammonium H a l i d e s
1.
E X P E R I M E N T A L
A
N
D
M A N U F A C T U R I N G
C O N S I D E R A T I O N S
It w a s m e n t i o n e d e a r l i e r t h a t t h e r e a c t i o n b e t w e e n p h o s p h o r u s p e n t a c h l o r i d e a n d a m m o n i u m c h l o r i d e t o yield c h l o r o p h o s p h a z e n e s c o m p r i s e s o n e o f t h e m o s t i m p o r t a n t s y n t h e t i c r e a c t i o n s in t h i s field. F o r t h i s r e a s o n , t h e f o l l o w i n g d e t a i l e d e x p e r i m e n t a l o u t l i n e is given. a. Synthesis of (7VTC/ ) , ( 7 V P C / ) , and Higher Homologues t o r y p r o c e d u r e b a s e d o n ref. 13) 2
3
2
(Standard labora
4
A 2-liter flask is fitted w i t h a reflux c o n d e n s e r a n d is c h a r g e d w i t h p h o s p h o r u s p e n t a c h l o r i d e (625.5 g, 3.0 m o l e s ) , a m m o n i u m c h l o r i d e (176.5 g, 3.3 m o l e s ) , a n d ^ m - t e t r a c h l o r o e t h a n e (1.0 liter). T h e m i x t u r e is h e a t e d a t t h e reflux t e m p e r a t u r e of t h e s o l v e n t for 7.5 h o u r s , d u r i n g w h i c h t i m e h y d r o g e n c h l o r i d e (12.0 m o l e s ) is e v o l v e d . H y d r o g e n c h l o r i d e f u m e s c a n b e r e m o v e d b y a w a t e r s c r u b b e r device c o n n e c t e d t o t h e c o n d e n s e r o u t l e t . A f t e r c o m p l e t i o n o f t h e r e a c t i o n , t h e w a r m s o l u t i o n is filtered t o r e m o v e a m m o n i u m c h l o r i d e (20.0 g ) , a n d t h e s o l v e n t is r e m o v e d b y d i s t i l l a t i o n a t r e d u c e d p r e s s u r e . T h e r e s i d u e after d i s t i l l a t i o n is a b r o w n " b u t t e r y " m i x t u r e of oil a n d c r y s t a l s (326.5 g, 9 3 . 9 % ) . R e p e a t e d e x t r a c t i o n of t h i s m i x t u r e w i t h p e t r o l e u m ( b . p . 4 0 ° - 6 0 ° C ) yields a m i x t u r e of cyclic ( N P C 1 ) „ o l i g o m e r s (235.5 g, 66.9 % ) , a n d t h e r e s i d u e is a light b r o w n m i x t u r e of oily l i n e a r species (88.0 g, 2 7 % ) . T h e l o w e r cyclic c h l o r o phosphazenes are quite stable to atmospheric moisture, whereas the linear a n a l o g u e s h y d r o l y z e slowly. 2
I n a t y p i c a l p r e p a r a t i o n , t h e cyclic o l i g o m e r f r a c t i o n c o n s i s t s of a b o u t 37 % ( N P C 1 ) , 2 8 % ( N P C 1 ) , a n d 3 5 % h i g h e r cyclic ( N P C 1 ) „ species. S e v e r a l m e t h o d s a r e a v a i l a b l e for t h e s e p a r a t i o n of t h i s m i x t u r e . F r a c t i o n a l s u b l i m a t i o n o r d i s t i l l a t i o n p e r m i t s a facile s e p a r a t i o n of t r i m e r f r o m h i g h e r h o m o l o g u e s . F r a c t i o n a l c r y s t a l l i z a t i o n f r o m light p e t r o l e u m o r ^ - h e p t a n e p r o v i d e s a l a b o r i o u s b u t effective m e a n s of s e p a r a t i o n of t h e l o w e r h o m o l o g u e s . A n a d d i t i o n a l s e p a r a t i o n m e t h o d r e p o r t e d b y P a d d o c k a n d c o - w o r k e r s is a s f o l l o w s . 2
3
2
4
2
1 3
Β .
T H E
R E A C T I O N
B E T W E E N
H A L O P H O S P H O R A N E S
A
N
D
A M M O N I U M
H A L I D E S
121
A m i x t u r e o f p r e d o m i n a n t l y cyclic c h l o r o p h o s p h a z e n e s ( 7 7 5 0 g) is e x t r a c t e d w i t h 16.5 liters o f 4 0 ° - 6 0 ° C b . p . p e t r o l e u m t o o b t a i n 19.5 liters o f a s o l u t i o n o f cyclic species ( 5 7 0 0 g c o n s i s t i n g o f 35 % t r i m e r a n d 22 % t e t r a m e r ) a n d i n s o l u b l e l i n e a r species (2050 g). T h e p e t r o l e u m s o l u t i o n is e x t r a c t e d b a t c h e s w i t h 9 8 . 7 % sulfuric a c i d (2300 m l ) i n a t h r e e - s t a g e
in
fractionation
s c h e m e . T r i m e r is d i s s o l v e d p r e f e r e n t i a l l y b y t h e a c i d a n d is r e c o v e r e d f r o m it b y d i l u t i n g t h e a c i d s o l u t i o n t o a p p r o x i m a t e l y 6 0 % sulfuric a c i d a n d b a c k e x t r a c t i n g t h e p r e c i p i t a t e d t r i m e r w i t h fresh p e t r o l e u m .
Fractional
crys
t a l l i z a t i o n f r o m t h i s s o l u t i o n t h e n gives t r i m e r (1060 g ) , m . p . 112°, a n d a m i x e d p o l y m e r f r a c t i o n (690 g ) . C r y s t a l l i z a t i o n of t h e sulfuric a c i d - i n s o l u b l e p o r t i o n yields t e t r a m e r (712 g ) , m . p . 122°, 515 g o f a 6 9 % t r i m e r , 2 0 % t e t r a m e r m i x t u r e , 808 g of a m i x t u r e o f oil a n d c r y s t a l s , a n d 1915 g of a l i g h t y e l l o w oil. T h e oily f r a c t i o n s a r e distilled a t r e d u c e d p r e s s u r e t o yield p e n t a m e r , h e x a m e r , h e p t a m e r , a n d octamer. After
final
recrystallizations from
petroleum
or
Η - h e p t a n e , t h e t r i m e r m e l t s a t 112.8° a n d t h e t e t r a m e r a t 122.8°.
b . Modified
Synthesis for Optimization
Paddock and co-workers
1 3
of Cyclic Chlorophosphazene
Formation
h a v e a l s o s h o w n t h a t t h e yield o f cyclic c h l o r o
p h o s p h a z e n e s c a n b e i m p r o v e d d r a m a t i c a l l y a t t h e e x p e n s e of t h e oily l i n e a r species b y m a i n t a i n i n g a n excess o f a m m o n i u m c h l o r i d e i n t h e
reaction
m i x t u r e . F o r e x a m p l e , p h o s p h o r u s p e n t a c h l o r i d e (62.5 g, 0.3 m o l e ) a n d a m m o n i u m c h l o r i d e (176.5 g, 3.3 m o l e s ) w e r e h e a t e d in b o i l i n g .yyra-tetrachloroe t h a n e , 1.0 liter). T h e refluxing s o l v e n t w a s r e t u r n e d t o t h e r e a c t i o n vessel t h r o u g h a b e d o f p h o s p h o r u s p e n t a c h l o r i d e (563 g, 2.7 m o l e s ) w h i c h w a s slowly e x t r a c t e d i n t o t h e r e a c t i o n m i x t u r e d u r i n g a p e r i o d of 6 h o u r s . A f t e r a t o t a l r e a c t i o n t i m e of 7.5 h o u r s , 11 m o l e s (92 % ) of h y d r o g e n c h l o r i d e h a d b e e n e v o l v e d a n d a 21.7 g excess o f a m m o n i u m c h l o r i d e r e m a i n e d . T h e s o l u t i o n yielded 322.3 g ( 9 2 . 6 % ) o f cyclic species w h i c h c o n s i s t e d of a p p r o x i m a t e l y 5 4 % of t r i m e r , 1 1 . 4 % of t e t r a m e r , a n d 2 9 % o f h i g h e r cyclic species. S i m i l a r results were obtained w h e n w a r m p h o s p h o r u s pentachloride solution was a d d e d slowly t o t h e r e a c t i o n m i x t u r e . I t s h o u l d b e n o t e d t h a t a n excess o f p h o s p h o r u s p e n t a c h l o r i d e in t h e r e a c t i o n m i x t u r e f a v o r s t h e f o r m a t i o n
of
l i n e a r species r a t h e r t h a n cyclic c o m p o u n d s a n d t h a t t r e a t m e n t o f cyclic c h l o r o p h o s p h a z e n e s w i t h p h o s p h o r u s p e n t a c h l o r i d e gives l i n e a r c o m p o u n d s
of
formula ( N P C l ) P C l . 2
n
Emsley a n d U d y
5
2 2 4
have pointed out that the a m m o n i u m chloride particle
size h a s a g r e a t e r influence o n t h e c o u r s e of t h e r e a c t i o n t h a n t h e r a t e of a d d i t i o n of p h o s p h o r u s
pentachloride. T h e use of
finely
divided
ammonium
c h l o r i d e i n c r e a s e s t h e r e a c t i o n r a t e a n d f a v o r s t h e f o r m a t i o n of cyclic c h l o r o p h o s p h a z e n e s . R e a c t i o n t i m e s a s s h o r t as 2.5 h o u r s h a v e b e e n
reported.
T h i s influence is a r e s u l t of t h e fact t h a t a m m o n i u m c h l o r i d e is v i r t u a l l y
122
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S — N I T R O G E N
S K E L E T O N
i n s o l u b l e in s - t e t r a c h l o r o e t h a n e a n d s u r f a c e effects a r e i m p o r t a n t . R e a c t i o n s carried o u t at high dilutions favor the f o r m a t i o n of ( N P C 1 ) at the expense of l i n e a r p r o d u c t s . 2
c. Solvents
and
3
Catalysts
.sym-Tetrachloroethane h a s been used as a solvent for the p h o s p h o r u s p e n t a c h l o r i d e - a m m o n i u m c h l o r i d e r e a c t i o n since t h e p i o n e e r i n g w o r k of S c h e n k a n d R o m e r in 1 9 2 4 . T h e a d v a n t a g e s o f t h i s m a t e r i a l a s a r e a c t i o n m e d i u m i n c l u d e its h i g h b o i l i n g p o i n t , its r e l a t i v e i n e r t n e s s t o r e a c t a n t s a n d p r o d u c t s , a n d t h e fact t h a t it is a s o l v e n t for p h o s p h o r u s p e n t a c h l o r i d e a n d c h l o r o p h o s p h a z e n e s . H o w e v e r , . y y r a - t e t r a c h l o r o e t h a n e is relatively e x p e n s i v e , highly toxic, a n d inconvenient to r e m o v e by distillation. F o r these reasons, a t t e m p t s h a v e b e e n m a d e t o find m o r e s u i t a b l e r e a c t i o n m e d i a a n d t o d i s c o v e r c a t a l y s t s for t h e s y n t h e s i s . 8
M o n o c h l o r o b e n z e n e is less t o x i c t h a n t e t r a c h l o r o e t h a n e , it is c h e a p e r , a n d it h a s a l o w e r b o i l i n g p o i n t . H o w e v e r , a t least 2 5 t o 30 h o u r s a r e r e q u i r e d b e f o r e t h e r e a c t i o n is c o m p l e t e a t t h e b o i l i n g p o i n t o f t h i s s o l v e n t . It h a s b e e n shown that the addition of 1-10% of a n h y d r o u s metal chlorides reduces the r e a c t i o n t i m e t o 5 t o 10 h o u r s in c h l o r o b e n z e n e o r 2 t o 4 h o u r s in .syra-tetrachloroethane. Suitable chlorides include stannic chloride, magnesium chloride, zinc chloride, and titanium t e t r a c h l o r i d e . ' Molybdenum pentachloride h a s a m a r k e d c a t a l y t i c e f f e c t . Q u i n o l i n e a l s o a c t s a s a c a t a l y s t in c h l o r o b e n z e n e , a n d r e a c t i o n t i m e s o f 8 h o u r s h a v e b e e n r e p o r t e d . It h a s a l s o b e e n r e p o r t e d t h a t p h o s p h o r u s o x y c h l o r i d e ( o r r e a g e n t s s u c h a s w a t e r , w h i c h will give rise t o P O C l in t h e r e a c t i o n m i x t u r e ) r e d u c e t h e r e a c t i o n t i m e in symt e t r a c h l o r o e t h a n e t o 3.5 h o u r s . N i t r o b e n z e n e c a n a l s o b e u s e d a s a m e d i u m for t h e s y n t h e s i s a t t e m p e r a t u r e s in t h e 1 4 0 ° - 1 5 0 ° C r e g i o n . T h e r e a c t i o n a p p a r e n t l y r e q u i r e s 5 - 6 h o u r s for c o m p l e t i o n u n d e r t h e s e c o n d i t i o n s . 1 4
1 4
3 1
38
3 6
3
3 2
3 5
d. Solid-State
Reactions
I n 1942 S t e i n m a n , S c h i r m e r , a n d A u d r i e t h r e p o r t e d a c o n v e n i e n t s y n t h e s i s of chlorophosphazenes using n o solvent at a l l . T h e technique involved the heating of an intimate mixture of p h o s p h o r u s pentachloride a n d a m m o n i u m c h l o r i d e in a l a r g e d i a m e t e r ( 3 5 - 5 0 m m ) P y r e x glass test t u b e . T h e o u t e r s e c t i o n of the t u b e contained a m m o n i u m chloride only. After 4 - 6 h o u r s at 145°160°C, a 9 0 - 9 5 % c o n v e r s i o n t o cyclic c h l o r o p h o s p h a z e n e s w a s o b t a i n e d . T h i s r e a c t i o n h a s b e e n r e i n v e s t i g a t e d m o r e r e c e n t l y in t h e U S S R , w h e r e yields of u p t o 85 % w e r e r e p o r t e d . I n view of t h e s e r e p o r t s , s o l i d - s t a t e r e a c t i o n s w o u l d a p p e a r t o p r o v i d e a c o n v e n i e n t s m a l l - s c a l e r o u t e for t h e p r e p a r a t i o n of chlorophosphazenes. 1 0
3 4 , 3 7
Β .
T H E
R E A C T I O N
e. Safety
B E T W E E N
H A L O P H O S P H O R A N E S
A
N
D
A M M O N I U M
H A L I D E S
123
Considerations
A l t h o u g h s m a l l - s c a l e l a b o r a t o r y p r e p a r a t i o n s o f c h l o r o p h o s p h a z e n e s offer n o particular hazards, a d e q u a t e care should be taken to prevent inhalation of r e a c t i o n p r o d u c t s a n d s o l v e n t s . ^ m - T e t r a c h l o r o e t h a n e is a p o w e r f u l i n h a l a t i o n p o i s o n a n d a d e q u a t e v e n t i l a t i o n is r e q u i r e d for l a r g e - s c a l e h a n d l i n g o f t h i s m a t e r i a l . T h e c o n s i d e r a b l e q u a n t i t i e s of h y d r o g e n c h l o r i d e e v o l v e d f r o m t h e s e syntheses present a serious problem, and water extractors and scrubbers are n e c e s s a r y t o p r e v e n t d i s c o m f o r t t o p e r s o n n e l a n d severe c o r r o s i o n of f u m e h o o d s , etc. T h e l o w e r c h l o r o p h o s p h a z e n e s ( p a r t i c u l a r l y t h e t r i m e r ) h a v e a relatively h i g h v a p o r p r e s s u r e a t r o o m t e m p e r a t u r e , a n d t h e y c a n b e d e t e c t e d by their rather pleasant " o r g a n i c " odor. However, precautions should be taken t o a v o i d i n h a l a t i o n o f t h e v a p o r , o r e x p o s u r e of t h e eyes t o it. E v e n s m a l l c o n c e n t r a t i o n s c a u s e p r o l o n g e d i r r i t a t i o n o f t h e eye m e m b r a n e s , a n d m a n y r e s e a r c h e r s h a v e c o m p l a i n e d o f " c o n j u n c t i v i t i s " several d a y s after e x p o s u r e to the trimer. T e m p o r a r y t h r o a t and lung irritation has also been reported f o l l o w i n g i n h a l a t i o n o f t h e s e c o m p o u n d s . It follows t h a t c h l o r o p h o s p h a z e n e s s h o u l d n e v e r b e h e a t e d a n d v o l a t i l i z e d in t h e o p e n l a b o r a t o r y . L a r g e q u a n t i t i e s of chlorophosphazenes should be handled with a d e q u a t e ventilation and with t h e u s e of p r o t e c t i v e c l o t h i n g . f. The Manufacture
of
Chlorophosphazenes
Several c o m p a n i e s have u n d e r t a k e n the m a n u f a c t u r e of hexachlorocyclot r i p h o s p h a z e n e , a n d a n u m b e r of p a t e n t s c o v e r i n g c o m m e r c i a l p r o c e s s e s h a v e been i s s u e d . I n g e n e r a l , t h e m a n u f a c t u r i n g p r o c e s s a p p e a r s t o follow t h e s a m e p r o c e d u r e s as the laboratory-scale p r e p a r a t i o n s described above. T h e p a t e n t l i t e r a t u r e stresses t h e n e e d for a s l o w a d d i t i o n of p h o s p h o r u s p e n t a c h l o r i d e t o a n excess o f a m m o n i u m c h l o r i d e in ^ m - t e t r a c h l o r o e t h a n e in o r d e r t o i m p r o v e t h e yield of cyclic r a t h e r t h a n l i n e a r s p e c i e s . T h e u s e of m e t a l h a l i d e s a s c a t a l y s t s a n d t h e u s e of c h l o r o b e n z e n e a s a s o l v e n t h a v e a l s o b e e n d e s c r i b e d in p a t e n t s p e c i f i c a t i o n s . A f u r t h e r m o d i f i c a t i o n i n v o l v e s t h e u s e of c h l o r i n e a n d p h o s p h o r u s t r i c h l o r i d e in p l a c e o f p h o s p h o r u s p e n t a chloride. 1 4 - 2 2
1 4 , 1 5 , 1 6
14
2 0
N o s e r i o u s t e c h n o l o g i c a l p r o b l e m s a r e i n v o l v e d in s c a l i n g u p t h e l a b o r a t o r y r e a c t i o n , a n d l a r g e - s c a l e s y n t h e s e s c a n b e c a r r i e d o u t in t h e l a b o r a t o r y o r p i l o t p l a n t . T h e m o s t s e r i o u s p r o b l e m is c o n n e c t e d w i t h t h e i s o l a t i o n a n d purifica t i o n of t h e p r o d u c t s . F o r t h i s r e a s o n , c r u d e m i x t u r e s of c h l o r o p h o s p h a z e n e s c a n b e p r o d u c e d q u i t e c h e a p l y , b u t t h e p u r e cyclic t r i m e r is e x p e n s i v e . O n e p a t e n t h a s s u g g e s t e d t h a t p u r i f i c a t i o n m a y b e effected b y t h e r m a l d e p o l y m e r i z a t i o n o f t h e c r u d e m i x t u r e t o yield d i s t i l l a b l e t r i m e r a n d t e t r a m e r . Dif f e r e n t i a l p a r t i t i o n i n g of t h e c h l o r o p h o s p h a z e n e s b e t w e e n a n i n e r t o r g a n i c sol v e n t a n d a s t r o n g m i n e r a l acid is a l s o s u g g e s t e d a s a p u r i f i c a t i o n p r o c e s s . 2 1
1 7
124
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S - N I T R O G E N
S K E L E T O N
All t h e a b o v e f a c t o r s a r e of s o m e c o n s e q u e n c e in view of t h e c o m m e r c i a l p o t e n t i a l of m a n y of t h e p h o s p h a z e n e d e r i v a t i v e s d e r i v e d f r o m h e x a c h l o r o c y c l o t r i p h o s p h a z e n e . I n fact, t h e l a c k o f a n i n e x p e n s i v e r o u t e f o r t h e m a n u f a c t u r e of c h l o r o p h o s p h a z e n e s h a s b e e n t h e p r i n c i p a l b o t t l e n e c k for a n u m b e r of i m p o r t a n t t e c h n o l o g i c a l p r o c e s s e s . g.
Bromophosphazenes
B r o m o p h o s p h a z e n e s a r e s y n t h e s i z e d w i t h t h e u s e of t h e s a m e g e n e r a l t e c h n i q u e a s d e s c r i b e d a b o v e f o r c h l o r o p h o s p h a z e n e s . H o w e v e r , since p h o s p h o r u s p e n t a b r o m i d e is u n s t a b l e , t h e s y n t h e s i s is u s u a l l y c o n d u c t e d b y a d d i t i o n of b r o m i n e t o a m i x t u r e of p h o s p h o r u s t r i b r o m i d e a n d a m m o n i u m b r o m i d e in a h o t s o l v e n t . L o s s of p h o s p h o r u s b r o m i d e s b y s u b l i m a t i o n is a v o i d e d b y slowly raising the reaction t e m p e r a t u r e to ~140°C. T h e following experimental p r o c e d u r e is b a s e d o n t h e o n e r e p o r t e d b y J o h n a n d M o e l l e r . 4 6
A m i x t u r e of p h o s p h o r u s t r i b r o m i d e (300 g, 1.1 m o l e ) , b r o m i n e (200 g, 1.25 m o l e ) , a n d a m m o n i u m b r o m i d e (300 g, 3.06 m o l e ) in s j r a - t e t r a c h l o r o e t h a n e (600 m l ) is h e a t e d t o 1 4 0 ° - 1 4 2 ° C o v e r a p e r i o d of 5 d a y s . T h e t e m p e r a t u r e is m a i n t a i n e d a t 142°C for 2 d a y s , a n d a d d i t i o n a l b r o m i n e (150 g, 0.94 m o l e ) is a d d e d . A f t e r c o m p l e t i o n o f t h e r e a c t i o n , u n r e a c t e d a m m o n i u m b r o m i d e is filtered off a n d t h e s o l v e n t is r e m o v e d b y d i s t i l l a t i o n t o l e a v e 255.2 g o f c r u d e b r o m o p h o s p h a z e n e s . E x t r a c t i o n w i t h h o t b e n z e n e r e m o v e s cyclic t r i m e r a n d t e t r a m e r , a n d s o l v e n t e v a p o r a t i o n f o l l o w e d b y s u b l i m a t i o n yields 119 g ( 5 2 . 5 % ) of a t r i m e r - t e t r a m e r m i x t u r e . A m o d i f i c a t i o n of t h e r e a c t i o n b y a d d i t i o n of a p h o s p h o r u s t r i b r o m i d e - b r o m i n e m i x t u r e t o a m m o n i u m b r o m i d e a n d t e t r a c h l o r o e t h a n e a t 1 3 2 ° - 1 3 4 ° C yields 89.9 g (36.9 % ) of a t r i m e r - t e t r a m e r m i x t u r e . It s h o u l d b e n o t e d t h a t t h e m o n o p h o s p h a z e n e N P B r P B r is f o r m e d in s u b s t a n t i a l yields in t h e s e r e a c t i o n s . T h e cyclic t r i m e r - t e t r a m e r m i x t u r e c a n b e s e p a r a t e d i n t o its c o m p o n e n t s b y frac tional sublimation or recrystallization from petroleum ether. Bromocyclop h o s p h a z e n e s a r e less s t a b l e t o a t m o s p h e r i c m o i s t u r e t h a n t h e c h l o r o - d e r i v a tives, a n d p u r i f i c a t i o n p r o c e d u r e s s h o u l d b e c o n d u c t e d w i t h o u t excessive d e l a y . B r o m o c y c l o p h o s p h a z e n e s a r e u s e d in t h e m a n u f a c t u r e of h a l o g e n l a m p s . 2
5
2 2 4 a
s y m - T e t r a b r o m o e t h a n e c a n b e e m p l o y e d a s a s o l v e n t in p l a c e of t e t r a c h l o r o e t h a n e . I n fact, e v i d e n c e exists t h a t h a l o g e n e x c h a n g e o c c u r s in t h e l a t t e r sol v e n t t o give m i x e d c h l o r o b r o m o p h o s p h a z e n e s . A s m e n t i o n e d earlier, h y b r i d halocyclophosphazenes are formed by related reactions. Mixed c h l o r o b r o m o species s u c h a s t h e s e c a n b e s e p a r a t e d effectively b y v a p o r - p h a s e c h r o m a t o g r a p h y u s i n g a silicone oil s u b s t r a t e . 4 6
4 9
h.
Organophosphazenes
T h e p r e p a r a t i o n of o r g a n o c y c l o p h o s p h a z e n e s f r o m o r g a n o h a l o p h o s p h o r anes a n d a m m o n i u m halides follows the s a m e general techniques as outlined
Β. THE REACTION BETWEEN H A L O P H O S P H O R A N E S A N D A M M O N I U M HALIDES
125
a b o v e for h a l o p h o s p h a z e n e s y n t h e s i s . F o r e x a m p l e , t h e f o l l o w i n g p r e p a r a t i o n of ( N P C l P h ) w a s r e p o r t e d by G r u s h k i n , S a n c h e z , a n d R i c e . 6 5
3 a n d 4
A s o l u t i o n of P h P C l (358 g, 210 m o l e s ) in c h l o r o b e n z e n e (2 liters) is c h l o r i n a t e d u n t i l it is b r i g h t yellow in c o l o r , a n d n i t r o g e n is b u b b l e d t h r o u g h u n t i l t h e yellow c o l o r h a s d i s a p p e a r e d . T h i s s o l u t i o n of P h P C l is t h e n a d d e d slowly o v e r 12 h o u r s t o a s u s p e n s i o n of a m m o n i u m c h l o r i d e (214 g, 4.0 m o l e s ) in b o i l i n g c h l o r o b e n z e n e (8 liters). H y d r o g e n c h l o r i d e is t h e n r e m o v e d by a s t r e a m of n i t r o g e n . After a f u r t h e r 12 h o u r s of r e a c t i o n , t h e a m m o n i u m c h l o r i d e is r e m o v e d by filtration. R e m o v a l of a p p r o x i m a t e l y 75 % of t h e s o l v e n t f r o m t h e filtrate c a u s e s a slow p r e c i p i t a t i o n of cyclic t r i m e r s a n d t e t r a m e r s . T h e s e a r e s e p a r a t e d by a r a t h e r a r d u o u s series of crystalliza t i o n s f r o m fl-pentane. It s h o u l d b e n o t e d t h a t s u c h p r e p a r a t i o n s a r e c o m p l i c a t e d c o n s i d e r a b l y if g e o m e t r i c i s o m e r s as well a s species w i t h different r i n g sizes a r e p r e s e n t , as in t h e p r e s e n t case. S e p a r a t i o n of cis a n d trans i s o m e r s c a n often b e a c c o m p l i s h e d by careful r e c r y s t a l l i z a t i o n s e q u e n c e s . T h e c o m p o u n d s are quite stable to atmospheric moisture. 2
4
2.
REACTION MECHANISMS
T h e s y n t h e s e s o u t l i n e d a b o v e c a n b e s u m m a r i z e d by t h e g e n e r a l e q u a t i o n η R PX + η N H X -* (R PN)„ + 4n HX 2
3
4
2
w h e r e R is h a l o g e n o r a n o r g a n i c g r o u p , a n d X is h a l o g e n . I n t h e s u b s e q u e n t d i s c u s s i o n it will b e a s s u m e d t h a t t h e g e n e r a l r e a c t i o n m e c h a n i s m s a r e s i m i l a r i r r e s p e c t i v e of t h e n a t u r e of R o r X . It m u s t be p o i n t e d o u t , h o w e v e r , t h a t m o s t of t h e m e c h a n i s t i c i n f o r m a t i o n a b o u t t h i s r e a c t i o n h a s b e e n d e r i v e d from s y s t e m s w h e r e R is c h l o r i n e . T h e f o l l o w i n g e x p e r i m e n t a l facts a r e k n o w n a b o u t this r e a c t i o n : (1) A l t h o u g h t h e m a i n r e a c t i o n l e a d s t o t h e f o r m a t i o n of cyclic p h o s p h a z e n e s of s t r u c t u r e ( N P X ) „ , l i n e a r p h o s p h a z e n e species a r e n e a r l y a l w a y s formed at the same time. F o r example, the reaction between PC1 and N H C 1 in ^ m - t e t r a c h l o r o e t h a n e yields identifiable oily l i n e a r species of s t r u c t u r e s C1 P=N—PC1 =N—PC1 , C1 P(NPC1 ). = N — P C 1 , [C1 P=N— PC1 ]©[PC1 P a n d [ C 1 P = N — P C 1 = N — P C l ] ® [ P C I ] . ' ' ' Simi larly, t h e r e a c t i o n b e t w e e n p h o s p h o r u s t r i b r o m i d e , b r o m i n e , a n d a m m o n i u m b r o m i d e yields species w h i c h c o r r e s p o n d t o t h e s t r u c t u r e s [ B r P = N — P B r ] ® B r and B r P N P B r . F u r t h e r m o r e , a c o m p o u n d , which may have the structure [ P h B r P = N — P B r P h ] B r w a s i s o l a t e d f r o m t h e r e a c t i o n of p h e n y l d i b r o m o p h o s p h i n e a n d b r o m i n e w i t h a m m o n i u m b r o m i d e , a n d species of t h e t y p e s [Ph ClP=N—PClPh ]©Cl and [ P h C l P = N — P C l P h p C l are formed w h e n a m m o n i u m c h l o r i d e r e a c t s with diphenyltrichlorophosphorane, 2
5
1 4 2
3
2
4
1 3
3
2
1 0
4
e
3
6
3
2
3
2 5
3
2 6
3
5
@
2
G
2
6 4
e
2
2
e
2
1 4 3
1 4 6
6
0
2
4
2
3
126
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S - N I T R O G E N
S K E L E T O N
P h P C l , or with phenyltetrachlorophosphorane, P h P C l . 2
3
4
5 8 ,
154
*
1 5 5
Linear
p h o s p h a z e n e s s u c h a s t h e s e a r e believed t o b e i n t e r m e d i a t e s in t h e s y n t h e s i s of cyclophosphazenes. Becke-Goehring and co-workers have provided evidence for t h e i o n i c s t r u c t u r e s o f m a n y o f t h e s e l i n e a r p h o s p h a z e n e s . T h e s e s t r u c t u r e s are comparable to the P C l
@ 4
PCl
f o r m u l a t i o n for p h o s p h o r u s p e n t a c h l o r i d e .
e 6
(2) Cyclic p h o s p h a z e n e s a r e f o r m e d w h e n l i n e a r species of t h e t y p e d e s c r i b e d a b o v e a r e h e a t e d in ^ m - t e t r a c h l o r o e t h a n e , p a r t i c u l a r l y in t h e p r e s e n c e o f a m m o n i u m h a l i d e o r a m m o n i a . F o r e x a m p l e , ( N P C 1 ) c a n b e f o r m e d directly 2
from
3
[C1 P=N—PC1 =N—PC1 P[PC1 P, and (NPC1 ) 3
2
[C1 P=N—PCl ]®Cl 3
3
6
2
and ammonium chloride.
e
3
4
is f o r m e d
from
2 6
(3) A s d i s c u s s e d earlier, if t h e r e a c t i o n b e t w e e n p h o s p h o r u s p e n t a c h l o r i d e a n d a m m o n i u m c h l o r i d e is c o n d u c t e d in s u c h a w a y t h a t a m m o n i u m c h l o r i d e is a l w a y s in excess, cyclic c h l o r o p h o s p h a z e n e s a r e f o r m e d in h i g h yields. If p h o s p h o r u s p e n t a c h l o r i d e is in excess, t h e l i n e a r species a r e f o r m e d in g r e a t e r amounts.
1 3
(4) L i n e a r p h o s p h a z e n e s c a n b e f o r m e d b y t h e t r e a t m e n t o f c y c l o p h o s p h a zenes with p h o s p h o r u s p e n t a c h l o r i d e .
1 3
F o r example, a n intimate mixture of
( N P C 1 ) a n d P C 1 yields a m i x t u r e o f l i n e a r p h o s p h a z e n e s a t 3 5 0 ° C . L i n e a r 2
3
5
species of s t r u c t u r e C 1 P — ( N P C 1 ) „ N H a r e f o r m e d w h e n p h o s p h o r u s p e n t a 3
2
c h l o r i d e a n d a m m o n i u m c h l o r i d e r e a c t in a n a u t o c l a v e in t h e a b s e n c e o f sol vent. (5) A m m o n i a c a n r e p l a c e a m m o n i u m c h l o r i d e in several of t h e s y n t h e t i c reactions with h a l o p h o s p h o r a n e s . F o r instance, diphenyltrichlorophosphora n e , P h P C I , r e a c t s w i t h l i q u i d a m m o n i a a t —4 0 ° C t o yield d i p h e n y l c y c l o p h o s p h a z e n e s , ( N P P h ) „ , plus a m m o n i u m c h l o r i d e . Similarly, M e N P C l reacts with a m m o n i a to form ( N P ( C l ) N M e ) . 2 4
2
3
5 4
2
2
4
3 9
2
3
T h e a b o v e facts s t r o n g l y f a v o r a m e c h a n i s m in w h i c h l i n e a r p h o s p h a z e n e s a r e f o r m e d a s i n t e r m e d i a t e s , p r i o r t o f o r m a t i o n of t h e cyclic species. A mechanism which has gained wide acceptance was proposed by BeckeGoehring and co-workers. F o r convenience, three steps c a n be f o r m u l a t e d for t h e o v e r a l l r e a c t i o n . T h e s e a r e m o n o p h o s p h a z e n e f o r m a t i o n , l i n e a r p o l y merization, a n d cyclization. 2 5 , 2 6
a. Monophosphazene
Formation
P h o s p h o r u s pentachloride a n d a m m o n i u m chloride are assumed to function as t h e ionized a n d dissociated forms, respectively. PC1 ^ PC1 + PC1 5
NH4CI ^
4
NH
3
6
+ HCl
Β .
T H E
R E A C T I O N
B E T W E E N
H A L O P H O S P H O R A N E S
A
N
D
A M M O N I U M
H A L I D E S
127
A m m o n i a then reacts with the P C 1 cation according to the sequence 4
[PCl NPCl ] + NH
C1 P=NH + 2 HCl + PC1
e
4
6
3
3
5
P a d d o c k a n d S e a r l e suggested t h a t the t r i c h l o r o m o n o p h o s p h a z e n e could a l s o b e p r o d u c e d t h r o u g h t h e i n t e r m e d i a t e f o r m a t i o n of a m m o n i u m h e x a c h l o r o p h o s p h a t e , [NH ]®[PC1 P, which w o u l d be formed directly from P C 1 a n d NH4CI. 1 2
4
b . Linear
6
5
Polymerization
T h e m o n o p h o s p h a z e n e is t h e n believed t o r e a c t first w i t h [ P C l ] ® [ P C l ] a n d t h e n w i t h a m m o n i a in a c h a i n - l e n g t h e n i n g s e q u e n c e . e
4
6
C1 P=NH + [PCl ]®[PCl ] -> [C1 P=N—PCl ]®[PCl ] + HCl e
3
4
e
6
3
[C1 P=N—PCl ]®[PCl ] + N H 3
6
6
-> C1 P=N—PC1 =NH + 3 HCl + PC1
e
3
3
3
3
2
5
A v a r i e t y of c h a i n - g r o w i n g s t e p s a r e t h e n p o s s i b l e , i n c l u d i n g [C1 P=N—PC1 ]® + C1 P=NH -> [C1 P=N—PC1 =N—PC1 ]® + HCl 3
3
3
3
2
3
C1 P=N—PC1 =NH + [PCl ] "> [C1 P=N—PC1 =N—PC1 ]® + HCl e
3
2
4
3
2
3
C1 P=N—PC1 =NH + [C1 P=N—PC1 ]® -> [C1 P=
2
3
3
3
2
2
3
T h u s , g r o w t h of t h e c h a i n s t o c o n t a i n t h r e e , f o u r , five, six, o r a h i g h e r n u m b e r of p h o s p h o r u s a t o m s can be readily u n d e r s t o o d . In practice, the c o m p o u n d [ C 1 P = N — P C 1 ] [ P C 1 ] is t h e first species d e t e c t e d , ' and Emsley a n d Udy h a v e s h o w n t h a t it is f o r m e d in o v e r 80 % yield w i t h i n 80 m i n u t e s of t h e s t a r t of t h e r e a c t i o n a n d t h a t it is a l m o s t i n s o l u b l e in t h e m e d i u m . B e c a u s e of t h i s h e t e r o g e n e i t y , t h e n e x t h i g h e r m e m b e r s of t h e series, [ C 1 P = N — P C 1 = Ν — P C 1 ] [ P C 1 ] and [ C 1 P = N — P C 1 = N — P C 1 = N — P C 1 ] ® [ P C 1 ] , are f o r m e d o n l y slowly. @
3
0
3
2 2 5
2 2 6
6
2 2 5
3
φ
c.
2
0
3
0
6
3
2
2
3
6
Cyclization
C y c l i z a t i o n of t h e c h a i n is p o s s i b l e w h e n a t e r m i n a l N H g r o u p is p r e s e n t . S u c h a s i t u a t i o n c a n arise w h e n e v e r a c a t i o n - a n i o n c o m p l e x r e a c t s w i t h a m m o n i a or a m m o n i u m chloride. [C1 P=N—PC1 =N—PCl ]®[PCl ] + NH C1 -> e
3
2
3
6
4
C1 P=N—PC1 =N—PC1 =NH + 3 HCl + PC1 3
2
2
Cl C1 P=N—PC1 =N—PC1 =NH 3
2
2
-HCl
•
2
I || ChP^PCl,
5
128
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S - N I T R O G E N
S K E L E T O N
T h u s , c y c l i z a t i o n w o u l d b e f a v o r e d b y a n excess o f a m m o n i u m h a l i d e a n d r e t a r d e d b y a n excess o f p h o s p h o r u s p e n t a c h l o r i d e . A n a l t e r n a t i v e a n d p r o b a b l y m o r e likely c y c l i z a t i o n m e c h a n i s m is o n e in w h i c h cyclic t r i m e r is f o r m e d f r o m t h e l i n e a r tetramer b y loss o f a P C 1 ® cation. 4
2 2 5
Cl P®—CI
Cl ρ
2
C I
2
P ^ P C I
2
2
CI P^ ^PCI 2
N
2
T h e r e l a t i v e p r o p o r t i o n s o f cyclic t r i m e r , t e t r a m e r , p e n t a m e r , e t c . , in t h e final r e a c t i o n m i x t u r e d e p e n d p a r t l y o n t h e a m o u n t s of l i n e a r p r e c u r s o r s p r e s e n t a n d , in t u r n , o n t h e efficiency of t h e c h a i n g r o w t h . R e m o v a l of s o m e l i n e a r species f r o m t h e r e a c t i o n p h a s e b e c a u s e o f t h e i r i n s o l u b i l i t y m u s t a l s o affect t h e final r a t i o s of cyclic species. F u r t h e r m o r e , t h e r e l a t i v e a m o u n t s of t h e v a r i o u s cyclic c o m p o u n d s will d e p e n d o n t h e steric a n d statistical ease of cycli z a t i o n of t h e l i n e a r p r e c u r s o r . T h i s u n d o u b t e d l y p r o v i d e s a n e x p l a n a t i o n for t h e fact t h a t cyclic d i m e r s a r e n o t i s o l a t e d , a n d t h a t t h e cyclic t r i m e r a n d t e t r a m e r a r e u s u a l l y f o r m e d in g r e a t e r a m o u n t s t h a n h i g h e r cyclic c o m p o u n d s . S t e r i c f a c t o r s i n v o l v i n g t h e side g r o u p ( R o r h a l o g e n ) m a y influence t h e rela tive e a s e of c y c l i z a t i o n t o t r i m e r s a n d t e t r a m e r s . I t a l s o s e e m s r e a s o n a b l e t o s u p p o s e t h a t c y c l i z a t i o n is f a v o r e d b y t h e p r e s e n c e o f s o l v e n t s in v i e w o f t h e k n o w n effects of d i l u t i o n o n t h e c y c l i z a t i o n c o n s t a n t s of m a n y p o l y m e r s .
REFERENCES
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
J. Liebig, Ann. Chem. 11, 139 (1834). C. Gerhardt, Ann. Chim. Phys. [3] 18, 188 (1846); C. R. Acad. Sci. 22, 856 (1846). A. Laurent, C. R. Acad. Sci. 31, 356 (1850). H. N. Stokes, Amer. Chem. J. 17, 275 (1895). H. N. Stokes, Chem. Ber. 28, 437 (1895). H. N. Stokes, Amer. Chem. J. 19, 782 (1897). A. Besson and G. Rosset, C. R. Acad. Sci. 143, 37 (1906). R. Schenck and G. Rorner, Chem. Ber. 57B, 1343 (1924). H. Moureu and P. Rocquet, Bull. Soc. Chim. Fr. [5] 3, 821 (1936). R. Steinman, F. B. Schirmer, and L. F. Audrieth, / . Amer. Chem. Soc. 64, 2377 (1942). L. F. Audrieth, R. Steinman, and A. D. F. Toy, Chem. Rev. 43, 109 (1943). N. L. Paddock and H. T. Searle, Advan. Inorg. Chem. Radiochem. 1, 347 (1959). L. G. Lund, N. L. Paddock, J. E. Proctor, and H. T. Searle, / . Chem. Soc, London p. 2542 (1960). Albright and Wilson, Mfg. Ltd., Brit. Pats. 905,314 and 905,315 (1962). Albright and Wilson, Mfg. Ltd., Brit. Pats. 1,011,237 (1965); 1,017,375 (1966). Albright and Wilson, Mfg. Ltd., Aust. Pats. 230,487 and 233,600 (1958). Albright and Wilson, Mfg. Ltd., U.S. Pat. 3,008,799 (1961). Albright and Wilson, Mfg. Ltd., Can. Pat. 614,267 (1961).
R E F E R E N C E S
129
19. Frenc h Pat . 1,382,95 4 (1964) ; Chem. Abstr. 63 , ll,797 g (1965) . 20. Albrigh t an d Wilson , Mfg . Ltd. ,an d Hooke r Chemica l Corp .Fr . Pat . 1,331,07 8 (1965) . 21. M . C . Taylor , U.S . Pat . 2,872,28 3 (1959) . 22. Compagni e Français e d e Matière s Colorantes , Brit . Pat . 774,69 4 (1957) ; U.S . Pat . 2,782,133 (1957) . 23. F . G . R . Gimblett , Chem. Ind. (London) p . 36 5 (1958) . 24. M . Becke-Goehrin g an d G . Koch , Chem. Ber. 92 , 118 8 (1959) . 25. M . Becke-Goehrin g an d E . Fluck , Angew. Chem. 74 , 38 2 (1962) . 26. M . Becke-Goehrin g an d W . Lehr , Z. Anorg. Allg. Chem. 327 , 12 8 (1964) . 27. M . Yokoyama , / . Chem. Soc. Jap., Pure Chem. Sect. 80 , 118 9 (1959) . 28. H . Sait o an d M . Kajiwara , / . Chem. Soc. Jap., Ind. Chem. Sect. 66 , 61 8 (1963) . 29. E . Kobayashi , / . Chem. Soc. Jap., Ind. Chem. Sect. 69 , 61 8 (1966) . 30. E . Kobayashi , / . Chem. Soc. Jap., Pure Chem. Sect. 87 , 13 5 (1966) . 31. E . Kobayashi , / . Chem. Soc. Jap., Ind. Chem. Sect. 70 , 62 8 (1967) . 32. J . Emsle y an d P . B . Udy , Chem. Commun, p . 63 3 (1967) . 33. S . M . Zhivukhin , Zh. Neorg. Khim. 6 , 241 4 (1961) . 34. S . M . Zhivukhin , V . B . Tolstoguzov , V . V . Kireev , an d K . G . Kuznetsova , Russ. J. Inorg. Chem. 10 , 17 8 (1965) . 35. M . A . Glushkova , M . M . Ershova , an d Yu . A . Buslaev , Russ. J. Inorg. Chem. 10 , 106 0 (1965). 36. S . M . Zhivukhin , V . B . Tolstoguzov , an d M . M . Levitskii , Zh. Neorg. Khim. 6 , 241 4 (1961). 37. S . M . Zhivukhin , V . V . Kireev , G . S . Kolesnikov , V . P . Popilin , an d E . A . Filippov , Russ. J. Inorg. Chem. 14 , 54 8 (1969) . 38. R . W . Jenkin s an d S . Lanoux , / . Inorg. Nucl. Chem. 32 , 245 3 (1970) . 39. A . Schmidpeter , C . Weingand , an d E . Hafner-Roll , Z . Naturforsch. B 24 , 79 9 (1969) . 40. A . Besson , C. R. Acad. Sci. 114 , 147 9 (1892) . 41. H . Bode , Z . Anorg. Allg. Chem. 252 , 11 3 (1943) . 42. H . Bode , Angew. Chem. 61 , 43 8 (1949) . 43. R . G . Rice , L . W . Daasch , J . R . Holden , an d E . J . Kohn , / . Inorg. Nucl. Chem. 5 , 19 0 (1958). 44. K . Joh n an d T . Moeller , / . Amer. Chem. Soc. 82 , 264 7 (1960) . 45. Ν. E. Bean and R. A. Shaw, Chem. Ind. (London) p. 1189 (1960). 46. K. John and T. Moeller, / . Inorg. Nucl. Chem. 22, 199 (1961). 47. T. Moeller and P. Nannelli, Inorg. Chem. 2, 659 (1963). 48. G. E. Coxon, D. B. Sowerby, and G. C. Tranter, / . Chem. Soc, London p. 5697 (1965). 49. G. E. Coxon and D. B. Sowerby, J. Chem. Soc, A p. 1566 (1967). 50. E. Steger and J. Rost, J. Inorg. Nucl. Chem. 25, 732 (1963). 51. H. Rotzche, R. Stahlberg, and E. Steger, / . Inorg. Nucl. Chem. 28, 687 (1966). 52. G. E. Coxon, T. F. Palmer, and D. B. Sowerby, Inorg. Nucl. Chem. Lett. 2, 215 (1966). 53. H. Bode and H. Bach, Chem. Ber. 75B, 215 (1942). 54. C. P. Haber, D. L. Herring, and E. A. Lawton,/. Amer. Chem. Soc 80, 2116 (1958). 55. C. P. Haber, E. A. Lawton, and C. G. Fitzgerald, U.S. Pat. 2,853,517 (1958). 56. R. A. Shaw and C. Stratton, Chem. Ind. (London) p. 52 (1959). 57. R. A. Shaw and C. Stratton, J. Chem. Soc, London p. 5004 (1962). 58. V. V. Korshak, I. A. Gribova,T. V. Artamonova, and A. N. Bushmarina, Vysokomole. Soedin. 2, No. 3, 377 (1960). 59. I. I. Bezman and J. H. Smalley, Chem. Ind. (London) p. 839 (1960). 60. F. S. Humiec and I. I. Bezman, J. Amer. Chem. Soc. 83, 2210 (1961). 61. I. I. Bezman, U.S. Pat. 3,098,871 (1963).
130
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S - N I T R O G E N
S K E L E T O N
62. T. Moeller and P. Nannelli, Inorg. Chem. 1, 721 (1962). 63. T. Moeller and P. Nannelli, Inorg. Chem. 2, 659 (1963). 64. P. Nannelli and T. Moeller, Inorg. Chem. 2, 896 (1963). 65. B. Grushkin, M. G. Sanchez, and R. G. Rice, Inorg. Chem. 3, 623 (1964). 66. B. Grushkin, A. J. Berlin, J. L. McClanahan, and R. G. Rice, Inorg. Chem. 5,172 (1966). 67. H. T. Searle, Proc. Chem. Soc, London p. 7 (1959). 68. A. J. Bilbo, Z. Naturforsch. Β 15, 330 (1960). 69. W. R. Grace and Co., Brit. Pat. 981,821 (1965). 69a. V. N. Prons, M. P. Grinblat, and A. L. Klebanskii, / . Gen. Chem. USSR 40, 2108 (1970). 70. H. Saito and M. Kajiwara, / . Chem. Soc. Jap., Ind. Chem. Sect. 66, 618 (1963). 71. M. Yokoyama, A. Fujishiro, H. Saito, and T. Otsuka, Kogyo Kagaku Zasshi 68, 185 (1965). 72. C. D. Schmulbach, C. Derderian, and S. Sahuri, Inorg. Chem. 10, 195 (1971). 73. C. D. Schmulbach and C. Derderian, / . Inorg. Nucl. Chem. 25, 1395 (1963). 74. D. L. Herring and C. M. Douglas, Inorg. Chem. 3, 428 (1964). 75. A. Schmidpeter and J. Ebeling, Angew. Chem., Int. Ed. Engl. 7, 209 (1968). 76. M. Bermann and K. Utvary, J. Inorg. Nucl. Chem. 31, 271 (1969). 77. F. G. Sherif and C. D. Schmulbach, Inorg. Chem. 5, 322 (1966). 78. D. L. Herring, Chem. Ind. (London) p. 717 (1960). 79. G. Tesi, C. P. Haber, and C. M. Douglas, Proc. Chem. Soc, London p. 219 (1960). 80. G. Tesi, C. M. Douglas, and C. P. Haber, U.S. Pat. 3,087,937 (1963). 81. D. L. Herring and C. M. Douglas, Inorg. Chem. 4, 1012 (1965). 82. K. L. Paciorek, U.S. Govt. Res. Rep. AD 276-920 (1962). 83. R. H. Kratzer and K. L. Paciorek, Inorg. Chem. 4, 1767 (1965). 84. K. L. Paciorek and R. H. Kratzer, U.S. Pat. 3,297,751 (1966). 85. W. J. Birdsall, Ph.D. Thesis, The Pennsylvania State Univ., 1971, p. 59. 86. G. Tesi and C. M. Douglas, J. Amer. Chem. Soc. 84, 549 (1962). 87. G. Tesi and C. M. Douglas, U.S. Pat. 3,065,266 (1962). 88. G. Tesi and C. M. Douglas, U.S. Govt. Res. Rep. AD 236-914 (1961). 89. M. Becke-Goehring, U.S. Govt. Res. Rep. AD 642-394 (1965). 90. D. D. Magnelli, G. Tesi, J. U. Lowe, and W. E. McQuiston, Inorg. Chem. 5, 457 (1966). 91. H. H. Sisler, H. S. Ahuja, and N. L. Smith, Inorg. Chem. 1, 84 (1962). 92. I. T. Gibson and H. H. Sisler, Inorg. Chem. 4, 273 (1965). 93. W. R. Grace and Co., Ger. Pat. 1,189,077 (1965). 94. H. H. Sisler, S. E. Frazier, R. G. Rice, and M. G. Sanchez, Inorg. Chem. 5, 326 (1966). 95. R. Schmutzler, Z. Naturforsch. Β 19, 1101 (1964). 96. J. H. Gladstone and J. D. Holmes, / . Chem. Soc, London 17, 225 (1864). 97. J. H. Gladstone and J. D. Holmes, Ann. Chim. Phys. [4] 3, 465 (1864). 98. J. H. Gladstone and J. D. Holmes, Bull. Soc Chim. Fr. [2] 3, 113 (1865). 99. H. Moureu and G. WetrofT, C. R. Acad. Sci. 204, 51 (1937). 99a. S. Kongpricha and W. C. Preusse, Inorg. Chem. 6, 1915 (1967). 100. J. H. Gladstone and J. D. Holmes, / . Chem. Soc, London 17, 225 (1864). 101. H. Schiff, Ann. Chem. Pharm. 103, 168 (1857). 102. H. N. Stokes, Amer. Chem. J. 18, 629 (1896). 103. H. N. Stokes, Amer. Chem. J. 18, 780 (1896). 104. H. N. Stokes, Amer. Chem. J. 20, 740 (1898). 105. H. N. Stokes, Z. Anorg. Chem. 19, 36 (1899). 106. A. M. de Ficquelmont, M. Magat, and L. Ochs, C. R. Acad. Sci. 208, 1900 (1939). 107. M. Yokoyama, H. Cho, and M. Sakuma, Kogyo Kagaku Zasshi 66, 422 (1963). 108. A. Narath, F. H. Lohman, and O. T. Quimby, J. Amer. Chem. Soc 78, 4493 (1956).
R E F E R E N C E S
109. 110. 111. 112. 113. 114. 115. 116. 117.
131
A. Narath, F. H. Lohman, and O. T. Quimby,/. Amer. Chem. Soc. 82,1009 (1960). F. H. Pollard, G. Nickless, and A. M. Bigwood, J. Chromatogr. 11, 534 (1963). F. H. Pollard, G. Nickless, and R. W. Warrender, / . Chromatogr. 9, 485 (1962). F. H. Pollard, G. Nickless, and R. W. Warrender, / . Chromatogr. 9, 493 (1962). M. L. Nielsen and T. J. Morrow, Inorg. Syn. 6, 97 (1960). D. E. C. Corbridge and E. J. Low, J. Chem. Soc, London p. 4555 (1954). K. Lunkwitz and E. Steger, Z. Anorg. Allg. Chem. 358, 111 (1968). B. W. Fitzsimmons, C. Hewlett, and R. A. Shaw,/. Chem. Soc,London p. 4459 (1964). A. C. Chapman, W. S. Holmes, N. L. Paddock, and H. T. Searle,/. Chem. Soc,London p. 1825 (1961). 118. M. Becke-Goehring, L. Leichner, and B. Scharf, Z. Anorg. Allg. Chem. 343,154 (1966). 119. M. Becke-Goehring and H. J. Wald, Z. Anorg. Allg. Chem. 371, 88 (1969). 119a. M. Becke-Goehring and M. R. Wolf, Z. Anorg. Allg. Chem. 373, 245 (1970). 120. M. Becke-Goehring and L. Leichner, Angew. Chem., Int. Ed. Engl. 3, 590 (1964). 121. I. N. Zhmurova, U. I. Dolgushina, and Α. V. Kirsanov, Zh. Obshch. Khim. 37, 1797 (1967). 121a. W. Haubold and M. Becke-Goehring, Z. Anorg. Allg. Chem. 372, 273 (1970). 122. N. H. Brown, G. W. Fraser, and N. W. A. Sharpe, Chem. Ind. {London) p. 367 (1964). 123. R. Schmutzler and G. S. Reddy, Inorg. Chem. 4, 191 (1965). 124. T. Moeller and A. H. Westlake, / . Inorg. Nucl. Chem. 29, 957 (1967). 125. Rottweiler Kunstseidefabrik A. G., Ger. Pat. 1,139,497 (1962). 126. A. Michaelis and W. Kârsten, Chem. Ber. 28, 1237 (1895). 127. A. Michaelis and G. Schroeter, Chem. Ber. 27, 490 (1894). 128. H. W. Gimmel, A. Guenther, and J. F. Morgan, J. Amer. Chem. Soc. 68, 539 (1946). 129. G. C. Demitras, R. A. Kent, and A. G. MacDiarmid, Chem. Ind. (London) p. 1712 (1964). 130. R. Schmutzler, Angew. Chem., Int. Ed. Engl. 3, 753 (1964). 131. R. Schmutzler, Chem. Commun, p. 19 (1965). 132. E. W. Abel and G. Willey, Proc. Chem. Soc, London p. 308 (1962). 133. M. Becke-Goehring and H. Weber, Z. Anorg. Allg. Chem. 365, 185 (1969). 134. H. N. Stokes, Amer. Chem. J. 15, 198 (1893). 135. P. Otto, Chem. Ber. 28, 616 (1895). 136. A. Michaelis and E. Silberstein, Chem. Ber. 29, 716 (1896). 137. M. G. Barlow, M. Green, R. N. Haszeldine, and H. G. Higson, / . Chem. Soc, A p. 1592 (1966). 138. M. Green, R. N. Haszeldine, and G. S. A. Hopkins, / . Chem. Soc, A p. 1766 (1966). 138a. H. Bock and W. Wiegràbe, Chem. Ber. 99, 1068 (1966). 139. H. G. Ang and H. J. Emeleus, / . Chem. Soc, A p. 1334 (1968). 140. G. Peiffer, A. Guillemonat, and J. C. Traynard, C. R. Acad. Sci., Ser. C 266, 400 (1968). 141. J. K. Ruff, Inorg. Chem. 6, 2108 (1967). 142. M. Becke-Goehring, Angew. Chem. 73, 246 (1961). 143. M. Becke-Goehring and W. Lehr, Chem. Ber. 94, 1591 (1961). 144. M. Becke-Goehring, E. Fluck, and W. Lehr, Z. Naturforsch. B 17, 126 (1962). 145. M. Becke-Goehring and W. Lehr, Z. Anorg. Allg. Chem. 325, 287 (1963). 146. M. Becke-Goehring and E. Fluck, Inorg. Syn. 8, 94 (1966). 147. M. Becke-Goehring and B. Scharf, Z. Anorg. Allg. Chem. 353, 320 (1967). 148. W. Lehr and M. Schwartz, Z. Anorg. Allg. Chem. 363, 43 (1968). 149. A. Ya. Yakubovich, Ν. I. Shvetsov, I. V. Lebedeva, and V. S. Yakubovich, Russ. J. Inorg. Chem. 8, 953 (1963). 150. E. Fluck, Z. Anorg. Allg. Chem. 320, 64 (1963).
132
4.
S Y N T H E S I S
O F
T H E
P H O S P H O R U S - N I T R O G E N
S K E L E T O N
151. A. Schmidpeter and C. Weingand, Angew. Chem., Int. Ed. Engl. 8, 615 (1969). 152. J. A. Parkins, WADC Tech. Rep. 59-251 (1959). 153. G. M. Nichols, Rep. Conf. High Temp. Polym. Fluid Res., 1962 ASD-TDR-62-372 (1962); U.S. Pat. 3,249,397 (1966). 154. E. Fluck and F. L. Goldmann, Chem. Ber. 96, 3091 (1963). 155. E. Fluck and R. M. Reinisch, Chem. Ber. 96, 3085 (1963). 156. S. E. Frazier and H. H. Sisler, Inorg. Chem. 5, 925 (1966). 157. E. F. Moran and D. P. Reider, Inorg. Chem. 8, 1550 (1969). 158. E. Fluck, Z. Anorg. Allg. Chem. 315, 191 (1962). 159. E. F. Moran, / . Inorg. Nucl. Chem. 30, 1405 (1968). 160. H. R. Allcock and P. Ostrowski, unpublished work (1968). 160a. W. M. Douglas, M. Cooke, M. Lustig, and J. K. Ruff, Inorg. Nucl. Chem. Lett. 6,409 (1970). 161. C. M. Douglas, U.S. Govt. Res. Rep. AD 276-920 (1962). 162. Α. V. Kirsanov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 646 (1954); Chem. Abstr. 49, 13163 (1955). 163. I. N. Zhmurova, A. P. Martynyuk, and Α. V. Kirsanov, / . Gen. Chem. USSR 37, 1789 (1967). 164. V. A. Shokol, V. F. Gamaleya, and V. P. Kukhar, / . Gen. Chem. USSR 40, 520 (1970). 165. H. W. Roesky and L. F. Grimm, Chem. Ber. 102, 2319 (1969). 166. I. N. Zhmurova and Α. V. Kirsanov, / . Gen. Chem. USSR 31, 3440 (1961). 167. I. N. Zhmurova and Α. V. Kirsanov, J. Gen. Chem. USSR 32, 2540 (1962). 168. V. A. Shokol, V. F. Gamaleya, and G. I. Derkach,/. Gen. Chem. USSR38,1815 (1968). 169. H. J. Bestmann, H. Buckschewski, and H. Leube, Chem. Ber. 92, 1345 (1959). 170. M. Becke-Goehring, W. Gehrmann, and W. Goetze, Z. Anorg. Allg. Chem. 326, 127 (1963). 171. F. Ephraim and M. Gurewitsch, Chem. Ber. 43, 138 (1910). 172. Α. V. Kirsanov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 426 (1950); Chem. Abstr. 45, 1503 (1951). 173. Α. V. Kirsanov and I. N. Zhmurova, Zh. Obshch. Khim. 28, 2478 (1958); Chem. Abstr. 53,3118 (1959). 174. Α. V. Kirsanov,Z/*. Obshch. Khim.22,1346(1952); Chem. Abstr. 47,5836(1953). 175. M. Becke-Goehring, T. Mann, and H. D. Euler, Chem. Ber. 94, 193 (1961). 176. V. A. Shokol, G. A. Golik, and G. I. Derkach, Zh. Obshch. Khim. 38,871 (1968). 177. M. Lustig, Inorg. Chem. 8, 443 (1969). 178. L. Horner and H. Hoffmann, Angew. Chem. 69, 478 (1956). 179. L. Horner and H. Oediger, Ann. Chem. 627, 142 (1959). 180. H. Zimmer and G. Singh, / . Org. Chem. 28, 483 (1963). 181. H. Bock and W. Wiegràbe, Angew. Chem. 74, 327 (1962). 182. I. N. Zhmurova and A. P. Martynyuk, J. Gen. Chem. USSR 31, 2577 (1967). 183. I. N. Zhmurova, A. P. Martynyuk, and G. I. Derkach, / . Gen. Chem. USSR 38, 161 (1968). 184. M. Becke-Goehring and E. Fluck, Inorg. Syn. 8, 92 (1966). 185. H. Staudinger and J. Meyer, Helv. Chim. Acta 2, 635 (1919). 186. H. Staudinger and E. Hauser, Helv. Chim. Acta 4, 861 (1921). 187. I. N. Zhmurova, A. A. Tukhar, and R. I. Yurchenko, / . Gen. Chem. USSR 39, 2150 (1969). 188. H. Staudinger and J. Meyer, Helv. Chim. Acta 2, 619 (1919). 189. L. Birkofer and S. M. Kim, Chem. Ber. 91, 2100 (1964). 190. T. W. Rave and H. R. Hayes, / . Org. Chem. 31, 2894 (1966).
R E F E R E N C E S
191. 192. 193. 194. 195.
133
O. J. Scherer and G. Schieder, / . Organometal. Chem. 19, 315 (1969). R. K. Bunting and C. D. Schmulbach, Inorg. Chem. 5, 533 (1966). K. L. Paciorek, Inorg. Chem. 3, 96 (1964). R. H. Kratzer and K. L. Paciorek, / . Org. Chem. 32, 853 (1967). V. A. Gilyarov, R. V. Kudryavtsev, and M. I. Kabachnik, / . Gen. Chem. USSR 38, 351 (1968). 196. F. G. Mann, / . Chem. Soc., London p. 1209 (1940). 197. H. H. Wassermann and R. C. Koch, Chem. Ind. (London) p. 1014 (1956). 198. L. Horner and H. Hoffmann, Angew. Chem. 69, 478 (1956). 199. C. C. Walker and H. Shechter, / . Amer. Chem. Soc. 90, 5626 (1968). 200. E. Fluck and R. M. Reinisch, Z. Anorg. Allg. Chem. 328, 165 (1964). 201. M. Becke-Goehring, A. Debo, E. Fluck, and W. Goetze, Chem. Ber. 94,1383 (1961). 202. H. P. Latscha, W. Haubold, and M. Becke-Goehring, Z. Anorg. Allg. Chem. 339, 82 (1965). 203. O. J. Scherer and G. Schieder, Angew Chem., Int. Ed. Engl. 7, 75 (1968). 204. O. J. Scherer and P. Klusmann, Angew. Chem., Int. Ed. Engl. 7, 541 (1968); Z. Anorg. Allg. Chem. 370, 171 (1969). 205. O. J. Scherer and G. Schieder, Chem. Ber. 101, 4184 (1968). 206. E. S. Levchenko and Α. V. Kirsanov, Zh. Obshch. Khim. 29, 1813 (1959). 207. G. I. Derkach and M. V. Kolotilo, Zh. Obshch. Khim. 36, 1437 (1966). 208. E. Fluck and F. L. Goldmann, Z. Anorg. Allg. Chem. 356, 307 (1968). 208a. H. W. Roesky, Z. Anorg. Allg. Chem. 367, 151 (1969). 209. R. F. Hudson, R. J. G. Searle, and F. H. Devitt,/. Chem. Soc, Cp. 1001 (1966). 210. H. P. Latscha, Z. Anorg. Allg. Chem. 346, 166 (1966). 211. H. Ulrich, B. Tucker, and A. A. R. Sayigh, / . Org. Chem. 32, 1360 (1967). 212. J. M. Kanamueller and H. H. Sisler, Inorg. Chem. 6, 1765 (1967). 213. M. Becke-Goehring, K. Bayer, and T. Mann, Z. Anorg. Allg. Chem. 346, 143 (1966). 214. R. Appel, D. Hânssgen, and B. Ross, Z. Naturforsch. B 22, 1354 (1967). 215. A. Schmidpeter and J. Ebeling, Angew. Chem. 79, 100 (1967). 216. A. Schmidpeter and J. Ebeling, Angew. Chem. 79, 534 (1967). 217. A. Schmidpeter and J. Ebeling, Chem. Ber. 101, 2602 (1968). 218. A. Schmidpeter and N. Schindler, Z. Anorg. Allg. Chem. 362, 281 (1968). 219. A. Schmidpeter and R. Boehm, Z. Anorg. Allg. Chem. 362, 65 (1968). 220. A. Schmidpeter and J. Ebeling, Chem. Ber. 101, 3883 (1968). 221. A. Schmidpeter and J. Ebeling, Chem. Ber. 101, 815 (1968). 222. M. V. Kolotilo, / . G en. Chem. USSR 35, 1007 (1965). 223. M. C. Miller and R. A. Shaw, / . Chem. Soc, London p. 3233 (1963). 224. J. Emsley and P. B. Udy, / . Chem. Soc, A p. 768 (1971). 224a. J. M. Rees, Lighting Res. TechnoL 2, 257 (1970). 225. J. Emsley and P. B. Udy, / . Chem. Soc, A p. 3025 (1970). 226. G. Wunsch, R. Schiedermaier, V. Kiener, E. Fluck, and G. Heckmann, Chem. Z. 94, 832 (1970).