System Identification and Simulation of Chesapeake Bay and Delaware Bay Canal Hydraulic Behavior B.B. Hsieh Maryland Department of Natural Resources, Annapolis, M D 21.401, USA
ABSTRACT The Kalman f i l t e r combined w i t h one-dimensional s h a l l o w w a t e r wave e q u a t i o n i s q p p l i e d t o d e s c r i b e t h e t i d a l h y d r a u l i c behavi o r of t h e Chesapeake Bay and Delaware Bay c a n a l (C&D c a n a l ) . T h i s model j o i n s two s e p a r a t e e s t u a r i n e systems and one branched i n t h e Elk River a r e a . The f i e l d measurements from s u r f a c e w a t e r e l e v a t i o n s and t i d a l c u r r e n t s are used t o c a l i b r a t e t h i s s t o c h a s t i c - d e t e r m i n i s t i c model. The agreement between f i e l d o b s e r v a t i o n s and f i l t e r e d e s t i m a t e i s b e t t e r t h a n f i e l d and t h e p u r e l y numeric a l s o l u t i o n . The model performance i s e v a l u a t e d by t h e s t a t i s t i c a l methods. The c o n s i d e r a t i o n s f o r e x t e n d i n g t h e modeling proc e s s t o t h e s y s t e m n o i s e and t h e measurement n o i s e p r o v i d e much b e t t e r p r e d i c t i o n s and c a n be used t o s i m u l a t e t h e s p e c i a l f o r cing events. INTRODUCTION
The i n c r e a s e of s h i p p i n g a c t i v i t i e s through t h e waterway and t h e c o n c e r n of baywide r e s o u r c e s , r e v e a l e d t h e i m p o r t a n t i s s u e of t h e dynamic of t h e C&D c a n a l . P a r t i c u l a r l y , t h e c o r r e c t e s t i m a t i o n of t i d a l f l u x from t h i s i n t e r s y s t e m c o u l d a d d r e s s much more t r a n s p o r t b e h a v i o r of t h e d i s t r i b u t i o n of a contaminant o r a f i s h egg and l a r v a e , Hydrodynamic e q u a t i o n s have been s u c c e s s f u l l y used by many r e s e a r c h e r s ( G a r d n e r and P r i t c h a r d ( 1 9 7 4 ) ; H u n t e r ( 1975); R i v e s and P r i t c h a r d ( 1 9 7 8 ) , among o t h e r s ) f o r c o n s t r u c t i n g a d e t e r m i n i s t i c n u m e r i c a l s o l u t i o n of t h e C&D c a n a l . However, a s u b s t a n t i a l e r r o r c o u l d be produced by t h e p u r e l y s t o c h a s t i c met e o r o l o g i c a l f o r c i n g . This c o n t r a s t t o t h e p u r e l y s t o c h a s t i c model i s i n c a p a b l e of p r o v i d i n g p r e d i c t i o n s o v e r t h e s p a t i a l l y v a r y i n g d i s t r i b u t i o n of l o n g wave p r o p a g a t i o n . B u d g e l l ( 198 1 ) developed a s t o c h a s t i c - d e t e r m i n i s t i c model f o r a p p l y i n g t o t h e G r e a t Bay e s t u a r y . T h i s t y p e of approach c o n s i d e r s t h e s y s t e m n o i s e , such a s t h e s p e c i f i e d c r o s s - s e c t i o n a l a r e a , flow f i e l d , boundary c o n d i t i o n s , and t h e measurement n o i s e i s m a i n l y caused by i n s t r u m e n t s e n s i t i v i t y . B u d g e l l ( 1982) i n d i c a t e d w i t h o u t C O K -
313
314 r e c t i o n s , t h i s modeling e r r o r c o u l d be propagated through time and s p a c e by t h e d e t e r m i n i s t i c model. A means of computing t h e o p t i m a l c o r r e c t i o n t o be a p p l i e d t o t h e computed y a l u e s a t e a c h time s t e p i s t h r o u g h t h e use of t h e Kalman F i l t e r . I n t h i s p a p e r , t h e s t o c h a s t i c f i l t e r d e r i v e d from t h e Kalman f i l t e r i s c o n s t r u c t e d around t h e one-dimensional e q u a t i o n s gov e r n i n g motion i n An open c h a n n e l . The boundary c o n d i t i o n s a r e u s i n g t h e s u r f a c e w a t e r e l e v a t i o n a t Reedy P o i n t a t i t s e a s t e r n end and a t Old Town P o i n t a s i t s w e s t e r n e n d . One t i d a l measurement s t a t i o n a t Chesapeake C i t y and t h e c u r r e n t m e t e r s a t Summit Bridge are used f o r model c a l i b r a t i o n and f i l t e r e d estimate c a l c u l a t i o n . The a p p l i c a t i o n of t h i s model c a n be extended t o d e s i g n f u t u r e m o n i t o r i n g programs and t o s i m u l a t e t h e s t o r m e v e n t which may c a u s e abnormal t i d a l f l u c t u a t i o n s . MODEL DESCRIPTION
The one-dimensional hydrodynamic e q u a t i o n s ( t h e c o n t i n u i t y equat i o n and momentum e q u a t i o n ) combined w i t h a s e t of e q u a t i o n s def i n i n g flow c o n d i t i o n s a t j u n c t i o n s and b o u n d a r i e s c o n s t i t u t e the d e t e r m i n i s t i c component of t h e model. The m a t r i x form may be e x p r e s s e d a s A(n,n+l) X(n+l)
=
B(n,n+l)X(n) + G(n,n+l) U(n+l)
(1)
where A ( n , n + l ) and B ( n , n + l ) a r e 2Nx2N c o e f f i c i e n t s m a t r i c e s which depend on t h e schemes and N g r i d p o i n t s . T X (n+l) =(ul,Vl, u ,qn) 2NxI v e l o c i t y and s u r f a c e e l e v a t i o n v e c t g r s a t time l e v e l ( n + l ) .
...,
X(n)
=2NxI v e l o c i t y and s u r f a c e e l e v a t i o n v e c t o r a t t i m e l e v e l n.
U(n+ I )
= v e c t o r c o n t a i n i n g boundary c o n d i t i o n s a t t i m e level (n+l).
G ( n , n + l ) = Nxr m a t r i x which s p e c i f i e s which e q u a t i o n s a r e r boundary c o n d i t i o n s . E q u a t i o n ( I ) can be e x p r e s s e d i n an a l t e r n a t i v e form u s i n g t h e i n v e r s e of A(n , n + 1 ) . X ( n + l ) = g ( n , n + l i X(n) + G * ( n , n + l ) U ( n + l )
(2)
where & & n , n + l ) = A I : ( n , n + l ) B ( n , n + l ) G (n,n+l)= A (n,n+l) G(n,n+l) J a w i n s k i ( 1970) developed t h e a l g o r i t h m of t h e d i s c r e t e system f o r computing an o p t i m a l f i l t e r based on o b s e r v a t i o n s . The p r e d i c t i o n s t e p c o n s i s t s of X ( n + l / n ) = s ( n , i l + l ) X(n/n) P ( n + l / n ) = p ( n , n + ~ )P ( n / n )
+ G*(n,n+l) U ( n + l ) T
5
(n,n+l) +Tq(n+l)fkT
(3)
(4)
The measurement u p d a t e s t e p c o n s i s t of X(n+l/n+l) = X(n+l/n)
+ K(n+l)(Z(n+l)-
H X(n+l/n))
(5)
315 P(n+l/n+l) = P(n+l/n)
-
(6)
K(n+l) H P ( n + l / n )
where E : ( n + l ) Q(n+ I )
= t h e Kalman Gain =system n o i s e c o v a r i a n c e = t r a n s i t i o n m a t r i x of t h e system n o i s e R(n+ I ) =measurement n o i s e c o v a r i a n c e Z(n+ 1) =observations H =measurement t r a n s i t i o n m a t r i x X ( n + l / n ) =one-step ahead p r e d i c t i o n v e c t o r P ( n + l / n ) = t h e e r r o r c o v a r i a n c e of X ( n + l / n ) X ( n + l / n + l ) = t h e f i l t e r e d e s t i m a t e of X ( n + l ) P ( n + l / n + l ) = t h e e r r o r c o v a r i a n c e of X ( n + l / n + l )
T
EQUATIONS
FIELD HEASURE.
_INITIAL _ _ _C.lloUNDARYc.
-
P
ONE-STEP AHEAD
NLMERICAL
ONE-STEP AHEAD PREDICTION ERROR
APPRROXIPY\TlON . L PREDICTION
T
1
NOH-LIN TERY ITERATION
C-
FILTERED __*
ESTIIKhTE
4
HEASURE.
-INITIAL - - -'.-
'
'"
REDICTION C
ERROR COVARIASCE
1
1 , KAUIAN GAIN
c
nEASUREHENT NOISE ESTI~MATION
I
SYSTEX
XOISE
COY.
F i g u r e I . Block diagram f o r a s t o c h a s t i c - d e t e r m i n i s t i c model. The C&D CANAL STUDY I n o r d e r t o c a l c u l a t e t h e t i d a l e l e v a t i o n and c u r r e n t v e l o c i t y from t h e hydrodynamic e q u a t i o n s , t h i s s y s t e m i s d i v i d e d i n t o a number of r i v e r r e a c h over a branched e s t u a r i n e waterway. ( F i g u r e 2 ) The upper p o r t i o n of t h e E l k River i s c o n s i d e r e d as the extending t i d a l behavior a r e a . A f t e r t h e cubic s p l i n e i n t e r p o l a t i o n p r o c e s s and t h e e s t i m a t i o n of c u r r e n t v e l o c i t y from 6 mooring
316 meters a t t h r e e !.evels, a d a t a s e t w i t h 3 t i d a l h e i g h t s , one f r e s h w a t e r i n f l o w and c r o s s - s e c t i o n a l mean v e l o c i t y i s c r e a t e d . T h i s d a t a f i l e c o v e r s t h e p e r i o d of June 14, 1984 t o J u l y 5 , 1984 with half-hourly b a s i s . Four p o i n t s i m p l i c i t f i n i t e - d i f f e r e n c e scheme w i t h w e i g h t i n g f a c t o r e q u a l t o 0 . 5 5 i s used t o s o l v e t h e m a t r i x system. Twenty p a i r s of c o n t i n u i t y e q u a t i o n s a n d momentum e q u a t i o n s p l u s t h r e e boundary c o n d i t i o n s and t h r e e j u n c t i o n e q u a t i o n s form a 46x46 m a t r i x s y s t e m . The i n s t a b i l i t y f o r i n v e r s e t h i s m a t r i x is u s u a l l y o b t a i n e d due t o band w i d t h of m a t r i x i s produced. The t e c h n i q u e f o r decomposing a m a t r i x i n t o upper t r i a n g l e and lower t r i a n g l e c a n avoid d i r e c t i n v e r s e c o m p u t a t i o n . The n o n - l i n e a r i t y of t h e momentum e q u a t i o n i s s o l v e d by t h e Newton-Raphson method. (Mickle and S z e , 1972)
J
F i g u r e 2 . The C&D Canal E s t u a r i n e System
i
SYSTEM PARAMETERS The s p e c i f i c a t i o n s of t h e model s t r u c t u r e a r e i m p o r t a n t paramet e r s t o be i d e n t i f i e d b e f o r e t h e model i s r u n . system noise covariance I n o r d e r t o o b t a i n t h e independent s y s t e m n o i s e c o v a r i a n c e
t h e d a t a s e t i s d i v i d e d i n t o two d a t a f i l e s . F i r s t s e t ( l 0 t i d a l c y c l e s ) i s used t o g e n e r a t e t h e s y s t e m n o i s e c o v a r i ance w h i l e t h e second s e t i s used t o c a l i b r a t e t h e model. The ARIMA p r o c e s s i s used t o g e n e r a t e t h e white n o i s e from t h e f i e l d d a t a f o r both v a r i a b l e s . I t i s assumed t h a t t h e system n o i s e c o v a r i a n c e f o r c u r r e n t v e l o c i t y remains t h e s a m i n a l l g r i d systems The system n o i s e c o v a r i a n c e f o r t i d a l h e i g h t s w i l l remain t h e c o n s t a n t f o r some c e r t a i n g r i d p o i n t s only. 2 2 = 0.0038 m =O.OOll m Q7- 14 1-6
317 '15-23
=0.0036 m
2
2
= 0.0028 m / s e c
Q
( 2 ) measurement n ise c o v a r i a n c e 9 R R= 0.000225 m
U
=
2
2 2 0.0001 m / s e c
( 3 ) f r i c t i o n f a c t o r ( i n i t i a l ) = O . 020 ( 4 ) i n i t i a l e r r o r covariance P(n/n
(5) i n i t i a l conditions MODEL CALIBRATION AND EVALUATION
The s t o c h a s t i c component of t h e model c a n n o t be i n t r o d u c e d u n t i l t h e d e t e r m i n i s t i c component a l o n g w i t h f r i c t i o n f a c t o r a r e d e t e r m i n e d . It is more p r a c t i c a l t o use s e v e r a l t i d a l c y c l e s (35 ) d a t a f o r c a l i b r a t i n g t h e f r i c t i o n f a c t o r i n s t e a d of u s i n g t h e e n t i r e f i l e t o d o t h i s a d j u s t m e n t . The b e s t s o l u t i o n of f r i c t i o n f a c t o r i s 0.021. The c r i t e r i o n o f t h i s c a l i b r a t i o n i s t o s e l e c t t h e minimum sum of s q u a r e e r r o r between t h e o b s e r v a t i o n s and model computed v a l u e s . The f i l t e r e d e s t i m a t e of s u r f a c e e l e v a t i o n s and c u r r e n t v e l o c i t i e s a r e c a l c u l a t e d by t h e f i l t e r i n g p r o c e s s . The comparison from hour 200 t o 245 between t h e observed v a l u e s and f i l t e r e d p r e d i c t i o n a r e shown by F i g u r e 3 ( a ) and 3 ( b ) . The improvementsare made by t h i s c a l c u l a t i o n . The more s i g n i f i c a n t a d v a n t a g e s of t h e f i l tered estimate f o r current v e l o c i t i e s is attributed t o the noisy s y s t e m of t h e v e l o c i t y v a r i a b l e s . An even b e t t e r performance c o u l d be made i f t h e d a t a s e t i s s e l e c t e d by t h e w i n t e r month.
- _ _f i l t e r e d
1.lj
::jLo ------
-1.1
F i g u r e 3 ( a ) Half-Hourly T i d a l Heights (meters)
F i g u r e 3 ( b ) Half-Hourly C u r r e n t V e l o c i t y (m/sec)
The performance of t h e model is e v a l u a t e d by t h e s t a t i s t i c a l methods. The harmonic a n a l y s i s i s used t o examine t h e c o n s i s t e n c y of t i d a l c o n s t i t u t e s between f i e l d measurements and t h e numeric a l s o l u t i o n . The amplitude and phase a n g l e f o r major components of d i u r n a l and s e m i - d i u r n a l f r e q u e n c y bands are c a l c u l a t e d . It i s found t h a t t h e dominant components, such a s M2, S 2 , and N 2 , d o n o t v a r y t o o much (5-10 p e r c e n t ) . The F - t e s t is used t o s e a r c h how t h e s t o c h a s t i c - d e t e r m i n i s t i c approach i s s u p e r i o r t o p u r e l y numeri-
318 c a l s o l u t i o n . Both t i d a l e l e v a t i o n s ( a t Chesapeake C i t y ) and t i d a l c u r r e n t s c a t Summit B r i d g e ) show t h e i r s i g n i f i c a n c e a t 0.01 l e v e l . (Table 1) STATION CHESAPEAKE CITY
SUMMIT BRIDGE
DEGREE OF FREEDOM
58 5 58
STO-DETER MODEL
NUMERICAL MODEL
F-VALUES
0.01589
0.06938
4.36
**
0.004 19
0.000938
2.24
**
Table 1. E s t i m a t e d model p r e d i c t i o n e r r o r c o v a r i a n c e . CONCLUSIONS The one-dimensional hydrodynamic e q u a t i o n s combined w i t h t h e Kalman f i l t e r i s used t o mode1iAg t h e t i d a l h y d r a u l i c b e h a v i o r of t h e C&D c a n a l . The f i l t e r e d e s t i m a t e from t h e computation a l g o r i t h m s f o r t h e s o l u t i o n i s b e t t e r t h a n t h e n u m e r i c a l approx i m a t i o n o n l y . The e x t e n s i o n work involved more sampling s t a t i o n s f o r b o t h s u r f a c e w a t e r e l e v a t i o n s and c u r r e n t v e l o c i t i e s an? c a n i d e n t i f y a b e t t e r p i c t u r e of t h e C&D c a n a l waterway. REFERENCES 1. Budgell W.P.
( 198 I ) , A S t o c h a s t i c - D e t e r m i n i s t i c Model f o r E s t i m a t i n g T i d e s i n Branched E s t u a r i e s , Manuscript Report S e r i e s No. 10. Ocean Science and Surveys C e n t r a l Region, Canada Centre f o r I n l a n d W a t e r s , B u r l i n g t o n , O n t a r i o .
2 . Budgell W . P. ( 1 9 8 2 ) , A Dynamic-Stochastic Approach f o r Modeling Advection-Dispersion P r o c e s s e s i n Open Channel. I n : Time S e r i e s Methods i n H y d r o s c i e n c e s , (Ed. El-Shaarwi and E s b e r t y ) , E l s e v i e r S c i e n t i f i c P u b l i s h i n g Company, Amsterdam, N e t h e r l a n d s , pp. 244-263.
3 . Gardner G . B . and P r i t c h a r d (19741, V e r i f i c a t i o n and Use of a Numerical Model. of t h e C&D c a n a l , C B I , T e c h n i c a l Report 87., Ref 74-7. 4 . H u n t e r , J . R . ( 1 9 7 5 1 , A One-Dimnsional Dynamic and Kinematic Numerical Model S u i t a b l e f o r C a n a l s and E s t u a r i e s , C B I , S p e c i a l Report 4 7 , Ref. 75-10. 5 . Mickle M. H . and Sze T . W . (19721, O p t i m i z a t i o n i n Systems Engineering, I n t e x t Educational Publishers, Scranton, Pennsylvania. 6 . R i v e s , S . K . and P r i t c h a r d D . W . (19781, A d a p t a t i o n of J . R . H u n t e r s ' One-Dimensional Model t o t h e C&D Canal System, C B I , S p e c i a l Report 6 6 , Ref 78-6.