A p p e n d i x : Tables of F>actional D e r i v a t i v e s The short tables below contains Riemann-Liouville fractional derivatives of some flmctions which are fl'equently used in applications. In most cases, the order of differentiation, c~, may be any real number, so replacing it with - a gives the Riemann Liouville fractional integrals. The tables can also be used tbr evaluating the Griinwald Letnikov fractional derivatives, the Caputo fractional dcrivatives, and the MillerRoss sequential fl'actional derivatives as well. In such cases, a, should be taken between 0 and 1, and the Riemann Liouville fractional deriwative should be properly combined with integer- or fractional-order derivatives, in accordance with the considered definition.
1. R i e m a n n - L i o u v i l l e fractional derivatives with the lower terminal at 0
f(t)
oD~*f(t),
(t > O,
a e R)
~mOt
H ( t - a)
H(t - a)f(t)
( t - a) -~
C(1- a)' O,
{ aDp:f(t), O,
(t > o,) (0 < t < a)
(t > a)
(0 < t <
a)
309
310
TABLES OF FRACTIONAL
Illll/Illlllllllllllllll
DERIVATIVES
Illlllllll
f(t)
oD~. f ( t ) ,
(t > O,
ee E R)
t-a-1
a(t)
r(-~) [;--ct--n.-- 1
a(',)(~)
p ( - ~ ± r,,)
('~ ~ N)
(t - a) - n - ~ - I
a(~') (t - ~)
r ( - ~ - ~)
t~
(t > ~)
'
0,
(~ ~ N)
(0 < t < a)
F ( u + 1)
t.+e ~
(u > - 1 )
r ( . + i - ,~)'
e ~t
t-~El,i_~(kt)
co~h(v%)
t-~E2,~_~ (~t 2)
sinh(vFAt)
.t>,~E2 2_~(At 2)
x/~t
in(t)
P(1 - ,~)
+
-
t ~ - i In(t)
r(~)t;'-~-~ r--(a=U (in(t)+ ¢,(:~)- ~(~- ~))
-
(n~.(f~) > o)
(;3>0,
t ~3-a-1E p,,3--a~IAt**~ " ) t
2tq (#, u; fl; At)
r(~
- o:)
2Fi(#,
#>0)
~': fl - a;
(n¢(9) > o) P.y,°(2t-
1)
m ! t -'~ 0,-a p ( m 7- c7-+ 1)~** ( 2 t - 1 ) , (0 < c~ < 1,
0
m=1~2,...
311
T A B L E S OF F R A C T I O N A L D E R I V A T I V E S
2. Riemann-Liouville with
the
lower III
IIIIIIIII
~t(t - a)
terminal
IIIIIIIIl!lll!lll
IIIII
III I
III
I
IIIIIIIIIIIIIIIIIIII
{
derivatives
at -oo
_.~,Dpf(t),
f(t) IIIIIIIIII
fractional
(t > O,
a6R) I
I lUlIIIIIIIIIIIIII
(t-~)-" r(1 - ~)' o,
IIIIIIIIIIIIIIIIII
(t>a) (t < a)
H ( t - a)f(t)
{ ~DTf(t), (t>a)
eat
ArseAt
0,
IIIIIIIIIIIIIIIIIII
(t _< a)
(a > o) (;,At+t*
/~* eAt+/a
(A > o)
sin At
A~sin (At+ gff)
(A>O, a > - l ) cos At
Ac~cos (At + g2q) (A>0,
e At sin #t
rC~e;~t sin (#t + aW)
(,,.=,/~+#2, e At cos #t
0:>-1)
t.a.~=~,
~>o. #>o)
<~e xt cos (#t + a~) (r = ~ / - 2 7 7 1t,2,
tail V) = t~ ,
A>O, # > 0 )