Journal Pre-proof Taxonomic revision and palaeobiogeographic affinities of Berriasian–Valanginian oysters from the Vaca Muerta and Mulichinco formations, southern Mendoza, Neuquén Basin, Argentina Agustina G. Toscano, Darío G. Lazo PII:
S0195-6671(19)30447-1
DOI:
https://doi.org/10.1016/j.cretres.2019.104358
Reference:
YCRES 104358
To appear in:
Cretaceous Research
Received Date: 19 October 2019 Revised Date:
9 December 2019
Accepted Date: 14 December 2019
Please cite this article as: Toscano, A.G., Lazo,, D.G., Taxonomic revision and palaeobiogeographic affinities of Berriasian–Valanginian oysters from the Vaca Muerta and Mulichinco formations, southern Mendoza, Neuquén Basin, Argentina, Cretaceous Research, https://doi.org/10.1016/ j.cretres.2019.104358. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier Ltd. All rights reserved.
1
Taxonomic revision and palaeobiogeographic affinities of Berriasian–Valanginian oysters from the Vaca
2
Muerta and Mulichinco formations, southern Mendoza, Neuquén Basin, Argentina
3
Agustina G. Toscanoa and Darío G. Lazoa
4
5
a
: Instituto de Estudios Andinos Don Pablo Groeber (IDEAN), Universidad de Buenos Aires, Facultad de Ciencias
6
Exactas y Naturales, Departamento de Ciencias Geológicas, CONICET, Pabellón 2 Ciudad Universitaria,
7
C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina. Email:
[email protected] (corresponding
8
author);
[email protected].
9
10
Abstract
11
12
Oysters are very abundant in marine Jurassic–Cretaceous deposits across the world, which has led to multiple
13
taxonomic studies since the nineteenth century. In contrast, South American Jurassic–Cretaceous oysters have
14
been largely neglected in the literature. Here, focus is on Berriasian–Valanginian oysters from previously
15
undocumented benthic faunas of southern Mendoza (Neuquén Basin, Argentina). Four species belonging to
16
three genera of the Family Gryphaeidae, Subfamily Exogirinae are described, including their shell
17
microstructure characterization, and their taxonomic status is discussed. Of the studied genera, Aetostreon
18
and Ceratostreon have been widely recorded in the Neuquén Basin previously, whereas the genus Nanogyra is
19
recorded for the first time in Argentina. Aetostreon is represented by A. subsinuatum and A. latissimum, and
20
Ceratostreon and Nanogyra by C. hilli and N. (N.) brevisulcata n. sp. The oldest worldwide records of A.
21
subsinuatum (Berriasian) and C. hilli (Valanginian) are documented here. The paleobiogeographic distribution
22
of these species suggests a Tethyan distribution for A. subsinuatum and A. latissimum and a Trans-Temperate-
23
Pacific distribution for C. hilli, while N. (N.) brevisulcata is endemic to the basin. The three genera appear as
24
isolated records and different types of oyster mass occurrences (OMOs), classified according to its lateral
25
extension, geometry, maximum thickness, and stratigraphic relevance. The different hierarchy of the OMOs
26
could possibly represent different scales of palaeoenvironmental and/or stratigraphic changes, from basin-
27
wide to local level, and could provide tools to identify variations in palaeoenvironmental parameters such as
28
sedimentation rate, siliciclastic and nutrient input and/or salinity variations.
29
Keywords: Early Cretaceous; Bivalvia; Ostreoidea; Aetostreon; Ceratostreon; Nanogyra
30
1. Introduction
31 32
Oysters are a major component of fossil assemblages of marine Mesozoic deposits, usually occurring as highly
33
abundant monotypic associations with potential value in sedimentology, palaeoecology and stratigraphy
34
(Flatt, 1976; Seilacher et al., 1985; Andrews and Walton, 1990; Dhondt and Dieni, 1988). This has elicited many
35
taxonomic studies that date from as early as the eighteen century (Bourguet, 1742), primarily concerning
36
European species (Defrance, 1821; Sowerby, 1822; Goldfuss, 1834; Leymerie, 1842; Coquand, 1869; Bayle,
37
1878; among many other classic works) and, to a lesser degree, Asiatic, African and North American ones (Nyst
38
and Galeotti, 1840; Roemer, 1852; Cragin, 1893; Renngarten, 1926; Nagao, 1934; Stanton, 1947; Alencáster de
39
la Cserna, 1956; Prozorovskii et al., 1961; Bogdanova, 1980; Malchus, 1990; Aqrabawi, 1993; Cooper, 1995;
40
Scott, 2007; Kiessling et al., 2011). Due to their long taxonomic history, oysters have a complicated
41
nomenclatural record, resulting in numerous synonyms, poorly preserved types and many arbitrary taxonomic
42
conclusions (Stenzel, 1971). Given this scenario, taxonomic revisions are critical as a first step for further
43
research, including palaeoecological and paleoenvironmental studies. This is especially important for the
44
Jurassic–Cretaceous periods of South America, where oysters are ubiquitous, yet taxonomic studies are scarce
45
in comparison with other bivalve groups (e.g., d’Orbigny, 1842; Behrendsen, 1891;Gerhardt, 1897; Dietrich,
46
1938; Cox, 1954; Gutiérrez Palma, 1972; Damborenea et al., 1979; Guzmán,1985; Aberhan, 1994; Casadío,
47
1998; Seeling and Bengston, 1999; Rubilar and Lazo, 2009).
48
Particularly, in the Jurassic–Cretaceous strata of the Neuquén Basin, oysters are abundant and persistent
49
throughout the sedimentary successions, either as soft-bottom recliners (Lazo, 2007), hard substrate
50
encrusters (Luci et al., 2019) or as laterally extensive oyster mass occurrences generated by the aggregation of
51
thousands of specimens (OMOs, Toscano et al., 2018). Several genera have been recorded from the
52
Tithonian–Hauterivian interval, i.e. Aetostreon Bayle, 1878; Ceratostreon Bayle, 1878; Deltoideum Rollier, 1917
53
and Liostrea Douvillé, 1904 (Weaver, 1931; Damborenea et al., 1979; Rubilar et al., 2000). Ambigostrea
54
Malchus, 1990; Amphidonte Fischer de Waldheim, 1829; Cubitostrea Sacco, 1897; Gyrostrea Mirkamalov,
55
1963; Pycnodonte Fischer de Waldheim, 1835 and Turkostrea Vialov, 1936, have been recorded in the
56
Maastrichtian (Casadío, 1998; Griffin et al., 2005; Aguirre-Urreta et al., 2011).
57
Here, focus is on a largely ignored oyster fauna occurring towards the top of the Vaca Muerta Formation and
58
in the basal half of the overlying Mulichinco Formation, in the southern region of Mendoza Province,
59
Argentina (Sierra de la Cara Cura and Puesto Sierra de Reyes localities, Fig. 1). The area was first studied by
60
Groeber (1933), who worked in the region between 1914 and 1922 (Lazo et al., 2017a), noticed significant
61
“oyster banks” and identified them as belonging to the genus ‘Exogyra’ (Groeber, 1933). However, no further
62
taxonomic or stratigraphic studies were carried out in the area.
63
The studied localities are characterized by the recurrent presence of oyster mass occurrences (OMOs)
64
throughout the sedimentary column, which are characterized by their near monospecific composition and
65
remarkable oyster abundance, along with a continuous record of ammonoids. Therefore, the objectives of this
66
contribution are as follows: (1) to provide a thorough taxonomic revision, including both morphological and
67
shell microstructural descriptions of the oysters forming these OMOs, (2) to date the studied oyster taxa, using
68
the associated ammonoid fauna and local and standard ammonoid zonations, and 3) analyze the
69
palaeobiogeographic distribution of the studied oyster taxa.
70 71 72
2. Geological setting and mode of occurrence
73
The Neuquén Basin is situated at the Andes foothill of west-central Argentina, extending between 32° and
74
40°S. It encompasses a near continuous Upper Triassic to lower Paleogene sedimentary record consisting
75
mainly of marine and continental siliciclastic deposits, carbonates, and evaporites (Howell et al., 2005). The
76
Mendoza Group of Kimmeridgian to late Hauterivian age, represents primarily marine deposits that attain a
77
thickness of up to 3000 m of sedimentary rocks (Aguirre-Urreta and Rawson, 1997). This group comprises in
78
ascending order the Tordillo, Vaca Muerta, Mulichinco and Agrio formations and their lateral equivalents. The
79
Tordillo Formation is not considered here since it corresponds to continental deposits.
80
Particularly, the Vaca Muerta Formation, originally described by Weaver (1931), is a thick marine unit of early
81
Tithonian to early Valanginian age according to a well-established ammonoid zonation (Aguirre-Urreta et al.,
82
2007). It consists mainly of bituminous black shales and thin marlstones, on which its importance as oil source
83
rock is based (Leanza et al., 2011). This unit has been interpreted as a marine carbonate ramp deposited under
84
overall-quiet water conditions, with occasional turbidite and tempestite intercalations (Spalletti et al., 2008).
85
Its macrofossil record consists chiefly of ammonites and marine reptiles (Fernández and De la Fuente, 1988;
86
Aguirre-Urreta and Rawson, 1999; among others). The topmost part of the unit is regarded as representing a
87
slightly shallower environment, between a distal mid-ramp to proximal outer ramp setting, influenced by
88
storms (Spalletti et al. 2000; Kietzmann et al., 2008). There, the molluscan fauna becomes more diverse in
89
contrast to the typical monotonous ammonite fauna of older strata (Doyle et al., 2005; Leanza et al., 2006;
90
Kietzmann and Palma, 2009; Luci and Lazo, 2012).
91
The Mulichinco Formation overlies the Vaca Muerta Formation. It too was also originally described by Weaver
92
(1931) and represents a low frequency lowstand wedge of early to late Valanginian age according to a well-
93
established ammonoid zonation (Aguirre-Urreta et al., 2007). This unit is very variable both laterally and
94
vertically, consisting mainly of sandstones and secondarily of shales and siltstones, which have been
95
interpreted as deposits of fluvial braidplains to outer-shelf settings (Schwarz and Howell, 2005). Its fossil
96
record consists of a diverse invertebrate macrofauna (Aguirre Urreta et al., 2011) and both marine and
97
continental vertebrates (Lazo and Cichowolski, 2003; Coria et al., 2010).
98
The boundary between the Mulichinco and Vaca Muerta formations is given by the Intra-Valanginian
99
Discontinuity, which is expressed either as an abrupt change in lithology, with coarse fluvial facies overlying
100
offshore marine deposits, or as a firmground with Glossifungites ichnofacies, both result of the erosional event
101
that took place when the sea level fell and subsequently rose again (Schwarz et al., 2011; Schwarz and Buatois,
102
2012; Figs. 2-3). However, this unconformity is not always identifiable and in some areas of the basin the
103
contact between these units is transitional.
104
In the Sierra de la Cara Cura and Puesto Sierra de Reyes localities (Fig. 1), the studied outcrops correspond to
105
the top of the Vaca Muerta Formation and the basal half of the Mulichinco Formation. Here, the Vaca Muerta
106
Formation is represented by marlstones intercalated with mudstones, wackestones and floatstones. The
107
Mulichinco Formation is represented mainly by dark green shales intercalated with siltstones and at the top by
108
thick floatstones (Figs. 3-4). The dark green shales correspond to the lower member of the Mulichinco
109
Formation, whereas the thick floatstones correspond to its middle member, which is laterally equivalent to
110
the upper member of the Chachao Formation, a unit that outcrops towards the central region of the Mendoza
111
province in the Malargüe Anticline area (Legarreta and Kozlowski, 1981; Schwarz et al., 2013, Figs. 2-4). The
112
boundary between both units is clearly visible by the presence of a laterally extensive firmground with
113
Glossifungites ichnofacies that is interpreted as the Intra-Valanginian Discontinuity (Fig. 3-4). Besides oysters,
114
the macrofauna is composed of gastropods, infaunal and epibyssate bivalves, serpulids, corals, echinoids, and
115
brachiopods (Lazo et al., 2017b).
116
The studied oyster taxa are associated with massive to parallel laminated marlstones forming tabular
117
floatstones of variable packing density of shells, from dispersed to loosely-packed, and variable in thickness
118
(0.2 to 2 m). A distal mid to proximal outer ramp setting is interpreted based on lithology, sedimentary
119
structures and taphonomic signatures (Kietzmann et al. 2008, 2014; Schwarz et al. 2011; Schwarz and Buatois,
120
2012). These oyster-dominated palaeocommunities correspond to the vertical accretion of thin
121
autoparabiostromes and autobiostromes, sensu Kershaw (1994), showing some degree of reworking by distal
122
storm flows and bioturbation. Oysters dominate in abundance over other macrobenthic elements, which are
123
found isolated, including serpulids (Rotularia sp., Filograna sp.), trigoniids (Virgotrigonia sp.), pectinids,
124
ramose corals and echinoids (Pygurus sp.).
125
3. Material and Methods
126 127 128
This paper is based on 1451 specimens collected bed-by-bed from the Vaca Muerta and Mulichinco formations
129
at Sierra de la Cara Cura and Puesto Sierra de Reyes localities, Neuquén Basin (Fig. 1). All specimens are
130
housed in the Palaeoinvertebrate Collection (MCNAM-PI) of the Museo de Ciencias Naturales y Antropológicas
131
“Juan Cornelio Moyano”, Mendoza city, Argentina. Each catalogue number refers to a sample of specimens
132
from a given stratigraphic position and locality. Suffix numbers indicate the number of a given specimen within
133
that catalogue number.
134
For taxonomic identification, comprehensive comparisons with similar species were carried out, including both
135
relevant literature as well as digitized material available online. The systematic classification of major groups
136
and ligament area classification follow Malchus (1990). The terminology referring to the paradontal apparatus
137
of the hinge follows Cooper (1995). The terminology of the shell microstructure was adopted from Carter et al.
138
(2012). Measurements were made with a 0,01 mm precision digital caliper. Height (H) and length (L) of the
139
shells were measured and the relation between them (H/L) was calculated to further characterize each
140
species. Mean and standard deviation are informed. Local and standard ammonoid zonations and ages refers
141
to Aguirre-Urreta et al. (2007) and Reboulet et al. (2014).
142
As stated above, taxonomic studies of fossil oysters present many difficulties due to their great morphological
143
plasticity that initially led to a trend of nominating new species for every slightly different morphology
144
described (see e.g. Leymerie, 1840), which eventually generated multiple synonymies (Stenzel, 1971).
145
Subsequently, many morphologies were unified under one taxon (Dhondt and Dieni,1988), leading to many
146
wastebasket taxa. Therefore, in order to avoid further confusion regarding this already complicated scenario,
147
a conservative taxonomic approach is advisable along with detailed bed-by-bed collection of a reasonable
148
number of specimens.
149
4. Systematic Palaeontology
150 151 152
Class Bivalvia Linnaeus, 1758
153
Subclass Pteriomorphia Beurlen, 1944
154
Order Ostreida Férussac, 1822
155
Superfamily Ostreoidea Rafinesque, 1815
156
Family Gryphaeidae Vialov, 1936
157
Subfamily Exogyrinae Vialov, 1936
158
Tribe Nanogyrini Malchus, 1990
159
Genus Aetostreon Bayle, 1878
160 161
Type species: Gryphaea latissima Lamarck, 1801, p. 399; figured by Bourguet, 1742, pl. 14, figs. 84, 85 (by
162
subsequent designation of Douvillé, 1879).
163 164
Diagnosis (modified from Stenzel, 1971 and Cooper, 1995): shell medium-sized to large, thick-shelled,
165
inequivalve. Opysthogyrate umbo, ligament area varies between gyrostreoid and exogyroid. Left valve convex,
166
deep; right valve flat or slightly concave. Left valve with a pronounced keel in the posterior third, which may
167
be rounded or acute, surmounted by knobs. A shallow groove running parallel to the keel separates a slightly
168
more convex posterior flange. No ornamentation except for growth lines or occasionally radial wrinkles, no
169
chomata. Paradontal apparatus well developed.
170 171
172
Remarks: The genus Aetostreon was first introduced by Bayle in 1878 and although it was placed as a
173
subgenus in Exogyra Say, 1820 by Pervinquière (1912), this was later dismissed by Stenzel (1971), who
174
differentiated Aetostreon as a separate genus because of the lack of radial ribs and chomata, present in
175
Exogyra (Pugaczewska, 1975).
176 177
Aetostreon latissimum (Lamarck, 1801)
178
Fig. 5
179 180
1801 Gryphaea latissima n. sp.; Lamarck, p. 399, figured by Bourguet, 1742, pl. 14, figs. 84, 85.
181 182
1819 Gryphaea latissima Lamarck, 1801; Lamarck, p. 199.
183 184
1821 Gryphaea couloni n. sp.; Defrance, p. 534.
185 186
1822 Gryphaea sinuata n. sp.; Sowerby, p. 43, pl. 336.
187 188
1822 Gryphaea aquila n. sp.; Brongniart, p. 96 and 399, pl. 9, fig. 11.
189 190
1834 Exogyra aquila (Brongniart, 1822); Goldfuss, p.36, pl. 87, fig. 3.
191 192
pars 1840 Exogyra sinuata (Sowerby, 1822); Leymerie, p. 121-126; sinuata n.var., Leymerie, p. 124; latissima,
193
n.var., Leymerie, p. 124; elongata n.var., Leymerie, p. 124. Non subsinuata n.var., Leymerie, p. 124; dorsata,
194
n.var., Leymerie, p. 124; falciformis n.var., Leymerie, p. 124; aquilina, n.var., Leymerie, p. 124.
195 196
1841 Exogyra sinuata (Sowerby, 1822); Roemer, p. 47.
197 198
1842 Exogyra sinuata (Sowerby, 1822); Leymerie, p.16, 17, pl. 12, figs. 1, 2.
199 200
pars 1847 Ostrea aquila (Brongniart, 1822); d’Orbigny, p. 706, pl. 470, figs. 3, 4; non figs. 1, 2.
201 202
1853 Ostrea aquila (Brongniart, 1822); Pictet and Roux, p. 520, p. 48, figs. 1, 2.
203 204
1869 Ostrea aquila (Brongniart, 1822); Coquand, p.180, pl. 65, figs. 4-9.
205 206
pars 1869 Ostrea couloni (Defrance, 1821); Coquand, p. 180, pl. 75, figs. 4-6, non figs. 1-3, 22.
207 208
pars 1871 Ostrea couloni (Defrance, 1821); Pictet and Campiche, p. 287; pl. 187, figs. 1-3; pl. 188, fig. 1, non
209
fig. 2. Non pl. 192, fig. 1.
210 211
1878 Aetostreon latissimum (Lamarck, 1801); Bayle, pl. 139, figs, 1-3.
212 213
pars 1900 Exogyra couloni (Defrance, 1821); Burckhardt, p. 18, pl. 22, fig. 3. Non pl. 21, figs. 7,8.
214 215
pars 1910 Gryphaea latissima Lamarck, 1801; Pervinquière, p. 194c, figs. 194, 194a. Non fig. 194b.
216 217
pars 1913 Exogyra sinuata (Sowerby, 1822); Woods, p. 395, text-figs. 194-202, 204, 205. Non text-figs. 203,
218
206-214.
219 220 221
1924 Exogyra sinuata (Sowerby,1822); Newton, p. 144, pl. 6, figs. 1, 2.
222
non 1926 Exogyra latissima (Lamarck, 1801), forma typica; Renngarten, p. 60, pl. 3, fig. 6; pl. 4, fig. 1.
223 224
1931 Exogyra couloni (Defrance, 1821), var. leufensis n. var; Weaver, p. 228, pl. 19, figs. 93, a, b.
225 226
1931 Exogyra couloni (Defrance, 1821); Weaver, p. 229, pl. 19, figs. 88-91.
227 228
1933 Exogyra cf. couloni (Defrance, 1821); Groeber, p. 19-20.
229 230
1948 Exogyra latissima (Lamarck, 1801); Tavani, p. 109, pl. 6, figs. 1, 2, 7; pl. 7, figs. 6, 10; pl. 8, fig. 3.
231 232
1954 Exogyra latissima (Lamarck, 1801); Cox, p. 629.
233 234
1961 Exogyra latissima (Lamarck, 1801); Prozorovskii et al., p. 126, pl. 12, fig. 1; pl. 13, fig. 3.
235 236
1971 Aetostreon latissimum (Lamarck, 1801); Stenzel, p. N117, fig. J92.1.
237 238
1972 Exogyra latissima (Lamarck, 1801); British Museum, p.152, pl. 54, fig. 4.
239 240
pars 1979 Aetostreon latissimum (Lamarck, 1801), morphotype 2, 3 and 4; Damborenea et al., p. 40-41, pl.7.,
241
figs. 1-6. Non morphotypes 1, 1a, pl. 6, figs. 5-8.
242 243
1980 Aetostreon latissimum (Lamarck, 1801); Fischer, p. 216, pl. 101, figs. 1, 2.
244 245 246
1985 Aetostreon couloni (Defrance, 1821); Guzmán, p. 7-8, pl. 1, figs. 1-6.
247
pars 1988 Aetostreon latissimum (Lamarck, 1801); Dhondt and Dieni, p. 38, pl. 8, fig. 7, non figs. 1-6; pl. 9, figs.
248
4-6, non figs. 1-3.
249 250
1994 Aetostreon (Exogyra) latissima (Lamarck, 1801); van Diggelen, p. 88, fig. 7.
251 252
1995 Aetostreon latissimum (Lamarck, 1801); Cooper, p. 11, 12, 18, figs. 10-14.
253 254
2007 Aetostreon sp.; Lazo, p. 42, pl. 4, figs. H, I.
255 256
2007 Aetostreon latissimum (Lamarck, 1801); Scott, p. 14, 17, pl. 6, figs. A-F.
257 258
2011 Aetostreon sp.; Aguirre-Urreta et al., p. 469, pl. 3, figs. C1-2.
259 260
Diagnosis: sub-oval to irregularly triangular outline, higher than long. Left valve with acute keel, which
261
becomes shallower approximately from the dorsal-third onwards, following a dorso-anterior to postero-
262
ventral trajectory. No ornamentation except for coarse growth lines or even wrinkles and shallow tubercles
263
where these cross the keel.
264 265
Material: 108 specimens collected from the Spiticeras damesi ammonite Zone (late Berriasian), Vaca Muerta
266
Formation (MCNAM-PI 24928.1-24928.95) and from the Olcostephanus atherstoni ammonite zone (early
267
Valanginian), Mulichinco Formation (MCNAM-PI 24929.1-24929.13), Sierra de la Cara Cura locality (Fig. 4). Six
268
specimens collected from the Olcostephanus atherstoni ammonite Zone (early Valanginian), Mulichinco
269
Formation (MCNAM-PI 24930.1-24930.6), Puesto Sierra de Reyes locality.
270
271
Stratigraphic and geographic range: This species was previously recorded from the Upper Jurassic (Tithonian)–
272
Lower Cretaceous (Albian) of Europe (France, Switzerland, Spain, England, Germany, Italy), Asia (Russia,
273
Turkmenistan), North America (Texas and Mexico), South America (Trinidad Island, Colombia, Argentina, Chile)
274
and Africa (Algeria, Egypt, Tunisia, Madagascar, Morocco, Somalia, South Africa).
275 276
Description: Shell medium to large in size, inequivalve, sub-oval to triangular outline, opisthogyrate umbo.
277
Cementation area located postero-dorsally. Dorsal third of left valve with acute keel, becoming shallower and
278
almost disappearing towards the ventral margin (Fig. 5 A, C, D). The keel has an almost straight trajectory
279
(although following the curvature of the valve), uncoiling with the umbo at first and crossing the valve,
280
reaching the mid-ventral margin, and dividing the left valve in two sub-equal halves. From the keel towards
281
the anterior margin, shell convexity high, whereas from the keel to the posterior margin, shell convexity less
282
steep. Growth lines lamellose, occasionally almost wrinkles, ornamented with tubercles where growth lines
283
cross the keel (Fig. 5 C). Adductor muscle scar comma-shaped to biconcave-shaped (Fig. 5 E). Ligament area
284
varying between exogyroid and gyrostreoid (Fig. 5 B, E, F). Since most specimens are either articulated or
285
poorly preserved, the paradontal apparatus was difficult to observe. The paradontal recess was preserved but
286
the accompanying paradontal buttress was either broken or eroded (Fig.5 E). As no isolated right valves were
287
found, the paradontal process was not observed. Right valve flat to slightly concave, presenting commarginal
288
growth lines (Fig. 5 G).
289 290
Microstructure: Right valve with a middle-outer layer of complex-cross foliated microstructure, followed by an
291
inner middle layer of regular foliated microstructure (Fig. 6 A, C). Lenticular hollow chambers secondarily filled
292
by granular calcite cement present. Regular prismatic outer layer not preserved. Left valve with an outer-
293
middle layer of “mosaic” complex cross-foliated microstructure with several thin calcitic bands. This grades
294
into a regular foliated to complex cross-foliated microstructure that may also have thin calcitic bands. Inner-
295
middle layer with complex cross-foliated microstructure (Fig. 6 A, B). Lenticular hollow chambers secondarily
296
filled with granular calcite cement conspicuous throughout the middle layer.
297 298
Dimensions: Mean H: 79.71±16.39 mm; mean L: 63.02±11.40 mm; mean H/L: 1.34±0.26.
299 300
Discussion: A. latissimum has a long and complicated taxonomic history and has been considered to have a
301
very plastic morphology (see Rubilar and Lazo, 2009). The identity of A. latissimum is here restricted to the
302
original intention of Lamarck’s description (1801) and Bourguet’s drawings (1742). The original definition was
303
subsequently supported by other publications were the “typical” A. latissimum was figured (Bayle, 1878;
304
Stenzel, 1971; Cooper, 1995). It is important to note that Renngarten (1926) mistakenly used the species to
305
name material that presents plications or shallow ribs and an almost quadrate outline, therefore, it does not
306
correspond to A. latissimum.
307
Considering previous records in Argentina, Burckhardt (1900) was the first to describe specimens belonging to
308
A. latissimum in the vicinity of the Las Lajas locality and in Sierra de la Vaca Muerta, Neuquén Province. He
309
differentiated two forms of ‘E’. couloni, which he distinguished by the presence of an acute keel (here A.
310
subsinuatum, see below) or the lack of it (here A. latissimum). Weaver (1931) recorded specimens of
311
‘E.’couloni var. leufensis and ‘E.’couloni in the vicinity of the Sierra de la Vaca Muerta, Agrio and Cerro El
312
Salado localities, which are here identified as A. latissimum due to the presence of an initially acute and later
313
shallower keel and a general suboval outline. Also, Groeber (1933) mentioned the presence of “oyster banks”
314
and of “big E. cf. couloni” above the Lissonia riveroi Zone and above “35-40 m of green marlstones” (p. 19-20)
315
in the Sierra de la Cara Cura, which probably also correspond to A. latissimum (Fig. 4). Also recorded from the
316
same basin but during the late Valanginian, the species A. pilmatuegrossum differs from A. latissimum because
317
of its general subtrigonal outline, its truncated postero-ventral margin and the presence of a prominent
318
secondary keel in the ventral half of the valve, which is absent in A. latissimum. However, these species are
319
probably closely related.
320 321
Aetostreon subsinuatum (Leymerie, 1842)
322
Figs. 7- 8
323 324
pars 1840 Exogyra sinuata (Sowerby, 1822), Leymerie, p. 121-126; subsinuata n.var., Leymerie, p. 124;
325
dorsata, n.var., Leymerie, p. 124; falciformis n.var., Leymerie, p. 124 (non Goldfuss, 1834, pl. 80, fig. 4);
326
aquilina, n.var., Leymerie, p. 124. Non sinuata n.var., Leymerie, p. 124; latissima, n.var., Leymerie, p. 124;
327
elongata n.var., Leymerie, p. 124.
328 329
1842 Exogyra subsinuata n.sp.; Leymerie, p.16-17, pl. 12, figs. 3-7.
330 331
pars 1847 Ostrea couloni (Defrance, 1821); d’Orbigny, p. 698; pl. 466, figs. 3, 4, non figs. 1, 2; pl. 467, figs. 1-3.
332 333
pars 1847 Ostrea aquila (Brongniart, 1822); d’Orbigny, p. 706; pl. 470, figs. 1, 2, non figs. 3, 4.
334 335
pars 1869 Ostrea couloni (Defrance, 1821); Coquand, p. 180; pl. 71, figs. 8-10; pl. 74, figs. 1-5; pl. 75, figs. 3, 22;
336
non 1, 2, 4-6.
337 338
pars 1871 Ostrea couloni (Defrance, 1821); Pictet et Campiche, p. 287; pl. 188, fig. 2; non fig. 1. Non pl. 187, pl.
339
192, fig. 1.
340 341
1878 Aetotreon aquilinum (Leymerie, 1840); Bayle, pl. 140, figs. 3-5.
342 343 344
1890 Ostrea (Exogyra) haueri n. sp., Toula, p. 340, pl. 5, fig. 3.
345
pars 1900 Exogyra couloni (Defrance, 1821); Burckhardt, p.18; pl. 21, figs. 7, 8. Non pl. 22, fig. 3.
346 347
pars 1910 Gryphae latissima Lamarck, 1801; Pervinquiére, p. 194c, figs. 194b; non figs. 194, 194a
348 349
pars 1913 Exogyra sinuata (Sowerby, 1822); Woods, p. 395, text-figs. 203, 206-214. Non text-figs. 194-202,
350
204, 205.
351 352
pars 1926 Exogyra subsinuata Leymerie, 1842, forma typica; Renngarten, p. 61; pl. 4, fig. 4, non figs. 1- 3; pl. 5,
353
fig. 1.
354 355
1926 Exogyra subsinuata Leymerie, 1842, var. falciformis Leymerie, 1842; Renngarten, p. 62, pl. 4, fig. 5; pl. 6,
356
fig. 1.
357 358
non 1926 Exogyra subsinuata Leymerie, 1842, var. carinato-plicata, n.var.; Renngarten, p. 62, pl. 3, fig. 7; pl. 4,
359
figs. 2, 3.
360 361
1937 Exogyra reedi n. sp.; Imlay, p. 566, pl. 77, figs. 1-6, pl. 78, figs, 1-7.
362 363
1940a Exogyra reedi Imlay, 1937; Imlay, p. 148-149, pl. 9, figs. 4-6; pl. 12, figs. 1-2; pl. 13, figs. 1-5.
364 365
non 1961 Exogyra falciformis Leymerie, 1842; Prozorovskii et al., p. 125, pl. 10, fig. 1; pl. 11, fig. 1.
366 367
1974 Exogyra couloni (Defrance, 1821); Oekentorp and Siegfrid, p. 151, pl. 13, fig. 7.
368 369
1975 Aetostreom latissimum (Lamarck, 1801); Pugaczewska, p. 51, pl. 7, fig. 1; pl. 8, figs. 1-7; pl. 9, figs. 1-4.
370 371
pars 1979 Aetostreon latissimum (Lamarck, 1801), morphotype 1 and 1a; Damborenea et al., p. 38, pl. 6, figs.
372
5-10. Non morphotypes 2, 3, 4, pl. 7, figs. 1-6.
373 374
pars 1988 Aetostreon latissimum (Lamarck, 1801); Dhondt and Dieni, p. 38, pl. 8, figs. 1-6, non fig. 7; pl. 9, figs.
375
1-3, non figs. 4-6.
376 377 378
Diagnosis: Shell sickle-shaped, generally higher than long, with acute keel on left valve that divides it in two
379
anterior and one posterior part. The keel starts at the umbo, uncoiling with it, and traverses the valve in a
380
postero-ventral direction. No ornamentation except for tubercles where growth lines cross the keel. Large
381
specimens may display an anterior fold.
382 383
Material: 305 specimens collected from the Argentiniceras noduliferum ammonite Zone, (early to mid
384
Berriasian age) of the Vaca Muerta Formation (MCNAM-PI 24926.1-24926.302 and 24927.1-24927.3), Sierra
385
de la Cara Cura locality. This taxon was not recorded in the Puesto Sierra de Reyes locality (Fig. 4).
386 387
Stratigraphic and geographic range: This species was previously recorded from the Lower Cretaceous
388
(Berriasian–Aptian) of America (Mexico, Chile and Argentina) and Eurasia (France, Switzerland, England,
389
Poland, Italy, Bulgaria, Russia and Turkmenistan).
390 391
Description: Shell medium to large in size, inequivalve, sickle-shaped; opisthogyrate umbo. Attachment area
392
postero-dorsally located. Left valve with well-developed keel, crossing the entire valve, first following the
393
uncoiling of the umbo and later approaching the ventroposterior margin. Keel acute in the dorsal half,
394
becoming less conspicuous and wider in the ventral half (Figs. 7 C, D; 8 B, C, F, G, H); carrying small tubercles at
395
intersection points with growth lines (occasionally almost wrinkles) (Figs. 7 C, 8 B). Keel dividing left valve in
396
two parts, the anterior twice as wide as the posterior one. In the posterior third, a shallow groove runs parallel
397
to the keel, deepening in the ventral third (Fig. 8 A). Anteriorly of keel, shell very convex, posteriorly of keel,
398
shell straight to slightly concave. Large, adult specimens with anterior fold (Figs. 7 A, C, D; 8 B, H). Some
399
specimens with an anterior globoid convexity towards anteroventral margin, delimited by the anterior fold
400
and posteriorly by the keel (Fig. 8 H). Adductor muscle scar, comma-shaped to slightly biconcave (Fig. 7 B).
401
Ligament areas are variable, most commonly of the exogyroid type, followed by the gyrostreoid type (Fig. 7 E,
402
F). Left valve with a paradontal recess and a paradontal buttress, both accessories of the anodontal hinge (Fig.
403
7 F). Parodontal process possibly present on the right valves, but since most of the studied specimens are
404
either left valves or articulated specimens, this was observed with doubt in the only right valve available. Right
405
valve flat to slightly concave; crossed by commarginal growth lines. Some specimens with an anterior ridge of
406
elevated growth laminae (Figs. 7 A; 8 D, E).
407 408
Microstructure: Right valve with outer prismatic layer. Outer-middle layer with a high-angle complex-crossed
409
foliated microstructure that grades into a regular foliated microstructure. Lastly, the inner-middle layer
410
presents a cone complex-crossed foliated microstructure (Fig. 9 A, B). Left valve with complex crossed-foliated
411
microstructure, containing numerous hollow, lenticular shell chambers, secondarily filled with granular calcite
412
cement (Fig. 9 A, D). Near the umbo, the valves display a low angle complex crossed-foliated microstructure
413
(Fig. 9 A, C).
414 415
Dimensions: Mean H: 40.39±12.95 mm; mean L: 24.78±8.85 mm; mean H/L: 1.68±0.33.
416 417
Discussion: The material closely resembles specimens identified as various species in the past (‘E.’subsinuata,
418
‘E.’coulouni, ‘E.’ sinuata, ‘E. ’reedi, ‘G.’ latissima and many subspecies of these species). These species have
419
been eventually synonymized with A. latissimum (Dhondt and Dieni, 1988; Scott, 2007), largely ignoring many
420
identifiable and consistent differences that are hard to attribute only to plasticity.
421
Therefore, under such a lax definition, probably more than one species is involved (Rubilar and Lazo, 2009).
422
Here, the studied morphology is considered a distinct species, different from A. latissimum in many ways,
423
including a general sickle-shape, acute keel dividing the shell unevenly and the presence of an anterior fold in
424
large specimens, although these two species are probably closely related.
425
Considering nomenclature, priority is given to Leymerie (1840, 1842). Initially, he proposed ‘E.’sinuata
426
subsinuata as one of many “varieties” within ‘E.’ sinuata (Leymerie, 1840), which had previously been erected
427
by Sowerby (1822). However, in a subsequent publication, Leymerie (1842) emended this by erecting ‘E.’
428
subsinuata as a species distinct from ‘E.’ sinuata and dividing the former “varieties” between these two
429
species. As a result, ‘E.’ sinuata included the “varieties” sinuata, latissima and elongata and ‘E.’ subsinuata
430
included the “varieties” subsinuata, dorsata, falciformis and aquilina. However, the varieties included in ‘E.’
431
subsinuata by Leymerie (1842) do not exhibit any real differences nor with ‘E.’ subsinuata. According to article
432
45.6.4 of the International Commission on Zoological Nomenclature (2000), all these “varieties” should be
433
considered of subspecific rank and are therefore considered here as junior synonyms of Aetostreon
434
subsinuatum (Leymerie, 1842) which is the valid name of the species.
435
‘E.’ subsinuata, var. carinato-plicata (Renngarten, 1926) does not correspond to A. subsinuatum because of
436
the presence of rounded, thick, low but clearly visible ribs on the left valve. Also, one of the varieties of
437
Leymerie (1842) formerly included in ‘E’. subsinuata was elevated to species rank, ‘E.’ falciformis, by
438
Prozorovskii et al. (1961), assigning to it specimens that lack the pronounced keel and the opisthogyrate umbo
439
and have a general ovoid outline. This material should not be assigned to ‘E.’ falciformis as it is a junior
440
synonym of A. subsinuatum and lacks the diagnostic features of ‘E.’ falciformis. A. imbricatum (Krauss, 1843, p.
441
129) is another species usually considered similar or closely related to A. latissimum. It differs from A.
442
subsinuatum because although it displays a similar sickle-shaped outline, A. imbricatum lacks the characteristic
443
keel of A. subsinuatum.
444
Considering previous records in Argentina, Burckhardt (1900) was the first to describe this species from the
445
Neuquén Basin. He distinguished two forms (under the name ‘E.’couloni), one with a shallow keel and suboval
446
outline, which corresponds to A. latissimum (see above), and a second form, sickle-shaped and with a very
447
pronounced keel, which he associated to the material figured by Coquand (1869). This is the first record of A.
448
subsinuatum in the region (specifically in the Sierra de la Vaca Muerta). Later on, Weaver (1931) recorded
449
specimens of ‘E.’couloni var. leufensis and ‘E.’couloni, which do not correspond to the species described here
450
due to the lack of an acute keel traversing the shell. They also correspond to A. latissimum (see above).
451
Another species recorded in the Lower Cretaceous of Argentina, A. pilmatuegrossum Rubilar and Lazo, differs
452
from the material studied here because of its general subtrigonal outline and, although it does have a keel, it
453
is weaker than the one developed in A. subsinuatum. Also, the former has an anterior geniculation and an
454
anterior globoid convexity, which is absent in the later.
455 456
Genus Ceratostreon Bayle, 1878
457 458
Type species: Exogyra spinosa Mathéron, 1843 by subsequent designation of Douvillé (1879).
459 460 461
Diagnosis (modified from Stenzel, 1971): Shell inequivalve, small- to medium-sized; elongated to crescentically
462
curved or comma-shaped to ovate. Attachment area generally large. Left valve with keel, although it might be
463
obscured by the surface sculpture that crosses it. Keel separating the narrow and very steep anterior slope
464
from the larger and with a more gently sloping posterior one. Right valve flat or slightly concave, occasionally
465
also with a keel, albeit shallow, formed by raised growth lines. Either both valves or only the left one with
466
many dichotomous, unequal, rounded ribs and approximately equal large and rounded interspaces. Ribs more
467
or less continuous, with or without spines and of different strength depending on the species. Occasionally,
468
with a series of contiguous transverse puckers. Both valves exhibit slender and well developed chomata.
469 470
Remarks: This genus has been considered as a subgenus of Amphidonte (Hayami,1965; Malchus, 1990).
471
Hayami (1965, p. 343) argued that the two groups could not be always sharply separated due to the existence
472
of “intermediate” species that would not strictly belong to either genus. Additionally, Malchus (1990, p. 110)
473
thought that the two genera share some of the most prominent diagnostic features (general sickle- or cup-
474
shaped left valve, slightly convex to concave right valve, chomata surrounding both valves, presence of ribs,
475
shape of the adductor and shell structure), supporting the idea of Ceratostreon being a subgenus. However,
476
this view has not been universally accepted (Cooper, 1995; Dhondt and Jaillard, 2005; Scott, 2007), and even
477
Malchus himself treated Ceratostreon as a genus in subsequent publications (Dhondt et al., 1999). Here,
478
Ceratostreon is considered as a distinct genus, because of compelling morphological differences with
479
Amphidonte, such as the smaller size, the more pronounced sickle shape and the presence of pronounced ribs,
480
which are largely absent in Amphidonte.
481 482
Ceratostreon hilli (Cragin, 1893)
483
Fig. 10
484 485
pars 1888 Ostrea franklini Coquand, 1869; Hill, p. 131, pl. 5, figs. 1-10, non figs. 11-18; pl. 7, fig. 30, non figs.
486
28, 29. Non pl. 6.
487 488
1893 Exogyra hilli n.sp.; Cragin, p. 186.
489 490
1947 Exogyra hilli Cragin, 1893; Stanton, p. 33, pl. 24, fig. 7, pl. 25, figs. 1-14.
491 492
Diagnosis: Shell small-sized, suboval to crescentic. Left valve with marked keel, dividing valve in a posterior
493
third and anterior two-thirds. With coarse, rounded ribs that start on the keel and traverse the valve towards
494
the anterior margin of the valve with a somewhat diagonal trajectory. Occasionally, tuberculated ribs.
495
Chomata present on both valves.
496 497
Material: 729 specimens from the Spiticeras damesi ammonite Zone (late Berriasian), Vaca Muerta Formation
498
(MCNAM-PI 24934.1-24934.38) and from the Lissonia riveroi ammonite Zone (early Valanginian), Mulichinco
499
Formation (MCNAM-PI 24935.1-24935.7 and 24936.1-24936.), Sierra de la Cara Cura locality. 195 specimens
500
from the Lissonia riveroi ammonite Zone (early Valanginian), Mulichinco Formation (MCNAM-PI 24937.1-
501
24937.195), Puesto Sierra de Reyes locality (Fig. 4).
502 503
Stratigraphic and geographic range: The species has been recorded from the Early Cretaceous (Aptian–Albian)
504
of USA (Texas), and now in the late Berriasian–early Valanginian of Argentina.
505 506
Description: Shell small-sized, inequivalve, sub-oval to crescentic with opisthogyrate umbo. attachment area
507
small, located antero-dorsally. Left valve with prominent keel, dividing the valve in approximately one anterior
508
and two posterior parts (Fig. 10 F, L). Valve descending smoothly from the keel towards the posterior margin,
509
whereas sloping steeply from the keel towards the anterior margin. Anterior part of the valve with coarse,
510
rounded, irregular ribs separated by wide interspaces that start at keel (Fig. 10 J). Number of ribs variable
511
between specimens. Ribs initially narrow, becoming thicker towards the anterior margin. They are intersected
512
by growth lines, which gives them a scaly appearance, and might present tubercles throughout (Fig. 10 J). In
513
some specimens, one of the ribs wider and larger than the others, protruding slightly (Fig. 10 C, G). Keel also
514
with tubercles where crossed by ribs (Fig. 10 F, L). Posterior part of the valve with thick scaly growth lines.
515
Ligament area predominantly gyrostreoid and secondarily exogyroid (Fig. 10 B, C, M, N). Paradontal recess and
516
buttress present, but developed variably (Fig. 10 B, C, M, N). Adductor muscle scar comma-shaped to
517
biconcave (Fig. 10 A, B, I, K, N). Chomata surrounding the valve margins, although occasionally absent on the
518
ventral part (Fig. 10 C, N). Right valve generally slightly concave, also with a keel near the anterior margin,
519
formed by raised growth lines (Fig. 10 D, J). From the keel towards the posterior margin, only thick,
520
commarginal, almost scaly growth lines are visible. Shell interior, below ligament area towards the posterior
521
margin, with paradontal process, although variably developed (Fig. 10 A, E, H, K, O). Commonly, this structure
522
is followed by an alate projection with very sculptured chomata (Fig. 10 A, E, G, K, O). In some specimens, this
523
projection is accompanied by a postero-dorsal platform (Fig. 10 G). When this is the case, left valve with a
524
corresponding depressed projection on the posterior margin where the right valve alate projection articulates
525
(Fig. 10 E). Also, to accommodate the right valve postero-dorsal platform, the left valve posterior margin tends
526
to be slightly flatter and straight, generating a more sub-oval outline of the shell. Chomata surround the whole
527
right valve, although occasionally absent on the ventral part. When relict chomata cross the raised growth
528
lines on the anterior margin of the valve, they generate thin striae, perpendicular to growth lines (Fig. 10 J, P).
529 530
Microstructure: Left valve with a relatively thick prismatic outer layer (Fig. 11 A, B). The outer-middle layer
531
with a complex herringbone cross-foliated microstructure, whereas the inner-middle layer displays a complex
532
cross-foliated to chomata-influenced cross-foliated microstructure (Fig. 11 A-D). Thin lenticular chambers
533
secondarily filled with granular calcite cement appear near the umbo and towards the ventral commissure.
534 535
Dimensions: Mean H: 28.86±6.43 mm; mean L: 18.38±3.94 mm; mean H/L: 1.58±0.14.
536 537
Discussion: Ceratostreon encompasses many species that in some cases are not clearly defined, primarily due
538
to high phenotypic plasticity.
539
C. flabellatum (Goldfuss, 1834, p. 38, pl. 87, fig. 6) from the Early Cretaceous of Germany, differs from C. hilli
540
because of its thinner and more numerous ribs on the left valve. Also, the ribs from C. hilli emerge from the
541
keel towards the anterior margin, whereas no ribs are present on the posterior margin. In C. flabellatum, there
542
is no visible keel and ribs may also appear on the posterior region of the valve.
543
C. spinosum (Mathéron, 1843, p. 264, pl. 32, figs. 6 and 7) from the Late Cretaceous of France, has similar
544
coarse ribs as C. hilli, but its ribs have hollow, scaly extensions forming spines, which are absent in C. hilli.
545
D’Orbigny (1846) changed the name of the species to ‘O.’ matheroniana without providing any reason
546
(Stenzel, 1971); hence it is regarded as a junior synonym of C. spinosum. C. pliciferum (Dujardin, 1837), closely
547
related to C. spinosum (by some authors considered as a variety, (Coquand, 1869); or even as a synonym,
548
(Malchus, 1990) differs from C. hilli because it has more numerous and thinner ribs which may also produce
549
spines (Aqrawabi, 1993).
550
C. boussingaulti (d’Orbigny, 1842, p. 91, pl. 18, fig. 20, pl. 20, figs. 8, 9) from the Early Cretaceous of Colombia
551
and Venezuela, is similar to C. hilli in general outline, presence of a keel and coarse ribs but it differs by having
552
ribs also on the posterior region of the left valve (pl. 18, fig. 20; pl. 20, figs. 8,9).
553
In the original description of C. tuberculiferum (Koch and Dunker, 1837, p. 54, pl. 6, fig. 8) from the Berriasian–
554
Barremian of Germany, the only valve available for description, a right one, has rows of small knobs, which has
555
been regarded as a diagnostic character. Although the authors discarded the possibility of a xenomorphic
556
sculpture, this is highly likely (as also noted by Coquand, 1869). However, in further publications, the knobs of
557
the original designation of C. tuberculiferum have been largely ignored (Calzada-Badía and Botero-Arango,
558
1979; Dhondt and Dieni, 1988; Scott, 2007). C. hilli differs from C. tuberculiferum because it lacks the knobby
559
ornament of the right valve but also because it does not have ribs on the posterior region of the left valve that
560
have been mentioned in later publications of C. tuberculiferum (Calzada-Badía and Botero-Arango, 1979).
561
Coquand (1869, p. 183, pl. 64, figs. 13, pl. 73, figs. 5-9, pl. 74, figs. 14 and 15) erected the species ‘O.’ minos
562
from the Berriasian–Barremian of France, differentiating it from ‘O.’ tuberculiferum and ‘O.’ boussingaulti
563
because of its larger size, its more numerous ribs and the presence of ribs also on the right valve. The figured
564
specimens vary between having a well-developed keel (Coquand, 1869, pl. 74, fig. 15) or not (op. cit., pl. 73,
565
figs. 6 and 9). Therefore, C. minos (Coquand, 1869) has an overall similar outline and, presumably, a marked
566
keel on the left valve as C. hilli but differs by having ribs on the right valve. Also, C. texanum (Roemer, 1852,
567
p.69, pl.10, fig.1) from the Barremian of Texas, very similar to C. minos, differs from C. hilli because of the
568
presence of dichotomous ribs on its right valve.
569
C. pauperculum (Cragin, 1893, p. 186, pl. 30, figs. 7, 8) from the Early Cretaceous of USA differs from C. hilli
570
because, although the original description does not state it explicitly, the figured specimens seem to have ribs
571
on the postero-dorsal region of the left valve, instead of on the anterior region as in C. hilli.
572
C. lanchum (Stoyanow, 1949, p. 66, pl.10, figs. 4-6) from the Albian of USA differs from C. hilli because it lacks
573
an acute keel, having instead an “obtuse angulation” and shallow ribs in the ventral region of the right valve.
574
C. yabei (Nagao, 1934, p. 202, pl. 25, fig. 7, pl. 26, fig.1, pl. 27, figs.1, pl. 28, figs.1 and 2, pl.29, fig. 1, 14.) from
575
the Aptian–Albian of Japan seems to differ from C. hilli because its description does not mention the acute
576
keel that characterizes the latter species. C. yabei has ribs on the left valve, but it is not clear, neither from the
577
description nor from the figured specimens whether they are present only in the anterior region of the valve
578
(as C. hilli) or cover the whole valve.
579
C. acuticosta (Nyst and Galeotti, 1840, p. 213, fig. 2) from the Jurassic of Mexico differs from C. hilli because it
580
lacks a marked keel and, consequently, ribs start at the umbo. This species was figured wrongly in its original
581
publication, with a prosogyrate umbo, while it was described as opisthogyrate. However, in subsequent
582
publications, figured specimens (photographed, not drawn) show a clear opisthogyrate umbo (Alencáster de la
583
Cserna, 1956).
584 585
Genus Nanogyra Beurlen, 1958
586 587
Type species: Gryphaea nana Sowerby, 1822; p. 114, pl. 383, fig. 3.
588 589
Diagnosis (modified from Stenzel, 1971): Shell small, variable in outline and shape, inequivalve; opisthogyrate,
590
although variably spiraled. Left valve globular to moderately convex, suborbicular, subtrigonal, elliptical, ovate
591
to comma-shaped; smooth or with fine radial ribs or rough commarginal growth squamae with local puckers
592
or constrictions in some places. Right valve flat to partly concave or gently convex, outline suborbicular, ovate
593
or comma-shaped. Chomata present in some species. Posterior bourrelet reduced in length.
594 595
Remarks: Mirkamalov (1963) erected the genus Palaeogyra largely overlapping Nanogyra Beurlen. The former
596
was later considered as a junior synonym (Stenzel, 1971). Koppka (2015) considered that significant
597
differences existed between them (i.e. presence of ornamentation and chomata), therefore proposing two
598
subgenera: N. (Palaeogyra) encompasses all species with chomata and ornamentation, whereas N. (Nanogyra)
599
includes species without these features.
600
Subgenus Nanogyra (Nanogyra) Beurlen, 1958
601 602 603
Diagnosis (modified from Koppka, 2015): Shell oval to subrectangular, occasionally elongated. Opisthogyrate
604
umbo and exogyroid hinge. Ribs and chomata absent.
605 606
Nanogyra (Nanogyra) brevisulcata n. sp.
607
Fig. 12
608 609
Etymology: Word combination derived from Latin brevis: shallow, superficial; and sulcata: sulcate, with a
610
sulcus.
611 612
Age: Late Berriasian, top of the Argentiniceras noduliferum Zone to Spiticeras damesi Subzone.
613 614
Type locality and stratotype: Sierra de la Cara Cura (Mendoza, Argentina), 22 m below the Intra-Valanginian
615
Discontinuity.
616
617
Holotype: MCNAM-PI 24932.122
618 619
Paratypes: MCNAM-PI 24932.18, 24932.20, 24932.27, 24932.32, 24932.52, 24932.64, 24932.67, 24932.73,
620
24932.105, 24932.123, 24932.141, 24932.157, 24932.174 and 24932.175.
621 622
Additional material: MCNAM-PI 24932.1-24932-175, except for the numbers of the holotype and paratypes;
623
MCNAM-PI 24933.1-24933.19; MCNAM-PI 24938.1-24938.4.
624 625
Diagnosis: Shell small size, triangular to elongate-ellipsoidal. Left valve with a shallow rounded posterior keel
626
that divides it into an anterior part that is twice the size of the posterior one. Development of an anterior fold
627
separated from the posterior keel by a shallow to very shallow sulcus. No ornamentation except for smooth
628
growth lines. No chomata.
629 630
Description: Valves small in size, inequivalve, generally triangular but occasionally elongate-ellipsoidal or
631
reniform, opisthogyrate umbo (Fig. 12 B, D, I). Attachment area small, postero-dorsally located. Left valve with
632
a rounded but pronounced keel, dividing the valve in a posterior third and two anterior parts (Fig. 12 A, G, J, K,
633
L, M, N). Keel starting slightly below the umbo and extending to the postero-ventral margin following a
634
somewhat diagonal trajectory. Anterior fold at variable heights within the anterior two-thirds of the valve, but
635
always well beneath the umbo (Fig. 12 A, C, G, J, K, M). This fold is generally rounded and shallow, following an
636
antero-dorsal to antero-ventral trajectory. The spatial arrangement of both the posterior keel and the anterior
637
fold generates the triangular shape of the valve (Fig. 12 B, K, M, N). Valve with a more or less pronounced
638
sulcus between keel and fold (Fig. 12 A-C, G, J-N). In some specimens, sulcus very shallow, but always
639
noticeable as a change in the curvature of the growth lines. No ornamentation except growth lines (Fig. 12 G,
640
K). Small, rare tubercles may appear where growth lines intersect posterior keel and anterior fold (Fig. 12 K).
641
From the keel towards the posterior margin, valve descending steeply but generally straight. In some
642
specimens, however, this part of the valve is slightly concave or convex (Fig. 12 F). Anteriorly of the keel, valve
643
descending gently, exhibiting its main convexity. Ligament area gryphaeoid to gyrostreoid (Fig. 12 E, O).
644
Adductor muscle scar not visible in any of the studied specimens. Right valve flat to slightly concave, with
645
commarginal, lamellose growth lines (Fig. 12 D, E, H, I). Some specimens with an anterior ridge of raised
646
growth lamellae (Fig. 12 H).
647 648
Microstructure: Valves with thick simple-prismatic outer layer, an outer-middle complex-cross foliated layer
649
and, lastly, an inner-middle regular-foliated layer (Fig. 13 A-C). Hollow shell chambers present at least in left
650
valve, which are secondarily filled with granular calcite cement (Fig. 13 D).
651 652
Dimensions: Mean H: 22.79±5.49 mm; mean L: 14.55±3.80 mm; mean H/L: 1.62±0.39.
653 654
Discussion: The specimens belong to the genus Nanogyra because of their small size, general outline,
655
exogyroid ligament area with reduced posterior bourrelet and general microstructure. They belong to the
656
subgenus Nanogyra because of the lack of ornamentation and chomata. The following species included in
657
Nanogyra (Nanogyra) are considered to differ from the material studied here:
658
N. (N.) nana (Sowerby, 1822; p. 114, pl. 383, fig. 3) from the Kimmeridgian of England, differs from N. (N.)
659
brevisulcata because of its generally ovate to suborbicular outline and globular, capacious left valve.
660
Moreover, it has a more pronounced opisthogyrate umbo and lacks the diagnostic posterior keel and anterior
661
fold of N. (N.) brevisulcata. Koppka (2015) considered N. praevirgula (Douvillé and Jourdy, 1874; subsequently
662
published by Jourdy, 1924, p. 65, pl. 9, fig.2) as a “doubtfully valid species” and a xenomorphic N. (N.) nana.
663
However in the material available online (MNHN.F.R52889 and 52890; Jourdy collection, syntypes; Muséum
664
National d’Histoire Naturelle, Paris, 2019), the specimens assigned to N. praevirgula seem to present exhibit in
665
the left valve, and not what may be considered as xenomorphic sculpture. Also, these specimens seem to have
666
chomata near the umbo and in the ventral area. If these features are confirmed, the species N. praevirgula
667
should be included in the subgenus Paleogyra and not Nanogyra.
668
N. (N.) auricularis (Münster in Goldfuss, 1834; p. 20, pl. 79, fig.7a-b) from the Hettangian of Germany differs
669
from N. (N.) brevisulcata in its overall oval shape and the lack of a visible sulcus in the left valve. As pointed
670
out by Koppka (2015), the original drawings in Goldfuss (1834) portrait a prosogyrate umbo rather than an
671
opisthogyrate one. However, this is attributed to an error in the drawing. Considering the material available
672
online (MNHN.F.R52868; Jourdy collection, Muséum National d’Histoire Naturelle, Paris, 2019), this specimen
673
apparently has a posterior keel as N. (N.) brevisulcata, but lacks the anterior fold.
674
N. (N.) crassa (Smith, 1819; p. 30, fig. 6) from the Bathonian of England, differs from N. (N.) brevisulcata in its
675
overall very elongated outline (almost linguliform sensu Koppka, 2015) and in lacking both, the posterior keel
676
and the anterior fold. This is corroborated both by figures in Fischer (1969; p. 95, pl. 10, figs. 21-22) and by the
677
material available online (MNHN.F.R05040; Fischer collection, Muséum national d’Histoire naturelle, Paris,
678
2019).
679
N. (N.) monoptera (Eudes-Deslongchamps and Eudes-Deslongchamps, 1858; p. 159, pl. 5, figs.1-4) from the
680
Toarcian of France, differs from N. (N.) brevisulcata because of the presence of a sickle-shaped projection on
681
the postero-ventral margin of the shell, which generates an overall sickle-shaped-like outline. Also, the
682
presence of a postero-dorsal to slightly postero-mesial auricle differentiates N. (N.) monoptera from N. (N.)
683
brevisulcata. These two species appear to have in common a smooth keel in both the right and left valve.
684
However, in N. (N.) monoptera, the left valve keel has a more anterior position than in N. (N.) brevisulcata.
685
N. rivelensis (de Loriol, 1904; p. 256, pl. 25, figs. 11-13; MNHN.F.A26394, syntypes, Maire collection; Muséum
686
National d’Histoire Naturelle, Paris, 2019) from the Oxfordian of France, seems to be more subrectangular in
687
shape and has a slightly elevated, relatively big adductor muscle scar, which is not seen in for N. (N.)
688
brevisulcata. These species have in common a shallow keel on the right valve, although in N. rivelensis it has a
689
more mesial position.
690
N. (N.) roederi (de Loriol, 1904; p. 254, pl. 20, figs. 14-21) from the Oxfordian of France, differs from N. (N.)
691
brevisulcata because of its generally oval outline and a protruding auricle on the posterior margin of the right
692
valve. This auricle might be in a mesial or slightly dorsal position. N. (N.) roederi seems to have a keel in the
693
left valve, although in a mesial, not posterior position as in N. (N.) brevisulcata, but lacks the anterior fold.
694
Both species carry a shallow keel on the right valve, formed by raised growth lines.
695
N. (N.) tramauensis (Cox, 1952; p. 94, pl. 10, figs. 5a-c, 6a-c) from the Oxfordian of India, differs from N. (N.)
696
brevisulcata due to its reniform to subrectangular outline. This species has a keel in the left valve, although
697
situated towards the anterior margin. It lacks the anterior fold of N. (N.) brevisulcata.
698
N. fourtaui (Stefanini, 1925; p. 168, pl. 39, fig. 3) from the Callovian–Oxfordian of Somalia, has been
699
synonymized with N. nana by Kiessling et al. (2011) and later considered as part of the Subgenus Paleogyra,
700
although with doubt, because the presence of chomata was never determined (Koppka, 2015). N. fourtaui
701
lacks the rounded posterior keel and anterior fold diagnostic of N. (N.) brevisulcata.
702
N. (N.) sp. (Koppka, 2015, pl. 7, fig. 1a-d) from the Kimmeridgian of France, differs from N. (N.) brevisulcata
703
because of a more markedly opisthogyrate umbo and more pronounced growth wrinkles, which carry small
704
scattered tubercles and more or less continuous radial furrows that give the valves a more irregular aspect.
705 706 707
5. Oyster records from the Lower Cretaceous of the Neuquén Basin and its paleobiogeographic implications
708 709
5.1. Revision of oyster records from the marine transgression of the Mendoza Group (Tithonian–Hauterivian)
710
of the Neuquén Basin
711 712
Oysters from the Mendoza Group of the Neuquén Basin have an abundant and quite diverse record at the
713
genus and species levels. These records are here revised in terms of stratigraphic occurrence, ages and type
714
considering oyster abundance, bed geometry, lateral extension and thickness. On one hand, there are many
715
isolated oyster records that correspond to beds with dispersed oysters, mostly single individuals or small
716
clusters. On the other hand, there are records of dense to loose shell-packed oyster massive occurrences
717
(OMOs) of higher abundance, that in turn are classified here as follows: (1) Tabular OMOs of >50 km lateral
718
extension and up to 13 m thick, excellent stratigraphic markers because of their regional extension (type-1
719
OMOs); (2) lenticular to tabular OMOs recorded at different localities extending for 10-50 km laterally, up to 6
720
m thick, important stratigraphic markers because of their regional extension (type-2 OMOs); and (3) small
721
local OMOs of lenticular to tabular geometry, recorded at just one locality, 1 km maximum lateral extent and <
722
1 m in thickness (type-3 OMOs).
723
Oldest records of oysters from the Mendoza Group are from the late Tithonian of the Vaca Muerta Formation
724
and correspond to the genera Liostrea Douvillé and Deltoideum Rollier, recorded in the Windhauseniceras
725
internispinosum and Corongoceras alternans ammonoid zones (Damborenea et al., 1979; Rubilar et al., 2000;
726
Kietzmann et al., 2014). These correspond to isolated records and type-3 OMOs.
727
The genus Aetostreon is recorded in the Tithonian–Hauterivian time interval in the Vaca Muerta, Mulichinco
728
and Agrio formations. There are records of at least four Aetostreon species and all types of OMOs as well as
729
isolated records (Damborenea et al., 1979; Lazo, 2007; Rubilar and Lazo, 2009; Kietzmann, et al. 2014; this
730
paper). A. subsinuatum appears in the lower to middle Berriasian of the Vaca Muerta Formation
731
(Argentiniceras noduliferum zone) as a type-3 tabular OMO (Fig. 14). A. latissimum is recorded from the upper
732
Berriasian to the upper Valanginian of the Vaca Muerta, Mulichinco and Agrio formations (although older
733
records from the Tithonian are proposed by Damborenea et al. (1979) and Kietzmann et al. (2014)). Both
734
isolated records and the three types of OMOs occur (Fig. 14). In the upper Berriasian of the Vaca Muerta
735
Formation (Spiticeras damesi Zone), A. latissimum is recorded as tabular type-3 OMOs. In the lower
736
Valanginian of the topmost part of the Vaca Muerta Formation (Lissonia riveroi Zone), it forms several
737
lenticular type-2 OMOs. In the lower Valanginian of the Mulichinco Formation and its lateral equivalent, the
738
Chachao Formation (O. (O.) atherstoni Zone), A. latissimum conforms a tabular type-1 OMO of great lateral
739
continuity (over 100 km of lateral extent). In the upper Valanginian of the Pilmatué Member of the Agrio
740
Formation (Pseudofavrella angulatiformis Subzone), A. latissimum appears as a type-3 lenticular OMO. A.
741
pilmatuegrossum is recorded within the upper Valanginian of the Pilmatué Member of the Agrio Formation
742
(throughout the Pseudofavrella angulatiformis Zone) (Fig. 14). It occurs as isolated records and lenticular to
743
lentiform type-2 OMOs. Towards the upper Hauterivian of the Agua de la Mula Member of the Agrio
744
Formation (Crioceratites diamantensis Zone), scattered Aetostreon records and type-2 tabular OMOs up to 0.5
745
m in thickness and at least 1 km of lateral extension are recorded, but the species has not been determined
746
(Fig. 14).
747
The genus Nanogyra is restricted to the Berriasian–early Valanginian including scattered records and a tabular
748
type-3 OMO. Only one species (N. (N.) brevisulcata) is recorded (Fig. 14).
749
The genus Ceratostreon is recorded from the early Valanginian–late Hauterivian time interval in the Vaca
750
Muerta, Mulichinco and Agrio formations (Schwarz, 1999; Lazo, 2007; Aguirre-Urreta et al., 2008; this paper).
751
There are records of at least two Ceratostreon taxa, but abundant Ceratostreon records from the Agrio
752
Formation are in need of major revision. All types of OMOs plus isolated records are known, being particularly
753
common as hard substrate encrusters (Fig. 14). In the lower Valanginian of the top Vaca Muerta and the basal
754
Mulichinco formations (Neocomites wichmanni and Lissonia riveroi zones), C. hilli occurs as isolated records
755
and type-2 tabular OMOs. In the lower Valanginian of the Mulichinco Formation (O. (O.) atherstoni Zone), a
756
tabular type-1 OMO occurs. In the Valanginian of the Mulichinco Formation (Karakaschiceras attenuatum
757
Subzone) several tabular type-2 OMOs have been recorded. In the lower Hauterivian of the Pilmatué Member
758
of the Agrio Formation (O. (O.) laticosta Subzone), a lenticular to tabular type-2 OMOs has been recorded.
759
Lastly, in the upper Hauterivian of the Agua de la Mula Member of the Agrio Formation (Crioceratites
760
diamantensis Zone), lenticular type-3 OMOs occur.
761
All these records show that oysters were an important element in the benthic fauna of the Mendoza Group of
762
the Neuquén Basin, forming diverse concentrations. It is remarkable that the OMOs with the widest lateral
763
extension occurring in numerous localities (type-1 OMOs) are restricted to the O. (O.) atherstoni Subzone, in
764
the middle member of the Mulichinco Formation and its lateral equivalent, the Chachao Formation. This
765
interval corresponds to a relative sea-level rise within the lowstand wedge represented by the Mulichinco
766
Formation, during which siliciclastic influx was greatly diminished, allowing the development of carbonate
767
facies (Schwarz, 1999). Also, variations in salinity, well-oxygenated waters and a high nutrient input could have
768
favoured the development of these tabular OMOs that dominated the inner shelf (Schwarz et al., 2011).
769
Hence, type-1 OMOs represent basin-wide palaeoenvironmental changes, whereas type-2 and type-3 OMOs
770
represent subtler variations at a regional or local scale that could be related to discrete sources of nutrient or
771
freshwater input or to shorter but significant arrests of the siliciclastic influx.
772 773
5.2. Palaeobiogeographic distribution of Aetostreon, Ceratostreon and Nanogyra during the Early Cretaceous
774 775
During the Early Cretaceous, the species studied here had mostly a very wide geographic distribution.
776
Aetostreon subsinuatum has been recorded throughout Europe and western of Asia towards the east
777
(Turkmenistan), southern North America and part of the western margin of South America (Fig. 15). Thus, this
778
taxon has mainly a Tethyan Realm distribution, with a significant extension towards the Southern Temperate
779
Realm along the Andean margin, but also towards the southern margin of the Northern Temperate Realm
780
(sensu Kauffman, 1973). This is the oldest record of this species, i.e. Berriasian, since its records in Europe and
781
Asia are younger, ranging from Valanginian to Aptian (Woods, 1913; Dhondt and Dieni, 1988) and in North
782
America (Mexico), it has been recorded from the Valanginian (Imlay, 1937, 1940a).
783
Aestostreon latissimum has a similar distribution pattern to A. subsinuata, but it extends even further back in
784
time, with its oldest records from the Tithonian–Hauterivian of South America (Damborenea et al., 1979; Lazo,
785
2007; Kietzmann et al., 2014) and, later, from the Valanginian–Aptian of the Caribbean (Cox, 1954; Guzmán,
786
1985) and Valanginian–Albian of the eastern and southern margins of Africa (Dhondt et al., 1999). In Europe
787
and Asia its records date from the Valanginian–Aptian interval (Dhondt and Dieni, 1988). This also coincides
788
with a typical Tethyan distribution, extending towards the Southern Temperate Realm (Fig. 15).
789
The oldest records of Aetostreon are from the Oxfordian–Tithonian of Chile ( Rubilar, 2008; Rubilar, 2009;
790
Rubilar and Lazo, 2009), which could indicate that this genus originated in the southeastern Pacific, specifically
791
in the Andean Subprovince (sensu Kauffman, 1973) and later expanded towards the north and through the
792
Proto-Caribbean Sea and the Tethys Ocean. A. latissimum and A. subsinuatum records from the Tithonian and
793
the Berriasian, respectively, of the Neuquén Basin are consistent with this. In the rest of America, Aetostreon
794
is recorded from the Valanginian–Aptian of Colombia (Gerhardt, 1898; Guzmán, 1985); Valanginian–early
795
Aptian of Mexico (Imlay, 1940a; González-León et al., 2008); Valanginian to Hauterivian–Albian of Peru
796
(Sommermeier, 1913; von Hillebrandt, 1970); the Barremian–Aptian interval of Trinidad Island (Cox, 1954) and
797
the Aptian–Albian of USA (Stanton, 1947; Scott, 2007). There is an earlier record of an ‘Exogyra’ potosina
798
Castillo and Aguilera (1895) from the Tithonian of Mexico and USA (Cragin, 1905; Imlay, 1940b; Torres et al.,
799
1999), but it is not clear whether this species truly belongs to Aetostreon (Rubilar and Lazo, 2009). Also,
800
Pugaczewska (1975) mentioned records of Aetostreon from the Tithonian of Poland, but no further
801
information was given.
802
Ceratostreon hilli has been recorded in the southwestern margin of South America and North America (Fig.
803
15), which corresponds to a Trans Temperate Pacific distribution (Damborenea et al., 2012). In South America,
804
this species has been recorded from the Berriasian to early Valanginian time interval, whereas in North
805
America occurs during Aptian–Albian times. This could indicate that the species originated in South America
806
and dispersed later towards the north. This is also consistent with the oldest records of the genus
807
Ceratostreon which are from the Oxfordian–Tithonian of Chile (Rubilar, 2008, 2009). In the rest of the
808
Americas, Ceratostreon is recorded from the Valanginian–Hauterivian of Colombia (d’Orbigny, 1843; Guzmán,
809
1985); Aptian–upper Albian of Peru (Sommermeier, 1913; Dhondt and Jaillard, 2005); upper Albian of Ecuador
810
(Dhondt and Jaillard, 2005); upper Aptian of Venezuela and Mexico (Gerhardt, 1898; Sutton, 1946; Hernández-
811
Ocaña et al., 2015) and Aptian–Coniacian of Brazil (White, 1888; Seeling and Bengston, 1999). In Eurasia,
812
Ceratostreon is recorded from Valanginian–Maastrichtian strata and in Africa, from Albian–Maastrichtian
813
strata (Dhondt and Dieni, 1988; Dhondt et al., 1999).
814
Aetostreon and Ceratostreon distributions are consistent with the observed Tethyan-wide distribution of the
815
Early Cretaceous bivalve fauna, present in the Caribbean, North America, western margin of South America
816
and eastern margin of Africa, with typical pandemic oyster taxa such as A. latissimum, C. boussingaulti, C.
817
tuberculiferum, etc. (Dhondt, 1992; Dhondt et al., 1999). This is related to the position of the major continents
818
during the Early Cretaceous: the Tethys Ocean was the main connection between America and Eurasia,
819
especially considering that the Atlantic Ocean was closed (except for its central part), global sea level was high,
820
major flooding of continents occurred and a circumglobal eastern equatorial circulation existed (Barron, 1987;
821
Poulsen et al., 2001; Miller et al., 2005). As a result, the marine shelf areas were well-connected, which
822
allowed a free larval exchange and resulted in a generally homogeneous bivalve fauna (Kauffman, 1973).
823
Nanogyra (N.) brevisulcata, in contrast, was endemic to the Neuquén Basin (Fig. 15). Previous records of the
824
genus date from the Middle to Late Jurassic of Europe (Bajocian–Kimmeridgian) and, in America, from the
825
middle Oxfordian of Cuba (Pugaczewska, 1978) and from the middle Kimmeridgian of Mexico (Vega and
826
Lawton, 2011). Doubtful records from Chile date from the Sinemurian and Pliensbachian (Malchus and
827
Aberhan, 1998; Rubilar, 2008), but it is not clear whether they belong to Nanogyra or to some other genus
828
(Koppka, 2015). These occurrences suggest a European origin of the genus and a posterior dispersion to the
829
southeastern Pacific margin through the Hispanic Corridor.
830
6. Conclusions
831 832 833
Oysters are recorded abundantly in Upper Jurassic–Lower Cretaceous strata of the Neuquén Basin.
834
Particularly, around the boundary between the Vaca Muerta and Mulichinco formations, four species
835
corresponding to three genera from the Family Gryphaeidae, Subfamily Exogyrinae were recorded and
836
described.
837
Within the genus Aetostreon, two species were recorded. A. subsinuatum is distinguished by an acute keel
838
that traverses the entire valve and a sickle-shaped outline. A. latissimum is distinguished by a shallow keel that
839
almost disappears in the ventral half of the valve and a sub-oval outline.
840
This is the first record of the genus Nanogyra from the Neuquén Basin and Argentina. The new species N. (N.)
841
brevisulcata is characterized by its small size, triangular to elongate-ellipsoidal outline and the presence of a
842
shallow keel and an anterior fold.
843
Within the genus Ceratostreon, the species C. hilli is distinguished by its small size, crescentic outline, coarse
844
ribs and chomata.
845
Throughout the Mendoza Group of the Neuquén Basin, oysters occur scattered or forming OMOs of different
846
morphologies, dimensions and stratigraphic relevance. These OMOs probably represent different scales of
847
palaeoenvironmental changes, of basin-wide to local extent, and could be useful tools to identify variations in
848
sedimentation rate, siliciclastic and nutrient input and/or salinity variations.
849
During the Early Cretaceous, these species had a very wide geographic distribution: A. subsinuatum and A.
850
latissimum had a mainly Tethyan distribution, extending southwards to the Southern Temperate Realm,
851
whereas C. hilli had a Trans-Temperate Pacific distribution, and N. (N.) brevisulcata was endemic to the
852
Neuquén Basin.
853
The oldest records of the genera Aetostreon and Ceratostreon (Oxfordian–Tithonian of Chile) indicate that
854
they originally appeared within the Andean subprovince and later dispersed through the Hispanic Corridor
855
towards the Tethys Ocean. The wide distribution of these genera is related to the well-connected marine shelf
856
areas, a result of the continental distribution and the high global sea level at the time. The records of
857
Nanogyra, instead, indicate an European origin of the genus and its posterior dispersion to the southeastern
858
Pacific margin through the proto-Caribbean Sea.
859
860
Acknowledgements
861
We thank R.E.G. Ezquerro for help during the field work, C.S. Cataldo for help with taxonomic dilemmas; R.M.
862
Palma for providing the means to photograph the oyster microstructure and two anonymous reviewers and
863
the editor for their careful revisions. This work was supported by the Agencia Nacional de Promoción Científica
864
(grant PICT 2015-1381 awarded to D.G.L. and PICT-2013-1413 awarded to M.B. Aguirre-Urreta (Universidad de
865
Buenos Aires), by the Universidad de Buenos Aires (grants UBACyT 2014–2017 awarded to M.B. Aguirre-
866
Urreta) and by the Consejo Nacional de Investigaciones Científicas y Técnicas (grant CONICET PIP 2013-2015
867
awarded to Victor A. Ramos (Universidad de Buenos Aires).
868
869
References
870
Aberhan, M., 1994. Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios 9, 516–545.
871
Aguirre-Urreta, M.B., Amaro Mourgues, F., Rawson, P.F., Bulot, L.G., Jaillard, E., 2007. The Lower Cretaceous
872
Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geological Journal 42,
873
143-173.
874
Aguirre-Urreta, M.B., Lazo, D.G., Griffin, M., Vennari, V., Parras, A.M., Cataldo, C., Garberoglio, R., Luci, L.,
875
2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. In: Leanza, H., Arregui, C., Danieli,
876
J.C. (Eds.), Relatorio del XVIII Congreso Geológico Argentino: Geología y Recursos Naturales de la provincia del
877
Neuquén. Asociación Geológica Argentina, Buenos Aires, 465-488.
878
Aguirre-Urreta, M.B., Price, G.D., Ruffell, A.H., Lazo, D.G., Kalin, R.M., Ogle, N., Rawson, P.F., 2008. Southern
879
Hemisphere Early Cretaceous (Valanginian-early Barremian) carbon and oxygen isotope curves from the
880
Neuquén Basin, Argentina. Cretaceous Research 29, 87-99.
881
Aguirre-Urreta, M.B., Rawson, P.F., 1997. The ammonite sequence in the Agrio Formation (Lower Cretaceous),
882
Neuquén Basin, Argentina. Geological Magazine 134 (4), 449-458.
883
Aguirre-Urreta, M.B., Rawson, P.F., 1999. Stratigraphic position of Valanginites, Lissonia, and Acantholissonia
884
in the lower Valanginian (Lower Cretaceous) ammonite sequence of the Neuquén Basin, Argentina. In: Oloriz,
885
F., Rodríguez-Tovar, R. (Eds.), Advancing Research on Living and Fossil Cephalopods. Kluwer Academic/Plenum
886
Publishers, New York, 521-529
887
Alencáster de la Cserna, G., 1956. Pelecípodos y gasterópodos del Cretácico Inferior de la región San Juan
888
Raya-Zapotitlan, Estado de Puebla. Paleontología Mexicana 2, 1-47.
889
Andrews, J.E., Walton, W., 1990. Depositional environment within Middle Jurassic oyster-dominated lagoons:
890
an integrated litho-bio- and palynofacies study of the Duntulm Formation (Great Estuarine Group, Inner
891
Hebrides). Transactions of the Royal Society of Edinburgh, Earth Sciences 81, 1–22.
892
Barron, E.J., 1987. Cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology,
893
Palaeoecology 59, 3-29.
894
Bayle, E., 1878. Fossiles principaux des terrains. Explication de la carte géologique de la France. Atlas 4 (1).
895
Service de la Carte Géologique détaillé, Paris.
896
Behrendsen, O., 1891. Zur Geologie des Ostabhanges der argentinischen Cordillere. I. Theil. Zeitschrift der
897
Deutschen Geologischen Gesellschaft 43, 369-420.
898
Beurlen, K., 1958. Die Exogyren. Ein Beitrag zur phylogenetischen Morphogenese der Austern. Neues Jahrbuch
899
für Geologie und Paläontologie, Monatshefte 5, 197-217.
900
Bogdanova, T.N., 1980. New Lower Cretaceous oysters from Mangyshlak. In: Stukalina, G. A. (Ed.), New
901
Species of Fossil Plants and Invertebrates of USSR 5. Paleontologicheskii Instituta, Akademija nauk SSSR,
902
Moscow, 26-28. [In Russian]
903
Bourguet, L., 1742. Mémoires pour Servir a l’Histoire Naturelle des Petrifications dans le Quatre Parties du
904
Monde: avec Figures, et Divers Indices aussi Methodiques que nécessaires. Jean Naulme, The Hague.
905
British Museum (Natural History), 1972. British Mesozoic Fossils. 4th Edition. Trustees of the British Museum
906
(Natural History), London.
907
Brongniart, A., 1822. Corps organisés fossils de la glauconie crayeuse (craie chloritée) de la Perte du Rhône
908
près Bellegarde. In: Cuvier, G., Brongniart (Eds.), Description Géologique des Environs de Paris. G. Dufour and
909
E. D’Ocagne, Amsterdam, Paris.
910
Burckhardt, C., 1900. Coupe géologique de la Cordillère entre Las Lajas et Curacautin. Anales del Museo de La
911
Plata, Sección Geológica y Mineralógica 3, 1-100.
912
Calzada-Badía, S., Botero-Arango, G., 1979. Ceratostreon tuberculiferum landereri, n. ssp. del Aptiense español
913
(Ostreidae). Estudios Geológicos 35, 459-464.
914
Carter, J.G., Harries, P.J., Malchus, N., Sartori, A.F., Anderson, L.C., Bieler, R., Bogan, A.E., Coan, E.V., Cope,
915
J.C.W., Cragg, S.M., García-March, J.R., Hylleberg, J., Kelley, P., Kleemann, K., Kříž, J., McRoberts, C., Mikkelsen,
916
P.M., Pojeta, J. jr., Tëmkin, I., Yancey, T., Zieritz, A., 2012. Part N, Revised, Volume 1, Chapter 31: Illustrated
917
Glossary of the Bivalvia.Treatise Online 48.
918
Casadío, S., 1998. Las ostras del límite Cretácico-Paleógeno de la Cuenca Neuquina (Argentina). Su importancia
919
bioestratigráfica y paleobiogeográfica. Ameghiniana 35 (4), 449-471.
920
Cooper, M.C., 1995. Exogyrid oysters (Bivalvia: Gryphaeoidea) from the Cretaceous of southeast Africa. Part 1.
921
Durban Museum Novitates 20, 1-48.
922
Coquand, H., 1869. Monographie du genre Ostrea. Terrain Crétacé. H. Seren, Marseille.
923
Coria, R.A., Currie, P.J., Koppelhus, E., Braun, A., Cerda, I. 2010. First record of a Valanginian (Early Cretaceous)
924
dinosaur association from South America. 70th Annual Meeting of the Society of Vertebrate Paleontology,
925
Abstracts, 75a.
926
Cox, L.R., 1952. The Jurassic lamellibranch fauna of Cutch (Kachh). No. 3, Families Pectinidae, Amusiidae,
927
Plicatulidae, Limidae, Ostreidae and Trigoniidae (Supplement). Memoirs of the Geological Survey of India,
928
Palaeontologica Indica, Series 9, 3 (4), 1-128.
929
Cox, L.R., 1954. Lower Cretaceous Mollusca of Pointe-a-Pierre, Trinidad. Journal of Paleontology 28 (5), 622-
930
636.
931
Cragin, F.W., 1893. A contribution to the invertebrate paleontology of the Texas Cretaceous. Geological Survey
932
of Texas, Fourth Annual Report, 139-293.
933
Cragin, F.W., 1905. Paleontology of the Malone Jurassic Formation of Texas. U.S. Geological Survey Bulletin
934
266, 1-172.
935
Damborenea, S., Manceñido, M., Riccardi, A.C., 1979, Estudio paleontológico de la Formación Chachao,
936
informe final (Unpublished report). YPF, Buenos Aires, 151 pp.
937
Damborenea, S.E., Echeverría, J., Ros-Franch, S., 2012. Southern Hemisphere Palaeobiogeography of Triassic-
938
Jurassic Marine Bivalves. Springer, Dordrecht, Heidelberg, New York, London. Doi: 10.1007/978-94-007-5098-
939
2.
940
Defrance, J.L.M, 1821. Gryphée. In: Levrault, F.G. (Ed.), Dictionnaire des Sciences Naturelles, dans lequel On
941
Traite Méthodiquement des Différens Êtres de la Nature, Considérés Soit en Eux-Mêmes, d’Aprês l’État Actuel
942
de nos Connoissances, Soit Relativement a l’Utilité qu’en Peuvent Retirer la Médecine, L’Agriculture, le
943
Commerce et les Artes. Suivi d’une Biographie des plus Célèbres Naturalistes 19. Le Normant, Paris, 533-538.
944
Dhondt, A.V., 1992. Palaeogeographic distribution of Cretaceous Tethyan non-rudist bivalves. In: Kollmann,
945
H.A., Zapfe, H. (Eds.), New Aspects on Tethyan Cretaceous Fossil Assemblages. Österreichische Akademie der
946
Wissenschaften, 75-94.
947
Dhondt, A.V., Dieni, I., 1988. Early Cretaceous Bivalves of Eastern Sardinia. Memorie Di Scienze Geologiche.
948
Società Cooperativa Tipografica, Padua.
949
Dhondt, A.V., Jaillard, E., 2005. Cretaceous bivalves from Ecuador and northern Peru. Jurnal of South American
950
Earth Sciences 19, 325-342.
951
Dhondt, A.V., Malchus, N., Boumaza, L., Jaillard, E., 1999. Cretaceous oysters from North Africa: origin and
952
distribution. Bulletin de la Société géologique de France 170 (1), 67-76.
953
Dietrich, W.O., 1938. Lamelibranquios cretácicos de la Cordillera Oriental. In: Scheibe, E.A. (Ed.), Estudios
954
Geológicos y Paleontológicos sobre la Cordillera Oriental de Colombia 2. Departamento de Minas y Petróleo,
955
Bogotá, 81-108.
956
van Diggelen, J., 1994. Overzicht van de Mesozoische en Cenozoische Nautiloidea. GEA 27 (2), 45-51.
957
Douvillé, H., 1879. M. Douvillé présente à la Société, de la part de M. Bayle, l’Atlas du IV volumen de
958
l’Explication de la Carte Géologique de la France. Bulletin de la Société Géologique de France 3 (7), 91-92.
959
Douvillé, H., 1904. Paléontologie, Mollusques fossiles. In: Morgan, J. de (Ed.), Mission Scientifique en Perse 3,
960
études géologiques 4. E. Leroux, Paris, 191-380
961
Douvillé, H., Jourdy, E., 1874. Note sur le partie moyenne du terrain jurassique dans le Berry. Bulletin de la
962
Société géologique de France, Série 3 (3), 97-133.
963
Doyle, P., Poire, D.G., Spalletti, L.A., Pirrie, D., Brenchley, P., Matheos, S., 2005. Relative oxygenation if the
964
Tithonian–Valanginian Vaca Muerta-Chachao formations of the Mendoza Shelf, Neuquén Basin, Argentina. In:
965
Veiga, G.D., Spalletti, L.A., Howell, J.A., Schwarz, E. (Eds.), The Neuquén Basin: a Case Study in Sequence
966
Stratigraphy and Basin Dynamics. Geological Society, Special Publication 252, London, 185-206. Doi:
967
10.1144/GSL.SP.2005.252.01.09.
968
Dujardin, F., 1837. Mémoire sur les couches du sol en Turaine, et description des coquilles de la craie et des
969
Faluns. Mémoires de la Société Géologique de France 12 (12), 211-311.
970
Eudes-Deslongchamps, J.-A., Eudes-Deslongchamps, J.F.E., 1858. Mémoire sur la couche à Leptaena. Intercalée
971
entre le Lias moyen et le Lias supérieur du Calvados. Bulletin de la Société linnéenne de Normandie 3, 132-
972
195.
973
Fernández, M.S., De la Fuente, M., 1988. Nueva tortuga (Cryptodira: Talassemydidae) de la Formación Vaca
974
Muerta (Jurásico, Tithoniano) de la Provincia del Neuquén, Argentina. Ameghiniana 25, 129-138.
975
Fischer de Waldheim, G., 1835. Lettre à M. le Baron de Férrussac sur quelques genres de coquilles du Muséum
976
Demidoff et en particulier sur quelques fossiles de la Crimée. Bulletin de la Société Impériale des Naturalistes
977
de Moscou 8, 101-119.
978
Fischer de Waldheim, G., 1829. Sur les fossils de corps organisés. Bulletin de la Société Impériale des
979
Naturalistes de Moscou 1 (2), 27-32.
980
Fischer, J.-C., 1969. Géologie, paléontologie et paléoécologie du Bathonien en sud-ouest du Massif Ardennais.
981
Mémoires du Museum National d’Histoire Naturelle, Série C 20, 1-319.
982
Fischer, J.C., 1980. Guides Géologiques Régionaux. Fossiles de France et des régions limitrophes. Masson,
983
Paris.
984
Flatt, C.D., 1976. Origin and significance of the oyster banks in the Walnut Clay Formation, Central Texas.
985
Baylor Geological Studies 30, 6-34.
986
Gerhardt, K., 1897. Beitrag zur Kenntniss der Kreideformation in Venezuela und Peru. In: Steinmann, G. (Ed.),
987
Beiträge zur Geologie und Palaeontologie von Südamerika. Neues Jahrbuch für Mineralogie und Geologie zu
988
Dresden. E. Schweizerbart'sche Verlagshandlung, Stuttgart, 65-118.
989
Goldfuss, A., 1834. Petrefacta Germaniæ tam ea, quae in Museo Universitatis Regiae Borussicae Fridericiae
990
Wilhelmiae Rhenanae servantur quam alia quaecunque in Museis Hoeninghusiano Muensteriano aliisque
991
extant, Iconibus et Descriptionibus illustrata 2 (1). Arnz and Company, Düsseldorf.
992
Griffin, M., Casadío, S., Parras, A., 2005. Maastrichtian and Danian species of Turkostreini (Ostreidae,
993
Crassosteinae) from the Neuquén Basin, Argentina. Ameghiniana 42 (2), 257-276.
994
Groeber, P., 1933. Confluencia de los ríos Grande y Barrancas (Mendoza y Neuquén). Descripción de la hoja
995
31c del Mapa Geológico de la República Argentina. Boletín de la Dirección de Minas y Geología 38, 1-72.
996
Gutiérrez Palma, D., 1972. La Exogyra squamata en el Cretáceo medio de la Cordillera Oriental de Colombia.
997
Boletín Geológico INGEOMINAS 19 (3), 69-130.
998
Guzmán, G., 1985. Los grifeidos infracretácicos Aetostreon couloni y Ceratostreon boussingaulti, de la
999
Formación Rosablanca, como indicadores de oscilaciones marinas. Proyecto Cretácico, Contribuciones,
1000
Publicaciones Geológicas Especiales 16, 1-16.
1001
Hayami, I., 1965. Lower Cretaceous marine Pelecypods of Japan, I. Memoirs of the Faculty of Science, Kyusyu
1002
University, Series D, Geology 15 (2), 221-349.
1003
Hill, R.T., 1888. Paleontology of the Trinity Division. In: Branner, J.C. (Ed.), Annual Report of the Geological
1004
Survey of Arkansas 2, 127-152.
1005
Howell, J.A., Schwarz, E., Spalletti, L.A., Veiga, G.D., 2005. The Neuquén Basin: an overview. In: Veiga, G.,
1006
Spalletti, L.A., Howell, J., Schwarz, E. (Eds.), The Neuquén Basin: A Case Study in Sequence Stratigraphy and
1007
Basin Dynamics. Geological Society, Special Publications 252, London, 203-216.
1008
Imlay, R.W., 1937. Lower Neocomian fossils from the Miquihuana region, Mexico. Journal of Paleontology 11
1009
(7), 552-574.
1010
Imlay, R.W., 1940a. Neocomian faunas of northern Mexico. Bulletin of the Geological Society of America 51
1011
(1), 117-190.
1012
Imlay, R.W., 1940b. Upper Jurassic Pelecypods from Mexico. Journal of Paleontology 14 (5), 393-411.
1013
International Commission on Zoological Nomenclature, (2000). International Code of Zoological
1014
Nomenclature. The International Trust for Zoological Nomenclature, London.
1015
Jourdy, E., 1924. Histoire naturelle des Exogyres. Annales de Paléontologie 13, 1-104.
1016
Kauffman, E.G., 1973. Cretaceous Bivalvia. In: Hallam, A. (Ed.), Atlas of palaeobiogeography. Elsevier,
1017
Amsterdam.
1018
Kershaw, S., 1994. Classification and geological significance of biostromes. Facies 31, 81-92.
1019
Kiessling, W. Pandey, D.K., Schemm-Gregory, M., Mewis, H., Aberhan, M., 2011. Marine benthic invertebrates
1020
from the Upper Jurassic of northern Ethiopia and their biogeographic affinities. Journal of African Earth
1021
Sciences 59, 195-214. Doi: 10.1016/j.jafrearsci.2010.10.006.
1022
Kietzmann D.A., Palma, R.M., Riccardi, A.C., Martín-Chivelet, J., López-Gómez, J., 2014. Sedimentology and
1023
sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta Formation): a misunderstood
1024
exceptional source rock in the southern Mendoza area of the Neuquén Basin, Argentina. Sedimentary Geology
1025
302, 64-86.
1026
Kietzmann, D.A., Palma, R.M., 2009. Tafofacies y biofacies de la Formación Vaca Muerta en el sector
1027
surmendocino de la Cuenca Neuquina: implicancias paleoecológicas, sedimentológicas y estratigráficas.
1028
Ameghiniana 46 (2), 321-343.
1029
Kietzmann, D.A., Palma, R.M., Bressan, G.S., 2008. Facies y microfacies de la rampa Tithoniana-Berriasiana de
1030
la Cuenca Neuquina (Formación Vaca Muerta) en la sección del arroyo Loncoche-Malargüe, provincia de
1031
Mendoza. Revista de la Asociación Geológica Argentina 63 (4), 696-713.
1032
Koch, C.L., Dunker, W., 1837. Beiträge zur Kenntnis des norddeutschen Oolithgebildes und dessen
1033
Versteinerungen. Oehme & Müller, Braunschweig.
1034
Koppka, J., 2015. Revision of the Bivalvia from the Upper Jurassic Reuchenette Formation, Northwest
1035
Switzerland-Ostreoidea. Zootaxa 3927 (1), 1-117. Doi: 10.11646/zootaxa.3927.1.1
1036
Krauss, F., 1843. Uber die geologischen Verhältnisse der östlichen Küste des Kaplandes. Amtlicher Berichte
1037
Gesellschaft für Deutschnaturforschungs der Aertze, 126.
1038
Lamarck, J.B., 1801. Système des animaux sans vertèbres. L’auteur, au Muséum d’Histoire Naturelle,
1039
Deterville, Libraire, Paris.
1040
Lazo, D.G., 2007. Análisis de biofacies y cambios relativos del nivel del mar en el Miembro Pilmatué de la
1041
Formación Agrio, Cretácico Inferior de Cuenca Neuquina, Argentina. Ameghiniana 44, 73-89.
1042
Lazo, D.G., Cataldo, C.S., Luci, L., Aguirre-Urreta, M.B., 2017a. Groeber y los invertebrados fósiles del Miembro
1043
La Tosca, Cretácico Inferior de la Cuenca Neuquina: una historia de controversias paleontológicas. Revista de
1044
la Asociación Geológica Argentina 74 (1), 19-39.
1045
Lazo, D.G., Cataldo, C.S., Luci, L., Vennari, V.V., Toscano, A.G., Aguirre-Urreta, M.B., 2017b. Macrofaunas
1046
bentónicas del Berriasiano-Valanginiano inferior de la Sierra de Cara Cura, Mendoza. Ameghiniana 54 (4R), 30.
1047
Lazo, D.G., Cichowolski, M., 2003. First plesiosaur remains from the Lower Cretaceous of the Neuquén Basin,
1048
Argentina. Journal of Paleontology 77, 784-789.
1049
Leanza, H.A., Repol, D., Hugo, C.A., Sruoga, P., 2006. Hoja Geológica 3769-31, Chorriaca, provincia del
1050
Neuquén. Programa Nacional de Cartas Geológicas de la República Argentina a escala 1:100000. Instituto de
1051
Geología y Recursos Minerales. SEGEMAR. Boletín 354, 1-93.
1052
Leanza, H.A., Sattler, F., Martínez, R.S., Carbone, O., 2011. La Formación Vaca Muerta y equivalentes (Jurásico
1053
Tardío-Cretácico Temprano) en la Cuenca Neuquina. In: Leanza, H., Arregui, C., Danieli, J.C. (Eds.), Relatorio del
1054
XVIII Congreso Geológico Argentino: Geología y Recursos Naturales de la provincia del Neuquén. Asociación
1055
Geológica Argentina, Buenos Aires, 113-129.
1056
Legarreta, L., Kozlowski, E., 1981. Estratigrafía y sedimentología de la Formación Chachao, provincia de
1057
Mendoza. VIII Congreso Geológico Argentino, Actas II, 521-543.
1058
Leymerie, A., 1840. Comunication. In: Bulletin de la Societé Geologique de France 11. Société Géologique de
1059
France, Paris, 121-126.
1060
Leymerie, A., 1842. Suite de mémoire sur le terrain Crétacé de Départment de l’Aube. Seconde partie. Partie
1061
Paléontologique. Mémoires de la Société Géologique de France 5 (1), 1-34.
1062
de Loriol, P., 1904. Étude sur les mollusques et brachiopodes de l'Oxfordien supérieur et moyen du Jura
1063
Lédonien. Mémoires de la Société paléontologique Suisse 31, 161-303.
1064
Luci, L., Lazo, D.G., 2012. The genus Steinmanella Crickmay (Bivalvia) in the transition between the Vaca
1065
Muerta and Mulichinco formations, early Valanginian, Neuquén Basin, Argentina. Ameghiniana 49 (1), 96-117.
1066
Luci, L., Toscano, A.G., Lazo, D.G., 2019. Palaeoecological analysis of a sclerobiont fauna on a single basibiont
1067
across the Valanginian of the Neuquén Basin, west-central Argentina. Lethaia 52 (4), 523-549. Doi:
1068
10.1111/let.12329.
1069
Malchus, N., 1990. Revision der Kreide-Austern (Bivalvia: Pteriomorphia) Ägyptens (Biostratigraphie,
1070
Systematik). Berliner Geowissenschaftliche Abhandlungen, Reihe A 125, 1-231.
1071
Malchus, N., Aberhan, M., 1998. Transitional Gryphaeate/Exogyrate oysters (Bivalvia:Gryphaeidae) from the
1072
Lower Cretaceous of northern Chile. Journal of Paleontology 72 (4), 619-631.
1073
Mathéron, P., 1843. Catalogue méthodique et descriptif des corps organisés fossiles du Département des
1074
Bouches-du-Rhône et lieux circonvoisins précédé d’un mémoire sur les terrains supérieurs au Grès Bigarre du
1075
S.E. de la France. Carnaud fils, Marseille.
1076
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., 2005. The Phanerozoic
1077
record of global sea-level change. Science 310, 1293-1298.
1078
Mirkamalov, K.K., 1963. Klassifikatsiya ekzogir (Classification of the exogyras). Byulleten' Moskovskogo
1079
Obshchestvo Ispytateley Prirody (Bulletin of the Moscow Society of Naturalists), Novaya Seriya 68, Otdel
1080
Geologicheskiy 38 (5), 152-153. [in Russian]
1081
Mohammad Aqrabawi, A., 1993. Oysters (Bivalvia-Pteriomorphia) of the Upper Cretaceous rocks of Jordan.
1082
Palaeontology, stratigraphy and comparison with the Upper Cretaceous oysters of northwest Europe.
1083
Mitteilungen des geologisch-paläontologischen Instituts der Universität Hamburg 75, 1-135.
1084
Muséum National d’Histoire Naturelle, Paris, 2019. Paleontologie Collection (Jourdy collection, syntypes).
1085
MNHN.F.R52889, https://science.mnhn.fr/institution/mnhn/collection/f/item/r52889. MNHN.F.R52890,
1086
https://science.mnhn.fr/institution/mnhn/collection/f/item/r52890.
1087
Muséum National d’Histoire Naturelle, Paris, 2019. Paleontologie Collection (Jourdy collection).
1088
MNHN.F.R52868, https://science.mnhn.fr/institution/mnhn/collection/f/item/r52868.
1089
Muséum National d’Histoire Naturelle, Paris, 2019. Paleontologie Collection (Fischer collection).
1090
MNHN.F.R05040, https://science.mnhn.fr/institution/mnhn/collection/f/item/r05040
1091
Muséum National d’Histoire Naturelle, Paris, 2019. Paleontologie Collection (Maire collection, syntypes).
1092
MNHN.F.A26394, https://science.mnhn.fr/institution/mnhn/collection/f/item/a26394?listIndex=3.
1093
Nagao, T., 1934. Cretaceous Mollusca from the Miyako District, Honshu, Japan (Lamellibranchiata and
1094
Gastropoda). Journal of the Faculty of Science, Hokkaido Imperial University. Series 4, Geology and Mineralogy
1095
2(3), 177-278.
1096
Newton, R.B., 1924. On some marine Cretaceous Mollusca from Trinidad. Journal of Molluscan Studies 16 (3),
1097
140-148.
1098
Nyst, H. J. P., Galeotti, H., 1840. Description de quelques fossiles du calcaire jurassique de Tehuacan, au
1099
Mexique. Bulletin de l’Académie Royale des Sciences et Belles-lettres de Bruxelles 7 (2), 212-221.
1100
Oekentorp, K., Siegfrid, P., 1974. Fossilien Westfalens. Lamellibranchiata. Münster Forschungen zur Geologie
1101
und Paläontologie 33-34, 123-204.
1102
d’Orbigny, A., 1842. Voyage dans l’Amérique Méridionale (le Brésil, la République orientale del Uruguay, la
1103
République Argentine, la Patagonie, la République du Chili, la République de Bolivia, la République du Pérou)
1104
Exécuté Pendant les Années 1826–1833, Tome 3, Partie 4, Paléontologie. Bertrand and Levrault, Strasbourg,
1105
Paris.
1106
d’Orbigny, A., 1843-1847. Paléontologie Française. Description Zoologique et Géologique de Tous Mollusques
1107
et Rayonnés Fossiles de France. Terrains Cretacés. Serie 1, Tome Troisième. Arthus Bertrand, Paris.
1108
Pervinquière, L., 1910. Gryphaea latissima Lamarck, 1801. In: Paleontologia Universalis. Fiche 194. Paris.
1109
Pervinquière, L., 1912. Études de paléontologie tunisienne. II. Gastropodes et Lamellibranches des terrains
1110
crétacés. Carte geologique de la Tunisie 14, 1-352.
1111
Pictet, F.J., Campiche, G., 1871. Description des Fossiles du Terrain Crétacé des Environs de Sainte-Croix.
1112
Quatrième Partie. In : Pictet, F.J. (Ed.), Matériaux pour la Paléontologie Suisse, Series 5 (1). H. Georg, Geneva,
1113
1-352.
1114
Pictet, F.J., Roux, W., 1853. Description des Mollusques Fossiles que se trouvent dans les Grès Verts des
1115
Environs de Genève. Jules Fick, Genève.
1116
Poulsen, C.J., Barron, E.J., Arthur, M.A., Peterson, W.H., 2001. Response of the mid-Cretaceous global oceanic
1117
circulation to tectonic and CO2 forcings. Paleoceanography 16 (6), 576-592.
1118
Prozorovskii, V.A., Korotkov, V.A., Mamontova, E.V., Poretskaja, E.S., Prozorovskaja, E.L., 1961. Neocomian of
1119
Western Turkmenia. New Series 51. Trudy Vsegei, Leningrad. [In Russian]
1120
Pugaczewska, H., 1975. Neocomian oysters from central Poland. Acta Paleontologica Polonica 20, 47-83.
1121
Pugaczewska, H., 1978. Jurassic pelecypods from Cuba. Acta Paleontologica Polonica 23 (2), 163-186.
1122
Reboulet, S., Szives, O., Aguirre-Urreta, M.B., Barragán, R., Company, M., Idakieva, V., Ivanov, M., Kakabadze,
1123
M.V., Moreno-Bedmar, J.A., Sandoval, J., Baraboshkin, E.J., Çaǧlar, M.K., Főzy, I., González-Arreola, C., Kenjo,
1124
S., Lukeneder, A., Risossadat, S.N., Rawson, P.F., Tavera, J.M., 2014. Report on the Fifth International Meeting
1125
of the IUGS Lower Cretaceous ammonite working group, the Kilian Group (Ankara, Turkey, 31 August 2013).
1126
Cretaceous Research, 50, 126-137. Doi: 10.1016/j.cretres.2014.04.001.
1127
Renngarten, V.,1926. La faune des dépôts crétacés de la región d’Assa-Kambileska, Caucase du Nord.
1128
Mémoires du Comité Géologique. Nouvelle Série 147, 1-132. [In Russian with French summary]
1129
Roemer, F.A., 1852. Die Kreidebildungen von Texas und ihre Organischen Einschlüsse. Marcus, Bonn.
1130
Roemer, F.A., 1841. Die Versteinerungen des Norddeutschen Kreidegebirges. Hahnsche Hofbuchhandlung,
1131
Hannover.
1132
Rollier, L., 1917. Fossiles nouveaux ou peu connus des terrains secondaires (Mésozoïques) du Jura et des
1133
contrées environnantes. Mémoires de la Société Paléontologique Suisse 42, 501-634.
1134
Rubilar, 2009. Ostras fósiles del Jurásico Superior (Oxfordiano) en la Cordillera de la Costa de Iquique (I
1135
REGIÓN): breve caracterización e implicancia de su registro. Congreso Geológico Chileno 12, 10-34.
1136
Rubilar, A., Damborenea, S., Manceñido, M., 2000. Ostras del Tithoniano-Valanginiano en el sur de Mendoza
1137
(Argentina). Actas del IX Congreso Geológico Chileno 1, 549.
1138
Rubilar, A.E., Lazo, D.G., 2009. Description of Aetostreon pilmatuegrossum sp. nov. from the Lower Cretaceous
1139
of Argentina (Neuquén Basin), and significance of the conservative left valve morphology in oysters of the
1140
genus Aetostreon Bayle. Cretaceous Research 30, 727-748.
1141
Rubilar, A.R., 2008. Las ostras fósiles del Mesozoico en Chile. Libro de actas 1º Simposio de Paleontología en
1142
Chile, 33-38.
1143
Sacco, F., 1897. I molluschi dei terreni terziarii del Piemonte e della Liguria. Musei Zoologia e Anatomia
1144
Comparata, Realle Università de Torino, Bolletino 12(298), 99-102.
1145
Schwarz, E., 1999. Facies sedimentarias y modelo deposicional de la Formación Mulichinco (Valanginiano),
1146
Cuenca Neuquina Septentrional. Asociación Argentina de Sedimentología Revista 6 (1-2), 37-59.
1147
Schwarz, E., Álvarez-Trentini, G., Valenzuela, M.E., 2013. Ciclos mixtos carbonáticos/silicoclásticos en el
1148
miembro superior de la Formación Mulichinco (Yacimiento Cañadón Amarillo, Cuenca Neuquina central,
1149
Argentina): implicancias secuenciales y para caracterización de reservorios. Latin American Journal of
1150
Sedimentology and Basin Analysis 20 (1), 21-49.
1151
Schwarz, E., Buatois, L.A., 2012. Substrate-controlled ichnofacies along a marine sequence boundary: the
1152
Intra-Valanginian Discontinuity in central Neuquén Basin (Argentina). Sedimentary Geology 277-278, 72-87.
1153
Doi: 10.1016/j.sedgeo.2012.07.014
1154
Schwarz, E., Howell, J.A., 2005. Sedimentary evolution and depositional architecture of a lowstand sequence
1155
set: the Lower Cretaceous Mulichinco Formation, Neuquén Basin, Argentina. In: Veiga, G.D., Spalletti, L.A.,
1156
Howell, J. A., Schwarz, E. (Eds.), The Neuquén Basin, Argentina: a Case Study in Sequence Stratigraphy and
1157
Basin Dynamics. Geological Society, Special Publications 252, London, 109-138.
1158
Schwarz, E., Spalletti, L.A., Veiga, G.D., 2011. La Formación Mulichinco (Cretácico Temprano) en la Cuenca
1159
Neuquina. In: Leanza, H., Arregui, C., Danieli, J.C. (Eds.), Relatorio del XVIII Congreso Geológico Argentino:
1160
Geología y Recursos Naturales de la provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires,
1161
131-144.
1162
Scott, R.W., 2007. Upper Aptian-Albian bivalves of Texas and Sonora: biostratigraphic, paleoecologic and
1163
biogeographic implications. New Mexico Museum of Natural History and Science Bulletin 39, 1-39.
1164
Seeling, J., Bengston, P., 1999. Cenomanian oysters from the Sergipe Basin, Brazil. Cretaceous Research 20,
1165
747-765.
1166
Seilacher, A., Matyja, B.A., Wierzbowski, A., 1985. Oyster beds: morphologic response to changing substrate
1167
conditions. In: Bayer, U., Seilacher, A. (Eds.), Sedimentary and Evolutionary Cycles. Springer-Verlag, Berlin,
1168
412-435. Doi: 10.1007/BFb0009854.
1169
Smith, A.G., Smith, D.G., Funnell, B.M., 1994. Atlas of Mesozoic and Cenozoic Coastlines. Cambridge University
1170
Press, Cambridge.
1171
Smith, W., 1819. Strata identified by organized fossils, containing prints of colored paper of the characteristic
1172
specimens in each stratum. Part 4. W. Arding, London, 25-32.
1173
Sowerby, J., 1822. The Mineral Conchology of Great Britain; or Coloured Figures and Descriptions of those
1174
Remains of Testaceous Animals or Shells, which have been Preserved at Various Times and Depths in the Earth
1175
4 (2-3). W. Arding, London, 115-151.
1176
Spalletti, L.A., Veiga, G.A., Schwarz, E., Franzese, J., 2008. Depósitos de flujos gravitacionales subácueos de
1177
sedimentos en el flanco activo de la Cuenca Neuquina durante el Cretácico Temprano. Revista de la Asociación
1178
Argentina de Sedimentología 63 (3), 442-453.
1179
Spalletti. L.A., Franzese, J.R., Matheos, S.D., Schwarz, E., 2000. Sequence stratigraphy on a tidally dominated
1180
carbonate-siliciclastic ramp, the Tithonian-early Berriasian of the Southern Neuquén Basin, Argentina. Journal
1181
of the Geological Society 157, 433-446.
1182
Stanton, T.W., 1947. Studies of some Comanche pelecypods and gastropods. U.S. geological Survey,
1183
Professional Paper 221. United States Department of Interior, Washington.
1184
Stefanini, G., 1925. Description of fossils from South Arabia and British Somaliland. In: Little, O.H. (Ed.), The
1185
geography and geology of Makalla (South Arabia). Geological Survey of Egypt, Cairo, 143-221.
1186
Stenzel, H.B., 1971. Oysters, Treatise on Invertebrate Paleontology, part N, v. 3, Mollusca 6 (Bivalvia). Kansas
1187
University Press, Lawrence, Kansas.
1188
Stoyanow, A., 1949. Lower Cretaceous Stratigraphy in Southeastern Arizona. Geological Society of America,
1189
New York.
1190
Tavani, G., 1948. La fauna malacological cretacea della Somalia e dell’Ogaden. Paleontographia italica 43, 83-
1191
153.
1192
Toscano, A.G., Lazo, D.G., Luci, L., 2018. Taphonomy and paleoecology of Lower Cretaceous oyster mass
1193
occurrences from west-central Argentina and evolutionary Paleoecology of gregariousness in oysters. Palaios
1194
33 (6), 237-255. Doi: 10.2110/palo.2017.096
1195
Toula, F., 1890. Geologische Untersuchungen im östlichen Balkan und in den angrenzenden gebieten.
1196
Denkschriften der Kaiserlichen Akademie der Wissenschaften 57, 323-400.
1197
Vialov, O.S., 1936. Sur la classification des huîtres. Doklady Akademii Nauk SSSR, Serie 2, 4 (1), 17-20.
1198
Weaver, C.E., 1931. Paleontology of the Jurassic and Cretaceous of western central Argentina. Memoirs of the
1199
University of Washington 1. University of Washington Press, Seattle, Washington.
1200
Woods, H., 1913. A Monograph of the Cretaceous Lamellibranchiata of England 2 (9). Palaeontographical
1201
Society, London, 41-473.
1202
1203
Figure Captions
1204
Figure 1: Map of Argentina and of the Mendoza province (inset) and regional map showing the location of the
1205
fossil localities, Sierra de la Cara Cura (36°40'38.90"S; 69°40'20.70"O) and Puesto Sierra de Reyes
1206
(36°57'40.70"S; 69°38'5.30"O).
1207
Figure 2: Schematic stratigraphic section of the studied area. The rectangle shows the lithostatigraphic interval
1208
section studied. Based on Schwarz and Buatois (2012).
1209
Figure 3: General view of the studied section. A. Approximate stratigraphic position of the Intra-Valanginian
1210
Discontinuity between the Vaca Muerta and the Mulichinco formations. B. Detail of the firmground with
1211
Glossifungites ichnofacies that represents the Intra-Valanginian Discontinuity in the Sierra de la Cara Cura
1212
section.
1213
Figure 4: Stratigraphic section of the top of the Vaca Muerta and the base of the Mulichinco formations at the
1214
Sierra de la Cara Cura section showing units, ammonoid zonations, lithology and oyster records.
1215
Figure 5: Aetostreon latissimum (Lamarck, 1801). Specimens from Sierra de la Cara Cura. All scale bars
1216
represent 1 cm. A, MCNAM-PI 24928.96, left valve, external view. B, MCNAM-PI 24928.85, left valve, internal
1217
view, dorsal area. C, MCNAM-PI 24928.30, left valve, external view. D, MCNAM-PI 24928.43, left valve,
1218
external view. E, MCNAM-PI 24928.59, left valve, internal view. The adductor muscle scar corresponds to the
1219
right valve and is preserved within the sedimentary filling. F, MCNAM-PI 24928.88, left valve, internal view,
1220
dorsal area. G, MCNAM-PI 24928.58, articulated valves, view of right valve. ams: adductor muscle scar; ela:
1221
exogyroid ligament area; gl: growth lines; gla: gyrostreoid ligament area; k: keel; pr: paradontal recess; t:
1222
tubercles.
1223
Figure 6: Microstructure of A. latissimum shell. A. Thin section of articulated specimen the from Sierra de la
1224
Cara Cura, dorsoventrally sectioned. DM, dorsal margin. B. Detail of the microstructure of the left valve. C.
1225
Detail of the microstructure of the right valve. The arrows point towards the inner side of the valve. CB, calcite
1226
bands; CCF, complex cross-foliated; HC, hollow chamber; RF, regular foliated; M-CCF, mosaic complex cross-
1227
foliated.
1228
Figure 7: Aetostreon subsinuatum (Leymerie, 1842). Specimens from Sierra de la Cara Cura. All scale bars
1229
represent 1 cm. A, MCNAM-PI 24926.98, articulated valves, view of right valve. B, MCNAM-PI 24926.125, left
1230
valve, internal view. C, MCNAM-PI 24926.39, articulated valves, view of left valve. D, MCNAM-PI 24926.179,
1231
left valve, external view. E, MCNAM-PI 24926.68, left valve, internal view. F, MCNAM-PI 24926.67, left valve,
1232
internal view. af: anterior fold; ams: adductor muscle scar; ela: exogyroid ligament area; gla: gyrostreoid
1233
ligament area; k: keel; pr: paradontal recess; pb: paradontal buttress; t: tubercles.
1234
Figure 8: Aetostreon subsinuatum (Leymerie, 1842). Specimens from Sierra de la Cara Cura. All scale bars
1235
represent 1 cm. A, MCNAM-PI 24926.226, articulated valves, posterior view of left valve. B, MCNAM-PI
1236
24926.59, left valve, external view. C-D, MCNAM-PI 24926.78, articulated valves. C, view of left valve. D, view
1237
of right valve. E, MCNAM-PI 24926.130, articulated valves, view of right valve. F, MCNAM-PI 24926.11,
1238
articulated valves, view of left valve. G, MCNAM-PI 24926.169, articulated valves, view of left valve. H,
1239
MCNAM-PI 24926.104, left valve, external view. af: anterior fold; agc: anterior globoid convexity; ar: anterior
1240
ridge; gl: growth lines; k: keel; sg: shallow groove; t: tubercles.
1241
Figure 9: Microstructure of A. subsinuatum . A. Thin section of articulated specimen from Sierra de la Cara
1242
Cura, dorsoventrally sectioned. DM, dorsal margin. B. Detail of the microstructure of the right valve. C. Detail
1243
of the microstructure of the umbonal area of the left valve. D. Detail of the microstructure of the left valve.
1244
The arrows point towards the inner side of the valve. CCF, complex-cross foliated; C-CCF, cone complex-cross
1245
foliated; Ha-CCF, high angle complex-cross foliated; HC, hollow chamber; La-CCF, low angle complex-cross
1246
foliated; PL, prismatic layer; RF, regular foliated.
1247
Figure 10: Ceratostreon hilli (Cragin, 1893). Specimens from Sierra de la Cara Cura. All scale bars represent 1
1248
cm. A, MCNAM-PI 24936.1, right valve, internal view. B, MCNAM-PI 24936.5, left valve, internal view. C,
1249
MCNAM-PI 24936.8, left valve, internal view. D, MCNAM-PI 24936.10, articulated valves, view of right valve. E,
1250
MCNAM-PI 24936.9, articulated valves, view of posterior area. F, H, MCNAM-PI 24936.12, articulated valves,
1251
view of left valve and of posterior area, respectively. G, J, MCNAM-PI 24936.11, articulated valves, general
1252
view of right valve and view of anterior area, respectively. I, MCNAM-PI 24936.2, right valve, internal view. K,
1253
O, MCNAM-PI 24936.4, right valve, general internal view and internal view of dorsal area. L, MCNAM-PI
1254
24936.13, articulated valves, view of left valve. M, MCNAM-PI 24936.6, left valve, internal view. N, MCNAM-PI
1255
24936.7, left valve, internal view. P, MCNAM-PI 24936.3, right valve, internal view of dorsal area. ams:
1256
adductor muscle scar; ap: alate projection; ch: chomata; ela: exogyroid ligament area; gla: gyrostreoid
1257
ligament area; k: keel; pb: paradontal buttress; pdp: postero-dorsal platform; pp: paradontal process; pr:
1258
paradontal recess; pro: protruding rib; r: rib; rch: relict chomata; t: tubercles.
1259
Figure 11: Microstructure of C. hilli shell. A. Thin section of articulated specimen from Sierra de la Cara Cura,
1260
dorsoventrally sectioned. DM, dorsal margin. B, C. Detail of the microstructure left valve. D. Detail of
1261
microstructure of the umbonal area. The arrows point towards the inner side of the valve. CCF, complex cross-
1262
foliated; Ci-CCF, chomata-induced complex-cross foliated; Hb-CCF, herringbone complex-cross foliated; PL,
1263
prismatic layer; RF, regular foliated. RV, right valve; LV, left valve.
1264
Figure 12: Nanogyra (N.) brevisulcata, n. sp. Specimens from Sierra de la Cara Cura. All scale bars represent 1
1265
cm. A, F, J, MCNAM-PI 24932.122. Holotype, left valve. Anterior view, posterior view and general external
1266
view, respectively. B, MCNAM-PI 24932.52. Paratype, left valve, external view. C, MCNAM-PI 24932.27.
1267
Paratype, left valve, anterior view. D, MCNAM-PI 24932.174. Paratype, articulated valves, view of right valve.
1268
E, MCNAM-PI 24932.163, articulated valves, view of right valve. G, MCNAM-PI 24932.67. Paratype, left valve,
1269
external view. H, MCNAM-PI 24932.123. Paratype, articulated valves, view of right valve. I, MCNAM-PI
1270
24932.175. Paratype, articulated valves, view of right valve. K, MCNAM-PI 24932.32. Paratype, left valve,
1271
external view. L, MCNAM-PI 24932.141. Paratype, articulated valves, view of left valve. M, MCNAM-PI
1272
24932.73. Paratype, left valve, external view. N, MCNAM-PI 24932.20. Paratype, left valve, external view. O,
1273
MCNAM-PI 24932.153, fragment of left valve, internal view. af: anterior fold; ar: anterior ridge; gl: growth
1274
lines; grla: gryphaeoid ligament area; gyla: gyrostreoid ligament area; k: keel; s: sulcus; t: tubercle.
1275
Figure 13: Microstructure of N. (N.) brevisulcata. A. Thin section of articulated specimen from Sierra de la Cara
1276
Cura, dorsoventrally cut. DM, dorsal margin. B. Detail of the microstructure of the umbonal area of left valve.
1277
C. Detail of the microstructure of the right valve. D. Detail of the microstructure of the left valve, antero-
1278
posteriorly sectioned. The arrows point towards the inner side of the valve. CCF, complex-cross foliated; HC,
1279
hollow chamber, PL, prismatic layer; RF, regular foliated.
1280
Figure 14: Biostratigraphic scheme of oyster occurrences in the Mendoza Group of the Neuquén Basin
1281
showing units, ammonoid zonations and type of oyster record (isolated records, type-1, type-2 and type-3
1282
OMOs).
1283
Figure 15: Distribution of A. latissimum, A. subsinuatum, C. hilli and N. (N.) brevisulcata during the Early
1284
Cretaceous. Realm boundaries according to Kauffman (1973). Palaeo-coastline reconstruction after Smith et
1285
al. (1994).
1286
1287
Toscano and Lazo: material collection and study; conceptualization, visualization and writing of the manuscript. Lazo: project supervision and funding acquisition.