Temperature dependence of photoreflectance line shapes in GaAsAlGaAs multiple quantum wells

Temperature dependence of photoreflectance line shapes in GaAsAlGaAs multiple quantum wells

Superlattices and Microstructures, VoL 3, No. 3, 1987 TEMPERATURE DEPENDENCE IN G a A s / A I G a A s 235 OF P H O T O R E F L E C T A N C E LINE M...

252KB Sizes 0 Downloads 48 Views

Superlattices and Microstructures, VoL 3, No. 3, 1987

TEMPERATURE DEPENDENCE IN G a A s / A I G a A s

235

OF P H O T O R E F L E C T A N C E LINE MULTIPLE QUANTUM WELLS

SHAPES

O.J. G l e m b o c k i and B.V. S h a n a b r o o k U.S. N a v a l R e s e a r c h L a b o r a t o r y Washington, DC 20375, U S A Received

August

17,

1986

The t e m p e r a t u r e d e p e n d e n c e of the p h o t o r e f l e c t a n c e (PR) line s h a p e of the e x c i t o n i c t r a n s i t i o n s in GaAs/AIGaAs multiple quantum wells has b e e n studied. At low t e m p e r a t u r e s , near 6K, we f i n d that the PR lines can be d e s c r i b e d by a d i e l e c tric f u n c t i o n of a L o r e n t z i a n o s c i l l a t o r . At h i g h e r t e m p e r a tures, we have o b s e r v e d the evolution of the dielectric function from one w i t h a L o r e n t z i a n a b s o r p t i o n p r o f i l e to one w i t h a G a u s s i a n absorption profile. The dielectric function of excitonic absorptions is e x p e c t e d to e x h i b i t this b e h a v i o r in c a s e s of w e a k e x c i t o n - p h o n o n coupling.

The o p t i c a l m o d u l a t i o n t e c h n i q u e of photoreflectance has provided a simple and a c c u r a t e method for obtaining the energies of c o n f i n e d s t a t e s in such systems as m u l t i p l e q u a n t u m w e l l s (MQW), *,2 modulation doped heterojunctions* and "NIPI" structures. 3 The ability to obtain accurate values for transition e n e r g i e s is made possible by the fact that the p h o t o e x c i t e d c a r r i e r s lead to a changing surface electric field. Therefore, the electroreflectance t h e o r y of A s p n e s can be a p p l i e d to o b t a i n the transition energies. 4 In the case of low e l e c t r i c fields, the f i e l d - i n d u c e d c h a n g e in the d i e l e c t r i c f u n c t i o n is g i v e n by: A~ = AE,

+ i,5£2 - e *e (E - E,

+ it)-"

(I)

where E is the p h o t o n energy, Eg , is the g a p energy, and [ is a L o r e n t z i a n broadening p a r a m e t e r . The c r i t i c a l p o i n t type d e t e r m i n e s n, w h i c h is n=3 for 2D critical points and n=5/2 for 3D c r i t i c a l points. In Eq. (i) , the phase factor G depends u p o n the c r i t i c a l p o i n t type and u p o n f a c t o r s such as nonuniform fields and i n t e r f e r e n c e p h e n o m e n o n . 4 For 2D and 3D c r i t i c a l points, Eq. (i) is r e l a t e d to the third derivative with respect to energy of the unperturbed dielectric function. In the case of MQW, the c o n f i n e m e n t of c a r r i e r s in the well m a t e r i a l leads to strong excitonic resonances in the a b s o r p t i o n profile, an e f f e c t w h i c h persists e v e n at r o o m t e m p e r a t u r e , s We h a v e r e c e n t l y c o m p a r e d PR to p h o t o l u m i n e s c e n c e

0749-6036/87/030235 + 04 $02.00/0

excitation spectroscopy and f o u n d that the t r a n s i t i o n s o b s e r v e d in PR are excitonic up to 250K. 6 For excitons, the e l e c t r i c f i e l d m o d u l a t e d d i e l e c t r i c function is g i v e n by Eq. (i) w i t h n=2. This c o r r e s p o n d s to a first d e r i v a t i v e 4 of w i t h r e s p e c t to e i t h e r the e x c i t o n e n e r g y gap, Eg , or w i t h r e s p e c t to the exciton l i f e t i m e (~i/[). In this case, the p h a s e factor, @, does not d e p e n d u p o n the c r i t ical point type and in the a b s e n c e of nonuniform fields and inteference effects, @ can be u s e d to d e t e r m i n e the relative contributions to A£ from the exciton energy g a p and l i f e t i m e m o d u l a tion m e c h a n i s m s . 6 In addition, in MQW the total integrated intensity of the t r a n s i t i o n can also be m o d u l a t e d by the field, resulting in an n=l c o n t r i b u t i o n from Eq. (i) to the PR signal. 6 The form of the d i e l e c t r i c function u s e d to o b t a i n Eq. (i) a s s u m e s L o r e n t z i a n b r o a d e n i n g . However, it is k n o w n from the theoretical w o r k of T o y o z a w a that in the p r e s e n c e of strong exciton-phonon coupling or w e a k c o u p l i n g at h i g h t e m p e r a tures the form of the a b s o r p t i o n profile can c h a n g e f r o m L o r e n t z i a n to G a u s s i a n . 7 In the case of M Q W there is some experimental evidence of this p h e n o m e n o n in the room temperature experiments of Chemla et al.' who o b s e r v e d that for 100A MQW a Gaussian line shape is r e q u i r e d to d e s c r i b e the a b s o r p t i o n data. Furthermore, r e c e n t PR m e a s u r e m e n t s f o u n d that n=3 (3rd d e r i v a t i v e of 2D c r i t i c a l point) in Eq. (i) fits better to room temperature data than the e x p e c t e d n=2

© 1987 Academic Press Inc. (London) Limited

Superlattices and Microstructures, Vo/. 3, No. 3, 1987

236

llH T = 6K %

I

0.2

I ...~

I !

11 L

¢. 0

400 >l--

DONOR RELATED -0.2 DATA

....

GAUSSIAN

LORENTZIAN

Z "' I-Z m

........

-0.4

e," l:*..

-0.6

I 1.522

I 1.524

I 1.526

I 1.528

ENERGY (eV) Figure I. Comparison of 6K PR data (dotted line) to &a, calculated from dielectric functions having Lorentzian

(solid) a n d profiles.

Gaussian

(dashed)

absorption

(exciton). ~ These facts suggest a break down of Eq. (i) at r o o m t e m p e r a t u r e . In o r d e r to b e t t e r u n d e r s t a n d exciton lines in MQW, we h a v e c o m p a r e d at v a r i o u s t e m peratures, PR l i n e s h a p e s to Aa calculated from excitonic dielectric functions having Gaussian and Lorentzian absorption profiles. Henceforth, we will u s e the terms Lorentzian and Gaussian in referr i n g to t h e s e d i e l e c t r i c functions. The MQW sample u s e d in o u r e x p e r iments had barrier and well widths of 150A and 200A respectively. The total t h i c k n e s s of the Q W m a t e r i a l w a s 2~. In o r d e r to r e d u c e the s u r f a c e f i e l d s in the v i c i n i t y of the q u a n t u m w e l l s , the s a m p l e was c l a d w i t h 3 0 0 0 A of A I G a A s . Measurem e n t s w e r e p e r f o r m e d at v a r i o u s temperat u r e s b e t w e e n 6K a n d 250K. For the p r o b e beam (reflectance light), we used the radiation f r o m a CW d y e l a s e r , p u m p e d by an Ar i o n l a s e r . The modulation beam was c o m p o s e d of the b l u e - g r e e n l i g h t f r o m the Ar i o n l a s e r a n d w a s c h o p p e d at 1 7 0 0 Hz. Neutral density filters were used to r e d u c e the i n t e n s i t i e s of the probe and pump b e a m s . T h i s a p p a r a t u s a l l o w e d us to o b t a i n PR s p e c t r a w i t h a r e s o l u t i o n near 0 . 1 5 meV. The r e s u l t s of our m e a s u r e m e n t s are s h o w n in F i g s . (1)-(3) in w h i c h we plot the data (dotted line) a n d f i t s to the data using Lorentzian (solid line) and Gaussian (dashed line) profiles. The

s p e c t r a l f e a t u r e s of i n t e r e s t to us are the two lowest l y i n g p a r i t y a l l o w e d QW transitions. In o u r notation, the two numbers correspond to the q u a n t u m i n d i c e s of the c o n d u c t i o n and valence subbands, respectively, and the letter denotes w h e t h e r the v a l e n c e s t a t e is of h e a v y or light hole character. The Lorentzian l i n e w a s o b t a i n e d f r o m Eq. (I) w i t h n=2, while the "Gaussian" l i n e is the f i r s t derivative of an excitonic dielectric f u n c t i o n c a l c u l a t e d u s i n g the c o n v o l u t i o n f o r m a l i s m I° a n d G a u s s i a n b r o a d e n i n g . 7 in the l a t e r case, the f u n c t i o n a l f o r m of ~ is the product of a Gaussian with a degenerate hypergeometric f u n c t i o n . ~* In t h i s p a p e r , we have retained only the f i r s t t e r m in the s e r i e s e x p a n s i o n of the degenerate hypergeometric function. This approximation is r e a s o n a b l e for e n e r g i e s w i t h i n 2[ of the e x c i t o n g a p energy. We h a v e a l s o a s s u m e d t h a t n e a r the f u n d a m e n tal g a p of the MQW, the PR signal is d e t e r m i n e d o n l y by AE~ . 12 In Fig. (I) , we s h o w the fit to the d a t a at 6K. E x c e p t in the r e g i o n of the spectrum where donor related absorptions o c c u r , the a g r e e m e n t b e t w e e n the d a t a and the fit to the L o r e n t z i a n is e x c e l l e n t . In c o m p a r i n g the G a u s s i a n and Loren~zian fits, we see t h a t b o t h f u n c t i o n a l forms are g o o d n e a r the transitions energies, b u t t h a t t h e y d i f f e r m o s t in the w i n g s of the c u r v e s . In Fig. (2) , we show the

Superlattices and Microstructures, Vol. 3, No. 3, 1987

0.2

I i

¢"

237

/!11H /~ i .~

11 L

"" 'ii 1 /

~

~

.t

0 _u--c='r-______."

",.,.

% . 1 " - _ ~ - -

....

-0.2 >" I--

DATA LORENTZIAN GAUSSIAN

----

Z uJ I-Z

-0.4

n13_

-0.6

:::.

I

I

I

I

1.515

1.520

1.525

1.530

ENERGY (eV) Figure 2. Comparison of 77K PR data (dotted line) to A£z calculated from dielectric functions having Lorentzian

(solid) a n d profiles.

Gaussian

(dashed)

absorption

T=150K (:~ 11 H

I~ 11

0.2

...""

"

r. ~""%'t \'..

!

\',.

t0 .....

>.

.-r

-o.2

I-Z ,,, I-Z m nr" S_

........ DATA LORENTZlAN --GAUSSIAN

-0.4

-O.6

I

i

I

I

I

1.490

1.495

1 .N?O

1.505

1.510

ENERGY (eV) Figure 3. Comparison of 150K FR d a t a (dotted line) to A£z calculated from dielectric functions having Lorentzian

(solid) a n d profiles.

Gaussian

(dashed)

absorption

fits at 77K. It is e v i d e n t t h a t in t h i s case, the L o r e n t z i a n fit is n o t as good as it was at 6K and t h a t it b e g i n s to b r e a k d o w n in the w i n g s of the c u r v e s . A

close examination of Fig. (2) r e v e a l s t h a t the d a t a cannot be satisfactorily represented by either a G a u s s i a n or a Lorentzian profile, but rather by some

238 intermediate form. At 150 K, [Fig. (3)] the t r a n s f o r m a t i o n to a G a u s s i a n dielectric function is nearly complete. We n o t i c e that a l t h o u g h there is some disagreement in the wings, the G a u s s i a n fit is q u i t e good. Clearly, at this temperature, the L o r e n t z i a n fit is i n a d e q u a t e . Our results show that in high q u a l i t y samples, the e x c i t o n i c d i e l e c t r i c function of M Q W has a L o r e n t z i a n p r o f i l e at low t e m p e r a t u r e s and that this p r o f i l e becomes Gaussian with increasing temperature. This is c o n s i s t e n t w i t h the theor e t i c a l w o r k of T o y o z a w a , in w h i c h it was s u g g e s t e d that s t r o n g e x c i t o n - p h o n o n coupiing or w e a k c o u p l i n g at h i g h t e m p e r a tures leads to G a u s s i a n absorption profiles. 7 Furthermore, we can n o w u n d e r s t a n d w h y n=3 in Eq. (i) p r o v i d e s a reas o n a b l e fit to r o o m t e m p e r a t u r e data. 9 By u s i n g n=3, one e s s e n t i a l l y takes another derivative of the L o r e n t z i a n and in the p r o c e s s s h a r p e n s up the line, improving the fit in the w i n g s of the curve. This m i m i c s the first d e r i v a t i v e of an excitonic d i e l e c t r i c f u n c t i o n w i t h a G a u s s i a n absorption profile. The results presented above call attention to the fact that c a u t i o n m u s t be e x c e r c i s e d in p e r f o r m i n g analysis of PR data. W h i l e the g a p e n e r g i e s o b t a i n e d f r o m the Lorentzian and Gaussian fits agree to w i t h i n e x p e r i m e n t a l error, this is not the case w i t h the b r o a d e n i n g parameters, F, w h i c h d i f f e r s by 17% for the two types of a b s o r p t i o n lines. Furthermore, we have seen b e t w e e n 6K and 150K, that the PR lines e x h i b i t s p e c t r a l forms that are intermediate between Gaussian and Lorentzian. In this case, a d e t a i l e d line shape analysis is not possible. Therefore, physical significance should not be a t t a c h e d to a fit w i t h o u t a prior, d e t a i l e d k n o w l e d g e of the line shape. The Gaussian nature of excitonic absorption lines can a r i s e u n d e r a v a r i ety of c o n d i t i o n s . T h e s e include strong e x c i t o n - p h o n o n c o u p l i n g and i n h o m o g e n e o u s perturbations. S i m i l a r e f f e c t s are also present in b u l k s e m i c o n d u c t o r s and suggest the p o s s i b i l i t y that G a u s s i a n b r o a d ening may be i m p o r t a n t in b u l k o p t i c a l p r o p e r t i e s . We s u g g e s t that this p h e n o m e non be e x a m i n e d in r e l a t i o n to i n t e r b a n d t r a n s i t i o n s in these materials. Interesting cases i n c l u d e the E~ and E, + ~ t r a n s i t i o n s in Ge and III-V semiconductors for w h i c h Eq. (i) is k n o w n to provide o n l y an adaquate fit to existing electroreflectance data. .3

Superlattices and Microstructures, Vol. 3, No. 3, 1987 In summary, we have p r e s e n t e d PR data w h i c h shows that the line shape of e x c i t o n s in M Q W can c h a n g e from a L o r e n t zian line at low t e m p e r a t u r e s (~6K) to a Gaussian profile at h i g h e r t e m p e r a t u r e s (>I50K). This c h a n g e in line shape complicates the analysis of PR s p e c t r a at v a r i o u s t e m p e r a t u r e s and s u g g e s t s that a more detailed study of the d i e l e c t r i c f u n c t i o n in M Q W s y s t e m s is required.

Acknowledgement-We wish to thank S. Rudin, D.A. Broido and A. K r i m a n for u s e f u l d i s c u s s i o n s . This work was supported in part by the O f f i c e of N a v a l Research.

REFERENCES i.

2.

3.

4. 5.

6. 7. 8.

9.

i0. II. 12. 13.

O.J. G l e m b o c k i , B.V. Shanabrook, N. Bottka, W.T. Beard and J. Comas, Appl. Phys. Lett. 46, 970 (1985). O.J. G l e m b o c k i , B.V. S h a n a b r o o k and W.T. Beard, in the Proc. of the 2nd International Conf. on Modulated Semiconductor Compounds, 1985 (Kyoto) , to be published in Surf. Sci. (1986). H. Shen, X.C. Shen, P. P a r a y a n t h a l , F.H. Pollak, J.N. Schulman, A.L. Smirl, R.A. McFarlane and I. D ' H a e n e n s , this c o n f e r e n c e . D.E. Aspnes, Surf. S c i e n c e 37, 418 (1973). C. W e i s b u c h , R.C. Miller, R. Dingle, A.C. G o s s a r d and W. W e i g m a n n , Solid State Commun. 37, 219 (1981). B.V. S h a n a b r o o k and O.J. G l e m b o c k i , s u b m i t t e d , P h y s i c a l R e v i e w B. Y. T o y o z a w a , P r o g e s s of Theoretical P h y s i c s 2_O0, 53 (1958). D.S. Chemla, D.A.B. Miller, P.W. Smith, A.C. Gossard and Weigmann, J. Q u a n t Elec. QE2__O, 265 (1984). H. Shen, P. Parayanthal, Fred H. Pollak, M i c h a T o m k i e w i c z , T.J. Drummond and J.N. Schulman, Appl. Phys. Lett. 48, 653 (1986). D.E. A s p n e s and J.E. Rowe, Phys. Rev. B5, 4022 (1972). O.J. G l e m b o c k i and B.V. S h a n a b r o o k , to be p u b l i s h e d . B.O. S e r a p h i n and N. Bottka, Phys. Rev. 145, 628 (1966). F.H. Pollak, p r i v a t e c o m m u n i c a t i o n .