Temperature dependence of the annihilation rate of positrons in argon gas

Temperature dependence of the annihilation rate of positrons in argon gas

Volume 27A, number 10 PHYSICS LETTERS TEMPERATURE OF DEPENDENCE POSITRONS OF THE IN ARGON 7 October 1968 ANNIHILATION GAS * RATE D. B. MILLER ...

146KB Sizes 0 Downloads 23 Views

Volume 27A, number 10

PHYSICS LETTERS

TEMPERATURE OF

DEPENDENCE POSITRONS

OF THE IN ARGON

7 October 1968

ANNIHILATION GAS *

RATE

D. B. MILLER **, P. H. R. ORTH *** and G. JONES Department of Physics, University of British Columbia, Vancouver, B. C. , Canada

Received 15 August 1968

A temperature dependence of the positron annihilation rate in argon gas has beenfound. A 28% decrease in the annihilation rate occurs when the temperature is raised from 140 to 480OK.

A velocity dependence o2 the p r o b a b i l i t y of a n n i h i l a t i o n of a slow p o s i t r o n with a noble gas atom is e x p e r i m e n t a l l y well e s t a b l i s h e d [1-3]. The dependence is not known in detail, however, s i n c e the e x p e r i m e n t a l r e s u l t s depend also on the c r o s s s e c t i o n for e l a s t i c s c a t t e r i n g , and the v e locity dependence of this c r o s s s e c t i o n is also unknown. In the e x p e r i m e n t r e p o r t e d h e r e , the m e a n l i f e t i m e of p o s i t r o n s in a r g o n gas was found to depend on the t e m p e r a t u r e of the gas. This e x p e r i m e n t is thus the f i r s t to yield i n f o r m a t i o n c o n c e r n i n g the explicit velocity dependence of the a n n i h i l a t i o n r a t e of p o s i t r o n s in argon (albeit over a v e r y s m a l l velocity range). The i n s t r u m e n t a t i o n used in this e x p e r i m e n t was e s s e n t i a l l y the s a m e as that used in e a r l i e r work [2,4,6]. In t h i s c a s e , however, the gas was contained in a s t a i n l e s s s t e e l v e s s e l , 6 in. in d i a m e t e r and 7.25 in. long. The t e m p e r a t u r e of the gas (and c h a m b e r ) could be v a r i e d over the r a n g e 140 to 480°K, with a stability of ± 3°K d u r ing a run. The c h a m b e r was filled with 99.999% a r g o n gas supplied by Matheson of Canada, Ltd., to d e n s i t i e s between 8.0 and 10.5 a m a g a t . A check that no s e r i o u s c o n t a m i n a t i o n of the gas o c c u r r e d d u r i n g the e x p e r i m e n t was afforded by continuously m o n i t o r i n g both the "shoulder width" of the d i r e c t a n n i h i l a t i o n l i f e t i m e s p e c t r u m and the o r t h o p o s i t r o n i u m l i f e t i m e , both of which have b e e n found to be v e r y s e n s i t i v e to c o n t a m i n a t i o n [2,7,8]. The s h o u l d e r - w i d t h g a s - d e n s i t y product was c o n s t a n t at 350 n s e c - a m a g a t , and the o r t h o p o s i t r o n i u m a n n i h i l a t i o n rate (at a d e n s i t y of 10.2 amagat) was (11.1 ± 0.2) × 106 sec -1, both * Research supported by the National Research Council of Canada, Grant A-1564. ** Holder of a National Research Council Fellowship. *** National Research Council Postdoctoral Fellow.

,~,o / D i

D

'l

n

i

v

i

(~ 'se;i °m°o°;'i) (O)

....

1

7

1

5

"

-

~

Za"

Z,%= 1 3 6 T

I

-Z,tt 2 = 60-2.89T

.s

i

-o.2as

~

~

I

+.056T

3.o-

~ ~

~ "~T

t

25

!

I

180

I 220

I 260

I 300

I 340

I 380

I 420

I 460

2~

TEMPERATURE (°K) POSITRON

TEMPERATURE

IO0

X%

200

I

I

_,o

(T - nlv2/2k)

400 I

600

900

I'

1200

I

I

=K

/

-.-.<__

.o/2

J

POSITRON

~I 4 VELOCITY

=

~ .06

=

i , .OS

OJO

(atomic unite)

Fig. I. a) Positron annihilation rate in argon as a function of temperature; b) Positron annihilation rate in argon as a function of velocity: The rate is given by:

lrr2oCN~(v). 1: ~l(V); II: ~2(v); III: ~(v) = 7.11 v--~; IV: Theory. 649

Volume 27A, number 10

PHYSICS

v a l u e s b e i n g in r e a s o n a b l e a g r e e m e n t w i t h p r e v i o u s w o r k [6,9]. The "free" positron annihilation rate was obt a i n e d f r o m the c o m p o s i t e p o s i t r o n d e c a y - t i m e s p e c t r u m by a m a x i m u m - l i k e l i h o o d a n a l y s i s [6,10]. F i g . l a s h o w s the r e s u l t s p l o t t e d a s a f u n c t i o n of t h e t e m p e r a t u r e . T h e r e s u l t s can b e e x p r e s s e d in t e r m s of a m e a n Z e f f of t h e s c a t t e r i n g a t o m [5,11] w h e r e Zef f

= ~a(~ ro2 cN) -1

(1)

w h e r e h a is the e x p e r i m e n t a l m e a n a n n i h i l a t i o n r a t e , r o i s the " c l a s s i c a l " e l e c t r o n r a d i u s , e2(mc2) -1, c i s t h e v e l o c i t y of light, N is t h e a t o m i c d e n s i t y of t h e h o s t gas. T h e s i m p l e s t f u n c t i o n w h i c h y i e l d e d a good fit to t h e e x p e r i m e n t a l d a t a w a s t h e p o w e r law: Zeff I ( T ) = (138 ± 17) T-( 0.285 + 0.021)

(2)

where T is the absolute temperature. A polynom i a l in p o w e r s of T IA (thus, p o w e r s of t h e p o s i t r o n v e l o c i t y ) w h i c h y i e l d e d a fit a s s a t i s f a c t o r y a s eq. (2) is; Zeff2(T) = (60.0 ± 6.6) +

(3) ± - (2.89 ± 0 . 8 0 ) T 2 + (0.056 ± 0 . 0 2 3 ) T

This function has the physically reasonable prope r t y of b e i n g f i n i t e at z e r o t e m p e r a t u r e (and h e n c e , velocity). From these temperature-dependent functions, t h e e x p l i c i t v e l o c i t y - d e p e n d e n t ~(v) f o r t h e p o s i t r o n - a r g o n i n t e r a c t i o n * is e a s i l y o b t a i n e d if one a s s u m e s t h a t the p o s i t r o n v e l o c i t y d i s t r i b u t i o n a p p r o p r i a t e to t h e r e g i o n of e x p o n e n t i a l d e c a y i s a s t a t i o n a r y d i s t r i b u t i o n c h a r a c t e r i z e d by t h e t e m p e r a t u r e , T. In s u c h a c a s e , t h e s h a p e i s w e l l a p p r o x i m a t e d by t h e M a x w e l l - B o l t z m a n n d i s t r i bution, since the annihilation rate is less than 10 . 4 of t h e e l a s t i c s c a t t e r i n g r a t e . T h u s

~ ~(v )v2 exp(mv /2kT)dv Zeff(T) =

o

(4)

f v 2 exp(-mv2/2kT)dv o 8 o l v i n g f o r ~(v) by u s i n g t h e L a p l a c e t r a n s f o r m ,

* The ~(v) r e f e r r e d to here is identical to the ~(v) defined by Massey [11], and the Zeff(v ) of Jones et al. [5,6].

650

LETTERS

7 October 1968

we obtain: ~l(V) = (4.56 ± 0.54)v (- 0.57 ± 0.04)

(5)

~2(v) = (60.0 ± 6.6) + -

(1015 ± 278)v + (5900 ± 2400)v 26) (

f r o m eqs. (2) and (3), r e s p e c t i v e l y . H e r e , t h e v e l o c i t i e s a r e in a t o m i c u n i t s (e2/h). T h e f u n c t i o n s ~1 and ~2 a r e i l l u s t r a t e d in fig. lb. T h e r e s e m b l a n c e of t h e s e c u r v e s to the f u n c t i o n ~ = 7.11 v-½ d e d u c e d f r o m f i t s of e l e c t r i c f i e l d r e s u l t s [4,5] i s s t r i k i n g . A l s o shown in fig. l b i s a t h e o r e t i c a l c u r v e o b t a i n e d by s o l v i n g a Schroedinger equation for the positron, using for t h e i n t e r a c t i o n p o t e n t i a l a s u m of t h e n o r m a l H a r t r e e - F o c k p o t e n t i a l f o r a r g o n and a p o l a r i z a t i o n t e r m of t h e H o l t s m a r k f o r m : -½ ae2/(r2 + + 0.7ao2)2 w h e r e a i s t h e p o l a r i s a b i l i t y of the n e u t r a l a t o m [5,11]. T h e m u c h g r e a t e r v e l o c i t y d e p e n d e n c e of t h e e x p e r i m e n t a l r e s u l t s at t h e s e s m a l l v e l o c i t i e s p r o b a b l y r e f l e c t s the s t r o n g s h o r t - r a n g e e l e c t r o n - p o s i t r o n i n t e r a c t i o n which is n e g l e c t e d in t h e s i m p l e m o d e l u s e d . T h e r a p i d d e c r e a s e of a n n i h i l a t i o n r a t e with i n c r e a s i n g v e l o c i t y i s e v e n s u g g e s t i v e of the e x i s t e n c e of e i t h e r a bound o r v i r t u a l e + - A r s t a t e a s s u g g e s t e d f o r n e u t r a l m o l e c u l e s by G o l ' d a n s k i i and S a y a s o v [12].

R~ferences 1. S.J. Tao, J. Bell and J. H. Green, Proe. Phys. Soc. (London) 83 (1964) 453. 2. W.R. Falk and G. Jones, Can. J. Phys. 42 (1964) 1751. 3. D . A . L . Paul, Proc. Phys. Soc. (London) 84 (1964) 563. 4. W.R. Falk, P . H . R . Orth and G. Jones, Phys. Rev. Letters 14 (1965) 447. 5. G. Jones and P. H. R. Orth in Positron annihilation, eds. A. T. Stewart and L. O. Roellig (Academic P r e s s Inc., New York, London, 1967) p.401-407. 6. P . H . R . Orth, Ph.D. Thesis, UBC, Vancouver, Canada (1967). 7. S . J . Tao and J. Bell, in Positron annihilation, eds. A. T. Stewart and L. O. Roellig (Academic P r e s s Inc., New York, London (1967) p.393-399. 8. F. F. Heymann, P. E. Osmon, J . J . Veit and W. F. Williams, Proc. Phys. Soc. 78 (1961) 1038. 9. B.G. Duff and F. F. Heymann, Proc. Roy. Soc.(London) A270 (1962) 517. 10. P . H . R . Orth, W.R. F a l k a n d G . Jones, to be published. 11. H.S.W. Massey, in Positron annihilation, eds. A.T. Stewart and L. O. Roellig (Academic P r e s s Inc., New York, London 1967) p.113-125. 12. V.I. Gol~danskii and Yu. S. Sayosov, Phys. Letters 13 (1964) 300.