Journal of Molecular Liquids 295 (2019) 111651
Contents lists available at ScienceDirect
Journal of Molecular Liquids journal homepage: www.elsevier.com/locate/molliq
Temperature dependent volumetric and acoustic properties of some amino acids in aqueous solutions of an antidepression drug S. Shirvali, H. Iloukhani*, K. Khanlarzadeh Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
a r t i c l e i n f o
a b s t r a c t
Article history: Received 5 March 2019 Received in revised form 24 August 2019 Accepted 26 August 2019 Available online 29 August 2019
The interactions of amino acids (histidine, valine and glycine) with drug amitriptyline as a subordinate of temperature have been perused by combination of volumetric and acoustic methods. Densities and speeds of sound of histidine, valine and glycine in aqueous solutions of amitriptyline have been measured at T ¼ (305.15, 310.15 and 315.15) K. Apparent molar volume V4, apparent molar isentropic compression k4, s, of amino acids (solute) in binary aqueous solutions of (0.0006, 0.001, 0.002 and 0.004) mol. kg1 amitriptyline (solvent) have been designated at reported temperatures. The mentioned parameters are used to construct the soluteesolvent interactions in ternary systems. The dependency of these parameters on concentration, temperature and hydrocarbon chain length of the amino acids clearly suggest the roles of amino acids in solute-solvent interactions. © 2019 Published by Elsevier B.V.
Keywords: Density Speed of sound Amino acid Histidine Valine Glycine Amitriptiline
1. Introduction Amitriptyline is chemically basic and commercially existing in the form of hydrochloride salt. Amitriptyline is widely used to treat indication of depression and nocturnal enuresis. It interdict perception of both norepinephrine and serotonin which contributes to its antidepression properties. Amitriptyline is also used in long term prophylaxis for the management of children with cyclic vomiting syndrome aged over 6 years [1e4]. A change in the concentration of amitriptyline in the body may influence its bioavailability and subsequently, its magnitude of action. In view of this, control of active pharmaceutical ingredients is necessary to attain better therapeutic effect and a lower toxicity. Amitriptyline is used to behave mental problems such as depression. It can help better mood and feelings of well-being, abate anxiety and tension, help you sleep better, and increment your energy level. This drug belongs to a class of medications called tricyclic antidepressants. It works by modify the balance of certain natural chemicals in the brain. Amitriptyline is a tricyclic compound, specifically a dibenzocycloheptadiene, and possesses three rings fused together with a side chain attached in its chemical structure. Other dibenzocycloheptadiene TCA include nortriptyline (noramitriptyline, N-desmethyl amitriptyline), protriptyline, and butriptyline. Amitriptyline
* Corresponding author. E-mail address:
[email protected] (H. Iloukhani). https://doi.org/10.1016/j.molliq.2019.111651 0167-7322/© 2019 Published by Elsevier B.V.
is a tertiary amin TCA, with its side chain-demethylated metabolite nortriptyline being a secondary amine. Other tertiary amine TCAs include imipramine, doxepin dosulepin, clomipramine, and trimipramine. The chemical name of amitriptyline is 3-(10,11dihydro-5H-dibenzo[a,d]cycloheptene-5-ylidene)-N,N-dimethylpropan-1-amine and its free base form has a chemical formula of C20H23N with a molecular weight of 277.403 g.mol1.The interactions with drugs occur during mixing components [5e13], formulation, storage, and actions outside the body that are categorized as physical or chemical interactions. A full knowledge of the mechanism of these interactions is required before the actual application of drugs in human body, and is also necessary for drawing some conclusion of drugs delivery and physiological actions. However, due to the complicated structure of proteins containing many miscellaneous functional groups, the mechanisms of the proteinedrug interactions are not yet clearly understood. When the drugs interact with the proteins, the drugs can interact with the amino acid residues, peptide bond and other groups on the protein chain to change the conformation of the receptor proteins. So the properties of amino acids in aqueous drug solutions are essential for understanding the chemistry of biological systems [14e17]. Several measurements, especially thermodynamic and physicchemical measurements, to understand the nature of molecular interactions attracting many researchers have been made to understand drug action in aqueous solution as they exert their activity by interaction with biological membrane [18e20]. These
2
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
investigations also attract the inquisitive minds of researchers owing to the important role that drugs play to understand the nature and the extent of the patterns of molecular aggregation that exist in liquid mixtures. In this study, densities and speeds of sound of amino acids in aqueous solutions of amitriptyline have been measured. Apparent molar volume V4, apparent molar isentropic compression k4, s, of histidine, valine and glycine in binary aqueous solutions of (0.0006, 0.001, 0.002 and 0.004) mol kg1 amitriptyline have been designated at reported temperatures [21e24].
2. Experimental
3. Results and discussion The experimental value of densities r, of glycine, histidine and valine in water and (0.0006, 0.001, 0.002, 0.004) mol.kg1 aqueous solutions of amitriptyline were measured at temperatures T ¼ (305.15, 310.15 and 315.15) K. Fig. 1(aec) showed comparison between the experimental density and literature values. From these values, the apparent molar volume of the amino acids in water and in amitriptyline solutions (0.0006, 0.001, 0.002, 0.004) mol.kg1, have been determined using the following equation:
V4 ¼
2.1. Materials
1000ðr0 rÞ M þ mrr0 r
(1)
The chemicals used in our study, namely glycine, histidine, valine and amitriptyline with high pureness (>0.99 mass fraction) and no further purification was done. The solutions containing drug was then chosen as solvent to prepare amino acid solutions of different molal concentrations. The deionized distilled water was used for the preparation of solutions. The detailed description of the current bioactive chemicals is specified in Table 1.
2.2. Apparatus and procedures An electronic single pan five digit analytical balance (Sartorius AG.GK 1203, Germany) accurate to within ±104g was used to measure the mass. Anton Paar DSA 5000 M densimeter at a frequency of approximately 3 MHz was used for measuring the density and speed of sound of the prepared samples. The sample is sandwiched between two piezoelectric ultra sound transducers. Before each series of measurements the calibration of the instrument was made with degassed and double distilled water and dry air at atmospheric pressure. Both the density and speed of sound are extremely sensitive to temperature. The experimental uncertainties of density, speed of sound and molality measurements were ±1.2 109 kg.m3, ±2 102m.s1 and ±1 105 mol.kg1, respectively. The conductivity of the distilled water is 1.5 ms. cm1. All the solutions were prepared with precaution and stored in special airtight bottles to avoid their exposure to air and evaporation.
Table 1 Specification of chemical samples. Chemical name
Structure
Mass fraction purity
Amitriptyline
>99%
Valine
>99%
Histidine
>99%
Glycine
>99% Fig. 1. Comparison of experimental density data of (a) valine, (b) glycine, (c) histidine in water at temperatures: 305.15 K(A),310.15 K(∎) and 315 0.15 K(). Points and dash lines related to our experimental data and literature values of valine [43], glycine [45], histidine [46], respectively.
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
3
Table 2 Densities r and speed of sounds u of amino acids (solute) in water and aqueous amitriptyline solutions at different temperatures. a
m/(mol.kg1)
b
r103/
(kg.m3)
u/(m.s1)
T ¼ 305.15 K
T ¼ 310.15 K
c
T ¼ 315.15 K
T ¼ 305.15 K
T ¼ 310.15 K
T ¼ 315.15 K
d
0 0.01 0.03 0.06 0.08 0.12 0.14
0.99504 0.99538 0.99596 0.99674 0.99745 0.99831 0.99901
0.99334 0.99367 0.99424 0.99501 0.99570 0.99654 0.99722
Valine þ water 0.99145 0.99177 0.99233 0.99307 0.99375 0.99457 0.99523
1513.7 1515.0 1517.1 1519.9 1522.4 1525.5 1528.0
1523.7 1524.9 1526.9 1529.7 1532.1 1535.1 1537.5
1532.2 1533.3 1535.3 1537.9 1540.3 1543.1 1545.4
0 0.009 0.03 0.06 0.08 0.12 0.14
0.99506 0.99533 0.99588 0.99674 0.99744 0.99831 0.99895
0.99336 0.99362 0.99417 0.99501 0.99569 0.99654 0.99717
Valineþ0.0006(mol.kg1) amitriptylin 0.99146 0.99171 0.99225 0.99307 0.99373 0.99456 0.99517
1513.7 1514.8 1516.9 1520.2 1522.8 1526.1 1528.5
1523.7 1524.7 1526.8 1529.9 1532.4 1535.6 1537.9
1532.2 1533.1 1535.1 1538.0 1540.4 1543.4 1545.5
0 0.01 0.03 0.07 0.10 0.14 0.17
0.99507 0.99534 0.99590 0.99676 0.99745 0.99826 0.99895
0.99337 0.99364 0.99419 0.99502 0.99570 0.99648 0.99716
Valineþ0.001(mol.kg1) amitriptyline 0.99147 0.99173 0.99226 0.99308 0.99374 0.99451 0.99516
1513.9 1514.9 1517.1 1520.5 1523.1 1526.2 1528.8
1523.9 1524.9 1527.0 1530.3 1532.9 1535.8 1538.4
1532.3 1533.3 1535.3 1538.4 1540.9 1543.7 1546.1
0 0.01 0.03 0.06 0.08 0.11 0.14
0.99511 0.99542 0.99593 0.99678 0.99751 0.99828 0.99904
0.99338 0.99369 0.99418 0.99501 0.99572 0.99647 0.99722
Valineþ0.002(mol.kg1) amitriptyline 0.99148 0.99178 0.99226 0.99306 0.99376 0.99449 0.99522
1514.0 1515.3 1517.2 1520.6 1523.4 1526.5 1529.4
1524.0 1525.2 1527.2 1530.4 1533.2 1536.1 1539.0
1532.5 1533.7 1535.5 1538.7 1541.4 1544.2 1546.9
0 0.01 0.02 0.06 0.08 0.11 0.14
0.99517 0.99549 0.99598 0.99680 0.99755 0.99833 0.99897
0.99349 0.99378 0.99426 0.99506 0.9958 0.99656 0.99719
Valineþ0.004(mol.kg1) amitriptyline 0.99152 0.99182 0.99229 0.99307 0.99379 0.99453 0.99515
1514.4 1515.7 1517.6 1521.0 1524.0 1527.1 1529.6
1524.3 1525.6 1527.5 1530.7 1533.6 1536.6 1539.1
1532.7 1533.9 1535.7 1538.8 1541.6 1544.5 1546.8
0 0.01 0.02 0.06 0.08 0.12 0.14
0.99504 0.99545 0.99601 0.99708 0.99797 0.99907 1.00004
0.99334 0.99375 0.99430 0.99536 0.99624 0.99732 0.99828
Glycine þ water 0.99145 0.99185 0.99239 0.99344 0.99431 0.99537 0.99632
1513.7 1514.4 1515.3 1517.0 1518.4 1520.0 1521.5
1523.7 1524.3 1525.2 1526.8 1528.1 1529.6 1531.0
1532.2 1532.8 1533.5 1535.0 1536.2 1537.7 1538.9
0 0.01 0.03 0.06 0.08 0.12 0.15
0.99505 0.99548 0.99615 0.99720 0.99807 0.99921 1.00022
0.99336 0.99378 0.99445 0.99549 0.99634 0.99747 0.99846
Glycineþ0.0006(mol.kg1) amitriptyline 0.99147 0.99189 0.99254 0.99357 0.99441 0.99553 0.99651
1514.0 1514.7 1515.8 1517.5 1518.8 1520.5 1522.0
1523.8 1524.4 1525.5 1527.1 1528.4 1530.0 1531.5
1532.2 1532.9 1533.9 1535.4 1536.6 1538.2 1539.5
0 0.01 0.03 0.06 0.09 0.13 0.16
0.99507 0.99544 0.99633 0.99709 0.99817 0.99963 1.00061
0.99337 0.99374 0.99462 0.99537 0.99643 0.99788 0.99885
Glycine þ 0.001(mol.kg1) amitriptyline 0.99148 0.99184 0.99272 0.99345 0.99451 0.99594 0.99690
1514.1 1514.7 1516.2 1517.4 1519.2 1521.4 1522.9
1523.9 1524.5 1525.9 1527.1 1528.8 1530.9 1532.3
1532.3 1532.9 1534.3 1535.4 1537.0 1539.1 1540.4
0 0.01 0.03
0.99510 0.99549 0.99625
0.99341 0.99379 0.99455
Glycine þ 0.002(mol.kg1) amitriptyline 0.99151 0.9919 0.99264
1514.2 1514.9 1516.2
1524.1 1524.8 1526.1
1532.5 1533.2 1534.4
e
(continued on next page)
4
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
Table 2 (continued ) a
m/(mol.kg1)
b
r103/
(kg.m3)
u/(m.s1)
c
T ¼ 305.15 K
T ¼ 310.15 K
T ¼ 315.15 K
T ¼ 305.15 K
T ¼ 310.15 K
T ¼ 315.15 K
0.05 0.09 0.12 0.16
0.99710 0.99816 0.99922 1.00004
0.99539 0.99644 0.99748 0.99829
0.99347 0.99451 0.99555 0.99635
1517.7 1519.5 1521.3 1522.6
1527.5 1529.3 1531 1532.2
1535.8 1537.4 1539.0 1540.2
0 0.01 0.03 0.06 0.09 0.12 0.16
0.99518 0.99552 0.99645 0.99723 0.99828 0.99923 1.00048
0.99343 0.99376 0.99469 0.99545 0.99649 0.99743 0.99867
1514.5 1515.1 1516.8 1518.1 1519.9 1521.5 1523.5
1524.4 1525.0 1526.6 1528.0 1529.7 1531.3 1533.2
1532.8 1533.4 1535.0 1536.3 1538 1539.4 1541.3
0 0.01 0.03 0.06 0.09 0.11 0.14
0.99504 0.99566 0.99704 0.99848 1.00013 1.00174 1.00340
0.99334 0.99396 0.99534 0.99677 0.99841 1.00002 1.00168
1513.7 1514.8 1517.0 1519.2 1521.7 1524.0 1526.3
1523.7 1524.6 1526.7 1528.7 1530.9 1532.9 1534.9
1532.2 1533.5 1535.2 1537.0 1538.9 1540.6 1542.3
0 0.01 0.02 0.05 0.08 0.11 0.14
0.99506 0.99574 0.99673 0.99836 0.99979 1.00147 1.00343
1513.9 1514.9 1516.5 1518.8 1520.8 1523.0 1525.4
1523.8 1524.9 1526.4 1528.7 1530.6 1532.8 1535.1
1532.3 1533.3 1534.7 1537.0 1538.9 1540.9 1543.1
0 0.01 0.02 0.05 0.08 0.12 0.15
0.99507 0.99569 0.99662 0.99839 0.99975 1.00187 1.00357
1513.9 1514.9 1516.4 1519.1 1521.1 1524 1526.1
1523.9 1524.9 1526.3 1528.9 1530.8 1533.5 1535.6
1532.3 1533.3 1534.7 1537.1 1538.9 1541.5 1543.5
0 0.01 0.02 0.05 0.08 0.11 0.15
0.99509 0.99576 0.99667 0.99842 0.99969 1.00164 1.00373
1514 1515.2 1516.9 1520.0 1522.1 1525.3 1528.4
1524.0 1525.2 1526.9 1529.9 1532.0 1535.0 1538.1
1532.5 1533.6 1535.2 1538.1 1540.1 1543.0 1546
0 0.009 0.02 0.05 0.08 0.12 0.14
0.99517 0.99570 0.99666 0.99849 0.99998 1.00189 1.00334
1514.5 1515.5 1517.3 1520.5 1523.1 1526.2 1528.3
1524.4 1525.4 1527.1 1530.4 1532.9 1535.9 1538.1
1532.8 1533.7 1535.5 1538.6 1541.1 1544.1 1546.2
Glycine þ 0.004(mol.kg1) amitriptyline 0.99158 0.99191 0.99282 0.99358 0.99461 0.99553 0.99676 f
a b c d e f
Histidine þ water 0.99145 0.99206 0.99344 0.99486 0.99649 0.99809 0.99974
Histidine þ 0.0006(mol.kg1) amitriptyline 0.99336 0.99147 0.99404 0.99214 0.99502 0.99311 0.99664 0.99472 0.99805 0.99612 0.99972 0.99778 1.00166 0.99970 Histidine þ 0.001(mol.kg1) amitriptyline 0.99339 0.99149 0.99400 0.99208 0.99493 0.99300 0.99668 0.99474 0.99803 0.99608 1.00013 0.99816 1.00183 0.99984 Histidine þ 0.002(mol.kg1) amitriptyline 0.99341 0.99150 0.99407 0.99215 0.99497 0.99305 0.99670 0.99477 0.99797 0.99602 0.99991 0.99794 1.00198 1.00001 Histidine þ 0.004(mol.kg1) amitriptyline 0.99347 0.99157 0.99399 0.99209 0.99494 0.99302 0.99675 0.99482 0.99822 0.99627 1.00011 0.99813 1.00153 0.99954
Standard uncertainties in molality are ±1 105 mol.kg1, m is the molality of amino acid in aqueous amitriptyline solutions. Standard uncertainties in densities measurements are ±1.2 109kg.m3. Standard uncertainties in speeds of sound measurements are ±2 102m.s1 . Densities r and speed of sounds u of valine 0.01163 m in water are 0.995307, 1514.32 respectively at T ¼ 305.15 K [43]. Densities r of glycine 0.09 m in water is 0.99754 at T ¼ 308.15 K [44]. Densities r and speed of sounds u of histidine 0.01 m in water are 0.994162, 1530.8 respectively at T ¼ 313.15 K [42].
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
5
Table 3 Apparent molar volumes V4 and isentropic compression K4, s of amino acids (solute) in water and aqueous amitriptyline solutions at different temperatures. a
m/(mol.kg1)
V4 106/
(m3mol1)
K4, s 106/
T ¼ 305.15 K
T ¼ 310.15 K
0.01 0.03 0.06 0.08 0.12 0.14
90.04 90.13 90.22 90.32 90.45 90.53
90.80 90.86 90.97 91.07 91.20 91.30
0.009 0.03 0.06 0.08 0.12 0.14
90.16 90.22 90.33 90.41 90.53 90.62
0.009 0.03 0.06 0.08 0.11 0.14
T ¼ 315.15 K
(m3mol1 pa1)
T ¼ 305.15 K
T ¼ 310.15 K
T ¼ 315.15 K
30.28 29.85 29.23 28.66 27.94 27.34
27.65 27.15 26.52 25.92 25.23 24.69
24.43 24 23.39 22.81 22.16 21.50
90.89 90.97 91.06 91.15 91.26 91.34
Valine þ 0.0006(mol.kg1) amitriptylin 91.63 33.55 91.69 32.98 91.81 32.28 91.91 31.64 92.02 30.87 92.11 30.29
29.96 29.49 28.81 28.15 27.31 26.78
26.07 25.53 24.84 24.13 23.35 22.80
90.19 90.26 90.38 90.46 90.58 90.67
90.90 91.00 91.12 91.21 91.32 91.43
Valine þ 0.001(mol.kg1) amitriptyline 91.64 34.55 91.72 33.93 91.85 33.15 91.94 32.55 92.05 31.80 92.16 31.12
31.57 31.02 30.30 29.68 28.91 28.25
27.75 27.26 26.53 25.86 25.14 24.40
0.01 0.03 0.06 0.08 0.11 0.14
90.27 90.36 90.47 90.57 90.69 90.80
91.08 91.14 91.27 91.36 91.47 91.57
35.07 34.55 33.73 32.98 32.31 31.49
32.29 31.77 31.00 30.34 29.52 28.71
29.30 28.85 27.98 27.33 26.55 25.69
0.01 0.02 0.06 0.08 0.11 0.14
90.40 90.49 90.60 90.71 90.82 90.92
91.11 91.17 91.28 91.39 91.50 91.60
Valine þ 0.004(mol.kg1) amitriptyline 91.84 36.33 91.91 35.88 92.03 35.06 92.14 34.29 92.25 33.54 92.34 32.76
32.93 32.48 31.68 30.94 30.10 29.39
29.74 29.29 28.40 27.65 26.85 26.17
0.01 0.02 0.06 0.08 0.12 0.14
41.11 41.14 41.23 41.30 41.39 41.46
41.53 41.58 41.66 41.74 41.83 41.90
29.04 28.71 28.20 27.76 27.18 26.65
26.37 26.11 25.53 25.08 24.52 23.99
23.83 23.47 22.91 22.43 21.87 21.33
0.01 0.02 0.06 0.08 0.12 0.15
41.21 41.26 41.36 41.42 41.51 41.60
41.62 41.68 41.77 41.83 41.93 42.00
Glycine þ 0.0006(mol.kg1) amitriptyline 42.04 29.20 42.10 28.75 42.18 28.16 42.24 27.66 42.34 27.02 42.41 26.47
27.08 26.76 26.16 25.65 25.01 24.44
25.07 24.73 24.12 23.65 23.00 22.39
0.01 0.02 0.06 0.09 0.13 0.16
41.36 41.41 41.47 41.55 41.65 41.71
41.74 41.80 41.86 41.93 42.03 42.10
Glycine þ 0.001(mol.kg1) amitriptyline 42.13 29.96 42.19 29.50 42.24 29.01 42.31 28.36 42.41 27.48 42.48 26.79
28.19 27.68 27.22 26.59 25.64 25.00
26.51 25.99 25.47 24.82 23.90 23.24
0.01 0.03 0.05 0.09 0.12 0.14
41.51 41.58 41.63 41.72 41.81 41.87
41.87 41.94 42.00 42.09 42.17 42.24
Glycine þ 0.002(mol.kg1) amitriptyline 42.24 31.61 42.29 31.05 42.35 30.49 42.42 29.85 42.50 29.21 42.56 28.65
29.83 29.27 28.77 28.05 27.42 26.82
27.72 27.18 26.65 25.99 25.32 24.73
0.01 0.03 0.06 0.09
41.57 41.64 41.69 41.77
41.98 42.05 42.10 42.19
Glycine þ 0.004(mol.kg1) amitriptyline 42.40 31.94 42.46 31.36 42.52 30.86 42.60 30.14
30.50 29.94 29.40 28.61
28.76 28.09 27.55 26.87
Valine þ water 91.57 91.64 91.76 91.86 91.98 92.07
Valine þ 0.002 m amitriptyline 91.82 91.90 92.02 92.11 92.23 92.34
Glycine þ water 41.96 42.02 42.11 42.19 42.28 42.36
(continued on next page)
6
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
Table 3 (continued ) a
a
m/(mol.kg1)
V4 106/
(m3mol1)
(m3mol1 pa1)
K4, s 106/
T ¼ 305.15 K
T ¼ 310.15 K
T ¼ 315.15 K
T ¼ 305.15 K
T ¼ 310.15 K
T ¼ 315.15 K
0.12 0.16
41.84 41.94
42.26 42.35
42.66 42.75
29.50 28.59
27.97 27.08
26.14 25.31
0.01 0.03 0.06 0.09 0.11 0.14
99.47 99.31 99.13 98.95 98.77 98.59
99.73 99.58 99.40 99.24 99.05 98.87
34.95 34.11 33.33 32.35 31.42 30.42
29.06 28.28 27.41 26.38 25.46 24.55
22.81 22.02 21.12 20.18 19.24 18.31
0.01 0.02 0.05 0.08 0.11 0.14
99.55 99.43 99.22 99.04 98.85 98.62
100.04 99.94 99.74 99.55 99.37 99.14
Histidine þ 0.0006(mol.kg1) amitriptyline 100.54 31.91 100.43 31.22 100.26 29.97 100.09 28.87 99.90 27.66 99.67 26.18
30.10 29.36 28.11 26.99 25.87 24.37
27.94 27.11 25.94 24.86 23.59 22.18
0.01 0.02 0.05 0.08 0.12 0.15
99.719 99.61 99.39 99.21 98.96 98.77
100.24 100.12 99.90 99.71 99.46 99.27
Histidine þ 0.001(mol.kg1) amitriptyline 100.78 33.58 100.65 32.96 100.45 31.71 100.28 30.63 100.02 28.99 99.81 27.68
31.04 30.37 29.06 28.04 26.36 25.06
28.23 27.56 26.22 25.20 23.61 22.27
0.01 0.02 0.05 0.08 0.11 0.15
99.76 99.68 99.46 99.31 99.09 98.87
100.34 100.21 100.00 99.84 99.60 99.36
Histidine þ 0.002(mol.kg1) amitriptyline 100.85 41.40 100.73 40.74 100.52 39.44 100.38 38.44 100.14 36.95 99.89 35.32
38.83 38.23 36.94 35.95 34.46 32.77
36.04 35.36 34.01 33.00 31.55 29.98
0.009 0.02 0.05 0.08 0.12 0.14
99.78 99.66 99.45 99.26 99.02 98.85
100.50 100.38 100.19 100.00 99.78 99.62
Histidine þ 0.004(mol.kg1) amitriptyline 101.22 41.81 101.11 41.11 100.89 39.68 100.73 38.54 100.52 37.11 100.35 35.95
40.01 39.25 37.88 36.74 35.35 34.15
37.77 37.14 35.84 34.76 33.34 32.15
Histidine þ water 100.08 99.92 99.77 99.59 99.40 99.22
m is the molality of amino acid in aqueous amitriptyline solutions.
where M and m are the molar mass and molality of the solute (amino acids), r0 and r are the densities of pure solvent and solution, respectively. Densities of aqueous solution of amitriptyline at different temperatures have been reported in Table 2. The linear variation of apparent molar volume V4, of histidine, valine and glycine in aqueous amitriptyline solutions at different temperatures have been reported in Table 3 and graphically shown in Fig. 2(aec). The values of apparent molar volume V4, for valine, histidine and glycine are positive which increase with increase in temperature for all amitriptyline concentrations. The positive values of V4, indicate the presence of soluteesolvent interactions, which increase with increase in the number of alkyl groups present in amino acids from glycine to histidine at all temperatures [25e28]. Further, V4 reverberate the interactions between molecules in the solution which is influenced by the size of the molecules. The intrinsic size of the molecule in solution may be influenced by different factors, such as change in bond angles, which in turn can be a result of change in the physicechemical properties of the solvent in different drug con. Fig. 3(aec) showed comparison between the experimental speed of sound and literature values. By using experimentally determined values of speed of sound and density isentropic compression K4, s, is calculated from the following equation:
K4;s ¼
1000 Ks r0 Ks0 r mrr0
þ
MKs
(2)
r
where r and r0 are the densities of the solution and the solvent, respectively, m is the molal concentration of the solute, M is the molar mass of the solute, and Ks and K0s are values of the isentropic compressibility of the solution and the solvent, respectively, calculated using the relation:
Ks ¼
1
(3)
ru2
The values of K4, s as functions temperature have been also reported in Table 3 and graphically shows in Fig. 4(aec). The values of limiting apparent molar volume V04, and limiting apparent molar isentropic compression K04, s, were respectively, obtained from linear regression of V04 and K04, s versus m from following equation:
V4 ¼ V40 þ Sv m
(4)
0 K4;S ¼ K4;s þ Sk m
(5)
where
slope,
Sv
and
Sk,
provides
information
regarding
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
Fig. 2. Apparent molar volume V4, versus molality of (a) valine, (b) glycine, (c) histidine, in 0.0006 (mol. kg1) aqueous amitriptyline at temperatures: 305.15 K(A),310.15 K(∎) and 315 0.15 K().
7
Fig. 3. Comparison of experimental speed of sound data (a) valine, (b) glycine, (c) histidine in water at temperatures: 305.15 K(A),310.15 K(∎) and 315 0.15 K(). Points and dash lines related to our experimental data and literature values of valine [43], glycine [45], histidine [46], respectively.
8
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
soluteesolute interactions and intercept, V04 or K04, s, shows existence of soluteesolvent interactions. Table 4 shows increase in V04, values with increase in temperature for glycine and valine in aqueous amitriptyline solutions. As temperature increases some solvent molecules from loose salvation layers of solute are released into the solution, this results increase in V04, values [29e31]. The V04, values are positive and Sv, values are negative for histidine in aqueous-amitriptyline solutions indicating the presence strong soluteesolvent interactions and weak soluteesolute interactions in these systems. The increase in V04, values with increase in temperature for histidine in aqueous-amitriptyline solutions can be explained by considering the size of primary and secondary solvation layers. At higher temperatures the solvent from the secondary solvation layer of histidine is released into the bulk of the solvent, resulting in the expansion of the solution, as inferred from larger V04, values at higher temperatures [32e37].The V04 values are positive for all the three amino acids and increase with the increase in temperature, indicating the presence of strong soluteesolvent interactions. The increase in V04, with temperature may be attributed to the loosening of water molecules from the solvation layers of amino acids in aqueous amitriptyline medium, releasing some of solvent molecules to the bulk. The V04, values increase with the increase in molar mass of amino acids, as also reported elsewhere. An increase in V04, from glycine to histidine is attributed to the increase in hydrophobic character of the side chain. The soluteesolvent interactions are dominion over the soluteesolute interactions as recommended by very small values of Sv, as compared to V04, values. There are many features which may influence the soluteesolute interactions since the trend observed in Sv values is not very regular. Uncertainty and standard deviation of densities r, speed of sounds u, apparent molar volumes V4 and isentropic compression K4, s of amino acids in water and aqueous amitriptyline solutions at different temperatures reported in Tables 5 & 6 [38e41]. 4. Conclusions
Fig. 4. Isentropic compression K4, s, versus molality of (a) valine, (b) glycine, (c) histidine, in 0.0006 (mol. kg1) aqueous amitriptyline at temperatures: 305.15 K (A), 310.15 K(∎) and 315 0.15 K().
In this paper, the volumetric and acoustic properties of amino acids (histidine, valine and glycine) in aqueous amitriptyline solution at different temperatures, provide the information about the existence of different kinds of soluteesolvent interactions in the ternary system. From the experimental density and speed of sound results, several thermodynamic parameters are calculated. The extent of solute-solvent interaction increases with increase in the molar mass of amino acids (glycine < valine < histidine) and also with increase in the concentration of amitriptyline solutions. The positive apparent molar volume values and negative apparent isentropic compression in aqueous drug solution, indicating the presence of strong soluteesolvent interactions.
Table 4 Limiting apparent molar volume V40 , limiting apparent molar isentropic compression K04, s, Sv and Sk of amino acids (solute) in water and aqueous amitriptyline solutions at different temperatures. m/(mol.kg1) Valineþwater
T/(K)
V04 106 (m3mol1)
Sv 106 (m3mol1kg1)
K04, s 106 (m3mol1 pa1)
SK 106 (m3mol1 pa1kg1)
305.15 310.15 315.15
90 90.74 91.52 90.13
3.57 3.74 3.69 3.32
30.57 24.717 27.89 33.74
21.47 21.19 21.6 23.47
90.86 91.59 90.15
3.25 3.49 3.54
30.22 26.28 34.74
23.44 23.85 24.65
90.88 91.61 90.24
3.78 3.75 3.75
31.79 28.02 35.34
24.08 24.33 25.75
Valineþ0.0006(mol. kg1) amitriptylin 305.15 310.15 315.15 Valineþ0.001(mol. kg1) amitriptylin 305.15 310.15 315.15 1
Valineþ0.002(mol. kg
) amitriptylin
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
9
Table 4 (continued ) m/(mol.kg1)
T/(K)
305.15 310.15 315.15 Valineþ0.004(mol. kg
1
) amitriptylin 305.15 310.15 315.15
Glycineþwater 305.15 310.15 315.15 Glycineþ0.0006(mol. kg
V04 106 (m3mol1)
Sv 106 (m3mol1kg1)
K04, s 106 (m3mol1 pa1)
SK 106 (m3mol1 pa1kg1)
91.04 91.78 90.37
3.56 3.71 3.85
32.58 29.62 36.67
25.65 25.98 26.61
91.06 91.80 41.07
3.63 3.75 2.64
33.27 30.07 28.77
26.51 26.89 17.34
41.5 41.94
2.71 2.86 2.75
26.59 24.01 29.40
17.31 17.93 19.06
41.18 41.59 42.01 41.34
2.66 2.59 2.25
27.35 25.33 30.23
18.72 18.80 20.31
41.72 42.11 41.48
2.281 2.22 2.60
28.44 26.75 31.80
20.44 20.90 21.04
41.85 42.21 41.55
2.62 2.35 2.40
30.05 27.95 32.21
21.47 21.34 22.23
41.96 42.38 99.54 99.8 100.15 99.63
2.46 2.33 6.37 6.18 6.18 6.79
30.77 28.97 31.61 27.36 23.17 32.44
22.89 22.83 32.75 32.08 32.64 41.83
100.13 100.63 99.79
6.60 6.41 6.79
30.59 28.40 34.13
41.64 41.77 42.01
100.32 100.86 99.84
6.90 6.81 6.31
31.56 - 28.73 - 41.95
42.46 42.15 42.50
100.42 100.93 99.85
6.846 6.69 6.79
- 39.42 - 36.55 - 42.23
42.39 42.41 42.69
100.56 101.28
6.40 6.34
- 40.40 - 38.23
42.36 40.86
1
) amitriptyline 305.15 310.15 315.15
Glycineþ0.001(mol. kg
1
) amitriptyline 305.15 310.15 315.15
Glycineþ0.002(mol. kg1) amitriptyline 305.15 310.15 315.15 Glycineþ0.004(mol. kg
1
) amitriptyline 0.004
Histidineþwater
305.15 310.15 315.15 305.15 310.15 315.15
Histidineþ0.0006(mol. kg1) amitriptyline 305.15 310.15 315.15 Histidineþ0.001(mol. kg1) amitriptyline 305.15 310.15 315.15 Histidineþ0.002(mol. kg
1
) amitriptyline 305.15 310.15 315.15
Histidineþ0.004(mol. kg1) amitriptyline 305.15 310.15 315.15
Table 5 Uncertainty(Δx) and standard deviation(s) of densities r and speed of sounds u of amino acids (solute) in water and aqueous amitriptyline solutions at different temperatures. m/(mol. kg1)
T/(K)
sr/(kg .m3)
Δxr/(kg .m3)
su/(m. s1)
Δxu/(m. s1)
Valineþwater
305.15 310.15 315.15
0.00138 0.00135 0.00131 0.00138
0.00052 0.00051 0.00049 0.00052
4.96 4.81 4.61 5.24
1.87 1.82 1.74 1.98
0.00135 0.00131 0.00136
0.00051 0.00049 0.00051
5.02 4.74 5.27
1.89 1.79 1.99
0.00133 0.00130 0.00137
0.00050 0.00049 0.00051
5.12 4.85 5.37
1.93 1.83 2.03
0.00133 0.00130 0.00134
0.00050 0.00049 0.00050
5.23 5.04 5.39
1.97 1.90 2.04
0.00130 0.00128
0.00049 0.00048
5.19 4.98
1.96 1.88
Valineþ0.0006(mol. kg1) amitriptylin 305.15 310.15 315.15 Valineþ0.001(mol. kg
1
) amitriptylin 305.15 310.15 315.15
Valineþ0.002(mol. kg1) amitriptylin 305.15 310.15 315.15 Valineþ0.004(mol. kg
1
) amitriptylin 305.15 310.15 315.15
(continued on next page)
10
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
Table 5 (continued ) m/(mol. kg1)
T/(K)
sr/(kg .m3)
Δxr/(kg .m3)
su/(m. s1)
Δxu/(m. s1)
Glycineþ water
305.15 310.15 315.15
0.00174 0.00172 0.0017 0.00179
0.00065 0.00065 0.00065 0.00067
2.66 2.53 2.34 2.78
1.00 0.95 0.88 1.05
0.00176 0.00174 0.00194
0.00066 0.00066 0.00073
2.66 2.52 3.08
1.00 0.95 1.16
0.00191 0.00189 0.00173
0.00072 0.00071 0.00065
2.97 2.84 2.95
1.12 1.07 1.11
0.00172 0.00170 0.00181
0.00065 0.00064 0.00068
2.85 2.71 3.09
1.07 1.02 1.17
0.00179 0.00177 0.00289 0.00288 0.00287 0.00285
0.00067 0.00066 0.00109 0.00109 0.00108 0.00108
3.02 2.91 4.04 3.72 3.46 3.94
1.14 1.10 1.52 1.40 1.31 1.49
0.00283 0.00281 0.00296
0.00107 0.00106 0.00112
3.86 3.72 4.25
1.45 1.40 1.60
0.00294 0.0029 0.00294
0.00111 0.00110 0.00111
4.09 3.90 4.96
1.54 1.54 1.87
0.00292 0.00290 0.00290
0.00110 0.00109 0.00109
4.81 4.62 4.94
1.82 1.74 1.86
0.00286 0.00283
0.00108 0.00107
4.88 4.79
1.84 1.81
Glycineþ0.0006(mol. kg1) amitriptyline 305.15 310.15 315.15 Glycineþ0.001(mol. kg1) amitriptyline 305.15 310.15 315.15 Glycineþ0.002(mol. kg
1
) amitriptyline 305.15 310.15 315.15
Glycineþ0.004(mol. kg1) amitriptyline
Histidineþ water
305.15 310.15 315.15 305.15 310.15 315.15
Histidineþ0.0006(mol. kg1) amitriptyline 305.15 310.15 315.15 Histidineþ0.001(mol. kg
1
) amitriptyline 305.15 310.15 315.15
Histidineþ0.002(mol. kg1) amitriptyline 305.15 310.15 315.15 Histidineþ0.004(mol. kg
1
) amitriptyline 305.15 310.15 315.15
Table 6 Uncertainty (Δx) and standard deviation (s) of apparent molar volumes V4 and isentropic compression K4, s of amino acids (solute) in water and aqueous amitriptyline solutions at different temperatures. m/(mol. kg1) Valineþwater
T/(K) 305.15 310.15 315.15
Valineþ0.0006(mol. kg1) amitriptylin
Valineþ0.001(mol. kg1) amitriptylin
305.15 310.15 315.15 305.15 310.15 315.15
Valineþ0.002(mol. kg1) amitriptylin 305.15 310.15 315.15 Valineþ0.004(mol. kg1) amitriptylin
Glycineþ water
305.15 310.15 315.15 305.15 310.15 315.15
Glycineþ0.0006(mol. kg1) amitriptyline 305.15 310.15 315.15 Glycineþ0.001(mol. kg
1
) amitriptyline 305.15
(m3mol1)
sV4 106
ΔxV4 106 (m3mol1)
(m3mol1 pa1)
sK4, s 106
ΔxK4, s 106 (m3mol1 pa1)
0.17 0.17 0.17 0.16
0.06 0.07 0.07 0.06
1.02 1.03 1.01 1.13
0.41 0.42 0.41 0.46
0.15 0.16 0.16 0.18 0.17 0.18
0.06 0.06 0.06 0.07 0.07 0.07
1.13 1.15 1.17 1.14 1.16 1.24
0.46 0.47 0.48 0.46 0.47 0.50
0.17 0.17 0.18
0.07 0.07 0.07
1.23 1.25 1.25
0.50 0.51 0.51
0.17 0.17 0.12 0.13 0.13 0.13
0.07 0.07 0.05 0.05 0.05 0.05
1.25 1.26 0.83 0.83 0.86 0.94
0.51 0.51 0.34 0.34 0.35 0.38
0.13 0.12 0.12
0.05 0.05 0.05
0.92 0.93 1.10
0.37 0.38 0.45
S. Shirvali et al. / Journal of Molecular Liquids 295 (2019) 111651
11
Table 6 (continued ) m/(mol. kg1)
T/(K) 310.15 315.15
Glycineþ0.002(mol. kg1) amitriptyline 305.15 310.15 315.15 Glycineþ0.004(mol. kg1) amitriptyline
Histidineþ water
305.15 310.15 315.15 305.15 310.15 315.15
Histidineþ0.0006(mol. kg1) amitriptyline
1
Histidineþ0.001(mol. kg
) amitriptyline
305.15 310.15 315.15 305.15 310.15 315.15
Histidineþ0.002(mol. kg1) amitriptyline 305.15 310.15 315.15 1
Histidineþ0.004(mol. kg
) amitriptyline 305.15 310.15 315.15
(m3mol1)
sV4 106
ΔxV4 106 (m3mol1)
(m3mol1 pa1)
sK4, s 106
ΔxK4, s 106 (m3mol1 pa1)
0.12 0.12 0.12
0.05 0.04 0.05
1.11 1.14 1.02
0.45 0.46 0.41
0.12 0.11 0.12
0.05 0.046 0.04
1.04 1.03 1.13
0.42 0.42 0.46
0.12 0.11 0.30 0.29 0.29 0.32
0.05 0.04 0.12 0.12 0.12 0.13
1.16 1.16 1.55 1.52 1.55 1.98
0.47 0.47 0.63 0.62 0.63 0.80
0.31 0.29 0.33 0.34 0.34 0.31
0.12 0.12 0.13 0.14 0.14 0.12
1.97 1.97 2.08 2.1 2.09 2.10
0.80 0.80 0.85 0.86 0.85 0.85
0.33 0.33 0.33
0.13 0.13 0.13
2.09 2.09 2.07
0.85 0.85 0.84
0.31 0.30
0.12 0.12
2.06 1.98
0.84 0.81
References [1] A.S. Yazdi, N. Razvi, S.R. Yazdinejad, Talanta 75 (2008) 1293e1299. [2] I.M. Anderson, J. Affect. Disord. 58 (2000) 19e36. [3] L.L. Wirling, A. Keller, J.G. Frank, S.J. Nuwayhid, Exp. Neurol. 207 (2007) 248e257. [4] N. Rahman, S. Khan, J. Electroanal. Chem. 777 (2016) 92e100. [5] Michael S. Ritsner, Polypharmacy in psychiatry practice, in: Multiple Me dication Use Strategies vol. I, Springer Science & Business Media, 2017, pp. 270e271. [6] Neal R. Cutler, John J. Sramek, Prem K. Narang, Pharmacodynamics and Drug Development: Perspectives in Clinical Pharmacology, John Wiley & Sons, 1994, p. 160. [7] P. Anzenbacher, U.M. Zanger, Metabolism of Drugs and Other Xenobiotics, John Wiley & Sons, 2017, pp. 302e323. [8] P.K. Anthony, Pharmacology Secrets, Elsevier Health Sciences, 2002, p. 39. [9] P. Cowen, P. Harrison, T. Burns, Shorter Oxford Textbook of Psychiatry, OUP Oxford, 2017, ISBN 978-0-19-162675-3, p. 532. [10] J. Elks, The Dictionary of Drugs, Chemical Data, Structures and Biliographies, Springer, 2017, p. 889. [11] T. Fagan, P.G. Warden, Historical Encyclopedia of School Psychology, Greenwood Publishing Group, 1996, p. 307. [12] Y.J. Shim, J.M. Kim, S. Kwon, B.H. Choe, Korean J. Pediatr. 52 (2009) 538e543. [13] R. Bhat, J.K. Kaushik, J. Phys. Chem. B 102 (1998) 7058e7066. [14] B.V. Joshi, V.B. Patil, V.B. Pokharkar, Drug Dev. Ind. Pharm. 28 (2002) 687e694. [15] A.N. Manin, L.E. Shmukler, L.P. Safonova, G.L. Perlovich, J. Chem. Thermodyn. 42 (2010) 429e435. [16] Z. Yan, J. Chem. Thermodyn. 101 (2016) 300e307. [17] A. Pal, N. Chauhan, J. Chem. Thermodyn. 54 (2012) 288e292. [18] S.K. Sharma, J. Chem. Thermodyn. 98 (2016) 214e230. [19] M.J. Iqbal, M.A. Chaudhary, J. Chem. Thermodyn. 41 (2009) 221e226. [20] S.S. Dhondge, S.P. Zodape, D.V. Parw ate, J. Chem. Thermodyn. 48 (2012)
207e212. [21] S.J. Kharat, Thermochim. Acta 566 (2013) 124e129. [22] A.N. Manin, L.E. Shmukler, L.P. Safonova, G.L. Perlovich, J. Chem. Thermodyn. 42 (2010) 429e435. [23] D.V. Jahagirdhar, B.R. Arbad, S.R. Mirgane, M.K. Lande, A.G. Shankarwar, J. Mol. Liq. 75 (1998) 33e43. [24] M.J. Iqbal, M.A. Chaudhary, J. Chem. Thermodyn. 42 (2010) 951e956. [25] R. Rani, J. Mol. Liq. 224 (2016) 1142e1153. [26] X. Jiang, C. Zhu, Y. Ma, J. Chem. Thermodyn. 71 (2014) 50e63. [27] M. Kikuchi, M. Sakurai, K. Nitta, J. Chem. Eng. Data 40 (1996) 935e942. [28] H. Kumar, M. Singla, R. Jindal, J. Mol. Liq. 208 (2015) 170e182. [29] M. Iqbal, R.E. Verrall, J. Biol. Chem. 263 (1988) 4159e4165. [30] X.L. Wen, Z.N. Yan, Y.X. Kang, S.Y. Zhang, Colloid Polym. Sci. 293 (2015) 2485e2495. [31] A. Pal, N. Chauhan, J. Chem. Thermodyn. 43 (2011) 140e146. [32] R. Gaba, J. Mol. Liq. 242 (2017) 739e746. [33] A. Pal, N. Chauhan, J. Mol. Liq. 149 (2009) 29e36. [34] A. Pal, N. Chauhan, J. Mol. Liq. 162 (2011) 38e44. [35] A.K. Nain, J. Chem. Thermodyn. 43 (2011) 603e612. [36] D.P. Kharakoz, J. Phys. Chem. 95 (1991) 5634e5642. [37] C. Zhao, P. Ma, J. Li, J. Chem. Thermodyn. 37 (2005) 37e42. [38] G.R. Hedwig, H. Hoiland, J. Chem. Thermodyn. 25 (1993) 349e354. [39] A.K. Mishra, J.C. Ahluwalia, J. Phys. Chem. 88 (1984) 86e92. [40] J.C. Ahluwalia, C. Cstiguy, G. Perron, J. Desnoyers, Can. J. Chem. 55 (1977) 3364e3367. [41] H. Kumar, I. Behal, J. Mol. Liq. 241 (2017) 751e763. [42] K. Khanlarzadeh, H. Iloukhani, J. Mol. Liq. 271 (2018) 421e428. [43] H. Kumar, K. Kaur, J. Mol. Liq. 173 (2012) 130e136. [44] P. Patyar, J. Mol. Liq. 213 (2016) 191e200. [45] H. Kumar, I. Behal, J. Chem. Thermodyn. 99 (2016) 16e29. [46] N. Sawhney, J. Chem. Thermodyn. 115 (2017) 156e170.