5 b, No. c.d. by means of A, 5 b, c.d. Similarly, G.C. refers to the general conventions. The symbol Gr introduces the correspding term i n the terminology of Grothendieck, i n case his tenmimlcgy is different frcm OUTS.
W e r e f e r to chapter A,
additive
additive group
I I , § 1, 2.2
adjoint
adjoint representation
11,s 4, 4 . 1
aff ine
affine line affine affine affine affine
I,§ 1, 3.3 and 6.1
functor over another functor mrphisn schene S-schene
algebra
X-algebra , S-algebra %-algebra
algebraic
algebraic curve (Gr. courk alggbrique irreductible) algebraic hull of a sub-Lie-algebra algebraic schene, locally algebraic scheme (Gr. sch&a de prgsentation f i n i e , sc& localenent de prgsentation f i n i e ) algebraic subalgebra of a Lie-algebra
115 5, 3.1
1115 6, 2.4 1,s 3,
2.1
1115 6, 2.4
associative
associative l a w of c a n p s i t i o n
I I , § 1, 1.1
augmentst ion
augmentation of a bialgebra
1115 1, 1.6
biduality
biduality hmcxmrphissn
1115 1115
Boolean
Boolean space Boolean group
1,s 1, 2.12 11,s 1, 2.12
bracket
bracket i n the Lie-algebra of a group
1115 4, 4.2
character
character of a group-functor
11,s 1, 2.9
characteristic
characteristic subgroup
11,s 1, 3.9
Cartier
C a r t i e r algebra, C a r t i e r dual of a f i n i t e
central
central subgroup central extension
bialgebra
cutmutative group
centre
351
1, 1.6 1, 2.10
11,s 1, 2.10 11,s
1115 1115
1, 1.3 3, 3.2
1, 3.9
352
TERMINOLOGICAL INDEX
centralizer
11,s 1, 3.4
clean
clean mrphisn, clean scheme
1,s 4, 3.2
closed
closed enbeaaing closed irrage of a mrphisn of schemes closed mrphisn locally closed subfunctor closed asJbfunctor, subschane closed subschene defined by an ideal universally closed mrphisn
1,s 1,s 1,s 1,s 1,s 1,s 1,s
closure of a subschene (Gr. &race scmtique)
1,s 2, 6.11
closure
2, 2, 1, 2, 2, 2, 5,
6.1 6.11
4.2 7.2 6.8 6.8 1.3
coefficient cmtative
coefficient of a representation cmtative law of canpsition
11,s 2, 2.3
aanodule
d u l e over a bialgebra
11,s 2, 2.1
canplete
canplete k-scheme (Gr. k - s c M propre et de prgsentation finie sur k) law of canpsition gmtrically connected schane schgne of connected cQnponents group of connected canponents constant mnoid constant scheme constant term of a differential operator constmctible subset of a scheme convolution product of distributions coprcduct of a bialgebra counit of a bialgebra
ccmposition connected constant constructible convolution coprcduct counit curve
open m e r i n g of a %functor algebraic cUrve (Gr. courbe alggbrigue irrductible)
derived
derived group of an algebraic group
mering
diagonalizable differential dimension
1,s 5, 2.1 11,s 1, 1.1
1,s 4, 6.8 1,s 4, 6.6 11,s 5, 1.10 11,s 1, 1.5~) 1,s 1, 6.10 11,s 4, 5.3 1,s 3, 3.1
11,s 4, 6.1 11,s 1, 1.6
11,s 1, 1.6 1,s 1, 3.10 1,s 5, 3.1
11,s 5, 4.8 11,s 4, 5.1 and 5 4, 5.7
deviation diagonal
11,s 1, 1.1
diagonal group diagonal mrphisn of a scheme diagonalizable group, monoid diagonalizable representation differential operator module of differentials dimension of a topological space, local dimension at a pint
11,s 1, 3.11 11,s 2, 2.1 11,s 1, 2.11 11,s 2, 1.7 11,s 4, 5.3 1,s 4, 2.1 1,s 3, 5.1
TERMINOLOGICAL INDEX
353
dimension
dimension of a schene, local dimension a t a point Krull dimension of a ring
1,s 3, 6.1 1,s 3, 5.1
direct
d i r e c t image of an X-module
1,s 2, 1.1
distribution
distribution on a schene 11,s 4, 5.2 algebra of distributions on a group-schene 11,s 4, 6 . 1
dchninant
daninant mrphism of schemes
dual
C a r t i e r dual of a f i n i t e carmutative group scheme algebra of dual numbers
gnbeading closed embedding open anbedaing of g m e t r i c spaces o p n enbedding of Z-functors
1,s 1, 2.4 and 3, 3.7
11,s 1, 2.10 11,s 4, 1.1 1,s 1,s 1,s 1,s
2, 7.1 2, 6 . 1 1, 1.4
1, 3.6
equivalent
equivalent H-extensions
etale
etale algebra, mrphism, scheme
exponential
exponential map
11,s 6 , 3
extension
base extension, extension of scalars H-extension
1,s 1, 6.5 11,s 3, 2 . 1
11,s 3, 2.1
1,s 4, 3.2
factor
simple factor of a representation
11,s 2, 1.5
faithful
f a i t h f u l linear representation
11,s 5, 5.2
faithfully
f a i t h f u l l y f l a t mrphisn f a i t h f u l l y f l a t k-schene
1,s 2, 3.1 1,s 2, 3.3
fibre
f i b r e of a mrphisn of functors
1,s 1, 5.8 ard
finite
f i n i t e mrphisn
1,s 5, 1.1
finitely
f i n i t e l y generated quasicoherent sheaf f i n i t e l y generated mrphisn of schemes f i n i t e l y presented morphisn of schemes locally f i n i t e l y generated mrphisn locally f i n i t e l y presented mrphisn
1,s 1,s 1,s 1,s 1,s
flag
schene of f l a y s
1,s 2, 6.5
flat
f l a t mrphism, f a i t h f u l l y f l a t mrphism f l a t schene, f a i t h f u l l y f l a t scheme
1,s 2, 3.1 1,s 2, 3.3
free
locally f r e e mrphism locally f r e e schene
1,s 5, 1.1 1,s 2, 9.5
Frobenius
Frobenius mrphisn
functions
ring of functions over a geometric space ring of functions over a Z-functor ring of functions over a k-functor
1,s 1, 2.5 1,s 1, 3.3 1,s 1, 6 . 1
functor
Z-f unctor k-functor, S-functor
1,s 1, 3.1 I,§ 1, 6.1
1, 6.3 2, 3, 3, 3, 3,
2.6 1.12 1.6 1.12 1.6
11,s 7, 1.1
354
TERMINOLOGICAL INDEX
functor
underlying Z-functor
generated
closed subgroup generated by a rational point
generic
generic point of an irreducible subset
1,s 1, 2.10
geQnetric
geametric space g m t r i c realisation of a Z-functor geametric realisation of a k-functor
1,s 1, 1.1 1,s 1, 4.2 1,s 1, 6.8
germ of a function over a geometric space
1,s 1, 1.1
1,s 1, 6.3 11,s 5 , 4.5
1,s 1, 3.4
k-group-functor, WFOUP height
k-group-schane
height of an infinitesimal group
H-extension
11,s 1, 1.1 11,s 5, 1.7 11,s 7 , 1.4 11,s 3 , 2.1
Hcchhild
Hochschild ccanplex, W h s c h i l d group
11,s 3, 1.1
hull
algebraic h u l l of a sub-Lie-algebra
111s 6, 2.4
image
image of a mrphisn of T-functors image-functor of a mrphisn of ZB-functors closed image of a mrphisn of schar~s
1,s 1, 4.2 1,s 1, 4.2 1,s 2 , 6.11
induced inessential
g m e t r i c space induced on a subset inessential H-extension
1,s 1, 1.3
infinitesimal
infinitesimal group-schane
injective
injective mrphisn of Z-functors
inner
inner autcmrphisn operation
intqral
i n w a l mrphign
invariant
invariant derivation invariant differential operator invariant fllbgroup
inverse
inverse image of a sheaf
irreducible
irreducible linear representation irreducible topological space
11,s 2 , 1.5 1,s 1, 2.10
isotypical
isotypical linear representation
11,s 2, 1.5
Jacobi
Jambi identity
11,s 4 , 4.3
Jacobson
Jacobson formula
11,s 7 , 3.2
kernel
kernel of a double-arrow I,§ 1, 5.1 kernel of a knnmrphisn of group-functors 11,s 1, 1.3 K r u l l dimension of a ring
law
l a w of canposition on a k-functor
1,s 1, 4.2 11,s 1, 3.3d) 1,s 5, 1.1 11,s 4, 4.6 11,s 4, 6.5 11,s 1, 1.3 1,s 2 , 1.3
1,s 3, 5.1 11,s 1, 1.1
TERMINOLOGICAL INDEX
355
Lie
Lie-algebra of a group-schene L i e p-algebra L i e p-algebra of a group-scheme
11,s 4, 4.8 11,s 7, 3.3 11,s 7, 3.4
linear
linear group, special linear group linear representation
11,s 1, 2.4 11,s 2, 1.1
local
local dimension a t local dimension a t space local embdding of local enbedding of local functor
a point of a scheme
a point of a topological
k-schanes schemes
1,s 1,s 1,s
3, 6.1
3, 5.1 3, 4.4 1,s 3, 4.3 1,s 1, 3.11
model
model , k d e l G.C. X-module, S d u l e , module over a Z-functor 2, 4.1 module of an embeading (Gr. faisceau comml) 4, 1.3 k-G-mdule (Gsgroup-f unctor ) 11,s 2, 1.1 0 -module 11,s 1, 2.5 skeaf of modules over a gecmetric space I,§ 2, 1.1
mnoid
monoid law, mmid-functor, mnoid-scheme
multiplicative
standard multiplicative group (Gr g r o u p multiplicatif
1,s 1,s
.
11,s 1, 1.1
11,s 1,s 1,s
1, 2.8
nationality
nationality of a flag
neighburhood
first neighbourbo.3 nth-neigmurbo.3
4, 11,s 4,
neutral
neutral carrponent of an algebraic group
11,s 5, 1.3
nilpotent
n i l p t e n t elanent of a Lie-algebra
11,s 6, 3.7
nomlizer
11,s
open open open open open open
&ding of geanetric spaces Embedding of Z-functors morphisn of Z-functors subfunctor subscheme cavering of a Z-functor
2, 6.5
I’,
1.1 5.5
3.4
1,s 1,s 1,s
1, 1.4 1, 3.6 1, 4.2 1,s 1, 3.6 1,s 1, 3.11 1, 3.10
1,s
operator
differential operator
11,s 4,
operation
operation of a k-group on a k-scheme
11,s 1, 3.1 3.2
opposite
opposite monoid
11,s 1, 1.1
orbit
5.3
11,s 5, 3.3
partition
partition of unity i n a ring
point
point of a %functor
pcrwer
p*-per
i n a Lie-dgeixa
1,s 1, 3.10
I,§ 1, 4.2 11,s 7, 2.1
and
356
TERMINOLOGICAL INDEX
i n the Lie-algebra of p*-pwer a groupfunctor
11,s 7 ,
3.3
prime
prime spectrum of a r i n g prime spectrum
1,s 1, 2.3 1,s 1, 2.9
projective
projective space, p r o j e c t i v e l i n e
1,s 1, 3.4
proper
proper m r p h i s n of schemes
pure
pure suhmd.de
quasi-coherent
quasi-coherent m d u l e quasi-coherent S-algebra quasi-coherent sheaf of modules
quasi-ccanpact
quasi-cchnpact mrphim q u a s i - m p a c t scheme
quasi-separated
quasi-separated m r p h i s n quasi-separated scheme
1,s 2, 2.2 1,s 2, 1.8
ramified
non-ramified m r p h i s n , schane
1,s 4, 3.2
rank
rank of a l o c a l l y free mrphism
1,s 5, 1.1
rational.
rational pint
reduced
reduced schene, part of a schene reduced r i n g
reducible
carrpletely reducible linear representation 11,s 2, 1.5
resular
regular algebraic curve
representation
1,s 5, 2.1 11,s 2, 1.3 1,s 2, 4 . 1 1,s 2, 5.4 1,s 2, 1.7 1,s 2, 2.3 1,s 2, 1.8
1,s 3, 6.7 1,s 2, 6.11 1,s 2, 6.13
regular representation
l i n e a r representation
regular representation
restriction
base restriction, restriction of scalars
root
group of nth_roots of u n i t y
scheme
schene
Weil r e s t r i c t i o n
(Gr.
1,s 1, 6.4 1,s 1, 6.6 11,s 1, 2.8
foncteur sur les anneaux repr6sentable
par un s c h )
1,s 1, 3.11
(Gr. foncteur sur les k-algebres reprssentable par un k - s c h )
1,s 1, 6.1
k-schene seni-simple
sd-s-le
seni-direct
semi-direct product
separated
separated mrphism, separated %functor
set
II-set
simple
simple factor of a representation simple representation
representation
m t h mrphisn, m t h scheme, k - m t h
schene
11,s 2, 1.5
11,s 1, 3.10 I,§ 2, 7.4 1,s 4, 6.4
11,s 2, 1.5
1,s 4,
4.1
T E ~ O L C G I C A LINDFX
space
space of points of a Z-functor
special
special open subset special linear group
Spectral
spectral space
spectrum
prime spectrum of a ring prime spectrum spectrum of a quasi-coherent sheaf of algebras
(Gr. sch6-m)
357 1,s 1, 4.2 1,s 1, 1.3 11,s 1, 2.4 1,s 1, 2.9 1,s 1, 2.3 1,s 1, 2.9 1,s 2, 5.5
stable
stable suhmdule
11,s 2, 1.5
strict
strict triagonal group
11,s 1, 3.11
structural
structural projection of an S-functor
subscheme
1,s 1, 6.3 1,s 2, 5.1
subset
subset of a Z-functor
1,s 1, 4.2
surjective
surjective mrphism of Z-functors
1,s 1, 4.2
tangent
tangent space of Zariski
translation
translation operation
transprter
1,s 4, 4.15 11,s 1, 3.34 1,s 2, 9.4 and 11,s 1, 3.4
triagonal
triagonal group, strict triagonal group
11,s 1, 3.11
unit
u n i t section
11,s 1, 1.1
univ€xsally
universally closed mrphisn
1,s 5, 1.3
value
value of a function a t a p i n t
1,s
Weil
Weil restriction
1,s 1, 6.6
Zariski
tangent space of Zariski
1,s 4, 4.15
1, 1.1