NUCLEAR PHYSICS A
Nuclear Physics A565 (1993) 193-397 North-Holland
The 1993 atomic mass evaluation (IV) Evaluation of input data, adjustment procedures G. Audia,
A.H. Wapstrab
and M. Dedieu’
a Centre de SpectromPtrie Nuclkaire et de Spectromktrie de Masse, i’SNSM, IN2P3-CNRS, Laboratoire Renh Bernas, Bhtiment 108, F-91405 Orsay Campus, France b National Institute of Nuclear Physics and High-Energy Physics, NIKHEF-K, P.O. Box 41882, 1009 DB Amsterdam, The Netherlands Received 28 September
1993
Abstract This last paper in a series of four describes the philosophy and procedures in selecting nuclear-reaction and decay data and mass spectrometric results as input values in a least-squares evaluation of best values for atomic masses. All accepted data, and rejected ones with a reported precision still of interest, are presented in a table and compared there with the adjusted values. Significances and influences of all primary data are also given. 1. Introduction Since the calculation end 1983 of our earlier table of atomic masses [ 1,2], an uncommonly large number of quite important new data has become available. In fact, as much as 28% of the data used in the present calculation were not used in the previous one. Only one group [ 3 ] is still making measurements of stable nuclei with a conventional mass spectrometer. But the new technique of measuring cyclotron resonances of ions captured in Penning traps [4] has resulted, in the first place, in extremely precise measurements
of fundamental
atoms like the A = l-3 hydrogen isotopes, the A = 3 and 4
helium ones, and those of 13C, 14N, 160, “Ne and 40Ar. A large number
of neutron
capture y-ray energies, and therefore
energies, are now known with high precision,
thus strengthening
neutron
the backbone
separation [ 51. For
comparison, the number of couple of nuclides connected by (n,y) reactions with an accuracy of 0.5 keV or better is 198 against 143 in the 1983 evaluation and 60 in the 1977 one. The number of cases known to better than 0.1 keV is presently 62 against 34 in 1983. Also, several reaction energies of (p,y) reactions are known about as precisely (26 and 8 cases with accuracies better than 0.5 keV and 0.1 keV respectively). In fact, the precision is so high that we were forced to correct for the recent 7 ppm change in the definition of the energy unit and to harmonize the calibrations (see section 2). Several cY-particle energies are also known with comparable precision; and here too it was found necessary to harmonize the calibrations. Another feature near the line of stability is the increased number of measurements of reaction energy differences, which can often be measured with rather higher preci0375-9474/93/$06.00
@ 1993-Elsevier
Science Publishers B.V. All rights reserved
194
G. Audi et al. / The 1993 atomic mass evaluation (iv)
sion than the absolute reaction energies. In view of this fact, our computer been modified
present table of input data (table II). This new feature might be another giving primary results in publications: automatically
program has
to accept this kind of inputs; they are therefore now given as such in the
if calibration
in later evaluations
incentive
for
the results will be corrected
values change, due to new work.
A considerable extension of our knowledge of light (A < 70) very neutron-rich nuclides was obtained by the new method of measuring masses of undecelerated products of reactions in thin bombarded of flight measurements.
targets by a combination
of magnetic
deflection
Another extremely important development further away from the line concerns a version of the Penning trap technique to even rather short-lived isotopes of some alkali and nearby elements [ 6 1. It is to be hoped that this be used in future for many more elements. A different approach has been
and time
of @-stability (few seconds) technique will made recently
[ 92Ge08] in storing, cooling and measuring the frequency of a circulating beam of unstable species in a storage ring (ESR at GSI), but the precision in this first expe~ment is not yet sufficient for our evaluation. For the near future it worth mentioning the efforts being made for direct mass measurements of unstable nuclei in new technical developments, like time-of-flight measurements in the ESR at GSI or in the second cyclotron CSS2 at GANIL, and frequency was built in Orsay.
measurements
with the Smith’s type mass spectrometer
[ 71 that
Also, a great number of p- and a-decay energies were measured, further away from stability. We have checked them by comparison with systematic trends, using both a new technique of studying the systematics of the mass differences between actually known masses and a suitably chosen mass formula [ 81, and a computerized version [ 91 allowing simultaneous consideration of, e.g., o- and /?/&decay energies, 2-neutron separation energies and a difference between experimental masses and any of 16 mass-model calculations. One of us [IO] has investigated the possibility of using data on isobaric analogues of nuclear ground-states in order to find mass values for nuclides for which direct data were imprecise, included here.
or unavailable.
For reasons discussed below, no such results have been
Two possibly promising new developments may be mentioned here. Reaction energies have been measured of single proton and a-decay following fusion of the heavy nuclei “Zr and *‘Y [91Brl7], yielding information on the rather proton-rich nuclides ‘78Pt and ‘751r. The results are given in table II; but their precision is not yet interesting for our purpose. And some nuclides have been found to decay by cluster radioactivity, that is emission of nuclei such as 13C [ 111. But the measurement on these weak processes, requiring thick sources and therefore hindered by absorption, are rather less accurate than already available information. Another interesting feature is the very precise value for the electron capture decay energy of 163H~ calculated from the decay rate of the inverse desintegration. Fully ionized 163~~66+ ions (bare nuclei) are capable of decaying into 1a3H066f ions with one electron
195
G. Audi et al. / The 1993 atomic mass evaluation(Iv
in the K- or (rarely) the L-shell. By collecting such nuclei in a storage ring and removing the Ho ones, after some time, by ionizing decay rate can be determined. evidently measuring
them further
The possible number
(see reference
of applications
[ 92Ju0 1 ] ), the
of this method
is
limited. Another example might be *“Pb (E )*“Tl, which is of possible use for the intensity
of long term (millions
by the sun or possible other astronomical reason for measuring [9OLi40]).
of years) neutrino
irradiation
objects. It may be mentioned
of Tl ores
that this was the
a number of accurate reaction energies in this region (see reference
The development of cryogenic calorimeters opened the way for measuring low energy electrons or gamma rays with high resolution and accuracy. The method is, probably, of limited use for our purpose. Yet, it allowed a precise determination P-decay energy of ‘*‘Re [ 92Co23].
of the very low
As in the preceding evaluation, we include reaction data on isomers. We exclude those cases where only y-ray energy measurements are available. Excitation energies from such y-ray measurements (normally far more precise than the reaction energy measurements), where important for use in connection with the reaction data, are taken from Nuclear Data Sheet except in cases where newer, important values are available. Table III lists the isomers used in the present evaluation, with proper identification from half-lives, spins and parity, and gives the excitation adjustment.
energies as used in, or resulting
from the present
2. Units; recalibration of cc- and y-ray energies Two units are used in the present work. The mass unit is defined by 1 u = M( ‘*C) / 12, M being the mass of one free atom in its atomic and nuclear ground states. The energy unit is the electronvolt. The choice of the volt in this unit is not evident. One might expect use of the international volt V, but one can also choose the volt V@ (our notation) as maintained in standard laboratories and defined by adopting a value for the constant (2e/h) in the relation between frequency and voltage in the Josephson effect. An analysis by Cohen and Wapstra [ 12 ] shows that all precision measurements of reaction and decay energies are calibrated in such a way that they can be more accurately expressed in the second type of volt. Also, the precision of the conversion factor between mass units and maintained volts is more accurate than that between it and international volts (see table A). Thus, already in our previous mass evaluation we decided to use a maintained volt. The new evaluation of Taylor and Cohen [ 131 showed that the empirical ratio between the two types of volts, which had of course been selected to be nearly equal to 1, had changed by as much as 7 ppm. For this reason, in 1990 a new value was chosen [ 141 to define the maintained volt (which we here indicate V’ ). The defining value, and the resulting mass-energy conversion factor, are given in table A; the conversion coefficient we actually use in this evaluation is v’, the maintained 1990 one. The difference between the maintained eV’ and the international eV (0.5 ppm) is
196
G. Audi et al. / The 1993 atomic maw evaluation (Iv) TABLE A Definition of used Volt units, and resulting mass-energy conversion constants.
2e/h
U
1983 1983
483594.21(1.34) 483594 (exact)
GHz/V GHz/V@
931501.2 931501.6
(2.6) (0.3)
1986 1990
483597.67(0.14) 483597.9 (exact)
GHz/V GHz/V*
931494.32 (0.28) 931493.86 (0.07)
keV keV@ keV keV*
almost negligible for the measured reaction energies (the accuracy of the most precise among them is a few ppm, with as only exception the 1 ppm precision ‘H(n,y )‘H reaction). In fact, the difference is less than shown here, since new measurements indicated that the 1986 value for the conversion constant to international eV was a little high [ 151 and resulted in a slightly lower value for the 1990 definition. As said, the earlier precision reaction energy measurements were essentially expressed in keV@ rather than in keV. The precision of some of them is not much worse than the 7 ppm change. Also, we must take into account that the use of the voltage definition causes a systematic error, as is most clear from the occurrence of chains of a-decays. We were therefore obliged to have the precision data adjusted to the new keV* standard. For cY-particle energies, Rytz [ 161 has taken this change into account in updating his earlier evaluation of cr-particle energies. We have used his values in our input data table (table II) and indicated this by adding in the last column the symbol “Z”. Then, also a considerable number of (n,y ) and (p, y ) reactions has a precision not much worse than the 7ppm mentioned. One of us [ 171 has discussed the necessary recalibration for several y-rays often used for calibration. In the input data table we present many reaction energies for (n, y ) reactions that have been revised with help of these results. As in the case of Rytz’ recalibrations, was made impossible
they are marked by “Z” in the last column; or, if this
since this position
was used to indicate
by the same symbol added to the error value mentioned For proton
resonance
energy measurements
that a remark was added,
in the remark.
in (p,y) reactions,
the main calibration
item is the 992 keV resonance in the 27Al+p reaction. The value most used in earlier work is 99 1.88 (.04) keV of Roush et al. [ 181. Endt et al. [ 191 recently averaged it with a later result by Stoker et al. [ 201 to get a slightly modified value 99 1.858 (0.025) keV. In doing this, the changes in the values of natural constants used in the derivation of these values was not taken into account. Correcting for this omission, and critically evaluating earlier data, one of us [21] derived a value 991.843(.033) keV for this standard. The proton resonance energies reported in precision (p,y) reactions have been recalibrated, where necessary, using this standard. In the accompanying tables, the resulting excitation energies of these resonances have been mentioned only in exceptional cases, e.g. for the ‘*Sir resonance following from the above mentioned calibration item. For each of the data mentioned, the changes are relatively minor. We judge it necessary
G. Audi et al. / The 1993 atomic mass evaluation (Iv) to make them, however, since otherwise they add up to systematic
197 errors that are non-
negligible. 3. Calculation procedures We refer to sections 2 and 3 of our preceding publication [2] for further details and reasons, but mention here some policies and procedures that may be of interest for use of the present tables. 3.1, POLICIES USED IN TREATING DATA In averaging
B- (or a-) decay energies derived
from branches,
found in the same
experiment, to or from different levels in the decay of a given nuclide, the error we use for the average is not the one resulting from the least-squares, but the smallest occurring one. Some quantities have been reported more than once by the same group. If the results are obtained by the same method and all published in regular refereed journals, only the most recent one is used in the calculation, unless explicitly mentioned otherwise. The reason is that one is inclined to expect that authors who believe their two results are of the same quality would have averaged them in their latest publication. Our policy is different if the newer result is not published in a regular refereed paper (abstract, preprint, private communication, conference, thesis or annual report), then the older one is used in the calculation, except if the newer is an update of the values in the other. In the later case the original reference in our list mentions the unrefereed paper. In two cases, @%n and 14’?bm, we accepted, and treated as systematics, estimates made by other authors for the P-decay energy of the first one and the internal transition
energy
of the second. They are labelled S in table II. The important interdependence of most data, as illustrated by the connection diagrams (see part I, figs. 1a-l h) allows local and general consistency tests. These can indicate that something may be wrong with input values. We follow the policy of checking all significant data differing by more than two (sometimes 1.5) standard deviations from the adjusted values. Fairly often, study of the experimental paper shows that a correction is necessary. Possible reasons are that a transition has been assigned to a wrong final level or that a reported decay energy belongs to an isomer rather than to a ground state or even that the mass number assigned to a decay has been shown to be incorrect. In such cases, the values are corrected and remarks are added below the corresponding data in table II to explain the reasons for the corrections. It can also happen, though, that study of the paper leads to serious doubts about the validity of the results within the reported error, but could not permit making a specific correction. In that case, the result is labelled F and not used in the adjustment. It is however given in table II and compared to the adjusted value. The reader might observe that, in several cases, the difference between the experimental value and the adjusted one
198
G. Audi et al. I The 1993 atomic mass evaiuat~o~ [Iv)
is small compared to the experimental error: this does not disprove the correctness of the label F assignment. Cases where reading the paper does not lead to correction or rejection, but yet the result is not trusted within the given error, are labelled B, if published in a regular refereed journal or C otherwise. In some cases thorough analysis of strongly conflicting data could not lead to reasons to think that one of them is more dependable than the others or could not lead to the rejection of a particular piece of data. Also, bad agreement with other data is not the only reason for doubt in the correctness of reported data. As in previous work, we made use of the property of regularity of the surface of masses for helping to make a choice and also for making further checks on the other data. For this purpose, graphs like those in part III of the present series of papers are used. But they give only differences for one of the four sheets of the mass surface (e-e, e-o, o-e and e-e; in a plot of mass against N, 2 or A; e-o standing for even Z and odd N). This may lead to a divergence between these sheets. One of us [S] therefore introduced the possibility of scrutinizing the differences of the masses with a suitably chosen mass formula, in which for pairing energies the values suggested by Jensen et al. [221 were used (it is recognized that this pairing formula is probably not generally valid; in fact a recent investigation [ 8,231 suggests that the I = N - Z dependence may be exaggerated in it). Extending this possibility a program [ 91 was developed allowing simultaneous observation of four graphs of any of the quantities above, plus the oneneutron and one-proton separation and single-/3 decay energies, allowing thus to connect the four sheets, and also of the difference between experimental masses and the result of any of some 16 nuclear mass models, as a function of any of the variables N, Z, A, N - 2 or 22 - N. This program allows to test any modification of value in any of the four graph plots and to observe the corresponding changes in the other three, plus all the consequences due to connections to masses in the same chain. With this graphical tool, the results of such analysis are felt safer; and also the estimation of unknown masses are felt more reliable (see also part I section 4, and part III). The above analysis could again lead to F, B or C assignments. Data with these labels are not used in the calculation. But, other than in our earlier work, we have not assigned such labels if, as a result, no experimental value published in a regular refereed journal could be given for one or more resulting masses. In the present evaluation 56 such data occur, all of them of course resulting in secondary mass values. They are indicated in table II in remarks giving the changes ‘suggested by systematical trends”. They are also listed in table B of part I. However, even here, we did not accept experimental results if information on other quantities (e.g. half-lives), derived in the same experiment and for the same nuclide, were in strong contradiction with well established values. This happens for example for the P-decay of “Se, for which a half-life of 20* 2 min is reported, whereas a value of 4 1.1f0.3 min is evaluated in Nuclear Data Sheets. This piece of data is labelled F and the mass of “Se is estimated from the systematical trends. One consequence of this new policy is that label D (see reference [2 1, section 3) is no more used in the present evaluation.
G. Audi et al. i The 1993 atomic mass equation (Iv)
199
3.2. COMPACTING THE SET OF DATA
The equations representing the input data can be separated in primary and secondary ones. For primary ones the least-squares calculation gives an improved output. Secondary ones remain unchanged; they do not contribute to x2. This also means that they can easily be replaced by new information becoming available (but one has to watch that the replacement can change other secondary masses; this can be seen from the diagrams in fig, 1 in part I), Degrees of secondary masses or secondary data reflect their distances along the chains connecting them to the network of primaries, they range from 2 to 13. Degree 1 is for primary masses and data. In the main table in part I, each secondary nuclide is marked with a label indicating from which other nuclide its mass value is calculated. In table XI,the degree of data is indicated in column ‘Dg’. Reaction data occur that give essentially values for the mass difference between the same two nuclides, except in the rare cases where the precision is comparable to the precision in the masses of the reaction particles. Example: G (n, y )H, H( d,t ) G, G (d,p)H, H(3He,a)G. Such data are represented together, in the main least-squares calculation, by an average value for one of them (pre-averaging). If the consistency factor (or Birge ratio) B = ,/xm resulting in the calculation of this average is greater than 2.5, the (internal) error Ri in the average is multiplied with the Birge ratio (R, = Ri x I?). However, this treatment is not used in cases where the errors in the values to be averaged differ too much from one another. In such cases, considering policies from the Particle Data Group [ 241 and some possibilities reviewed by Rajput and MacMahon [ 25 1, we adopted an arithmetic average and the dispersion of values as error (three @decays are concerned, those of: 35S, “Sr and ls41r and also the not-used electron capture decay of *“Bi). High values of B occur only in 14 out of the 929 pre-averaged cases (table B). As much as 28% of the 929 cases had a Birge ratio beyond unity, 4.5OYa beyond two, 0.7% beyond 3 and only one case beyond 4, giving an overall very satisfactory distribution for our treatment. As a matter of fact, in a complex system like the one here, many values of B beyond I or 2 are expected to exist, and if errors were multiplied by B in all these cases, the x2-test on the total adjustment would have been invali~ted. This explains the choice we made here of a rather high threshold (B = 2.5), compared e.g. to B = 2 recommended by Woods and Munster [ 261 or B = 1, used in a different context, by the Particle Data Group [ 241, for departing from the rule of internal error of the weighted average (see also reference [ 27 ] 1. Large contributions to x2 have been known to be caused by a nuclide G connected to two other ones H and K by reaction links with errors large compared to the error in the mass difference of H and K, in cases where the two disagreed. Evidently, contributions to x2 of such local discrepancies suggest a not realistic too large value of the overall consistency parameter. This is avoided by a replacement procedure: one of the two links is replaced by an equivalent value for the other. The pre-averaging procedure then takes care both of giving the most reasonable mass value for G, and of not causing undesirably large contributions to x2.
200
G. Audi et al. I The 1993 atomic muss ey~~~~t~on (fyi TABLE B Worst pre-averagings.
n is the number of data in the pre-average.
Reaction or Decay
n
Birge Ratio
113Cs(p)11ZXe
2
4.22
Accuracy 14
11sCdf~-)1151n
3
3.61
6.5
9gRu(n,y)1~Ru
2
3.58
0.15
14gPm(@-)i49Sm
2
3.54
5.4
%(p-)35cl
7
3.45
0.12
1;
17aLu(n,y)177Lu
2
3.20
99Sr(/3-)99Y
2
3.01
3
2.95
91Sr(~-)g1Y
*
0.8 177 7.7 27
8sY(@+)ssSr
2
2.82
3oSi(t,p)32Si
2
2.82
114Sb(P+)1i4Sn
2
2.78
242Am(a)238Np
2
2.76
6*Cu(/3-)68Zn
3
2.57
49
76Ge(14C,160)74Zn
2
2.55
51
* Arithmetic
average and dispersion
2.3 216 1.3
of values are used in the adjustment.
Similar replacements are made in several cases where reactions to isomers would otherwise make upper isomers (not mentioned in the main table of part I) primary and the corresponding ground states secondary. It must be mentioned that in a few cases this was found impractical, as can be seen in the table of isomers (table III). Another feature to increase the meaning of the final x2 is, that data with weights at least a factor 10 less than other data, or than combinations
of other data giving the same result,
have not been included, generally speaking, in the calculation. They are given in the list of input data (except for older data of this type that already appeared in our previous tables), but labelled U; comparison with the output values allows to check our judgment. We introduced a slight change of policy in this respect. Earlier, data were labelled U if their weight was 10 times less than that of a simple combination
of other data. In the
present evaluation, this concept is being extended to data that weigh 10 times less than the combination of alI other accepted data. This new procedure although largely used here is not yet completely generalized.
3.3. LEAST-SQUARES
METHOD: RECALL AND NOTATIONS
Each piece of data has a value && dli with the accuracy dli (one standard deviation) and makes a relation between 2, 3 or 4 masses with unknown values rni. An overdetermined system of M data to N masses (M > N) can be represented by a system of M linear
equations with N parameters: c
k f rnr= li f dii
(1)
i
or, in matrix notation, K being the matrix of coefficients: K/m) = Ii), A diagonal weight matrix W can be defined by its elements ‘Ulii= l/ (dZidli f . The solution of the leastsquares method leads to a very simple ~o~s~~~on: “KWKjm) = ‘KWII).
(2)
The norma matrix A = ‘KWK is a square matrix of order iV,positive-definite, symmetric and regular and hence invertible [ 28 1. Thus: Im) = A-’ ‘KWII)
or
jm) = RI/).
(3)
The rectangular (N, N) matrix R is called the ‘response’ matrix. 3,4. THE ~UMFUTE~ PROGRAM IN THE ~~~UATIUN
OF MASSES
Our computer program in 4 phases has to do the following tasks: i) decode and check the data file; ii) build up a representation of the connections between masses, allowing thus to separate primary masses and data from secondary ones and then to reduce drastically the size of the system of equations to be solved (see section 3.2), without any loss of iRfo~ation; iii) perform the least-squares matrix calculations (see above) and iv) deduce the atomic masses (part I), the nuclear reaction and separation energies (part II), the adjusted values for the input data (table II f, the ~~~~~nce~of data on the primary masses described in next section and given in tables I and II, and display isolation on the inversion errors, the correlations coefficients (see e.g. part II, table A), the values of the x’s and the distribution of the V/S (see below), etc. An important new feature in the calculation itselfworth to be mentioned, the conversion of large parts of the programs of the evaluation for parallel processing. This, together with built-in modules for matrix operations, resulted in much faster (12 times faster) calculation, allowing thus more frequent full calculations, which is highly appreciated in the evaluation. 3.5. RESULTSOF THE CALCU~TION In this evaluation we have 5220 experimental data of which 660 are labelled U (see above) and 186 are not accepted and labelled B, C or F (respectively 101, 27 and 58 items). In the calculation we have thus 4374 valid input data, compressed to 3051 in the pre-averaging procedure. To these are added 601 data estimated from systematic trends, some of which are essential for linking unconnected experimental data to the network of experimentally known masses (see figs. la-l h, in part I). The total number of evaluated masses (including 368 mass values for isomerie states) is 3018, giving thus a system of 3652 equations with 3017 parameters (“6 not includedf. Separating data and
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
202
masses in primary and secondary as described above, reduces the system to 1447 primary equations
with 812 parameters,
2205 secondary and estimate
and leaves 2205 secondary
masses. In total we evaluate
equations
to determine
the masses of 1920 ground
those of 730 other nuclei. The total x2 is 878 compared
the
state masses
to an expectation
value 635 f 36; this means that, in the average, the errors in the input values have been underestimated by 18%, a rather acceptable result. The distribution of the v/s (the individual contributions to x 2, see table II) is also quite acceptable, with 17% of the cases beyond unity, 2.6% beyond two, 0.4% beyond 3 and only one case (.07%) beyond 4. As in the preceding work [ 21, we have tried to estimate the average accuracy of groups of data by calculating partial consistency factors. We [ 271 have concluded that the definition in our previous work was incorrect (see also Cohen [ 29 ] ), but the exact definition, which has not yet been implemented in our computer program, dramatic changes in the assigned consistency factors.
is not expected to result in
4. Influences and significances of data This section is devoted to describe how a method that allows to trace back, in the least-squares method, the contribution of each individual piece of data to each of the parameters (here the atomic masses) has been used in the evaluation of masses.
4.1. CONSTRUCTION
OF THE FLOW-OF-INFORMATION
MATRIX
The flow-of-information matrix F is defined as follows: K, the matrix of coefficients, is a rectangular (M, N) matrix, the transpose of the response matrix ‘R is also a (M, N) rectangular
one. The (i, 1) element
of F is defined as the product of the corresponding
elements of ‘R and of K. In reference [ 301 it is demonstrated that such element represents the “influence” of datum i on parameter (mass) ml. A column of F thus represents all the contributions brought by all data to a given mass rnA, and a line of F represents all the influences
given by a single piece of data. The sum of influences
along a line is
the “significance” of that datum. It has also been proven [ 301 that the influences and significances have all the expected properties, namely that the sum of all the influences on a given mass (along a column) is unity, that the significance of a datum is always less than unity and that it always decreases when new data are added. As a further proof, the significances defined here are exactly the quantities obtained by squaring the ratio of the adjusted over the input uncertainties. The flow-of-information matrix F, provides thus insight on how the information from datum i flows into each of the masses ml. A simple interpretation of influences and signiticances can be obtained in calculating, from the adjusted masses and Eq. (l), the adjusted data: ]I) = KRII). The ith diagonal element of KR represents then the contribution of datum i to the determination of ii (same datum): this quantity is exactly what is called above the significance of datum i. This ith diagonal element of KR is the sum of the products of line i of K and column i
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
203
of R. The individual terms in this sum are then nothing else than the influences defined above.
4.2. THE FLOW-OF-INFORMATION
MATRIX IN THE EVALUATION
OF MASSES
The flow-of-information matrix cannot be given in full in a table. It can be observed along lines, displaying then for each datum which are the nuclei influenced by this datum and the values of these influences. It can be observed also along columns to display for each primary mass all ~ont~buting data with their ~~~~e~ceon that mass. The first display is partly obtained by adding in the table of input data (table II) a column for the significance of primary data and the largest influence. Since in the large majority of cases only two nuclei are concerned in each piece of data, the second largest infIuence could easily be deduced. It is therefore not felt necessary to give a table of all ~~~ue~cesfor each primary datum. The second display is given in table I for the up to three most important data with their influence in the determination of each primary mass.
5. Mass spectrometticresults 5.1. MASSES OF STABLE NUCLEI
Rather few new measu~ments of stable species with a classical mass spectrometer have become available; all of them of the Winnipeg group (see the items marked H38-H47 in the ‘Lab’ column of table II). For the newer measurements, made with a somewhat revised instrumentation [ 3 1, the consistency with other data was found decidedly improved. We therefore reduced for them the consistency factor [ 21 to 1S. A very important group of new data is obtained by precision measurements of ratios of cyclotron frequencies of ions in Penning traps. Similarly to the classical measurements of ratios of voltages or resistances, we found that they can be converted to linear combinations in pu of masses of electrically neutral atoms, without any loss of accuracy. In such cases, we added a remark, to the equation used in the table of input data (table II), to describe the original data. Other groups give their results directly as masses, a not recommended practice for high precision measurements. In order to test the validity of the reported errors, we made a separate least-squares evaluation, following the policy accepted already in 1962 [ 311. Involved were results on ls213H,3*4He,i4N, ‘$0, “Ne and 40Ar. The consistency was first not perfect; the consistency factor came out to be R,jRi = 1.5. We used this factor as a correction factor CF to the errors reported by the authors. In a private communication received after the deadline for accepting data, a change was reported [93Va.B] for an earlier value of the mass of ‘H. Then, the consistency factor came out to be I .07. In view of the great importance for the fundamental masses we decided yet to accept the new mass value, but to retain the above value of
204
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
CF. The improvement demonstrated
in the masses of light nuclides
(up to 40Ar) due to this work is
in fig. 2a and 2b of part I.
Quite interesting
is that application
of commercial
Penning
trap instruments
yielded
masses for a number of stable Xe isotopes [ 90Me08 ] that are not much worse (precisions of the order of 5 keV) than the values derived in this work, but were systematically by some ten keV. Such results may be useful in future. Fourier-transform
cyclotron
resonances
for comparing
Interesting
lower
also is the use of
the masses of tritium
and 3He.
Nikolaev et al. [ 84Ni 16 ] and Lipmaa et al. [ 85LiO2] reported values with a precision of a few eV, but unfortunately their difference is almost an order of magnitude larger. 5.2. MASSES OF UNSTABLE NUCLEI Far from stability there has been a wealth of new projects. The Chalk-River on-line isotope separator [ 89Sh lo] and the St Petersburg on-line prism mass spectrometer [ 89A133] continue the classical technique, in mass spectrometry, of voltage measurements, whereas in the other projects, the measured quantities are times [ 32,331 and frequencies [ 61. A few mass ratios for unstable isotopes have been measured with mass separators. These ratios too could be expressed as linear combination of masses (see e.g. “7~“8~1191in reference [ 92Sh.A] ). By detecting radiations of the ions that arrived at the focal plane, confusion of isomers, or isobars, could be avoided. A new approach of time-of-flight mass spectrometry was made by SPEG at GANIL [ 321 and TOFI at Los Alamos [ 331. Masses of almost undecelerated fragment products, coming from thin targets bombarded with heavy ions [ 321 or high energy protons [ 331 are measured from a combination of magnetic deflection and time of flight determination. Nuclei in an extended region in A/Z and Z are analyzed simultaneously. Each individual ion, even if very short-lived ( 1 ps), is identified and has its mass measured at the same time. In this way, mass values with accuracies of (3 x 10m6 to 5 x 10e5 ) are obtained for a large number
of neutron-rich
that the obtained
nuclides of light elements, up to A = 70. A disadvantage
is
value applies to an isomeric mixture where an isomer exists with a half-
life of the order of, or longer than the time of flight (about 1 ps). Also, the resolving power is around
lo4 and cross-contaminations
can cause significant
shifts in masses. Finally,
calibration is obtained from an empirically determined function, which, in several cases, had to be extrapolated rather far from the calibration masses. For the latter case, it is hoped that in the future a few mass measurements far from stability may provide better calibration points and allow a re-analysis of the concerned data. With the Penning trap on-line with ISOLDE [ 61, the cyclotron frequency of a radioactive ion captured in the trap is directly compared to that of a well known nucleus. Methods which are relying on cyclotron frequency measurements have the advantage that, roughly speaking, only one parameter has to be measured, namely a frequency, which is the physical quantity that can be measured the best with high accuracy. Very high resolving power ( 108/A ) and accuracies (better than 1O-' ) are achieved for radioactive isotopes of not too short half-lives (few seconds) of Rb, Sr, Cs, Ba and Fr up till quite far from the line
G. Audi et al. / The 1993 atomic mass evaluation (Iv) of B-stability.
205
Such high resolving power made it possible, for the first time in the history
of mass spectrometry,
to resolve a nuclear isomer (s4Rbm) from its ground state. The
results of these experiments
have allowed to check several data close to stability
and to
re-assess the mass of 13’Cs and 13’Cs (see part I, section 5 and fig. 2~). Far from stability, the mass-triplet
measurements,
in which undetectable
systematic
effects could build-up
in large deviations when the procedure is iterated [ 86Au02], could be calibrated for the first time for the low N branch of Cesium isotopes. Quite interesting is to note that a very far doublet (“‘Ra- 133Cs) has been measured with fair precision. Such far doublets, with carbon clusters, may lead to important connections across the chart of nuclides. The method however is only applicable for certain elements, but developments underway might provide wider applicability
in a near future.
6. Decay energies from capture ratios and relative positron feedings For allowed transitions,
the ratio of electron capture in different shells is proportional
to the ratio of the squares of the energies of the emitted neutrinos, with a proportionality constant dependent on Z and quite well known [ 341. For (non-unique) first forbidden transitions, the ratio is not notably different; with few exceptions. The neutrino energy mentioned is the difference of the transition energy with the electron binding energy in the pertinent shell. Especially if the transition energy is not too much larger than the binding energy in, say, the K shell, it can be determined rather well from a measurement of the ratio of capture in the K and L shells. The non-linear character of the relation between Q and the ratio introduces two problems. In the for the ratio is generally transformed in an asymmetrical Since our least-squares program cannot handle them, we probability distribution of the result in energy by taking
first place, a symmetrical error one for the transition energy. have roughly symmetrized the as central value the mid-value
between the upper and lower lo-equivalent limits, and as error, the average of the two errors. More strictly, one should have considered the first and second momenta of the real probability
distribution;
nevertheless,
our approximation
is quite acceptable for not too
strongly asymmetric distributions. The other problem is related to averaging of several values that are reported for the same ratio. Other than in earlier evaluations, we now average the capture ratios, and calculate the decay energy following from that average. In this procedure we used the best values [ 341 of the proportionality constant. We also recalculated older reported decay energies originally calculated using now obsolete values for this constant. The ratio of positron emission and electron capture in the transition to the same final level also depends on the transition energy in a known way (in any case for allowed and not much delayed first forbidden transitions). Thus, the transition energy can be derived from a measurement of the relative positron feeding of the level, which is often easier than a measurement of the positron spectrum end-point. For several cases we made here the same kind of combinations and corrections as mentioned for capture ratios. But in this case, a special difficulty must be mentioned.
206
G. Audi et ai. / The 1993 atomic mm
evaluation (Iv)
Positron decay can only occur when the transition energy exceeds 2pntc2 = 1022 keV. Thus, more often than not, a level fed by positrons is also fed by y-rays coming from higher levels fed by electron capture. Determination of the intensity of this side feeding is often difficult. Cases exist where such feeding occurs by a great number of weak y-rays easily overlooked (the pandemonium effect [ 351). Then, the reported decay energy may be much lower than the real value. In judging the validity of experimental data, we kept this possibility in our mind. 7. Changes in the classical radioactive series and the Hg problem
A measurement of the fp,t ) reactions on Th isotopes [ 9 1Grl3] showed, that the mass difference between 230Thand 228This almost 18 keV different from the earlier value. The latter, for which a 5 keV error had been found, was due to a combination of rather many, each not so very accurate, reaction bridges. The difference has a bearing on the following problem. Absolute mass doublets of Hg isotopes ( 199-202,204Hg) are reported [ 8OKo25] with a precision of about 1 keV. Hg mass values can also be obtained, with a precision of about 3 keV, from a reaction bridge to mass spectrometric data on lighter elements and another one to Th and LJ isotopes, as discussed in our earlier evaluation (reference [ 21 section 4) and as illustrated by the connection diagrams (figs. If- 1h of part I). These reaction data suggest some 20 keV more stability than deduced from the direct measurements. The new 230Th(p,t) result has the right sign for substantially reducing this discrepancy. We show this in a calculation in which the other bridge was broken; actually by not using the lp4Pt(n y f lp5Pt reaction. fn fig. 1 we show the mass differences between this calculation and the’1983 one. We do this separately for the three naturally radioactive series and the later discovered 233U-237Npone, since at least the a-decay energies in each of them are known quite accurately. Thus, the differences must occur at the places where J-decay bridges occur, which is at different mass numbers in these series. One observes that the lighter isotopes in all series in the trial calculation come out 16 keV less stable than in the 1983 one, which would remove about half the difference with the mass spectrometric result. A complete removal is not expected since differences between the latter and our evaluations show a 6 keV even-odd staggering which could be understood as a dirt effect (see reference [2] ). In fact, this was the reason for not fully trusting these mass spectrometric results. In view of this new result, we have diligently searched for a possible similar error in one or more of the reaction bridges to lower mass elements. Almost all of them are checked by parallel data. Not all these checks are completely satisfactory; but the differences are not of a magnitude to explain the discrepancy. Only the bridge 194Pt(n,y)‘95Pt is not checked by another datum. An error of 20 keV in it must be considered very unlikely. We therefore cannot offer a solution, and conclude that still the Hg doublets are the least improbable source for the discrepancy. Thus, the 1993 mass adjustment removes only about l/3 of the discrepancy. We do not feel happy about this situation and think that
C. Audi et al. / The 1993 atomic mass evaluation (Iv)
201
20
10 -
200
I
i
I
23sU-series
---_
210
220
-A
230
Fig. 1. Differences with the 1983 mass excesses (error band around zero) of mass values obtained in a special calculation excluding ly4Pt(n,y) (error bars) and of the final 1993 calculation (broken line). Errors in the latter values (not drawn) differ only slightly from those in the special calculation.
of the Hg masses, if possible combined with that of lighter elements (2 = 73-77), is the single most desirable experiment concerning masses near the line of @-stability. A new mass determination in the U-Th region, though certainly desirable, is not so urgent for the present problem. a remeasurement
8. Data from the isobaric muldplet mass equation The masses of a set of isobaric analogue levels are predicted to follow a quadratic equation of the charge number 2 (or of the third components of the isospin, T3 = f (N 2 1). In cases where the relation can be tested, it has been found to agree approximately
208
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
within the errors reported analogues previous
for these masses, with as sole serious exception
of the ‘Li and ‘C ground-states. work, and also by Endt
This relation
the isobaric
has therefore been used in our
[36] in his recent compilation
of nuclear
data for
A = 2 l-44, for deriving mass values for nuclides for which no, or poor information
was
available. In a recent study [ lo], one of the present authors argued that this method could be extended.
The validity
of the method,
however,
is made uncertain
by possible effects
spoiling the relation. In the first place, the strength of some isobaric analogues at high excitation energies is known to be distributed over several levels with the same spin and parity. Even in cases where this is not known to happen, the possibility of its occurrence introduces an uncertainty in the level energy to be used for this purpose. In the second place, as argued by Thomas [37] and Ehrman [38], particle-unstable levels must be expected to be shifted somewhat. For these reasons, we decided not to present any IMME-derived mass values in the present evaluation. The study of this possibility, though, will continue. Recently, mass values have been reported in several cases where masses of T3 = - T + 1 analogues could be derived from their proton emission, following electron capture decay of their T3 = - T parents. The mass of the latter parents was then derived by assuming that their decay energy to the isobaric analogue had a value that followed from the formula for Coulomb shifts derived by Antony et al. [ 391. Though we accepted some of these values, we have treated them as all values derived from systematic trends, with errors as following from the latter.
9. Nuclides just above ‘&Gd In our preceding work [2] we discussed the possibility
[40] to get information
in this
region from a discussion of known ground state masses and known excitation energies of high spin states with a simple shell model structure. A new analysis along the same lines has recently been published
by Keller et al. [ 4 11.
Before we start discussion of their results we must point out that our previous value of the mass of 14’Gd had to be revised to make it 140 keV less stable. The earlier value was based on choosing, of the two discrepant available values for the j3’ decay energy of 14’Gd, the one that agreed with the measured reaction energy of 144Sm( 12C,‘Be) 14’Gd (see table II). Several later precision energy measurements showed this to be the wrong choice. As a result, the masses of its two known a-decay precursors, and of its p-decay parent 14’Tbm, changed by the same amount. Also, the masses of 14’Tb and of its many a-decay ancestors changed; these changes were, however, also influenced by the following circumstances. The excitation energy of 14’Tbm was newly measured to be 50.6 keV rather than the value 106 f 29 keV derived before. (The mass of the 14’Tb gs , following from this item, is confirmed by the measurement of the proton binding energy of this isotope in the 147Dy(ep)146Gd decay. 1 But also, the assignment of the 15’Ho cu-particle emitting isomers had to be changed: the earlier
G. Audi ei al. i The 1993 atomic mass evaluation(Iv
209
TABLE C Experimental decay energies in keV, and resulting values for that of 148Tb’a,their errors, and the measuring method (TAG = total absorption y-ray method). Label B in column 2 is for data not used in the present evaluation.
Reference* )
Decay
76Cr.B
‘48Tbfj3+) 14*Gd
83VeO6 85TiOl 93A101 83Ve06
B
QP
E+
5670
60
E+
5480 5790 5925
100 80 70
P+ TAG E+
5800 5910
100 80
P+ TAG
6270 6850
5580 6000
90 100
TAG E+
6430 6330
5580 5480
140 100
Pi TAG
5823 5780
16 30
5720
5580 5390 57qo
85ScO9 93AlOl B
1s2Ho(~+)‘52Dy
90Sa32 93A101
B
~s2Ho~(~+)1s2~
14aGd analysis Present compromise
Method
80
5630
148Ty(jj+)'48Gd
93AlOl 84Al36
Qp(14sTbm)
s ) References are under “References to table II”.
‘*‘HO” (,)14’Tbm decay is now assigned ‘5’Ho(~)‘47Tbm. As a result, “‘Ho and its cy
ancestors are 170 keV less stable than estimated in our 1983 table. The latter change has little to do with the ‘46Gd problem but is mentioned as example for several changes made since our last mass evaluation. A real problem occurs, however, with the determination of the mass of 14*Tb, and therefore of its (p+) parent ‘48Dyand, most important, of its a-decay ancestors, the extremely proton-rich nuclides 176Hgand ‘*ePb which, although not known expe~ment~iy, could be estimated with great confidence (as explained in section 11.5). Measurements have been made of the P-decay energies of both isomers in both 14*Tband its a-decay ancestor 15*Ho.They are connected by reportedly quite accurate values for the excitation energies of 14*Tbmand 15*Hom,and a-decay energies of the latter two and oftheir P-decay daughter “*Dy (see table of input data). In table C we present their reported p-decay energies, and the resulting values for the decay energy of 14*Tbm. One sees that, even compared with the rather large errors, there is some spread in the values. A quite remarkable observation is that, whereas the average of the values derived for the isomers 5862(44) keV agrees quite well with the value obtained in the ‘46Gd analysis of Keller et al., the one derived from the ground states, 5692(37) keV does not. From these two set of data one could deduce an excitation energy of 260(57) keV for 14sTbm.The direct experimental value 90.1(.3) keV [87St.A] has been derived from an analysis of level energies in Tbm from y-rays measured in the 144Sm(6Li,2n~i48~
G. Audi et al. / The 1993 atomic mass evaluation (IV)
210
TABLE D Comparison,
for nuclides with non measured masses, of the results of the L46Gd analysis with the mass values we estimate from trends in systematics. Nucleus
Our value
146Gd analysis
lsoEr “)
-57970#
lOO#
-57890
51
lslEr
-58410#
300#
-58299
41
lslTm
-50880#
360#
-50898
129
“) see part I, table C.
reaction, in which all levels of the dz~1,pf~,~ multiplet, of which 14*Tb”’ is the highest spin member, were observed; this beautiful result is very difficult to doubt. We also considered the experimental methods used in the determination of the above values (last column in table C). Strikingly, the results of positron end-point measurements (E+ ) belong to the highest values; those from positron intensities (p+ ) to the lower ones (even though some values have been corrected upwards to take care of the side feeding intensities reported as possible by the authors). This suggests that this side feeding may have been underestimated in some cases. Quite remarkable is that the values obtained by the relatively new method of total y-ray absorption [42] for the two isomers agree, separately, for A = 148 and for A = 152; but that the values at A = 152, combined with the a-ray data, result in very low values for 148Tbm. This method depends on the reduced half-lives of transitions to the many highly excited levels in the daughter nuclide being not too much different; possibly this supposition does not hold at rather high decay energies. Our final value is a compromise, with an error following from the replacement and averaging procedures, which certainly appears somewhat optimistic; but since it does not disagree badly with the result of the 146Gd analysis, we accept it. The possibility that the excitation energies are underestimated, even if remote, is disturbing. Fortunately, there is a reason to believe that this may not be the case. The recent accurate value for the 148Dy(p+) 14*Tb energy, combined with the derived mass of 14*Tb, yields a mass excess value -67908 f 32 keV for 14*Dy which agrees nicely with the value -67872 f 13 keV derived from the 146Gd analysis. Thus, we feel that the mass values of the a-radioactive sequence starting with ‘*‘Pb (see section 11.5) are probably rather good, even though the errors reported here are probably somewhat optimistic. The remaining new values from the 146Gd analysis are compared in table D with the values that we derived from consideration of systematic trends. It can be seen that this analysis agrees reasonably well, not only with the experimental values, but also with our estimates.
G. Audi et al. / The 1993 atomic mass evaluation(Iv)
211
10. Alpha decay to Nilsson levels with unknown excitation energies a-particle for even-even
energies are usually determined nuclides,
with quite satisfactory
however, the transition
in general not the most intense
precision.
Except
to the ground state in the daughter
one. Thus, if only one, or a few (Ybranches
is
have been
measured, one must assume that even the highest one does not necessarily feed the ground state, and that therefore the decay energy derived from it underestimates the real decay energy. In our previous work [5] we have made a study of the systematic trends of the (Ydecay energies calculated by assuming feeding of the ground states. Comparison with the energies of even-even nuclei showed that for the majority of these cases the deviations were less than 50 keV. For cases where the deviations were decidedly larger, we replaced the experimental decay energies by values derived from systematics. For the other cases, we accepted the result, but added (quadratically) an extra error of 50 keV to the result. For regions of nuclear deformation, the favored a-transition is known to feed, in the daughter nucleus, the level with the same Nilsson level assignment as the parent, which with few exceptions is different from the ground state. One such a region occurs for A > 225. Here, much is known about the energy distance between Nilsson particle levels [43]. Distances between a particular combination of such levels are quite similar in different nuclides. Thus, one may assume that, for the cases discussed here, a good estimate of the excitation energy can be obtained from a study of such differences. (This study should be limited to particle levels; hole levels may show other but irrelevant results.) Several results in the model estimates (table formation by the use of isomers (table III), the
present evaluation have been obtained with help of such Nilsson E). They are clearly distinguished from purely experimental inthe special symbol “*” in all tables in part I and II. In the table of levels are given with the suffix “p” (e.g.23gCmP) used generally
for pertinent non-isomeric levels. In addition, the results have influenced other estimates from the study of systematic trends as mentioned before. We feel that the results given here for the highest masses (A > 235) are therefore more dependable
than in our former
work. Fig. 2 shows the changes in the mass values caused by this feature; as could be expected, the values indicate less binding (by a few 100 keV) than our earlier work. In principle, such a study could also be made in the region A = 160-l 90. This has not yet been done for lack of time; also, the situation involved
for the here very proton-rich
nuclei
is thought to be less clear-cut.
11. Special cases 11.1. THE 3H-3He ATOMIC MASS DIFFERENCE Measurement of this mass difference has been stimulated by the strong interest in the determination of the neutrino mass. An evaluation of related data published in 1985 [44] lead to the conclusion that there was ‘a rather good consistency within each of the three (experimental) methods but strong discrepancies among them’. The situation has
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
212
TABLE E Estimated
excitation
energies and errors (in keV) of level populated model, in the region A > 225.
by a-decay,
from Nilsson
Excitation Energy
Transition
50
50
100
70
150
100
150
100
150
50
300
200
450
100
500
100
300
100
100
70
300
100
100
70
300
100
300
100
105
M( 1993)-M(
keV
.
400
1983) I
106 I
exp.
I exp.+
Nllsaon I
104
107
108
103 104
200
x
103
109
.
02 102
/4 101
0
100 100 101
-200
/
I 250
I
I
I
I
I 255
I
I
I
I
/
i
1
260
-A
11
I
I
I
265
Fig. 2. Differences, for isotopes with 2 2 100, between the 1993 mass values (resulting partly from a Nilsson model analysis: the stars) and the 1983 ones. Points indicate purely experimental values.
drastically improved. First, corrections to the Si(Li) experiments could be made, after careful study, by Redondo and Robertson [89Re04]. Second, a wealth of new precise data were obtained from new P-spectrometers at Zurich [ 86Fr09], Moscow [ 87Bo07],
G. Audi et al. i The 1993 atomic mass evaluation (iv)
213
Tokyo [88Ka20], Los Alamos [89StOS], New-York [91Bu12] and Mainz [93WeO3]; the most recent data of these groups give, for the /3-spectrometer measurements, an acceptable (B = 1.25) average of 18591.2 f 1.1 eV. Last but not least, the PenningTrap measurements at Seattle [ 92Va.A] yielded a precise value for the mass difference ( 18590.1 f 1.7 eV) in good agreement with the &spectrometer average above, yielding an evaluated value of 18591.0 & 1.0 eV. This value is in very good agreement with the average found by Redondo and Robertson: 18591 i 2 eV.
11.2. THE DECAY ENERGY IN 26Alm(/I + ) 26Mg
This case is often discussed as an important pure Fermi transition. Unfortunately, the result of the combination of two agreeing reported 25Mg(n,~)26Mgreaction energies, two well agreeing 2sMg(p,~)26Al ones, and the 26Alm excitation energy gives a value 4232.69(0.08) keV which disagrees with the value 4231.93(0.15) derived from a 26Mg(3He,t) comparison with 14N( 3He,t) 140. A similar comparison with 42Ca(3He 3H)42S~, using for the latter the combination of results on the 41Ca(n,y)42Ca, 4’Ca(p >y;42Sc and 4oSc(p,y) reactions, yields a value 4232.26(0.35) keV, which does not really decide between the two values above. A measurement on the 26Mg(p,n) reaction by Barker et al. [ 84Ba.B], given in the table of input data but not used in the calculation, gives a value 423 1.62 (0.22) keV which seems to confirm the lower of the above values. The authors informed us, however, that newer measurements result in an about 0.9 keV higher value. Taking this all together, we must regretfully conclude that the error 0.07 keV assigned to the output 4232.49 keV of the full least-squares adjustment must be considered optimistic.
11.3. THE 35S(p-)
DECAY ENERGY
This case has been investigated recently several times in connection with the report that a neutrino might exist with a mass of 17 keV. Unfortunately, the reported decay energies are so much different that we had to apply the procedure described in section 3.2 (see table B) to get an average value and dispersion of 167.2OtO.12) keV. A value 166.90(0.23) keV can also be derived from the reported reaction energies for the 34S(n,y) and 34S(p,y) reactions. The disa~~ment is not disastrous; unfo~unately, though, the most recent and probably most accurate 35S(/I- ) decay energy values are all higher than the average given above. Combination with the fact that Barker et al. reported that their recent, unpublished measurements on the reaction 34S(p,n) 34Clseem to indicate an even more significant difference with the combination of the reported results for 33S(n,y)34S and 33S(p,y ) 34Clsuggests that some more measurements on the validity of the errors in at least some reported (n,r) and (p,y ) reaction energies could be valuable.
214
G. Audi et al. I The 1993 atomic mass e~al~ati5~ (Iv)
TABLEF Mass values, in keV, of “Ca atoms with the nucleus in different states. Reference*) 9OTuOl 93Se.A 80Ma40 85BeSO 85Br03 88Ca21 a) References
State 1
State 2
State 3
State 4
State 5
State 6
-34540
-34GoO
-35460
-34950 -34960 -35150
-36140(330) -36240( 370) -35940(150) -36120(120)
-35820
State 8
-32610
-31940
-32710
-32010
-34880 -33950
are under “References
State 7
to table II”.
114 . . THEDATAON*tCa
In table F we give mass values for “Ca atom with its nucleus in different states as found from time-of-flight mass measurements (first two items) and from measurements yielding “Ca from bombardments of 48Cawith 14Cor 180. The comparison makes quite probable that the measurements of references [ 85Be50] and [ 88Ca21] missed the ground-state. Since ” Ca is not expected to have states of such long half-lives that they would influence the direct mass measurements, one may accept that the first two items apply to the ground-state. Consideration of the [ 85Br03] data shows that the reported most-bound level is only very weakly populated. We therefore choose to accept the items of ‘state 2 as ground-state, realizing that thus the mass may have been overestimated by about 300 keV. 11.5. LIGHT Pb ISOTOPES
Though it is known that the magic number gap at Z = 82 narrows drastically in going away from the magic neutron number N = 128, the a-decay energies of even-A Pb isotopes vary very smoothly with the mass number (see fig. 3). Thus, we feel very confident in extrapolating this course to A = 180, which is important since the mass of ‘76Hgis known (we even felt that we could rather confidently do the same for 174Hgand 17sPb;important since their a-descendant “‘Pt has a known mass). We then find that the known masses of light Pb nuclei with even mass numbers, including the two estimates just discussed, agree reasonably with a quadratic formula (see fig. 4). This gives a good method for estimating values for as yet unknown masses of in-between even-d Pb isotopes. Also, it gives a reason to trust indeed the masses of “‘Pt and 176Hgderived from the data just above ‘46Gd and discussed above (see section 9). Interesting is the insight this comparison gives in the neutron pairing energy. As seen in fig. 4, the apparent pairing energy in “‘Pb the only very neutron rich odd A for which a purely experimental value is known, is not ‘ody larger than the old formula 12/o MeV, but even larger than the estimate of Jensen et al. [ 22 1.As said above, for even-odd isotopes one must expect that ground state rr-transitions could have been missed. Correcting for
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
21.5
300 keV 200 -
100
0, (Pb)-quadratic
I
function
1200 NW
-
*
O-
-100
.
-
-700 -__
’
’
180
t
’
’
t
’ lg0
’ -A
’
’
’
’
200
’
i
’
208
Fig. 3. Differences between the a-decay energies of Pb isotopes and a quadratic function of the mass number. The jumps at A = 189, 187 and 185 are connected with the deformed character of the ground-states of the daughters.
such a possibility,
however, would lead to an even higher result for the pairing energy. An
explanation might be, that in some cases the reported a-energies belong to upper isomers, not fed in the preceding cu-transitions. But even taking this possibility into account, it seems that no large systematic errors due to missing ground state transitions exist for the pertinent a-decay series.
11.6. THE ‘*‘Tim(a) DECAY ENERGY In study of this decay, Wauters et al. [91 Wa21] propose feeding to the 9/2-
level at
12.3 keV, whereas we previously assumed feeding of the I l/2- level at 230.5 keV. The arguments developed in reference [ 9 1Wa2 11 for this assignment are very good ones, but the consequences for the regularity of the surface of masses and the plots of systematics are not very pleasant. If there were a real physical effect that would make “‘Au 230 keV less bound, then one would have to find a physical reason also for ‘791r to be 230 keV less bound (or alternatively 18’T1and “‘Bi to be 230 keV more bound). Given this, one may wonder whether what is known presently about the particle-hole configurations and shapes for levels in “‘Au and “‘Tl could not be questioned, or whether some non very common effect is not occurring there. This matter is certainly worth further investigation. In table II we retained provisionally the older assignment.
216
G. Audi et al. / The 1993 atomic mass evafuation (IV) 300t ‘I-_ M(Pb)-quadratic
function
keV
2ooc I--
1ooc)\
12000/m
-
l-.
\
.
0 a
-1001
4
I
I
I
180
I
Ill
III 190
-A
t 200
It 21
Fig. 4. Differences between the mass values for Pb isotopes and a quadratic function of the mass number. The mass values for l’*Pb and lsoPb have been derived from the Pb a-decay energies in fig. 3. The values for the odd mass Pb isotopes are compared with the pairing energy formula of Jensen, Hansen and Jonson 1221, and with the older estimate 12/a MeV.
11.7. NUCLIDES WITH N = 108 A clear discontinuity of the surface of masses at N = 108, first pointed out by Barber et al. [45], has been re-examined recently by one of us [ 461 and shown to extend to isotopes of Hf, Ta, W, Re and OS and to have a magnitude of some 350 keV, as can be seen in figure 6 of part III. Whether this discontinuity is due to an energy gap above the deformed g + 1624 ] Nilsson level as interpreted by [45] or to a prolate to obtate (or possibly triaxial)
G. Audi et al. / The 1993 atomic maSS evakation (Iv)
217
shape transition as observed at higher Z (Au isotopes) [47] render further investigations of the above mentioned Z = 72-76 nuclides, in similar experiments, highly desirable. At the same time, mass measurements of nuclides with higher 2 would allow to derive the magnitude and delimit the extension of the observed irregularity of the surface of masses. We wish to thank our many colleagues who answered our questions about their experiments and those who sent us preprints of their papers. Very useful discussions with H.Keller, PKleinheinz, C.F.Liang, B.Roussiere and C.Thibault have been highly appreciated.
References References such as 84Sc.A, ~9~hlO or 930t. 1 are listed under ~~~eferencesto table II”.
111 A.H. Wapstra and G. Audi, Nucl. Phys. A432 (1985) 1. PI A.H. Wapstra, G. Audi and R. Hoekstra, Nucl. Phys. A432 (1985) 185. 131 J.G. Hyckawy, J.N. Nxumalo, P.P. Unger, C.A. Lander, R.D. Peters, R.C. Barber, KS. Sharma and H.E. Duckworth, Nucl. Instrum. Methods A239 (1993) 423. 141 F.L. Moore, D.L. Farmham, P.B. Schwinberg and R.S. van Dyck, Jr., Nucl. Instrum. Methods B43 (1989) 425. [51 A.H. Wapstra and K. Bos, At. Nucl. Data Tables 20 (1977) 1. [61 G. Bollen, P. Dabkiewicz, P. Egelhof, T. Hilberath, H. Kalinowsky, F. Kern, H. Schnatz, L. Schweikhard, H. Stolzenberg, R.B. Moore, H.J. Kluge, G.M. Temmer, G. Ulm and ISOLDE collaboration, Hyperfine Interactions 38 (1987) 793. [71 A. Cot, R. Fergeau, C. Thibault, M. de Saint Simon, F. Touchard , E. Haebel, H. Herr, R. Klapisch, G. LebCe, G. Petrucci and G. Stefanini, CSNSM-LRB-85-01 report, Orsay 1985. PI A.H. Wapstra, Proc. Conf. Nucl. Far From Stability/AMC09, Bemkastel-Kues 1992, Inst. Phys. Conf. Series 132 ( 1993)979. f93 C. Borcea, G. Audi and J. DutIo, Proc. Conf. Nucl. Far From Stability/AMCOS BemkastelKues 1992, Inst. Phys. Conf. Series 132(1993)59; C. Borcea and G. Audi, Rev. Roum. Phys. 38 (1993) #45, to appear November 1993; CSNSM-9238 report, Orsay 1992. [lOI A.H. Wapstra, Proc. Conf. Nucl. Far From Stability/AMC09, Bemkastel-Kues 1992, Inst. Phys. Conf. Series 132(1993)125. [Ill H.J. Rose and G.A. Jones, Nature 307 (1984) 245. [I21 E.R. Cohen and A.H. Wapstra, Nucl. Instrum. Methods 2 11 (1983) 153. iI31 E.R. Cohen and B.N. Taylor, CODATA Bull. 63 (1986), Rev. Mod. Phys. 59 (1987) 1121. I141 T.J. Quin, Metrologia 26 (1989) 69, B.N. Taylor and T.J. Witt, Metrolo~a 26 (1989) 47. 1151 B.N. Taylor and E.R. Cohen, J. Res. Natl. Inst. Stand. Technol. 95 (1990) 497. [I61 A. Rytz, At. Nucl. Data Tables 47 (1991) 205. [I71 A.H. Wapstra, Nucl. Instrum. Methods A292 (1990) 671. [I81 M.L. Roush, L.A. West and J.B. Marion, Nucl. Phys. Al47 (1970) 235. [I91 P.M. Endt, C.A. Alderliesten, A.A. Wolters and A.G.M. van Hees, Nucl. Phys. A510 (1990) 209. WI D.P. Stoker, P.H. Barker, H. Naylor, R.E. White and W.B. Wood, Nucl. Instrum. Methods 180 (1981) 515. [211 A.H. Wapstra, unpublished.
218 1221 [23] [24] [25] [26] [27]
[ 281 1291
[ 30 ] [ 3 1] [ 321 [ 331 [ 341 [35] [36] [37] [38] [39]
1407 1411 [42]
[43 ] [44] 145 ] 1461 [47]
G. Audi et al. I The 1993 atomic muss evaZ~ation (Iv) A.S. Jensen, P.G. Hansen and B. Jonson, Nucl. Phys. A431 (1984) 393. J. van Lochum, C. de Laat and A.H. Wapstra, unpublished. Particle Data Group, ‘Review of Particle Properties’, Phys. Rev. D45 (1992), part II. M.U. Rajput and T.D. Mac Mahon, Nucl. Instrum. Methods A312 (1992) 289. M.J. Woods and AS. Munster, NPL Report RS(EXT)95 (1988). A.H. Wapstra, Proc. Conf. Nucl. Far From Stability/AMCOg, Bernkastel-Kues 1992, Inst. Phys. Conf. Series 132 ( 1993) 129. Y.V. Linnik, Method of Least Squares (Petgamon, New York, 1961); MBthode des Moindres Carres (Dunod, Paris, 1963). E.R. Cohen, Phys. Rev. 101 (1956) 1641. G. Audi, W.G. Davies and G.E. Lee-Whiting, Nucl. Instrum. Methods A249 ( 1986) 443. F. Everling, L.A. Konig, J.H.E. Mattauch and A.H. Wapstra, Nucl. Phys. 25 ( 1961) 177. A. Gillibert, L. Bianchi, A. Cunsolo, A. Foti, J. Gastebois, Ch. Grtgoire, W. Mittig, A. Peghaire, Y. Schutz and C. Stephan, Phys. Lett. B 176 ( 1986) 317. D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Krauss, Jr., H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra Phys. Rev. Lett. 57 (1986) 3253. W. Bambynek, H. Behrens, M.H. Chen, 8. Crasemann, M.L. Fitzpatrick, K.W.D. ~din~am, H. Genz, M. Mutterrer and R.L. Intemann, Rev. Mod. Phys. 49 (1977) 77. J.C. Hardy, L.C. Carraz, B. Jonson and P.G. Hansen, Phys. Lett. I371 (1977) 307. P.M. Endt, Nucl. Phys. A521 (1990) 1. R.G. Thomas, Phys. Rev. 80 (1950) 136,88 (1952) 1109. J.B. Ehrman, Phys. Rev. 81 (1951) 412. M.S. Antony, J. Britz, J.B. Bueb and A. Pape, At. Nucl. Data Tables 33 (1985) 447; M.S. Antony, J. Britz and A. Pape, At. Nucl. Data Tables 34 (1985) 279; A. Pape and M.S. Antony, At. Nucl. Data Tables 39 (1988) 201. J. Blomqvist, P. Kleinheinz and J.P. Daly, Z. Phys. A312 (1983) 27. H. Keller, N. Zeldes, P. Kleinheinz and E. Roe&l, Proc. Conf. Nucl. Far From Stability/AM~Og, Bemkastel-Kues1992, Inst. Phys. Conf. Series 132( 1993)37. C.L. Duke, P.G. Hansen, O.B. Nielsen, G. Rudstam and ISOLDE, Nucl. Phys. A151 ( 1970) 609; G.D. Alkhazov, A.A. Bykov, V.D. Wittmann, SYu. Orlov, and V.K. Tarasov, Phys. Lett. 157B (1985) 350. Nuclear Data Sheets. G. Audi, R.L. Graham and J.S. Geiger 2. Phys. A321 (1985) 533. R.C. Barber, J.O. Meredith, F.C.G. Southon, P. Williams, J.W. Barnard, K. Sharma and H.E. Duckwo~h, Phys. Rev. Lett. 31 (1973) 728. G. Audi, Workshop on Nuclear Structure of Light Nuclei Far From Stability - Experiment and Theory, Obernai, 1989, ed. G. Klotz, p. 113. G. Savard, J.E. Crawford, J.K.P. Lee, G. Thekkadath, H.T. Duong, J. Pinard, S. Liberman, F. Le Blanc, P. Kilcher, J. Obert, J. Oms, J.C. Putaux, B. Roussiere, J. Sauvage, and the ISOCELE Collaboration, Nucl. Phys. A512 (1990) 241; K. Wallmeroth, G. Bollen, A. Dohn, P. Egelhof, U. Kronert, M.J.G. Borge, J. Campos, A.R. Yunta, K. Heyde, C. De Coster, J.L. Wood, H.-J. Kluge and the ISOLDE Collaboration, Nucl. Phys. A493 (1989) 224.
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
219
Table I. Influences on primarynuclei EXPLANATION
OF TABLE
This table gives for each of the 8 12 primary nuclei the up to three most important contributing data and their influences (x 100) on its mass, as given by the flow-of-information matrix. Nucleus Influence Equation
Nucleus (primaries only) Influence ( x 100) brought to the determination of the mass of the nucleus, by the piece of data represented by the equation in following column In mass-doublet equation: In mass-triplet equation: In nuclear reaction: H =‘H N =14N RbX, Rby: different Km, Csm, Cs”: D &H’ 0 = 160: mixtures of two upper isomers, C SC isomers, see table III. see table III.
#f xGl 1E”I 2H 321 3He 4He 6He 6Li ‘Li ‘Be 8He *Li BBC $3 $Li ‘iBe &se ~Q3 ‘Ii-i ‘13 “C UN ‘3c ‘3N ‘4C ‘4N 140 =N 350 -160 170 ‘7F ‘80 18F ‘9F 2OF 2ONe 2’Ne 22Ne “Na 22Nar 23Na Z3M$ 24Mg 2SN31 2SMg 26N% +&g =AI 16@ J?N% 2’A1 2fJNa 28Si 29Na JQNa 3OMg 31P 32s
100.0 100.0 99.8 33.0 24.5 54.7 67.6 I#.0 99.7 62.2 61 .a 61.8 100.0 100.0 99.9
tl+ n’(ZB+f?r‘Wn,y)*H w,z-c I&--C +ug)3He 3He4-C 4H%3-C 1Li(d,3~~)6He-‘gFO’80
24.2 22.7 36.8 28.1
Cl2 Hd8-012
0.2 19.2 36.9 38.2
MKrI3He 6He)77K, QBe(p,a)gLi 6Li(n y)‘Li a 7Be ‘Li(p,n)
c2 Q3-
“At
‘H4-C 3Hlfi- )3He
14.7 17.0 8.5 4.4
HlZ_D6 Q-C Dt-H ‘H H D-‘He
0.1 la.6 1.2
0.1
1mo 58.9 82.9 95.2 89.9 73.3 94.6 100.0 100.0 66.7 100.0 75.L 44.0 100.0 100.0 IOwl 58.6 98.6 100.0 72.0 87.0 99.8 99.8 44.3 99.3 60. t 83.7 84.5 51.8 68.2 45.5 99.7 85.6 59.9 76.4 77.6 95.7 88.6 71.0 71.7 45.8 44.9 80.6 96.2 71.4 92.6
40.8 if*O 0.8 6.2 14.2 5.4
N6-C7 14N(p n)‘40 IpN D’-lsN H
‘Lift,pfgLi
%eipai*l.i r
0.3 5-4
i~3e~d,3H~)9L~ *aB 3TCl-C Jk1 PLi-“Li 273 aLhO “BId,&Be
3.9 12.5
16.7
C H- 13C
16.6
20.9 27.8
C Dz- 14C Hz
742-C0
4.1 24.7
C Q-“C
H
i5Nlp,n)“k G2
H.w-012 ‘60&l Y)“O ‘kVp:r ) “F lsF(,9* )‘8O ‘70(p,y)‘*F C D,-H 19F 19F(n v)~‘F C D4-’ 20Ne 20Nc(n y)*lNe 21N~~~~y)z2N~ t2N%@‘)22Ne 2’Ne{p y)=Na 22Ne&)23N% ’ 23W 24Mg(p,d) 27Al(pa)24M~ 23Na{t’p12JNa m&s(;i #Ml$ 26M&, >Hef26N% =M&$n #Mg =M*(p:y)=AI ~~ru”@T>@Al 26Mg( “0 f7F)27Na 27A141(p .D ’y$Si
N2-c
33.7 1.4 27.8 13.0 0.2 0.2 38.6 0.6 36.1 16.3 15.5 48.0 31.8 41.0 0.2 13.1 22. f
15.5 t 8.3 4.3 11.4 22.3 28.3 21.7 44.6 11.8 3.8 28.6 6.5
0.2
0
7Li(d,3He)*He-
19F() “0
17.1 3.8 22Naf(IT)22N% 23Ne(p y)24Mg Z3Na(p’n)23Mg 23Na(p’y)24M& 2sNa-i6Na 721 “Na 284 25M~in y)%e ’ +h-~~N% ‘I21 2+hzg4 “M&P yj2fA.I ~~~~~3~~~t)~#A~ 41C%i3B~t)4~S~-2~Ms(126Alm , 26Na-27N%,,fa 22N%.236 2fAl(p,)2aMg 26Na-‘2sN%,619 22Na ,394 27Al(p,y)2aSi 2gN%-Cz.4v 26Na--30Na4j$ 22Na.591 3oNa(,9-)3bMg “P(P y)32S 3’P{p:y)32s
0.2 13.3 0.1 1.4 9.3 5.7 4.1
6.6 16.9 10.5 7.1
0.4
C
32S2-74Ge H2
G. Audi et al. 1 The I993 atomicmass deletion (Iv) Nucleus
Inil.
‘35 34s 3% 3-k
92.9
36Cl MAr *‘Cl “Ar **Ar 3% 3% 39K 4oAr 4oK “)Ca 4tAr 41K “‘Ce 41SC 4’SC’ 42Ca %C “SC’ 43Ca 44Ca 45Ce 4*SC %h 4% 4’CZi 4’SC 47Ti %e %C 48Ti 4% 49% 4gTi 5oTi *oCk *oMSl *‘Ce *1v 5’0 *iMIl 5% 53Cr *3Mn % J4Fe “4CO **Ma **Fe **CO ‘6Fe *7Fe *‘Co *8Fe **CO *8Ni
39co
93.8 94.3 67.4 98.9 70.8 72.1 82.0 68.4 62.1 50.0 87.7 59.5 15.3 92.9 66.7 75.5 67.3 89.9 86.6 92.6 75.5 83.5 95.0 al.8 92.8 45.1 89.4 51.0 82.8 87.0 54.9 42.9 55.1 45.1 83.3 62.3 84.1 88.0 64.1 too.0 87.2 45.9 65.9 61.2 70.4 71.7 54.1 77.9 36.9 100.0 65.8 75.8 86.5 68.4 87.2 50.5 82.3 53.5 59.2 28.8
Equation
3gK{n,y)40K C Ii4-40Ar d K(n yf4’K %P,Y)* 40 Ca ~~(n,~)4tAr 4oAr(P Yf’K 4ka(“‘y)Q’ca %etP:yf”lsc 41scrm14tSc 4’Ca(n,y)42Ca 42Sc’(IT)42Sc 41Ca(py~42Sc’-40C!a041~ 42CsiIi’yWe “Ca(n,y)’ 44Ca %a(n r)45Ca “Ca(p,y)’ 45 SC
%wl yP’ca 4*Sc(p,~)~Ti 47Ca(@- )47Sc 47Sc(fi- j4’Ti 47Ti(n,y)48Ti 48Ca(p,y)4gSc 4%(j?- )48Ti 47Ti(n y)48Ti *oCr&4~Cr 4gSc(@- )4pTi 48Ti(n,y)4gTi 4gTi(n y)%Ti *oCr&*kr *°Cr(3~e,t)*oMn-54Fe()*4Co 48Ca(‘4C “C)*‘Ca *amp y)hf *%f&*tcr *oCrf; y)**Mn *kr(n’y)53Cr **Cr(n’y)*4Cr *2Cr(p’y153Mn *4c~(p’y)**M~ *4Fc(p’ce)*b4n 54Fe(3;ie t)s4Co-4zCa()4*Sc 5*Fej4Mn 54Febt y)*‘Fe *4Fe~p’yf5*Co **Mn&)*6Fe *6Fehj)*7Fe *bFe(p,yf5’Co ~~Fe(n,y)~fFe Wo(d t)‘“Co *sNi(n:y)*pNi *sFe(p,y)*gCo-*6FeO*7Co
Infl. 1.1 6.2 5.7 i a.4 1.1 17.5 a.2 la.0 19.9 26.0 50.0 6.8 25.5 14.7 7.1 33.3 19.8 29.8 10.1 13.4 4.3 24.5 16.5 5.0 12.8 6.2 39.0 10.6 21.2 10.1 13.0 26.2 38.9 44.9 31.3 16.7 37.7 11.9 12.0 35.6
Equation
Infl.
221
Equation
%(n ym
‘%&y)% 34S(n,y)35S
C
H,,-‘*Cl2 3&j?)“Ar 36Cl(fl- )=Ar C H,2-3*Cl 37C1 “Ar(n y)“Ar ’ 38Ar 37Cl(~,Y) 3*Clfo nj3’K *?cl(t,~)*pcI 38Arf~,Y)3pK C Da-40Ar d K(n,~1~Ar 4oCa(n,y)4’Ca 41Ar(fl- j4’K “K(II,~)~*K 4LK(p,nt41Ca 4’Sc’UT)% 41Cafp,y)42SCr-‘OCa()4’~r 42Ce(3He t)42Sc-26M~()26Alm 42Ca(3He’t342~-26M1g()26Al” 42Sc’(IT+zSc 43Ca(n,y)44Ca “Cafp,y)4*Sc 45Ca(fl- )45Sc 4*Sc(p,y)46Ti 46Ca(d t)45Ca ’ 47 Tt 46Ti(d,p) 46Ca(n,y)47Ca 47Ca(B-)47Sc C 35C1-47Ti 48Ca(d t)47Ca 48Ce(P:n)‘%c t*C **Cl_48Ti 46Ti(3He II)~~C~ 48Ca(p y;49Sc ’ 50Tt 4gTi(n,y) s”Ti(p,y)*tV *°Cr(p,y)*‘Mn
12.8 33.0 34.1 38.8 19.2 26.5 40.1 22. I 20.4
*lCa-C4 * 5’v
27.0 24.2 13.5 19.5 9.0 19.6 16.6 22.6 40.8 24.7
*5Mnfp yfs6Fe **Fetc)~*Mn *sNi(p o)**Co 56Ft(p’ymo *7Fe(n’y)58Fe ~N~(P’~)*~CO *8Fe(p’y)59Co-*6Fe()*7Co @Ni{kojS8Co *eNi(p ajS5Co b2Ni(p:a)*9Co
2
5.6 Cs H,Z-35Cl 11.7 a.0
*b~(~y)*‘~ C, Dg-37Cl
37Cl
ii*
Il.6 38Ar(p,n)3aK 11.9 3gK(p,d)38K 4.8 39K(~,y,40Ca 10.4 20Ne2-40Ar 10.0 39K(n,y)40K 0.1 %.xP.Y 1% 3.7 2.8
4tAr(j?- j4’K 4*Ca(n,y)42Ca
3.0 4*C&l,yt4*ca
5.4 44Ca(n,y)4sCa 1.0 46Ca(d tj4*Ca 15.9 4*0&)45sc 14.9 %Ti 37Cl-‘8Ti 7.1 48Ca(d,t k4’Ca
35Cl
11.1 46Ti(d,p)47Ti la.2 48Ca(p,n)48Sc 15.9 48Ti(a,y)49Ti
3.9
4gTi 37C1-*‘V 3*Cl
0.3
*oCr(p,t)4%
14.9 4gTi 3’CI-*1V
3*Cl
10.4 *lv(p y)52Cr 1.9 **cw; n)**Mn 5.8 *3cr(pks3hin 16.9 54Fe(n,y)**Fe 7.1
*4Cr(p,y)*5Mn
1l.i 56Fe(n y)“Fe 2.9 *7Fe(p’n)37Co 15.9 58Fe~p’y~*9Co-*bFet)*7~ 1.1 *8Co(f;+f*8Fe 13.3 57Fe(p,y)*8Co la.2
*9Ni(c)*9Co
222
G. Audi et al. I The 1993 atomic mass ~~I~~ian (Iv)
Nucleus
Infl.
Equation
sqNi 6oco 6oNi 6’Ni 62Ni 63Ni 6ku 63Z” 64Ni %h 64Z” 6fC” f%” 64Ni %h 6% 6’Zll 6’Ga @Ni 6%” 6VGe 69~” 6gGa @Ge 6VAS 69se ‘OZ” ‘OGa
39.7 ‘*Ni(” y)SvNi 87.7 ‘VCo(” y)6OCo 33.9 60Ni(“,y) 74.4 60Ni(ph)S7Co ’ 61 NI 38.1 82.7 32.0 67.0 63.9 90.7 72.8 61.8
6’Ni(” y)62Ni 63Nifi- )63Cu 62Ni(p ’y)63Cu 64Z”(d,t) 63Zn 63Ni(” y)64Ni %u~~y~64Cu 64Cu(B’- )@Z” 6’C”(p”)6sZ”
40 73.98 64Ni(t,p) 64Zn(n’y+sZn ’ 66NI 9919 70.7 43.2 58.8 67.7 93.8 99.3 95.4 29.8 99.9 77.8 70.0 76.7 73.7
65CU(” YFxh 66z”(p’a)63ch 66Z”(“‘Y>67Z” 67Z”lp’“)67Ga ‘o~“(tk t6G)6*Ni 67Zn(n Y$Zn 7oGefp’t)68Ge 68Z”(“‘Y)6VZ” 6gZ”(p’- )@Ga @Ga(p n$“Ge 6vAs(+ )@Ge 6VSe(cp)68Ge “Zn(p “)70Ga “‘~a(“:Yf::~a
“JG@
39.7'"Ge(p,a)"7Ga
“Ga __
44.2 ifGaf3He~~71Ge-6’Cu(~6’Z”
‘IGe
“As “Ge 73Ge 7jAs 74Ge 74As 74Se 74Rb 75As %e 7sRb 76Ge 76As %e 76Rb 77As 7% “Br
7% 77Rb %e 7% 78& 78Rbx ‘9Br 7vRb 80Ge a”As 8oSe a”Br
89.6'"Ge(n.~)"Ge 64.0 7oGe(p ’yj7’As 76.0 68.9 79.9 30.7 81.8 95.4 73.7 59.1 87.0
72Ge(“,y) 73Ge 73Ge(“,y)74Ge 72Ge(3He,d)73As 76Ge 3SCl-74Ge 37C1 74As(p+)74Ge 7%e(“,Y)% 75Rb-76Rb.4v3 74Rb,S07 75Ar(p,“)7SSe 75Se(“,y)76Se
85.3 32.7 98.5 32.4 71.2 99.0 78.6 94.0 49.1 62.0 97.1 89.5 88.4 70.6 52.0 70.7 43.1 86.6
75As(” Y)~~As 76Ge-i6Se 76Rb-8JRb ,894 *‘Se(p a)77As 76Se(n’y)77Se 77Se(p’“)77Br 7SKr&77Kr “RbLijRb .906 7’Sel”.v1’*Se ~,.. C6 H6-‘% 78Rb-sJRb 78RW (IT)‘% 7qBr(” y)sOBr 7vRb-‘85Rb ,929 *“Ge(j-)*o~s “Se(t (‘He)*‘As sose(p,t) 78Se *oSe(p.“)aoBr
Infl. Equation
Infl. Equation
36.6 12.3 24.8 25.6 32.6 18.6 23.7 33.0 36.1 9.0 20.0 29.6 25.5 30.8 0.1 18.2 26.4 41.2 32.3 3.9 0.7 4.6
23.7 SvNi(e)5vCo
29.4
0.1 22.2 30.0 23.3 18.3 17.3 43.7 5.2 36.0 10.3 22.2 20.1 28.2 18.2 2.9
5vNi(n y)60Ni 60Co(i-)60Ni “Ni(n Y)60Ni 61Ni(“‘y)62Ni 62Ni(p’a)5qCo 62Ni(“‘y)63Ni 66Z”&&‘3Cu %&a~%” 64Cu(it )64Ni 64Cu(pt )64Ni 64Zn(n Y)~$Z” “5Cu(p’a)62Ni %(p’n)6Jzn 66Ni(t ~)ssNi-68Z”()70Zn 66Ni(i-)66Cu 66Z”(” y)%n e7zn l+Z” tsN 70Ge(p&67Ga 66Nift,~~68Ni-“Z”(t70Z” 6aZ”(“.~mn 6vSe(ep)68Ge 6vZn(,E- j6’Ga C5 Hq-@Ga 6qAs(@+)6vGe @Se(fi t )@A8 6vSe(/l+ 16’As 70Zn 3%--6”~” 37Cl 7oZn(p,“f70Ga __ C, H6 0-‘“Ge 7’Ge(r)7’Ga _. . _. c. “Ga(-‘He,t)“Ge-“CuO”Z” 7’As(j?+)7tGe “Ge H2-72Ge 72Ge(n y)73Ge 74Se(djHeJ73As 73Ge(d y)74Ge 74As(flL)74Se C, H2-“‘Se
26.3 7JRb-77Rb ,325 74Rb.676 14.6 75As(“,y)76As 8.4 75As(p,“)‘5Se 26.8 14.7 27.6 1.5 32.0 27.0 1.0 12.9
7aGe-76Se 76As(B-)76Se 76Se(n,y)77Se 77Rb-78Rbx 76Rb.,07 76Ge(3He,d) .4p4 7A~ 77Se(“,y)78Se 77Kr(@+)77Br 80Krf3He,6He)77Kr
6.0 14.0 27.3 2.9 5.3 11.7 27.0 48.0 29.3
77Rb-78Rbx 76Rb.m 78Se 35Cl-7tq& 37Cl 78Kr(3He d)“Rb 78Rbx(IT;7sRb 7qRb-82Rbs4t ‘aRbs60 C6 H7-7gBr 7aKr(3He d)“Rb a2Se( 14C hjaoGe 8oGe(~-‘)aoAs
16.4 11.5 *“Sc(prr)77As “Br(n,y)’ 80 Br
24.5 60Ni(“,y)6’Ni 21.5 62Ni(p,y)63C” 20.7 63Ni(fi-f63Cu
04 7:l 8.5 0.6 28.3
%u#?)@Z” 64Zn(d t)63Zn 71Ga(3’He t)7’Ge-65Cu()6sZn 71Ga(3He’t)71Ge-65Cu()65Z” 66Ni(/?-)16Cu
11.1 67Zn N-@Zn IsN 24.9 67Zn(p,n)67Ga
2.3 ‘“Z” 35C1-6az”
f7C1
24.8 6qGa(“,y)70Ga
,*
8.1 16.1 6.2 5.2
70Ga(fl-)70Ge ‘OGe Hz-‘~G~ C( Htt-‘tGa 7iGe~~17’Ga
8.9 C, H, O-72Ge 8.9 C4 Hv 0-73Ge 19.8 C 32S2-74Ge
H2
1.4 74As(fi- )74Se 11.3 ‘%efp,~)~‘As 4.6 74Se(“,y)75Se 17.6 C 32S2-76Ge 22.1 ‘%e 35C1-74Ge 37C1 17.8 77As(/5’- )77Se 1.6 77As(fl- )77Se 8.4 77Kr(jf+ j7’Br 13.8 *o~(P,t)‘a~ 10.6 ‘*Kc(d,t)“Kr 4.9 77Rb-78RbX ,494 76Rb.jo7 1.9 7vRb-s2Rbx
,241 78Rbx.7M)
13 1 %e %I- *ose 3’cl 1:9 soIwfi- )*oKr
G. Audi et al. / The 1993 atomic mass #~luffti~~ (Iv)
%r *‘Rb *‘Bf *‘Kr *lRb *’ Rb* *‘Rby **Se 82Br 8% 82Rb *lRb”’ *‘Rbx 8ZRtrY 82% 83Br 8% 83Rb % 84Se 84Br *%ir 84Rb 84Rbx 8% %I 8SRb 8% *%I 86Rb 8% 8’16 *‘Rb *k **ti *‘Rb 88% @Rb %r 89Y 89Zr g”Rb !=Rbx %r SOY 9ozr g’Rb %r *fY 9’2, “Rb 92Sr 92Y ?zr 9% 92M0 “Rb 93Sr 93Y 93Zr 9%
56.0 85.9 75.6 86.8 63.0 50.1 79.3
17.1 12.8 12.1 14.6 33.1 21.4 12.4
**Br(@ - ) *oKr
48.8 75.8 63.7 83.1 62.8 70.8 73.2 54.0 50.5 64.1
24.2 24.2 18.3 11.4 20.3 24.0 24.8
**Sefp t f*%e 81Br(n’y)82Br 82Br(B’- )82Kr 82Kr(p nj8’Rb 82Rbm;~+)82Kr 82Rbx-83Rb.*,~ 8oRb.342 82RbY-83Rb.4gq “Rby so6 84Srtp tj8*Sr *%Jrti- )*%a “Br(j?- )“Kr 82Kr(3He,d)83Rb
58.1
83Rb-85Rb,976
54.2 92.7 71.0 33.8 45.5 50.1 37.6 89.9 55.4 78.0 58.0 60.9 62.2
83Sr-83Rb *+wt p)“Se *4Br(j- Js4Kr 84Rb(&7+ la4Kr 84Rb(#+)84Kr 84Rbx(IT)84Rb 84Rb(@-)84Sr 8sKr(@- )*‘Rb *$Rb(n y)86Rb “Rbf3he t)“Sr C H,4-iSKr 8gRb
nKr *‘Rbt3’He t)87Sr-8’Br~ O*‘Kr **&(I? y&r *%&)**Kr **Rb(j- )88Sr *%(a yt**sr 8qRb& )8gSr **wn ymr
59.2
75.6 37.7 78.8 98.9 63.9 88.0 83.9 38.2 78.0 86.1 59.0 99.1 61.7 67.2 59.1 66.3 97.0 62.7 33.1 57.3 63.7 48.4 65.2 53.1 23.3 65.6 82.5 48.2 38.0
8SYhYf
‘So
Y
8Szr@?+
)89Y ‘*Rb(j)‘“Sr “Rbx(IT)~Rb 9%r(8- )WY 89Y(n y)SOY 9OZrfd y)9’Zr 9iRbfj)“Sr %r(fl)9*Y 9’YfB-)%r g’Zr(n y)g2Zr g2Rb(~-n)gfSr v2Rb(/¶- 1Q2Sr QYfB- )%r %(n y)%r %r&)%b g2Mo(n,y)q3Mo v3Rb(#- )g%r ‘*Rb(@- jg3Sr 93Y(fi--)93Zr 92zrtn
y)93Zr
93~(~,~)94~
46.0 49.5 17.6 33.6 38.1 7.3 29.0 27.2 25.2 49.9 32.4 10.1 7.6 13.4 40.2 39.1 27.6 40,s 16.9 35.9 21.2 1.1 16.1 3,8 15.4 18.1 22.0 13.9 9.1 0.9 37.8 21.0 23.5 24.4 3.0 31.6 27.2 33.0 21.5 36.6 34.8 25.3 17.6 34.4 17.5 26.7 35.1
“Kr(p nf**Rb 8’K.r(s;81Br *‘Kr(d p)“Kr 8oKr(3ke dj8tRb 8’RbX-8’Rb,488 7gRb.s,3 83Rb-85Rb,48* 8’Rb&2
83Sr(@+ js3Rb 84Se(@- )84Br *4Se(,9-)*4~r C* H,*-%r 84Rb(/?-)84Sr 84Rbx-87Rb,241 83Rb.,$r, C6 H12-84Sr 84Kr(d p)‘*Kr 8’Rb(;d)84Rb 84Sr(d ;18sSr *%& ymc,r 85Rb(dyj86Rb 86Rb& )*%r 87Kr(j?- f*‘Rb C, H, 0 -87Rb *‘sr{n,yl a *sr ‘*Rr(@- )88Rb 88Kr(,9 - ) 88Rb 88Sr(e yjsgSr g1Rb_)93R,, 89Rb.ll I 89sr(~-j8S$8
**sr(p yj*gy WZrfp:d)8qZr gORbx(IT)wRb ‘OR@ -g2Rb.326 8gRb,674 90Rb(/3-)wSr 90Y(/v-)~Zr qOY(@-)QOZr g’Rb- g3Rb 489 8qRb.s,, g1Rb(,9-)giSr giSr(~-)g’Y g”Zr(n yjg’Zr g2Rb(j - )‘*Sr %r(8-- )92Y 92SrfJr
)92Y
%r(fl--PY g3Zr(p-)g3Nb 93zr(8- PNb
12.9 1.1 10.2
223
CrJ Is*-*% *‘RF -83Rb.32* “Rb,6,5 C6 Hg-8’Br
2.7 19.8 8.3 17.1 10.6 3.0 16.9 4.3
C6
HIO-**Kr 82RV(IT)82Rb 82Rbm (ITja2Rb 8’Rbx-82Rbi;4,
‘*Ryzm
17.1 2.7 7.8
27.2 17.7 12.0
“Sr(d,p)“Sr
7.6 8.6 1.8
C H,3-85Rb 876Sr(Pt)*% *%&f**Kr
7.5
C* H,4--86Sr
7.4 17.4
15.4 3.0 0.7 18.1
9.1
gDRl+ -“Rb.*24
0.5
g0Sr(~-)g4r *9Y (P,YlWZr “Rb--c,.5* g2Rb(f?-n) a ‘Sr
6.6 7.1 9.3
“Rb,,,*
4.6 6.3 9.7 14.8 8.5
C7 H,-g’Zr g2Rb- “Rb $42 9tRb.7sa g3Rb(@ -nf %r g4Zr(d,a) p2Y 92Zr(p,nmb
21.6 12.8
w&&J 35&92f&
24.9 11.1
94Zr(d,t)g3Zr %b(y,nmb
g3Rb(B-n)p2Sr
37cf
G. Audi et al. / The 1993 atomic mass evaluation (iv)
224 Nucleus
Infl.
Equation
Ittfl.
Equation
Infl.
93MO
33.1
q3Nb(p,n,93Mo
47.0
92Mo(n,y,q3Mo
g4Rb
63.3
94Rb(@-
26.8
94Rb-q5Rb,660
94Rbx
30.0
q4Rbx-9’Rb.,92
q”Rb;09
26.3
94Rbx-q6Rb,aq9
*‘Rb,30,,
20.0
94RV
39.6
94Rb”-97Rb,4a,
g’Rb,s,6
38.3
q4Rb”-96Rb,587
9’Rb,4’3
16.7
9%
93.8
%r(/Y-
9%
96.8
9’Y(#-)94zr
94Zt
31.6
Y4Zr(n,yF=Zr
40.9
~Z~(d,t)93~
“Nb
62.0
g’~(~,y)~~
38.0
94Nb(/?-
f94Mo
“MO
77.2
‘“MO@
)%Mo
‘$Rb
26.0
g5Rb@?-)
9%
83.4
9% Y% 95Nb
86.9
q5Nb(B-
9sM0
60.3
q5Mo(n
y)96Mo
22.7
95Tc
91.4
95Tc(fl;
j9’Mo
2.6
9JRU
84.7
g6Ru(p,d)qSRu
13.3
95Ru(fi+)q5Tc
g6Rb
23.9
g6Rb(f
1’%
22.0
96Rb-97Rb
Y%r
88.1
Y%r(,v
fg6y
11.9
96Rb(fl
9%.
91.6
Y6Y(‘r
8.4
%sr(fl-
Y6Zr
70.9
96Zrfd
96MO
53.3
96Mo(h
Y6RU
81.2
C7
9’Rb
34.8
“Rbffl-
Y7Sr
83.1
9’Sr(p-
)9’Y
9%
94.9
9’Y(8_
)9’Zr
97Zr
79.7
Y’Zr(/r
9%
88.8
q7Nb(~-)97Mo
g7Mo
43.8
96Mo(n
g7Tc
52.9
q6Mo(3;le
)94Sr
f9’Y
6.2
94Rbf@-
3.2
Y%r(B - f 94Y
14.4
94Nb(fi-
20.9
9sRb-96Rb
95srtfl-
)YSY
14.6
“Rb(,Y
92.1
YSY(fl_
)9SZr
7.9
47.0
9’Zr(B-
)Y%b
43.6
94Zr(n
13.1
Y5Zr&
)%b
94Mo(n
yj9’Mo
)95Mo
)Y6Zr
92Rb.z5a
y)Y5Zr
6.2
96Rufp,d)95Ru
18.1
97Rb-
16.9
97Rb(p-_)9’Sr
3.1
)Y’Nb yJ9’Mo dj9’Tc
96Ru(‘60,‘2Cf’wPd 98Rb 660 95Rb.340
%r(B-
Y6Zr(n y)Y’Zr
11.2
Y’zr&
39.7
97Mo(n,y)q8Mo
47.1
q7Mo~p,n)97T~
97Mo(3i-Ie
86.2
99Rb
35.8
97Rb-q9Rb,490
9%
34.8
YYSr(B-
98RU
pjg*zr
’
95Rb,511
)99Y
0.3
9’Y(/9-)97zr
8.3
7.9 11.2
7.9
98Tc(@-
+*Ru
3.9
31.3
99Rb(p-
)99Sr
23.3
43.2
9gRb(fi-)q9Sr
99Y(Jr)99zr
1.0
%r(/r)Y9Y
99.3
?Zr(B-
0.7
Y9y(j3-j9YZr
YYNb
99.7
‘wMo(d,3He)q9Nb
0.3
YYZr(/r
YYMO
70.6
g8Mo(n,y)9gMo
29.4
99Mo(p-
YYTC
62.3
99Mo(fl-
33.8
q9Tc(8
YYRU
49.4
q9Tc(p-
)“Ru
41.3
99Ru(n,y)‘ooRu
9qRh”
63.6
99Rbm(fl+)g9Ru
34.4
9qPd(fl+)99Rbm
99Pd
64.7
“Pd(#?+
37.0
96Ru(‘60 ‘3C)99Pd ‘ooMo &_Y*M,
33.3
‘O”Mo ‘ORI’
38.4
~Ru(n,y)‘~Ro
36.2
lwPd
82.8
‘ozPd(p,t)‘~Pd
17.2
lo’ MO
98.7
‘OOMo(n,y)‘o’Mo
‘O’TC
64.4
‘O’Tc(fl-
33.6
‘O’Mo(/?-
‘O’Ru
61.0
‘OORu(n,y)‘o’Ru
23.0
‘“‘R”(n,y)‘02Ru
‘02Tc
79.3
‘04Ru(d,o)‘02Tc
20.3
‘00Mo(‘He,p)‘02T~
‘02Ru
76.9
‘“‘Ru(n,y)‘02Ru
13.1
‘02Ru(n,y)‘03Ru
‘O*Rh
31.2
‘02Rb(~+)‘02R~
48.8
‘02Rh(8-)‘02Pd
)“‘Ru
95Rb,340
dj9*Tc
99.0
37ci
g6Rb-97Rb
11.8
yjq9Mo
99Y
)g9Tc
14.6
33.3
1.3
‘“‘Mo(@-
C5 H5 02-97Mo 96Rb-98Rb.4Yo
wRu-d8Ru “Rb-
“Rb
,633 93Rb.34a
)99Tc -
)9qRu
1.7
q9Tc(p d) q8Tc
8.3
C7 H,5-
’
99Ru
)99Rbm
’
6.4
1~Mo(3He,p)‘ozTc
3.4
C7 H16-‘aORu
13.8
Ca Hr - ‘“‘Ru
7.3
C8 H6-‘02Ru
‘2C)‘wPd 10’ 1 Tc 1 *O’Tc
‘02Pd
90.3
‘02Pd(n,y)‘03Pd
8.6
‘02Rb(/?-)‘02Pd
1.1
‘02Pd(p,t)
‘O”Pd
‘OJRU
84.3
‘02Ru(n,y)‘03Ru
8.6
l”Ru(d
6.9
103Ru(8-
)“‘Rh
‘O’Rh
79.7
‘03Ru(/?-
6.7
‘03Pd(e)‘03Rh
‘03Pd
92.4
‘03Pd(e)‘03Rh
0.7
‘03Agf#+
‘03AS
62.2
‘03Cd(~+~‘03~
)‘03Rh
13.3 6.9 37.8
C
94Rbl;l’
~~~~~p~~~~~
)YYNb
~~~~~o-y~~~o 96Ruf’6b
.%t2 9JRb.2Ja
- ) 98Sr
YYZr
)%b
H,2-96Zr
)Y’Nb
98Mo(n
,b8S,
92Rb,2,a
)Y’Y
20.0
28.7
99Tc(p
9’Rb-96Rb,742
)97Sr
&‘aTc 98 C7 H,4Ru
37.4
13.9
C7 H,2-96Mo
Y*Yij?-)YaZr
9al.c
9’Nb(,Y-
c,
29.3
97Mo;n
jq5Mo
11.4
3.3
y)‘*Mo
60.3
96Zr(d,t)q5Zr
6.9
9*sr(fr-)9*Y
98Mo
,660 92Rb.34t
9~Mo(o,y)96Mo
10.1
%Zrlt
94Rb-9’Rb
39.5
15.6
9aY(B-
89.9
C7 Hlo-94Mo
ylg7Mo 96 Ru
19*zr
84.4
Hto-94Zr
,YfY
98Rb(j
9*2r
6.1 12.7
9.3
,742 93Rb.25n - )96Sr
97Rb-q8Rb,660
YaY
C,
qsRu(jl~)95Tc
13.9
q8Rb(fl%r{j9-
6.9
%r(&v)Y~Y
18.0
63.3 82.0
9oRbx ,742 94Rb”-q8Rb,4,, 9’Rif;o
96zr(n,y)9’zr
7.6
92Rb.34,
Y3Rb_Y4Rbx
- j9’?
fY8Y
9aRb
q4Rb-95Rb,6ac
23.4
tt95Zr
’ Ht2-
9%
7.1
)94Sr
yb9’Mo 95 Sr
’
92Rb,,4,
Equation
t)“‘Ru
H7-“03Rh !? lo Pdfn y)‘03Pd ‘03&(fl’+ f iO3pd
) ‘03Pd
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Nucleus
Infl.
72.4 61.0 95.8 83.2 65.5 57.8 ‘05Pd ‘05& 44.8 ‘OS m 79.4 Ag 76.1 %d 67.1 ‘06Pd ‘OS& 72.0 91 3 loaCd 99:4 ‘%I 90.4 ‘%in ‘O?Rh 91.3 97.8 “‘Pd 59.5 “‘Ag 58.9 ‘O’sn 90.3 lmPd 71.1 ‘@Cd 99.5 ‘%l 97.1 ‘O%n 90.3 ‘09Pd 67.3 ‘09Ag 85.3 ‘09Cd 53.8 ‘%l 98.4 ‘@T, 49.6 ’ “Pd 67.3 “OAg 49.1 “OCd 50.7 “‘Cd t”In 76.3 60.4 ‘12Pd 69.7 “2Ag 48.9 ‘12Cd “2ln 57.0 76.9 ‘%I “2TlZ 89.5 42.0 “‘Cd 70.0 ‘“In 42.7 ‘%I 97.6 ‘13Xe 70.5 ‘14Pd 61.0 ‘14Ag 114a 63.5 67.2 “4In “% 64.0 85.9 “kd 39.5 ‘%t 67.9 “% “kd 43.0 64.3 “6Sn 73.8 “%b ’ ‘6Te 84.4 “4CO 58.2 I 16Csx 53.7 95.4 “‘In 52.0 “‘Sit ‘t’Sb 79.7 “‘Te 99.2 IllI 87.5 “‘Cd ‘MRU l”Pd ‘05Ru 105Rh
Equation
Ml.
Equation
‘~~(3H~,6He)‘03Cd ‘@+Ru(d t)‘“Ru ‘wPd(n’y)‘05Pd ‘“Ru(n:y)lo’Ru “‘Ru(#I- )‘OsRb ‘“kh(/.?- )‘05Pd ‘O’Agfp ,)‘05& ‘o5A&” ;IT)‘05Ag ‘osCd(~+)‘05&” ‘OsPd(n y)106Pd ‘06Pd(p’n)‘06As Cg H10-106Cd ‘~In(~+)‘~Cd ‘~sn(~+)‘~In ‘OBPd(d 3He)‘07Rh ‘07Pd(j’- )‘07Ag C Hll-107A~ ‘0‘gSn-‘O’Sn ‘~Pd(~,y)‘09Pd C Hl,-‘osCd ” %In(j+)loBCd ‘%&9+ )‘% ‘09Pd(fi- 1‘OqAg ‘09Ag(n ’y)““Ag ‘09Cd(c) ‘09 Ag 1091n(/?+ )“%d ‘09T~(~p)‘o*Sn ‘loPd(p,t)*osPd “‘A&9)“OCd “°Cd(n,y)‘l’Cd ‘loCd(n,y)‘l’Cd ‘131n(p t)‘l’In-“ZCdO”oCd tloPd~t’p)llzPd ‘i2Ag(;- )“*Cd 1’2Cd(d,p)‘t3Cd “2Cd(p,n)1’21n “2Sn(n ’y)“3Sn “‘Xekp) 112 Te “2Cd(d,p)“3Cd “31n(n,y)“41n “3Sn(f3+)‘131n 1’3Xekx)‘09Te “sCd(‘4C 160)“4Pd ‘14A&9- ;‘14Cd “3Cd(n,yt’14Cd “‘fnifi)“4Sn “4Sn(n y)“%n ‘14Cd(bp)‘1JCd ‘%l(y,n)“4Itt “%n(n,y)‘%n ‘t6Cd 35CI-“4Cd 37Cl “6Sntn,y)1’7Sn “%n(p n)“%b “6Te(~+)“6Sb “6cs~m)“ks “~cs~-“~c~x~~, “6~9;~~ “‘IlI(/!?- )“%n “‘sn~n,y)“*Sn “6Sn(3He d)‘17Sb “‘Tet@+;“‘Sb “‘I(~+)“‘Te
27.6 20.1 4.2 16.8 34.5 32.7 34.2 21.0 23.9 22.0 16.9 5.4 0.6 9.6 8.7 2.2 19.3 41.1 6.7 28.8 0.5 2.6 9.7 12.4 14.7 46.2 1.6 27.2 32.7 27.7 26.5 12.0 39.6 30.3 17.1 43.0 19.0 IO.5 34.7 Il.2 38.4 2.4 29.5 39.0 12.0 22.7 30.4 8.6 34.6 27.4 22.8 32.1 26.2 9.4 41.8 41.7 4.6 32.3 20.1 0.8 9.1
103Cd(~+)‘03~ Cg Ha-‘OPRu Cg Hg-‘@+Pd ‘osRu(B- )‘“kh ‘O%h@-) ‘OsPd “*Pd(n,y)‘~Pd ‘os~(~)‘osPd ‘03Cd(~+)10*AS”’ “kd(d ’tj”‘Cd C HtO- 106Pd ‘O9 Ag(p,d)‘06& “‘kd(d t)losCd ‘~Sn~~~~‘~in ‘07Sn- ‘“Sn ‘“‘Rh(fl- )‘“Pd “‘Rh(,5- )‘07Pd ‘07Ag(p,d)‘MAg ‘O’sn-‘%l C H,2-‘o*Pd ‘O‘sCd(3Hed)‘~In-1’oCdO’1’In ‘o~sn~~+~~oEI~ ‘08Sn- ‘o7Sn ‘0*Pd(n,y)‘09Pd C H13-10g& ‘O8 In(fi+)‘09Cd ‘“~~(3He,d)‘~In-“oCd()11’In 1’3Xe(a)‘OgTe C H14-“‘Pd ‘O’Ag(n,y)“OA~ “‘A&!(B- )“OCd ‘12Cd(y,n)“1Cd 1~Cd(3H~d)1091n-“o~()“‘In “2Pd(fl- ;“2& “2Pdi~-)‘12A# 112Cd(y n)“‘Cd ‘%(B)‘%n ‘%(~-)‘%n “6Cs(m)1’2Te ‘13Cdfn y)“4Cd “‘Cd(#‘- )‘13fn ‘14Snfd t)1’3Sn “3Xe(&)“2Te “4Pd(@- )‘I44 “4Pd(+V_)1’4& tL4Cd(dp)“‘Cd “3In(~,~)“41* ‘%fjr )“%a ‘iSCd(/?-)“SIn “kd(p)‘%t “4Sn(n,y)“rSn C9 Hg-‘%d ‘t~Sntn,y)“6Sn ‘1~Sn(3Hed)‘t6~-‘zoSn()i2’Sb 120Cs(m)i’6Te “6Cs(ea)1t2Te “~cs*(IT)‘%s ‘20Sn(t,o)‘1pIn-“8Sn()1’71n ‘%n(n,y)“‘Sn “‘Sn(p n)‘17Sb ‘t’i(~+‘)“‘Te “9I_“7I
225
Infl. Equation
16.7 ‘@+Ru(n~)‘~~Rt’
4.1 *WPd(n y)‘O.‘Pd 22.1 ‘05~~~~)‘0$~
10.9 ‘06Pd(pn)‘06& 11.1 ‘05Pd(3;rcd)1MAg 3.1 ‘%d(3He;6Hef103Cd
13.1 ‘O9Ag(p,t)‘O’Ag 2.3 tl’Pd(p,ttlOBPd 0.1 ‘%I(~+ )‘“*Cd 0.3 ‘wTekp~‘08Sn 9.8 ‘wCd(e)‘w&
13.7 ‘1zCd(‘4C,160)1’oPd 11.8 “2Cd(pt)‘toCd 12.1 113Cd(p’t)‘11Cd 11.7 ‘t31n(p,;)t”In-t’5~~~)“31n
9.4 C, H,4-“*Cd 4.1 cg H’6-“2Sn 9.3 c, Hs-“%Zd 9.2 “3Sn(j++f1’31n 19.0 “%nfn,y)“~sn
8.9 10.1 5.5 5.6 13.3 3.0 20.7 2.6
C, H’8-1’4Cd “%tfy nt’%n “%nidt)% %d(;,n)‘“Cd “kt(B-)“%n “W/9)“%‘I ‘%d(y,n)‘%d C9 Hg-‘%n
6.3 “7Xe(cp)“6Te 4.7 “‘csx-“~c~4,6 15.4 c %~-“‘Sn 0.2 “‘Te(~+)“‘Sb 3.4 “‘Xe(fi+)
“‘I
“6CSf&4
226
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
NUCkUS
Infl.
“7X, ll’C*X
65.9 45.1
“81” “*.S” “ET,
100.0 54.7 99.5 85.5 91.1 87.4 50.5
“8I “8C*x
“91” ‘1%” “‘Sb “*T,
58.7
Equation
“8S”(“,y)“9S”
‘20Te(p,t)“*Te “*I(,‘?+)“*Te “*CSx-‘33Cs,**’ ‘%n(ta)“%“-“*S”o”‘I” ]*%“kh’9S” “*S”i3i&,d)‘]9Sb “9Te(/9+)]‘9Sb 1]91(8+)]]9~~ “9xe(8+)“91 “9CsX(IT)“9Cs “9cS~-“‘cS,g95 ‘2%“(“,y)‘2’S” ‘22Te(p,t)‘20Te ‘20C~x (IT)‘20C~ ‘%Sx - “‘cS,902 ‘2’Sn(,9- )‘2’Sb ‘2’Sb(n,y)]22Sb ]2’Te(p+)‘2’Sb ‘20Te(3He,d)‘2’I
]21CSX
99.7 79.3 82.0 99.4 73.1 67.1 71.5 99.6 62.7 40.7 43.8 70.2 95.8 70.5
’22s”
50.0
‘*2S”(“,y)‘2%”
lz2Sb ‘**T, ‘%S
51.1 47.1 64.3 60.3 86. I 44.4 72.7 90.4 73.9 85.1 83.5 70.2
‘2’Sb(“,y)‘22Sb ‘22Sb(6’- )‘22Te ‘22C$(ITj’22C*
72.7 30.6
124Sb(p- )lz4Te ~4~“_]*4~~
51.6 83.9 40.3 60.4 98.8 43.9 37.5 50.2 77.3
‘24Xe-54Fe 35Cl2 %S-“‘CS.qj2 ‘24Csx(IT)‘24Cs ‘25Te(n,y)‘26Te ‘24Xe(“,y)‘25Xe ‘25cS-“‘cS,q40 ‘25Te(n,y)‘26Te ‘261(~+)‘26Te ]26Cs_‘33CS ,947 ‘26Te(n y)12’T, ‘2’I(y “;‘**I ‘27X& )12’I ]27cS_]33cS ,955 ‘2*Te_‘z*Xe
“9I “9X, “90 I ‘9&X ‘2%” ‘20Te ‘2% lZOC*X ‘2’S”
“‘Sb ‘2’T, ‘21,
122CSX ‘22CsY ‘2’S”
12’Sb 12’Te 123I ‘23CS 123C*x ’24s”
‘*‘Sb ‘24Te ‘24X, ‘24CS ‘24 CSx ‘25Te ‘25xe ‘25CS
‘26Te 1261 ‘26CS ‘27Te ‘27I ‘27X, ‘2’CS ‘*ST, 128,
85.6 33.8 93.5 43.5 59.2
121CSx_133cS
,910
lz2Csx (IT)‘22C~
‘%~-“‘cs,9]7 ]2w”,y)123sn ‘23Sb(“,y)‘24Sb ‘*‘Te(” Y)‘~~T, ‘22Te(3;ie,d)‘231 ‘%s-“‘CS 25 ‘23C~x(IT)]2 ,8CS 124S”_]3C 37C13
86.9
‘271(n,y)‘281
;;:A
%C~~~‘)Y2?;e
80.6 71.3 46.0 78.1 83.2
‘2*Ba-‘33Cs 962 ‘2*Te(“,y)‘2’Te ]29~~(8- )]291 ‘29Xe-C2 %l’ ‘*9CS(&9+)‘29Xe
‘28Xe ‘28CS
‘**Ba ‘29~~ ‘291 ‘29X, ‘%S
Infl.
Equation
34.1 29.2
“‘xe(B+
41.5 0.5 14.5 2.5 12.6 37.8 41.0 0.3 9.0
‘t’S”(“,y)“*S” ]‘*1(,!3+)“*Te
18.0 0.6 4.8 26.1 24.7 0.4 12.7 31.2 31.2 29.8 4.2 14.8 39.2 25.9 33.5 35.7 15.6 13.9 43.0 11.5 7.7 26.1 14.9 6.4 24.1 27.3 25.6 28.1 16.1 10.1 39.6 1.2 39.0 35.3 49.8 5.7 14.4 21.7
“9Cs(p+)]‘9Xe
6.5
40.0 14.7 13.1 19.0 18.8 19.4 28.7 41.6 20.0 11.7
)“‘I “*cs~-“~csx,~~
ll9I_
“‘cs;~
Infl.
Equation
14.2
“9CSX- ‘%~6,
l17CSX ,339
3.1
C9 H10-‘18Sn
1.9
‘2%x - ‘*bf&2
“*%o*
8.4 0.3
t2’Sb
“Cl
1.7
“9I_1’7,
4.8 5.1 3.6
‘2%x- ‘%~28 “q72
‘18I
;;;;;;;‘$;92I8”
“*cS~72
,..
“*S”(“.Y)“9S”
‘]9Sb(e)“qS” ]‘91(,Y+)“9Te “9I_l18I
35CI-]‘9S”
lL9Te(,‘3+ )‘19Sb
“9cs(/3+)“9Xe “9csx-‘*‘c5;,*
“*cs;72
‘20Sn(d,t)“9Sn
H,2-‘20Te ‘20Cs(co)“6Te ‘%~-‘%~,,
C9
“9cSl;04
‘2%“(“,y)‘*‘S”
]2’Sn(,?-)‘2’Sb ‘2]I(,9+)‘2’Te ‘2’1(~+ )“‘Te ‘%SX-‘22CS~,, ‘%&4 ‘22S”(d t)‘2’S” ‘22Sb& ) 12*Te ‘**Te(n,y)]*‘Te ‘22C~x(IT)‘22Cs ‘22CSx-‘25CS,244 ‘2’CS;56 ‘22C*“(IT)‘22C~ ‘24Sn(d,t)‘23Sn ‘23Sb(y,n)‘22Sb ‘22Te(n,y)‘23Te ]231(,3+)‘23Tc ‘23CsX(IT)‘23C* ‘23,-*x _ ‘26,-* ,390 ‘2’CSJi610 ]24S”_]24Te
9.1 28.1 7.8
“C
35C12 “CI_‘*“S”
‘20Te(3He,d)‘2’I
‘%~-‘22csf32* “9cs;72 ‘22Sn(d,t)‘2’Sn C9 H13-‘2’Sb
4.2 10.8 23.1 10.0 7.4 12.6 6.8 1.9
5.7 4.5
'*'Sn(,V )‘*‘Sb C H,’ N-“‘Sb I283I(j3+)‘23Te ‘2’csx- ‘%;,,
‘%s;56
‘24S”(d,t)‘23S”
12’Sb(n y)lz4Sb ]24Te_i3C
37cl
‘24X,_l’C
37CI3
(IT)‘24Cs3 ‘*4cs~-‘26cs,590
9.7 19.1
]24C*x
‘%f4]o
9.9
‘24Te(n,y)‘25Te ‘25c@?+
)‘25Xe
‘25wp+
)‘25Xe
‘26T,
35CI_‘~4~e
]27~(y,“)]26~ ‘26C*_‘**C*
37CI
,656 ‘22Cti ,344
9.2 15.5
‘%-‘2’cs,591 ‘%;,. ‘*ET,
35CI-‘26Te
37CI
5.6
‘27Te(~-)‘271
19.5 %c$$7217Xe ‘2’cs(&9+)‘2’Xe “OTe 35CI_‘2*Te ‘2*I(B)‘**xc ‘2*Te-‘2*Xe ‘**Cl-
‘33Q
,962
“CI
10.8 13.3 2.1 1.8
127~*_ ‘28CS 6, 128T, 35CI_I!!6Te
‘25CS”9 37Ci
o Hg-‘28Xe I2‘Ics- ‘tics,,,]
‘25cs,33q
C
‘30Ba(p,t)‘2*Ba ]29~~(fl-)
1291
‘291(8--)‘29Xe ‘29Xe(n,y)‘30Xe ‘29cs-
t3’cS.970
10.4 1.3 4.5
‘%n,y ) “01 ‘291()8- )‘29Xe ‘29Ba(,9+) ‘29Cs
G. Audi et al. / The 1993 atomic mass evaluation (Iv Nucleus
Ml.
Equation
‘29Ba “01, ‘3OI
51.9 76.0 89.6 52.8 44.7 86.0 47.0 92.7 67.3 63.7 87.9 70.4 95.6 34.2 95.7 100.0 65.6 98.4 65.8 56.8 90.0 99.3 65.8 77.1 75.1 62.3 65.8 100.0 96.0 65.7 49.0 74.6 69.7 70.7 99.6 69.7 57.4 67.3 41.7 56.0 55.3 42.5 49.1 95.7 57.1 63.6 99.6 43.4 94.1 98.1 63.7 69.5 80.3 70.7 63.6 67.8 45.9 71.7 77.3 70.5 86.4
“‘Ba(,9+ )“‘Cs 130Te 35~1-128~~
‘30X, ‘%s ‘3OCsX “OBa ‘31X, ‘J’CS “‘Ba ‘32X, ‘%S ‘32Ba ‘%s ls3Ba ‘34Xe ‘%s ‘34CsX ‘34Ba 135I ‘35X, ‘%S ‘35Ba ‘361.e 136I ‘j6Xe ‘36Ba ‘3% ‘3’Cs ‘3’Ba ‘%S 138Cs.x ‘l18Ba %e ‘)gCS “9Ba ‘39h ‘%s ‘MBa ‘4OL, ‘4% ‘4’Cs 14’Ba 141L, ‘4’Ce ‘4’PI 14’Nd 14’Pm 14’Sm ‘4’ c&n ‘42CS ‘42B, ‘42~
‘% 142PY 14’Nd ‘43CS
‘438, ‘43L,
‘43Ce
‘4’Pr
37~1
‘29I(n,y)‘301 ‘29Xe(n,y)‘3OXe I3OCS-‘33CS j77 ‘30CSX(IT)‘3 Cs ‘32Ba_‘30Ba “‘Xe(n,y)‘32Xe ‘3’Cs(c)‘3’Xe
“‘Ba(n,y)“‘Ba ‘32X+C 1% 35Cl* 3’Cl ‘33Cs(y,n)%s ‘32Ba(n,y)‘33Ba ‘%(n y)%s ‘33Ba(c;‘33Cs ‘34xe-C
‘3C
35Cl 37Cl
‘33Cs(n,y)‘34Cs
‘34CsX(IT)‘34Cs ‘34Cs(~- ) ‘34Ba “6Xe(d,‘He)‘351 “5x+)“kS ‘%s(n y)‘%s ‘34Ba(n:y)135Ba ‘36Te(B-n)‘351 ‘%(8)‘36Xe Cl0 H16-‘36Xe ‘3SBa(n,y)‘36Ba ‘3sCe-“6Ce ‘37Cs(,9- ) 13’Ba “6Ba(n,y)‘37Ba ‘38Cs(p- )‘38Ba ‘38Csx(IT)‘38Cs “‘Ba(n,y)“‘Ba ‘38Ce(t,p)‘40Ce ‘3gCs(~- ) 13’Ba ‘38Bs(n,y)‘3gBa ‘~gIA(n,y)‘4%a ;:;;(&tr74&3
) ‘40ce ‘%T(n,y)‘%e ‘%a(jY -
“‘Cs(,9-)‘4’Ba “‘Ba_‘33Cs 1411&j14l.g “‘Ce(jJ-)‘4’Pr
‘4’Pr(n,y)‘42Pr “‘Nd(,9+)‘4LPr ‘%m(/T+ )‘4’Pnl ‘44Sm(3He 6He)‘4’Sm “‘Smm (IT)’ ‘4’ Sm ‘42CS(,9-
jL4*Ba
‘42Ba(f3-
)14’La
‘42La(j9-
)‘42Ce
‘42Ce(n,y)‘43Ce
‘42Pr(fi- )14*Nd 14’Nd(n y)‘43Nd ‘%(8-J ’ 143Ba ‘43Ba_‘33CS 143La(p)14bZe5 ‘43Ce(j-
)‘43Pr
‘43Pr(,9- )‘43Nd
Ml.
Equation
42.1 19.7 10.4 41.6 34.6 7.0 36.3 5.6 16.8 36.3 5.2 29.5 4.4 22.1 4.3
‘30Ba(d,t)‘2gBa ‘30Te_‘30Xe
Ml.
4.4
‘301(/r )‘3OXe 13Cl C8 N H7-“‘Xe ‘%s(B+ )‘JOXe “OCSX- ‘%4g2 ‘28cs,508 ‘30Ba(n,y)‘3’Ba Cl0 Hll-‘3’Xe ‘3’Ba(,9+)‘3’Cs ‘3’Ba(,8+ )“‘Cs ‘3’Xe(n,y)‘32Xe ‘%(j9+ )‘=Xe ‘32Ba-‘3OBa ‘%s(y,n)‘%s ‘32Ba(n,y)‘33Ba
4.7 17.4 4.4 10.9 1.7 15.4 3.5
221
Equation
‘30Te
35a_‘28Te
‘3OTe-
37Cl
‘30x,
‘29Xe(3He,d)‘MCs ‘2gcs-‘Mcsx,94 ‘25cs.206 “‘Ba(d t)lzgBa ‘3’Cs(c;‘3’Xe 13’cs- ‘33cs,985 ‘32csc/9+
)‘32Xe
12.8
133CS_226Ra
0.6
‘%s(n,y)“kS
4.0 4.3
‘36Te(B-n)“51 ‘%(B- ) ‘=xe
2.7
‘36Xe(d,t)‘35Xe
4.0 3.5 12.7
‘37Cs(/J-)‘37Ba ‘38CsX(IT)‘38Cs ‘%Z -‘3gcs.4g6
,588
2
33.6 1.6 34.2 39.2 5.7 0.7 34.2 22.9 24.9 33.0 34.2 4.0 30.3 47.5 12.7 30.3 29.3 0.2 30.2 42.6 24.0 40.0 42.6 33.5 14.8 30.7 4.3 42.0 36.4 0.4 35.8 4.0 1.9 19.8 23.3 19.7 17.1 36.4 21.4 19.7 14.7 22.7 29.0 13.6
‘34Cs(/?-)‘34Ba
‘3lCS_l34CSX
52” Ba
‘34Ba(n,y)‘3 ‘351(/Y_
)‘35Xe
‘36xe(d
t)‘35~e
‘35Xe(i‘35Ba(n 136Te&
‘3OCSX ,756
)‘35CS y)‘36Ba l36I
j
‘36Te(B-)‘361 ‘36Xe(3He,d)‘37Cs ‘36Ba(n,y)‘37Ba ‘36Xe(3He,d)‘37Cs ‘37Ba(n,y)‘38Ba ‘38Cs-‘33Csl,038 “8cs~-‘42cs.‘94 ‘37CS.806 ‘38Ba(n,y)‘3gBa ‘4’3Ce_‘38Ce “‘cs- ‘4’cs 493 ‘39cs JO’ i39BacB-jlj9La ‘39Ba(@-)‘39La ‘40Cs(B- )laBa 140Ba- ‘33Csl o53 ‘39La(n,y)‘4Oia ‘40~(8)‘%e “‘Cs(fl-n)‘%a “‘Ba(,4-)‘4’La “‘Ba(,5’-)‘4’La %e(n,y)‘4’Ce ‘4’ce(B- )‘4’Pr “‘Pm(/3+)‘4’Nd “‘Pm(B+)‘4’Nd “‘Sm(~+)‘4’Pm “‘Smm(/3+)‘4’Pm
0.1 0.1 3.2 12.1 1.4 1.4 14.4 20.1 0.9 0.1 20.8 1.9
“‘cs-‘43cs,49j ‘3gCs(p-)‘3gBa
‘4’La(B-)‘4’Ce “‘Nd(fl+)‘4’Pr
Vwy9
+) ‘4’~~ “‘Smm(IT)‘4’Sm
3.3 7.2
142Cs_
%e(t
8.7
t42&-
‘41cs.504
p)‘42Ce
‘4’~r(n:y)‘42~r ‘42Pr(j‘43cs-‘44CS ‘43Ba(,9-)‘4
)14’Nd 62 ‘4’CS 338
.4 La
‘43Ba(/7-) ‘43La ‘42Ce(n,y ) %e %e(&¶- ) ‘43Pr
8.8
‘3gcs,507
%s-%s 789 ‘32cs,212 ‘%(/I - ) ‘%I8 ‘%a()9-)‘% ‘40Ce(t,p)‘42Ce “‘Cs- ‘42Cs,496 ‘40CS,504 ‘4’CS(&9_) ‘%a
;:~B;l~)Csqg8
‘4*cs--43cs,497
‘44CS
‘42Cs(~-)‘4
392
‘39cs.m
Ba
‘40C,
175Lu )‘a_
142Nd 35~1
11.7
‘42cs-
13.6
‘43CS(/I - ) ‘43Ba
0.5
‘3’cs,504
‘4’cs,4g7
‘43La(b-)‘43Ce
2 ‘4’cs,504
G. Audi et al. 1 The 1993 atomic mass evaluation (Iv
228 Nucleus Infl. Equation
I& Equation
MI. Equation
‘43Nd ‘43Pm lr3Sm ‘% la411a ‘“IA ‘44Ce ‘“Pr lecNd !44Pm ‘44Sm !% ‘%a
32.0 ‘42Nd(n,y)‘43Nd !42Nd(3He,d)‘43Pm
28.0 ‘76Lu 37Cl--43Nd 20.3 147Eu(,)‘43Pm
1;:; ::$;+$)$$$g
12.9 ‘%S- ‘“cs $62 “‘Ca.338 l.4’44Ba(f?-)‘4 La
'4Sb
“%k ‘4SPr 14jNd 14jPrn %m ‘4SEU ‘%S !46Ba ‘46~, j4ke ‘46Pr ‘46Nd ‘46Sm ‘46EU
34.4 ‘43Nd(n,y)‘44Nd 57.5 !43Nd(3He,d)*44Pm-‘42Nd()‘43Pm22.2 100.0’44Sm(p d)‘43Sm-‘48Gd()‘47Gd 48.7 ‘44CS(&& )‘%a 90.4 ‘44Ba-‘33csl,083 61.5’“Ba(,9-)‘44La 99.9 !“Cefgf’44Pt 99.9 l”Pr(b - ) ‘44Nd 65.5 ‘43Nd(~,~)‘44Nd 49.5 ‘44Nd(3H~,d)‘45Pm-143Nd()‘~Pm31.1 49.5 ‘44Sm-‘44Nd 35.0 ‘44CS-‘4% $62 '42cs.338 80.8 ‘4sCs(~- )I4 Ba 54.8 ‘4sLa(fl- )“‘Ce 90.4 ‘45Ce(fl- )‘4SPr 49.9 14’Pr(,9- ) 14’Nd 58.6 ‘44Nd(n y)‘45Nd 37.2 ‘44Nd(3~e,d)‘45Pm-!43Nd()‘44Pm24.4 70.5 ’44sm(n,~)‘4ssm 92.9 ‘44Sm(3He d)‘45Eu 37.5 ‘46cs(5- )i4%a 54.3 ‘46C~(f?- )‘46Ba 56.8 14%a(~- )‘4’ke 70.4 ‘46Ce(jf- ) ‘46Pr 77.8 ‘46Pr(p- )‘46Nd 59.1 ‘45Nd(n,y)‘46Nd 47.6 ‘46Sm(a)‘42Nd 57.0 ‘46Eu(B+ ., !‘46Sm
‘47Pm 53.1 14’Nd(@- )‘47Pm 14’Sm 51.5 ‘47Pm(fl- )“‘%I ‘4% 54.6 ‘47E~(fl+ )!4’Sm 14’Gd 83.9’48Gd(p,d)‘47Gd-‘48Sm()‘47Sm “8c~ 100.0 ‘45cs-‘48cs 9 ‘43c~608 ‘48Nd 59.6 ‘48Nd 35CI- ? 4a Nd 37kl ‘4’JSm 50.6 ‘47Sm(n,y)‘48Sm ‘48Gd 89.6 ‘48Gd(u)‘44Sm ‘49Nd 98.6 ‘48Nd(n,y)‘49Nd ‘4gPm 47.3 ‘4pPm(@- )‘4pSm 14’Srn 59.6 ‘4pSm(n y)“‘Sm ‘4pGd 62.2 ‘4p~(~~‘4’Sm ‘4gTb 88.1 ‘4pTb(o)‘45Eu ‘$ONd 58.7 150Nd-‘50Sm lJoSm 47.4 150Sm(n y)lS’Sm ‘*%” 50.9 ‘5!E~(ph)‘soE~ ‘j”Gd 44.7 “‘Gd(a) ’ ‘46Sm ISOTb 78.5 ‘50Tb(r,)‘46Eu ls!Pm 77.1 ‘50Nd(3Hed)‘S’Pm lS’Sm 52.2 ‘%n(n,y) ‘ISIS, 51.S’5’Sm(~-)‘S’Eu ‘5’EU ‘j’Gd 84.5 ‘5’Gd(e)1S’Eu 1%~ Sl.01~1Tb(~+)‘5iGd ‘s2Sm 29.9 ‘5’Sm(n yfiJ2Sm ‘QEU 53.0’51Eu(n,y)’ ‘52~” ‘j2Gd 92.8 ‘52Gd(n,y)‘s3Gd ls3Eu 75.1 ‘52Eu(n Y)‘~~Eu ‘j3Gd 91.3 ‘53Gd(dy)‘54Gd ‘53n 61.4 !53Tb(+)‘s3Gd 55.6 ‘j3Dy(,9+ )‘53Tb “‘Dy 154Sm 62.1 ‘j4Srn 35Cl-‘s2Sn 37Cl
‘42cS.338
38.5 ‘44La(j-)‘44Ce 0.1 '44J_a(/!Y-_)I44ce 0.1 ‘%e(#v) ‘44Pr 28.7 ‘44Nd(n,y)‘45Nd !43Nd(3Hed)‘~Pm-‘4zNd()‘43P~ 28.9 ‘“Sm(n,y)‘45Sm 15.6 ‘4sCs-‘46Cs,497 ‘44C~,503 ‘9.2 14jBa(,5’-) ‘45La 45.2 ‘45Ba(~-)‘4sLa 9 6 ‘45La(,V-) “ke 4919 '46 Nd(d,3He)‘45Pr 40.3 ‘45Nd(n,y)‘46Nd “%n(c)‘4sPm 15.4 !4sSm(c)‘45Pm 7.1 ‘4p~(*)‘45E~ 33.1 ‘4Jcs- ‘% $62 ‘43cs.338 45.7 146Ba(@-)‘4 La 43.2 ‘46Ba(,9- ) 14% 29.6 ‘MLa(p - ) ‘%ze 22.2 ‘4%~ - ) ‘46~~ 28.8 ‘46Nd(n,y)‘47Nd 27.9 ‘46Sm(31ie a)14jSm 29.2 ‘44Sm(3He:~)‘46Eu ._. 28.7 !47Nd(~-)‘47Pm 46.9 ‘47Pm(@- ) 14’Sm 34.4 ‘47Sm(n,y)148Sm 18.4 ‘47Eu(o)‘43Pm 16.1 ‘47Gd(,9+)‘47Eu ‘6.3 “‘Nd(d t)14’Nd 23.8 ‘50Sm 3kl-‘48~m 37CI 10.4 ‘4sGd(p d)147Gd-‘48Sm()‘47Sm 1.4 ‘4gNd(i-)‘49Pm 42.2 ‘48Nd(3He d) ‘49Pm 17.1 ‘49% 3&J47sm 37Cl 28.2 i53Dy(,)149Gd li.914p~(~+)~49Gd 28.1 lsoNd 35Cl -‘46Nd )‘CI, 24.4 ‘49Sm(n,r)‘50Sm 49.1 ‘50Eu(j3- )“OGd 42.7 ““Eu(/3- )“‘Gd 21.5 ‘50Tb(,9+)‘50Gd 22.9 1s!Pm(~-)‘5’Sm 30.4 15’Sm(@-)‘5’Eu 46.5 ‘s1Eu(“,y)‘52Eu 15.5 ‘51Tb(/?+)15’Gd 49.0 ‘5!~(*)‘47E~ 23.6 !54Sm 35Cl-‘52Sm 37C1 24.6 ‘j2Eu(n y)‘53Eu 7.2 ‘s2E”(;- )‘j2Gd 23.4 ‘S3Eu(n y)lyEu 38:6 6 3 ‘5ZGd(d ‘53JJy(b’t)y)‘j3Gd 153Tb 44.4 ‘s3Dy(a)‘49Gd 24.7 ‘s4Sm-‘54Gd
‘jC1 2
2.7 144Sm-1%d
, 19.4 14’Ndf3He
d)‘44Pm 10.4 ‘48Gd(,)“4Sm 13.4 ‘45cS-‘46cS662 ‘4% ,330
0.3 ‘45c&9-)‘45Pr 1.1 ‘45Pm(e)‘45Nd 20.2 ‘45Pm(t)145Nd 8.8 ‘~Sm(3He,~)!4~Sm 15.2 ‘4fCs-%S
.497 ‘44cs.so3
4.1 ‘46Nd 35Cl-‘44Nd 16.3 ‘48Sm(p,t)146Sm 13.8 ‘50Tb(a)‘46Eu
37C1
0.6 ‘48Nd(d,t)‘47Nd 11.9 14’Sm 35Cl- 14’Sm 3’Cl 17.6 ‘47Gd(fl+)‘4’Eu
11.8 ‘48Nd 3sCl,-‘44Nd 12.3 ‘%m(n,y)149Sm
37C12
10.5 14gNd(#-)‘49Pm 15.0 ‘4%m(n ~)‘49~m 9.6 149Tb(/?; )149Gd 9.6 ‘50Nd-!48Nd 19.1 lsoSm 35Cl-‘48Sm
37CI
12.6 ‘soTb(j7+)‘50Gd
17.2 !5!Sm(n,y) ‘52Sm 1.4 ‘51Gd(<)‘5’Eu
22 6 ‘52E~(j?+ )‘%m 18:7152E~(#+)‘52Sm 1.5;lssGd 35Cl-‘53E” 2.4 ‘j3Tb(B+ )ls3Gd
10.5 Cl2 H10-‘54Sm
37Cl
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Nucleus Infl. Equation “4Eu IJ4Gd Is5Eu “jGd ‘%m ‘56EU ;:;Gd Tb ‘56Dy 1%” “‘Gd '57n
‘5’Dy 15’Gd ‘58m ‘58Dy ‘59EU “‘Gd 159n
“9Dy ;;‘Gd Tb :::z ‘6’Dy ‘6’HO ‘62Dy ‘62Ho ‘%r ‘63Dy ‘@Ho ‘63Er ‘64Dy ‘64Ho ‘64ET 16$Ho ‘6SEr ‘+m ‘@Ho ‘66Er ‘6’Er 16’Tm 167n
‘68Er 16’Tm ‘6$,, ‘6gEr 16’Trn 16gyb “OEr “OTm ‘7Oyb “‘ET “‘Tm 171n
Infl. Equation
229
Infl. Equation
74.7 153Eu(n,y)‘54Eu 19.1 “4E~(p- )ls4Gd 5.8 154Eu(n Y)‘~~Eu 26.3 154Eu(B- ) 154Gd 45.3’54Gd(n,y)‘5’Gd 20.5 ‘54Sm-“54Gd 92.5 ‘54Eu(n,y)155Eu 7.5’55Eu(fi- )155Gd 31.9’55Gd(n,y)‘56Gd 53 3’“Gd(n,y)“‘Gd 8.1 “‘Eu(B- )“‘Gd 86:6 %m(B)ls6Eu 13.4154Sm(t p)‘%m 69.9156Eu(p-)‘56Gd 26.3 ‘54Eu(t;)‘56Eu 3.8 ‘%m(~) ls6Eu 36.4’56Gd(;,y)‘57Gd 67 8’55Gd(n y)‘=‘Gd 1.2 ‘@Gd 35C12-156Gd 37C12 100:O’55Gd(a:t)‘56Tb-158Gd()15gTb 54.0’58Dy 35Cl-‘56Dy “Cl 31.9’56Dy(d,p)‘57Dy 14.2’5aDy(p,t)‘56Dy 100.0’57Eu(/?-)‘57Gd 62.3156Gd(n,y)‘57Gd 16.9157Gd(n,y)‘5sGd 12.4’5gTb 3sC1-157Gd 37Cl 8.4156Gd(,,t)‘57Tb-‘5*Gd()‘5gTb 91.6157Tb(~)157Gd 65.9’5aDy(d,t)‘57Dy 34 1 ls6Dy(d p)“‘Dy 81.2’57Gd(n y)15’Gd ,1:3 ‘58Gd(n’y)15’Gd 7.4 16’Gd 35Cl-158Gd 37Cl 26.7157Gd(a:t)1~8~-‘58Gd()‘5g~26.2’Jg~(d,t)158~-164Dy()163Dy 26.7157Gd(a:t)158Tb-‘58Gd()‘5gTb 15.5 ‘60~ 35c~- '56~ 37~1 18.8’5%(&4-)‘5%y 56.216’Dy(p t)15’Dy 100.0160Gd(th)15gE”-‘58Gd()‘57Eu 87.9158Gd(d y)“‘Gd 12.1 “‘Gd(B)“‘Tb 13.91sgTb 35C1-‘57Gd 37C1 31.9’58Gd(a,t)* 159Tt-‘64Dy()‘65Ho 12.0’5gGd(~- )IsgTb 69.5 “‘Dy(c )‘j’Tb 28.O%y(p t)“‘Dy 2.5 ‘58Dy(d p)15’Dy 26.5 16’Gd 35C1- ‘58Gd 37C1 246’60Gd(a’t)161Tb-‘58Gd()‘sgTb21.9160Gd-i’%y 91.O’%(n y)‘@% 9:0’6%lJ(“;)‘6’Tb 72.2160Dy(n:y)161Dy 24.1 160Gd-i60Dy 2.9’%y(p,t)‘%y 74.1 wb(n,y)‘6’Tb 25.9160Gd(a,t)‘6’Tb-158Gd()‘JgTb 40.4’6’Dy(n Y)‘~~D~ 27.7 160Dy(n,y)‘61Dy 17.8 ‘6’Dy %l-‘5% 37Cl 100.0’60Dy(3;ied)‘6’Ho-‘64Dy()165Ho 59.5 ‘6’Dy(n,y)i62Dy 40.5’%y(n,y)‘%y 100.016’Dy(3He,d)162Ho-164Dy()165Ho 48.2 164Er 35C1-‘62Er 37C1 31.3162Er 35C1-‘60Gd 37Cl 15.9 ‘62Er 35Cl -“‘Gd 37C12 59.5162Dy(n Y)‘~~DY 38.4163Dy(n Y)‘~~D~ 1.9163Ho(c)’ d3Dy 97.9’63Ho(c;‘63Dy 1.9’63Er(+9k )16)Ho 58.8’63Er(,9+)‘63Ho 21.0 ‘64Er(d,t)‘63Er 20.2 162Er(d,p)163Er 38.6158Gd(,,t)‘5gTb-‘64Dy()‘65Ho l.0’5gTb(d,t)‘58Tb-‘%y()‘63Dy 60 3 163Dy(n Y)‘~~D~ 67’0’63Dy(3k d)‘64Ho- ‘a4Dy()‘65H033.0165Ho(y,n)164Ho 37:3’64Er(n y)‘hr 30.6 ‘66Er 35C1-‘64Er 37Cl 20.6’@Er 35Cl-162Er 37Cl 46.216sHo(d Y)‘~~Ho 26.9’58Gd(a,t)15gTb-164Dy()‘65H016.0’6gTm 35C12-‘6*Ho “Cl2 54 9’64Er(n +Er 23.1 “j’Er(p t)16’Er 13.0165Er(c)165Ho 50:2’65Tm(i+)‘65Er 49.8164Er(a~t)165Tm-‘68Er()16gTm 53 8 ‘65Ho(n Y)‘~~Ho 46.1 ‘66Ho(B- )‘66Er 68’5 ‘66Er(n ;)“‘Er 25.5 ‘66Ho(p- )‘66Er 3.9 166Er 35Cl-1MEr 37Cl 43:2 ” Er(n:~)‘~~Er 27.9 ‘6aEr(n y)16’Er 9.4 16’Trn 35C1-‘67Er 37C1 98.9 166Er(a t)‘67Tm-‘68Er()‘6gTm 1.1’67Yb(~+)167Tm 89.7167Yb(~+)‘67Tm 10.3 ‘68Yb(d t)16’Yb 55.4167Er(n Y)‘~~E, 9.3’68Er(n,;)‘6gEr 8.5 “*Yb 35C12-‘68Er 37Cl2 100.0’67Er(a~t)‘68Tm-‘68Er()16gTm 56.0’68Yb(n y)16’Yb 32.7 “OYb(p t)‘68Yb 7.5168Yb(d,t)167Yb 89.7’68Er(n +‘Er 10.316gEr(B’ )16’Tm 30.0’6gTm(h y)“OTm 16.0’70Er(at)171Tm-‘68Er()‘6gTm 14.3’73Yb 35C1 -16’Tm 37C12 47.9”‘Yb(p +%‘J 43.7 ‘%(d y)?b 8.4 16gYb(e)‘6 f Tm 53.4’70~r(a~)‘71Tm-‘68Er()‘6gTm 28.2 ‘70Er(n,;)17’Er 10.0’70Er 35C1-‘68Er 37Cl 60.5’70Tm(~-)‘70yb 39.5 16’Tm(n y)“‘Tm 2,5 172yb 35”_ “On 37” 78.2170Yb(n,y)17’Yb 24.7 170Tm(i- )I’%
68.0’70Er(n y)“‘Er 88.8”‘Tm(~-)“‘Yb 76.1 ‘7’Yb(n,y)‘72Yb 68.2’70Yb(a,t)‘7’Lw-‘74Yb()175L~ “IL” “2Er 87.4”OEr(t P)“~EI ‘72Tm 69.9L72Er(~-_)‘72Tm '72yb 69.3’72Yb(n,y)173Yb “2LU 100.0”‘yb(u1)“2Lu-“%()“~L” '73yb 59.6’73Yb(n:y)‘74Yb
32.0”‘Er(fl-)“‘Tm 7.1 “‘Er(f3-)“‘Tm lo.z’7’Lu(~+)“‘Yb 31.8 “‘Lu(,!l+ )“‘Yb 12.6172Er(~-)172Tm 30 1 ‘72Tm(/3 - ) “+b 22:417’Yb(n,y)‘72Yb 23.2172Yb(~,y)‘73Yb
4.1 170Er(a,t) “‘Tm- ‘68Er() ‘69T, 4.0 ‘7% 35C12- ‘67Er 37Cl 2
3.9 ‘72yb 3%-~~--168~~ 37~~ 2 12.5 ‘75Lu 35C&‘73yb
37f-J
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
230 Nucleus
Infl.
100.0 49.3 100.0 “4L” 70.7 ‘74Hf 175yb 50.5 74.5 “5L” ‘75Hf 81.3 176yb 86.8 50.7 “6L” ‘7% 67.4 61.6 “‘L” 68.3 “‘Hf 89.1 “8L” I78 L”rn 65.7 66.1 “‘Hf 100.0 “9L” 36.7 “‘Hf 75.3 ‘*‘Hf 97.5 ‘8% MOW 72.6 84.5 “‘Hf 24.9 ‘8’1.a ‘81W 70.3 74.9 ‘82Ta l82W 68.5 182Rem 100.0 100.0 ‘820s ‘82Ir 50.4 50.1 ‘82pt ‘83w 42.9 ‘84w 55.4 100.0 ‘84Re 98.1 ‘840s 18Sw 72.3 50.3 ‘85R, 98.7 ‘850s ‘86w 56.7 “3L”
'74yb
Equation
Ml.
“2Yb(o,t)“3L”-“4Yb()“5L” “%(n y)“%b “3yb(a’t)“4L”-“4yo”5L” “%If 3iCl-‘74Hf 37Cl ‘%b(n,y)‘%b “5L”(“,y)‘76L” ‘74Hf(n,y)‘75Hf ‘76~~ t)177L”-‘74yb()175L” “6Lu(n:y)“‘L” ‘76L”(p- )‘76Hf ‘77Lu(,9- )“‘Hf “‘Hf(n ’y)‘78Hf ‘7gHf(t,,) ‘78 L”-‘78Hf()‘77L” ‘78L”m(IT)‘78L” ‘78Hf(n,y)‘7gHf lEoHf(t .)17gL”-‘7*Hf()‘77L” C,, H,; -“‘Hf ‘7gHf(n,y)‘80Hf ‘8’Ta(y n)180Ta “‘W(t,p) ’ ‘82w ‘80Hf(n,y)‘8’Hf ‘8’Ta(n,y)‘82Ta ‘8’W(c)‘8’Ta ‘8’Ta(n;y)‘82Ta ‘82W(n,y)‘83W lg2Rem(fl+ )lg2W ‘820s(c)‘~~~e”’ ‘821r(B+ )‘=os ‘82Pt(B+)‘% ‘83W(” y)‘84w ‘83W(“:y)‘84W “‘Re(d t)‘84Re-‘87Re()‘86Re ‘840s(n’y)1850s ‘84~(n;)‘85~ “‘W(B’- )lg5Re ‘850s(c)‘85Re lB6W(n y)‘87w
Equation
Intl. Equation
40.1 ‘%b(n,y)“4Yb
10.3
17.9 49.6 12.4 18.7 9.8 25.1 21.7 35.4 28.2 10.9 34.3 27.4
‘74Hf(n y)‘75Hf ‘75Yb(4-)‘75L” ‘75Yb(/5’- )‘75Lu ‘77Hf(p,t)‘75Hf “%‘b 35Cl-‘74~ 37Cl “5L”b y)“6L” ‘78Hf 3kl- ‘7aHf 37Cl “~L”(~,~)“‘Lu “‘Lu(j?- )“‘Hf ‘78L”m(IT)‘7*L” “6L”(t,p)“8L”m “‘Hf(n,y)“*Hf
11.4 ‘76Hf(p,t)‘74Hf
33.1 13.9 2.5 13.5 15.5 24.7 21.0 25.1 21.5
‘78Hf(n,y)‘7gHf ‘80Hf(n,y)18’Hf 180Ta(@- )‘SOw ‘~‘JT~(B-)‘~“w ‘8’Hf(/?- )18’Ts ‘83~ 35c1-‘8’~ ‘82W(d.t)‘8’W ‘82Ta(j-)‘82W ‘82Ta(fl-)‘82W
18.2 ‘7gHf(n,y)‘80Hf 5.2 Cl4 H12-‘80Hf
37Cl
1.9 27.7 24.7 1.3 18.0
‘88Pt(o)‘840s ‘85W(/5’- )lB5Re 185Re(“,y)‘86Re 1840s(n y)lg50s ‘86~ 35’C,-‘84~ ‘86Re(B- )lB60s lB60s(n Y)‘~‘OS ‘86A”(,& )lg6Pt “‘A”(/?+) lg6Pt ‘86Hg(,)‘82Pt ‘86W(n,y)‘87W ‘87W(8- )18’Re 18’Re(,9- )18’Os ‘~8Os(n,y)‘890s ‘88Pt(e)‘881r
37Cl
‘86Re(@‘- )lB60s ‘86Pt(a)‘820s ‘86Au(a)‘%r lg6Hg(/3+ )lg6A” “‘W(/?- )18’Re ‘87Re(,‘3- )18’Os ‘8’0s(n,y)‘880s
‘8811
57.1 99.5 50.0 50.1 57.2 63.4 47.3 51.5 64.3
‘881r(B+ )lg80s
18BPt
63.4
‘88~t(a)‘840s
20.3
“‘Pt(p
‘890s
61.3
‘880s(n,y)‘8g0s
34.9
‘8gOs(n
‘8%
71.0 80.4 51.7 57.9 65.5 56.5 73.2 45.2 57.3 58.5 79.4 57.8
‘9’Ir(p,t)‘89Ir
29.0 18g~(j;
‘wPt(p,d)‘8gPt ‘~90s(n,y)‘9OOs ‘92Pt(P,t)‘gOPt ‘gOOs(n,y)‘g’Os “‘Os(fl)“‘Ir ‘g2Pt(p,d)‘g11’-‘g4Pt()‘g3Pt ‘g20s(p,t)‘goOs ‘g’Ir(n,y)‘g21r ‘g21r(fi- )lg2Pt ‘920s(n,y)‘930s ‘g21r(n,y)‘g31r
19.6 34.4 23.2 34.5 42.4 26.8 27.5 41.7 37.3 20.6 25.6
)lgglr 18gPt(fl+ )lBgIr ‘9OOs(n y)‘9’Os ‘goPt(p,;)‘88Pt ‘9’os(B- )‘9’Ir ‘g’Ir(n,y)‘g21r lg2Pt(p d)“‘Pt ‘g31r(t,~)‘g20s-‘g’Ir()‘900s ‘%(“,Y)‘% ‘g2Pt(“,y)‘g3Pt ‘g30s(fl- )tg31r ‘g31r(n,y)‘g41r
‘880s
‘89pt ‘900s ‘9OPl ‘9’05
“‘Ir ‘9’Pl ‘9201 ‘9% ‘92pt ‘930s lg31r
‘870s(n,y)‘88Os
35~1
“6Hf
35CI-“4Hf
37CI
“%(a ‘79Hf
t)“‘L”--‘4Yb()“5L” 3iCl_177Hf 37C,
3.2 “8Hf
37C12
35C1-“6Hf
02-
2
37C1
‘8’3~
35Cl
24.1 ‘81Hf(~-)‘8’~a 8.7 ‘8”w(d,p)‘8’w o2
13.2 ‘87~~
‘860s 186Pt
‘8’0s
37C1_‘43Nd
37C1_ ‘82~
14.1 ‘82w(n y)‘83w 9.7 ‘86~ 3&,_184w
31.0 29.8 0.5 49.9 49.9 42.8 22.8 37.0 35.3 35.7
‘8’Re
35C12-“2yb
‘76~”
35~1
0.1 ‘82pt(8+)‘82Ir
49.5 ‘86A”(a)‘821r 49.9 ‘86Hg(a)‘82Pt
‘85Re(d
‘86Hg ‘87w
‘76%
4.4 ‘83~
69.0
‘86A”
3.5 14.0 5.9 2.5 2.5
7.8 ‘83~
‘86R,
y)lg6Re
4.4 “5L” 37Cl- 142Nd 35Cl2
t)lg8Pt y)‘wos
15.2 ‘86w
35C1-
o-c
37,~
‘85R,
‘3c
37Cl
35C14 3’Cl
12.4 ‘880s(p,t)‘860s 0.1 lg6Hg(p
+)
lB6A”
12.1 187R, 35C3_ 185Re 37” 15.8 ‘860s(n,y) ‘8’0s 6.7 ‘880s(p,t)‘86Os 16.2 ‘88Pt(e)‘88rr 3.8 CL4 H2, -‘8g0s
Q’88Os 6.5 ‘~Os(p 14.9 t%t(U;‘860S
1.0 18.2 '920s(",Y~'930s 1.1 ‘g21r(p- ) lg2Pt 4.2 ‘=Pt(p,t) ’ WPl 14.7
2
231
6. Audi et al. / The 1993 atomic mass evaluation (Iv) Nucleus
Infl.
fafl.
Equation
Equation
‘93pl
83.9
12.3
‘9%
72.9
27.1
194pt
41.4
34.0
‘95pt
52.6
47.4
‘g6Pt
52.5
46.9
‘96AU
47.6
28.1
‘%g
55.8
31.5
197pt
52.6
47.4
‘9’AU
50.8
48.6
lg7Hg
84.3
15.7
‘98AU
51.1
28.1
lg8Hg
51.5
25.4
‘99All
76.9
23.
lg9Hg
34.2
25.1
lggT1
57.1
42.9
I&
2.5 15.5
‘g4Pt(p,d)‘q3Pt
0.6 24.3 12.8
‘g6Au(@ + ) 19%‘t
0.6
lggPb
87.8
12.3
58.4
20.5
201 Hg
67.7
26.0
202Hg
41.8
28.1
202Tl
55.5
44.5
‘*‘Pb
88.6
11.1 8.5
:;;F
87.2 76.2
12.1
*03Pb
50.2
38.2
203Bi
84.2
15.8
20’PO
79.4
12.2
‘03At
82.3
17.7
2wHg
49.3
45.5
204T1
68.4
16.0
“Pb
61.4
29.0
2MFrx
86.3
13.7
22.9
‘gqAu(~-)‘qqHg
48.3
13.3 200Hg 35,-J_ 198% 37(J 6.2 20311 s5cl_201Hg 37a 37a 17.3 202Hg 3Sa_2WHg a.4 4.3 7.0 10.0 8.4 zo3At(/3+ )203P0 5.2 204H8(d,t)203Hg 15.6 **%l(d,t)“Tl 9.3 206pb 35c,_20+b
51.7 43.9
18.8
16.1
20SPb 20~ Bi
63.6
36.1
0.2
97.7
2.3
205F,
33.6
21.3
20%
74.6
25.4
23.9
*OaPb
41.8
36.1
206Po
99.6
0.4
*06At
88.6
11.4
‘06Ffl
31.9
21.3
17.4
207n
44.3
43.4
12.3
207pb
54.5
40.8
3.5
207*i
97.3
2.7
2Q’Po
61.2
*0’At
83.1
“‘Fr(c~)~0~At
15.5
20’RU
79.5
207Rn(B+)207At
20.4
2Q7Fr
28.9
2ogFr-2’3Fr.327
208Pb
57.2
208F,
21.4
2ogPb
84.3
207Pb(n,y)208Pb 2’oFr-220F~ 20*Fr,U, 209pbtB - )2&$gi
*@Bi
89.3
2ogBi(~,y)210Bi
9.6
38.8
1.4
15.2
13.8
12.2
3.5
6.1
4.2
97.5
2agAt(~)zo5Bi
64.8
210Pb
91.7
20%-2%, 210pb(B-
2lORi
45.3
2’oBi(fi-)210~o
36.3
2’0PO
93.9
2’oPo(ol)206Pb
6.1
2’0Fr
81.5
2toFr-226Rti929
6.3
211Pb 2”& *. * ‘lLFr
95.6
2’5Po(,)211Pb
4.4
55.5
f!fBi(off’Tl
44.5
69.3
rrrFr-*L’%a,934
15.9
)2t&
2.5 25
13.5
40.6
mht
1.4 8.3
‘g7Au(y,n)‘%A” ‘q8Au(n,y)‘ggA~ 20OHg 35‘J- ‘98Hg 37Q
20SHg
2ogFr
1q6@(n,y)‘q7Hg
20.7 16.3
205Tl
24.7
196Au(~+)‘g6Pt
I
20%Ig
207Fr,673
&uation
37a
232 Nucleus
G. Audi et al. / The 1993 atomic mass evaluation (Iv lnfl.
Equation
Infl.
‘12Pb 2’2Bi
71.0
2’6P”(a)2’2Pb
29.0
51.6
2’2Pb(fl-)2’2Si
47.3
2’2P0
59.3
2’2Po(cz)208Pb
40.7
2’2Fr 2’3Bi
67.0
2’2Fr-226Ra,g38
52.5
2’7At(o)2’3Bi
2”P”
93.4
2’3Po(o)209Pb
2’3F,
97.4
2’3Fr(a)209At
1.0
2’4Pb 2’4Bi
99.5
2’*Po(o)2’4Pb
0.5
68.4
2’4Bi(,V)2’4Po
31.6
2’4PO
91.7
2’4P”(cz)2’oPb
7.3
2’JPO
96.’
2’9Rn(u)2’5Po
3.9
2’6P0
72.0
220Rn(cx)2’6Po
2’6At
95.1
2’6At(cx)2’2Bi
2’7At
53.4
22’Fr(a)2’7At
2’8P”
99.5
222Rn(cx)2’8Po
2’8R”
88.0
2’8R”(a)2’4Po
2’gRn
96.2
223Ra(a)2’9Rn
3.8
22OR”
72.1
224Ra(a)220R”
27.9
22OF,
93.6
220Fr(u)2’6At
6.2
22’Fr
54.2
225Ac(u)22’Fr
45.6
222R”
99.5
226Ra(a)222R”
222Fr
79.1
222Fr-226Ra,982
17.2
222Ra
58.6
222Ra(,)2’8Rn
41.4
223Fr
99.9
227Ac(o)223Fr
22’R*
96.2
227Th(a)223Ra
224FI 224F?
88.8 21.4
224Fr(,?-)224Ra 224F?-225Fr.49s
224Ra
72.’
224AC
93.6
22eTh(o1224Ra 224Ac(a) ‘220F*
225FI
98.8
225Fr(/9-
225Ra
96.4
229Th(o)225Ra
Equation
Infl.
7.8
Equation
1.1
2’6At(cx)2’2Bi
5.4
2’2Fr-220Fr
0.7
2’3Fr-222Fr.096
1.0
2’4Bi(j-)2’4Po
0.1
223Fr-224Fr1;64
22’Fr,3,6
3.6
222Fr-224F$96
220Fr,505
.I93 2’oFr.so8
47.5 6.6
28.0 4.9 46.6 0.5 12.0
0.5
3.8 11.2 1
18.7
21.3
224F$ -227Fr.493
6.4 0:1 0 3
0.4
225 225Fr-226Fr,7g6
225AC
55.2
225Ra(p-)225A~
44.8
63.4
226Fr(j-
‘7.7
226Ra
96.7
230Th(cr)226Ra
226AC
88.0
226Th
57.4
22’Fr
79.1
22’R,
100.0
)226Ra
10.7
223Fr-226Fr,495
2.5
0.5
226Ra(,)222Rn
230Pa(a)226Ac
11.7
0.3
226Ac(a)222Fr
226Th(,)222Ra
42.6
227Fr(@-)22’Ra
10.5
10.4 0.1
227Ac(a)223Fr
0.6
228Pa(c)228Th
225Fr-
96.7
23’Pa(Q)227Ac
3.2
227Th
96.2
227Ac(p-
3.8
)227Th
228Fr
100.0
228Th
71.7
230Th(p,t)22B+h-232Th()
27.7
22STh(o)224Ra
228Pa
89.9
228Pa(,)224Ac
10.1
228Pa(~)228Th
229Th
66.4
233U(cx)229Th
30.5
230Th(d
230Th
40.8
234U(o)230Th
31.3
230Th(p:t)228Th-232Th()230Th
23OPa
88.6
230Pa(,)230Th
11.4
230Pa(a)226Ac
23’Th
75.1
230Th(n,y)23’Th
21.8
23JU(,)23’Th
23’~a
67.9
23’Th(@-)23’Pa
29.1
235Np(a)23’Pa
232Th
57.0
236u(,3232~h
24.2
C
233Th
93.6
232Th(n,y)233Th
6.4
2h4Th(fl-
j2’5Pa
233Pa
74.8
237Np(a)233Pa
16.8
233Th(,?-
)233Pa
233”
58.4
‘“Pa@-
27.8
2%(,)22gTh
234~
60.6
234U(“,Y)235U
20.5
235~
35.7
239Pu(a)%J
24.0
235Np
93.1
235Np(c
236~ 237U
59.7
24”~u(,)236u
25.0
236U(,)232Th
84.0
236U(n y)237U
‘6.0
24’P”(,)2%
237Np
94.9
24’A,;,)237Np
238”
48.4
242Pu(o)23*U
23*Np
96.2
237Np(n,y)23BNp
=8P”
71.8
238Pu(cz)234U
)235U
220Fr,50 s 30Th
6.9
4.1
t)229Th
H,6-232Th
23.2 3.1 3.0
35Cl
‘9.6 8.4
25’Pa(B
- 32%
13.7
234U(d,t)233U
234u(a)230Th
18.2
238~u(o)234u
2%(“,Y)2’6”
21.3
234u(n,y)235u
13.6
2%(“,Y
235Np(a)23’Pa
237Np(u)233Pa
3.8
C 4 H20-238U 2431An~(n)~‘*Np
28.2
258Pu(“,y)25gP”
38.5
3.1
“Cl
1.0 35C12
13.1
)236”
237Np(n,y)238Np Cl8
220Fr.507
227Fr,708 220Fr,292
226Ra(“,y)227Ra
227A~
22’Fr,204
Fr(B-)225Ra
3.5
226Fr
)233U
22’Fr,5~7
27.8
)225Ra
224FrX-22BFr491
2’2Fr,9,,4
H22-238U
233
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Nucleus
Infl.
239Np 239P” 2NP” 24’ P” 241Am
71.5 45.8 41.8 55.5 96.1 56.2 99.3 74.8 50.0 65.3 73.8 50.1 97.5 89.9 54.2 56.6 95.3 62.9 67.6
242P” 242Am 24’P” 243Am 2UP” 244Am
Equation
Ml. 28.5 37.8 37.0 38.9 3.9 42.5 0.7 13.7 47.9 32.3 26.2 49.9 2.5 10.1 45.8 43.4 3.1 24.3 22.7
Equation
Ml.
11.5 18.8 3.5 0.7 7.8 2.1 2.4
1.1 12.8 9.7
ElpMtiOll
234
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Table II. Input data compared with adjusted values
EXPLANATION
OF TABLE
The ordering is in groups according to highest occurring relevant mass number. In mass-doublet equation: In mass-triplet equation: In nuclear reaction: I-I =‘H N =14N RbX, RbY: different Km, Csm, Cs”: D z2H’ 0 = 160: mixtures of two upper isomers, C =t2d isomers, see table III. see table III. Mass doublet: value and its standard error in flu. Input value Triplet: value and its standard error as above but in keV. Reaction: value and its standard error in keV. The value is the combination of mass excesses A (A4 - A) given under ‘item’. It is the author’s experimental result and the author’s stated uncertainty, except in a few cases for which comments are given and for some a-reactions where the errors have been increased to 50 keV for reasons mentioned in the text (see section 10). Output of calculation. For secondary data (Dg = 2-13) the adjusted value is Adjusted value the same as the input value and not given; also, the adjusted value is only given once for a group of results for the same reaction or doublet. Values and errors were rounded off, but not to more than tens of keV. # Value and error derived not from purely experimental data, but at least partly from systematic trends. * No mass value calculated for the masses involved (only one datum). Deviation between input and adjusted value, given as their difference divided v/s by the input error. Dg (see section 3) 1 Primary data. 2- 13 Secondary data of different degrees. B Well-documented data which disagree with other well-documented values. Data from incomplete reports, at variance with other data or with sysC tematics. F Study of paper raises doubts about validity of data within the reported error. R Item replaced for computational reasons by an equivalent one giving same result. Estimates made by other authors, accepted and treated as systematics. s U Data with much less weight than that of a combination of other data. Sig Significance ( x 100) of primary data only (see section 4). Largest influence (x 100) and nucleus to which the data contributes the most Main flux (see section 4). Identifies group which measured the corresponding item. Example of Lab key: Lab MA3 Penning Trap data of Mainz-Isolde group. The numbers refer to different papers or even to groups of data within one paper. Consistency factor. The standard error given in the Input value column has been CF multiplied by this factor before being used in the least-squares adjustment. Reference keys: 89ShlO Results derived from regular journal. These keys are copied from Nuclear Data Sheets. Where not yet available, the style 930t.l has been used. 84Sc.A Result from abstract, preprint, private communication, conference, thesis or annual report. * A remark on the corresponding item is given below the block of data corresponding to the same (highest) A. Item
G. Audi et al. / The 1993 atomic mass evaluation (IVJ
Y 2
recalibrations of reference [ 65RyO 1] for charged particles. recalibrations of references [ 91RyOl] for a particles, for y in (n,y) and (p,y) reactions and [91Wa.A] for protons and y in (p,y) reactions (see section 2).
Remarks. For data indicated with a star in the reference column, remarks have been added. They are collected in groups at the end of each block of data in which the highest occurring relevant mass number is the same. They give: (i) Information explaining how the values in column ‘Input value’ have been derived for papers not mentioning e.g. the mass differences as derived from measured ratios of voltages or frequencies - a bad practice - or the reaction energies or values for transitions to excited states in the final nuclei (for which better values of the excitation energies are now known). (ii) Reasons for changing values (eg. recalibrations) or errors as given by the authors or for rejecting them (i.e. for labelling them B, C or F). (iii) Value suggested by systematical trends and recommended in this evaluation as best estimate (see part 1, section 4 and part III). (iv) Separate values for capture ratios (see section 6).
235
236 Item
G. Audi et a/. I The 1993 atomic mass evaluation (fv) Input value 140078.55 1021.998
Adjusted value .33 .OOl
140078.5 1021.9980
0.3 0.0010
.I2 93900.383 93900.391 ,012 93900.380 ,008 From ratio CH:/C+ = 1.33595703378(23)
0.007
0.004
‘D,-C lD6 -C lH>-D
84610.62 .09 84610.668 84610.584 ,078 84610.671 ,006 84610.665 .003 84610.662 ,007 1348.286 ,004 1348.2858 1348.298 ,008 1348.301 .003 1548.2835 .OOlS 2224.361 ,309 2224.5727 2224.349 ,009 2224.560 ,009 2224.5756 .0022 ave. 2224.3727 0.0020 From ratio CD+/@ = 1.67139793039(31) From ratio CDf/Ct = 1.30354%46235(20) From ratio CDt/CDzH: = .9999141907%(10)
l‘H(n,y)*H
Original 2224.5890(.0022))
H12-C
‘HI*-C D6-C
HZ-D
‘Hfn,y f*H
+14-C 3He4-C HS-‘He D2-H +I H D-3He
3H-3He
3H(fl-)3He
SH3-3He l3H-3He *3H-3He *‘H-‘He *3H(,‘- j3He L3H(@- )‘He l3H(B-)‘He *‘H(fl-)‘He *3H(@-)3He *3H(fl- j3He l3H(fi- j3He
93900.32
0.0011
0.0020
v/s
DB
Si%
Main flux Lab
1
.O .o
1
100 100
100 x+ 100X_
.3 -.5 .2
u 1 1
15 33
13 ‘H 33 ‘H
.4 .4 -.4 .4 .3 .o -1.0 -2.0 .8 1.3 2.6 1.4 -1.6 .o
u U 1 1 1 u u u 1 1
17 24 12
172H 24*H 12 ‘H
17
13 ‘H
CF
88PaDG 88CoTa B07 1.5 WA1 1.5 MI1 1.5
B07 OH1 MI1 MI1
1.5 2.5 1.5 1.5 WA1 1.5 807 1.5 BOB 1.3 B08 1.5 MI1 1.5
utt
100
100 ‘II
NBS average
71SmOl 92Va.A 93Na.A AHW
l l
*
71SmOl 93Ma.A 93Na.A * 93Na.A * 93Va.B 71SmOl 75SmO2 73SmOZ 93Na.A * 82Va13 Z 82VvlO Z 83AhO5 Z 86Gl-01 l AHW ‘* AHW l* AHW ** 90Wa22 l *
revised by ref.
64197.071 0.003 .2 .006 64197.069 64117.238 0.005 -.4 ,004 64117.240 7445.7863 0.0021 -2.4 ,012 7445.858 4329.2563 0.0017 -2 ,003 4329.237 3897.5004 O.OOlS -1.3 ,005 5897.3 12 .b .006 5897.493 -A 0.006 3897.303 ave. 0.0010 .7 ,004 19.951 19.9583 -1.7 ,002 19.967 1.4 .003 19.948 18.3910 0.0010 .l ,008 18.590 -1.2 ,010 18.603 -2.3 ,004 18,600 -.3 ,003 18.392 .o ,002 18.391 -.7 ,006 18.395 -.7 ,003 18.393 1.3 ,002 18.588 ,003 18.591 .o -.2 0.001 ave. 18.391 From ‘He+/H: = 1.49644109516) +3eV ioniz. Atom mas difference = ion mass difference 18.573 + ,011 Required correction cannot be estimated Same authors as ref. Original value 18580(7) corrected by ref. AS calculated from their data by ref. Result 18604(6) is included in 87Bo07 E- = 18S721~.0030), SFS and recoil as in ref. E- = 1%.5703(.0020), SFS and recoil as in ref. E- = 18.556(.006), corrections as in ref. E- = 18.5733(.0002). Estimated systematic error and correction
Reference
1 1 U 1 1 B B B u u U 1
37 68
31 3H 68 ‘He
13
8 3H
7
43He
WA1 IS WA1 1.5 MZl 2.5 BO% 1.5 808 1.5 B09 1.5 averatte
“2.5 84Ni16 2.3 2.5
83
92Va.A 92Va.A 9lHa31 ’ 7SSmO2 75Sm02 81SmOZ
85LiO2 83Ta.A 85SiO7 86FrQY 87Bo07 YlKa41 91Ro07 92Bu13 92Ho09 92St.A 93We03
* l
* * ’ * l
* ’
33 3H AHW AHW 83Au07 84Ni16 8YReO4 89Re04 85Bo34 88Ka20 89SO3 91Bul2 GAu
** *+ ** ** l* l* ‘* ** *’ l* l*
237
G. Audi et al. / The 1993 atomic mas evaluation {Iv) Input value
“He>-C
7809.749 25600.315 25600.331 21271.075
D2-4He H 3H-4He 4H(~,n)3H
2900
Adjusted value ,003 ,014 .005 ,012
500
7809.749 25600.3062
0.004 0.0019
21271.0499 2980
0.002 1 110
4Li(p)3He *Dz -4Ue “H(y,n)3H l4H(y,n)3H *4H(y,n)3H r4H(y,n)3H r’H(~,n)3H l4H(y,n)3H l4H(y,n)3H
2700 600 2600 200 3500 500 2600 400 3000 200 3800 300 3100 300 3300 300 3100 Error has to be confirmed Found in ‘Li(n- tJ4H From ‘Li(‘He 3He ‘HeJ4H Fmm 913e(“B’t60)4H From 7Li(n,a?H Found in 9Be(n-,dt)4H, same data in ref. Found in ‘Li(n- tj4H h Found in 2D(t,n) H
5H(y,2n)3H 4He(n,y)5He ‘He(p y)*Li ’ 3H *‘H(y,Zn) *‘H(y,21t)~H *4He(n,y)5He &He(p,y15Li
7400 700 -890 50 -1965 50 From 9Be(n-,pt)5H, Same data in ref. No evidence of bound state of ‘H Average of many reactions leading to 5He Average of many reactions leading to ‘Li
6Li(p,a)3He 6Li(p tf4Li 6Li(p:n)6Be 6Li(3He,t)6Be l6H(y,3n)3H l6H(y,3n)3H *6H(y,3n)3H *6H(y,3n)3H
2700 400 2600 500 2800 500 4018.2 1.1 -18700 300 -5074 13 -4306 6 From 7Li(7Li ‘BJ6H From gBe(“f; 14016H 6H not observed in 6Li{x- lit) From 7Li(7Li,sB)6H ’
‘He(o,yj7Be
1586.3
6Li(n:y)7Li ‘Li(d 3He)6He-‘9F()‘*0 7Li(t,3Hei7He yLi(p,nj7Be _ ‘Li(n+,n)‘B *7Li(d,3He)6He-‘9FO’*0 ‘He(~Ni,~Ni)*He
Q-Q
.6
210
2700
4019.2 - 18890 -5071 -4307
1586.6
0.3
210 5 5
0.5 0.4
-1981.09 7249.97 0.42 .09 -1981.1 7249.96 -11184 30 -1644.181 .017 -1644.169 -11870 100 -11940 70 = 098 (.41 ) to 1982.07(.09)level in ‘*O
-31818 13 -31801 -31796 8 ave. -31801 7 91.88 .05 91.84 91.80 .OS ave. 91.84 0.04 - 1974.8 1.0 - 1974.8 2033.8 .3 2033.80 For atomic binding energy correction see ref.
7
0.04
1.0 0.30
v/s
Dg Sig
.o --.4 -2.0 -1.4 .2 .5 1.9 -1.0 1.0 -.l -2.7 -.4 --.l
.o .2 -.2 .9 -.6 .3 -.l
I
100 1004He
u B u 2 2 2 2 2 2 2 2 2
2 2 2 1 R 2 2
.5 .o
1 1 -.l 1 2 .o 1 -.7 R
1.1 -.6 .o -.8 .8 .o .o .o
Main flux Lab
1 I 1 1
WA1 808 MZl BO8
CF
Reference
1.5 1.5 2.5 1.5
93Va.B 75Sm02 90Ge12 * 75Sm02 69MilO
*
BlSell 8SFr01 * 86Be35 * 86Mil4 * 870025 ’ 9OAm04 * 9lBlOf * 87Br.B GAu *’ 69Mi10 ** 85Fr01 ‘* 86Be35 ** 86Mil4 ** 91Go19 ** 9oAmo4 ** PlB105 **
19
62 100
196Li
99
62 ‘Be 1006He 62 6Li
100
62 ‘Li
100
100 100 100
100 *He
100% 100’8 100 8Li
MiT Brk CIT CIT
MSU
Pm LAl AUC
I% Tex average Zor average NV1 ORn
87Go25 66LaO4 65Ma32 PlGol9 86Be3.5 AHW AHW
* * * ** ** ‘I **
84AlO8 86Be35 92Al.A 81Ro02 65CeO2 67HoOl 66WhOl 84AlO8 86Be35 87Se.A 92Al.A
* * *
** ** ** ‘*
82Kr05 78RoOl * 85Ko47 Z 69StO2 85WhO3 2 81Se.A AHW ** 75KoIE 77TrO7 68BeO2 * 92wuo9 * 58Du78 Y PlLyOl 2 67St30 **
238
G. Audi et al. / The 1993 atomic mass evaluation (Iv Input va1ue
item ‘Be(pa16Li '9 6Li(a,p) Be 9Be(p aj6Li '9 7Li(t,p) Li ‘Be(d,o)‘Li
we.
2125.4 -2125.6 2125.5 -2385.1 7153 7157 -6288.2 -6279. I
Adjusted value I.8 1.2 1.0 3.0 ; 5. 4.
-1665
gBe(y,n)*Be ‘Be(n- n+ )‘He gBe(‘3C”30)9He 9Be(p,n;9B ‘*B 37Cl-C “B(~,*)‘Be
3%1
l”B(3He,6He)7B “B(d,a)‘Be ‘*B(p,‘He)gBe ‘*Li(y n)‘Li ‘Bec9;)e *B)‘*Li gBe(‘3C’12N)‘oLi ‘*Be(d 3’He)9Li 9Be(n,;)‘oBe “Be(p- )“B “B(*,o)“C *‘“Li(y,n)9Li *9Be(9Be,8B)‘oLi “Li-C,9,7 “B 37,-J-‘3C
35Cl
9Li-1’Li,49’ 6Li,600 9Li--1’Li,409 ‘Li,b43 ‘Li-“Li,2,,
‘Li.,so
“B(p,~)*Be 9Be(t,p?‘Be “Bfd,a)‘Be
9Be(3Hep)“B “B(d,a) ‘9Be ‘*Be(dp)“Be “B{n,;)“B “B(zn+)“Li “C(f?+;“B “Bfp,n)“C “Bf3He,t)“C “C(,?+ )“B *9Li-“Li ,409 'Li.643
ave.
557.5 560 559.0 559.6 - 1665.4 -30472 -49470 - 1850.5
2125.4 -2125.4 2125.4 -2385.4 7150.8
0.5 0.5 0.5 1.9 0.5
-6284.6
2.1
-1665.3 559.3
0.4 0.4
- 1665.3 -30490 -49460
0.4 60 60
2 I.1
.6 0.4 100 80 1.0
9987.0 .56 9981.2 1 1145.4 1146 i 1153 100 - 18480 - 18550 4.1 17820.0 17818.6 -535.5 2.5 -533.1 150 165 420 260 -33670 -33680 50 -36310 -14142.8 -14142.8 2.5 6812.33 6812.33 .06 5 560 555.9 5 555 -4430.17 .09 From ilB(z-.p)‘“Li E’ = 150(150) Q = -34060(250) to 380fSO) level
43780 2998.15 -3949 -1250 _ 1223 - 1928 -1923 8589 -1164 8029
8024 8029.7 10322.1 ave. 8029.9 -1721 11454.1 -33120 1982.8 -2760.1 -2763.3 -2002.3 1982.1 ave. Symetric double-doublet
130 1.30 175 86 195 31 31 4 15 4 7 2.8 2.3 1.6 7 .2 30 2.6 3. 1.4 1.2 0.8 6-9 8- 1 I
0.4 0.6 70 0.3 0.3 50 50 1.9 0.06 0.5
43790 3000.6 -3525 -1314
50 0.4 21 18
-1890
12
8590.4 -1166 8031.1
0.4 6 0.5
10321.9 8031.1 -1721 11454.12 -33140 1982.1 -2764.5
0.5 0.5 6 0.20 40 0.8 0.8
-2000.7 1982.1 included
0.8 0.8
Dg
v/s
Sig
Main flux Lab
.o .2 -.I .I -.7 -.8 .7 -1.6 -.3 1.8 -.4 .3 -.5 .3 -.2 .2
I I u U 2 2 1 2 2 2
-.2 -.3 -1.9 .7 .3 1.0 1.7 .o
1 U u 2 u U u u 2 I 1 u u 2
.o .o -.8 2
.l .7 1.6 -.5 -.5 .8 1.1 .4 -.l .5 1.0 .5 -.l .a .l .l -.4 -.3 -1.6 -.9 1.3 .o
30 42
83
196Li 41 ‘Li
83 ‘Be
6
6”B
H38 Wis
75Ka18 53CoO2 Y 64sQ12
67Ba.A 7lMoOl 5OMo56 Y SfWi26 Y 53CoO2 Y 66Re02 670dOl 87Se05 91Bo.B 508159 Y
25 ’
Brk NDm Wis
60 100
59 9Li 99 “Be
13 “Li
15
14 “Li
11
5 9Be
1
99 73
95 “B 73 “Li
100
100 “c
Reference 67OdOl 65Br28
MIT
13
I
NDm NDm average MSU Bir MIT CIT CIT Wis Wis Bir Zur NDm average Ber Wis
I u U u u I3 1 U R I 2 1 -
CF
Brk Ber MSU MMn
TO2 1.0 H38 2.5 PI2 1.5 PI1 1.5 PI3 1.0 Pi2 1.5 P13 1.0 Bir Aid Bir MIT NDm NDm average CIT Ptn
Wis Ric str average
84ElO5 52Cr30 64Splt 67Mc14 67GdOl 52030 90Am05 75Wi26 93Bo03 75Ka18 86Kel4 50Hu27 52Fe16 89Ba28 GAu 93BoO3
Y
Y * l
2
2 ** **
88WoO9 84E105 75Th08 75Th08 * 75Th08 75Th08 75Th08 53CoO2 Y 62PuOI 54E110 Y 64Sp12 670dOl 670601 70Go I 1 86Ko19 2 9lKo.B 75Be28 50Ri59 Y 6lBe13 Y 65GoO5 GAu
**
G. Audi et al. / The 1993 atomic mm evaluation {IV) Item
Adjusted value
Input value
- 64278
“Be(t p)‘*Ee ‘*B(t ;)‘213 ‘“B(;,d)‘2C ‘0B(3He,pl’2C “B(a d)12C “B(d:p)‘2B ‘*C(n+,x-)‘20 *‘“B(3He,p)‘ZC * C H-13C CD-13CH ‘3C-Cl.o 3 “B(t,p)’ BB %(n,y)“C
‘*C(d p)13C t2C(p:y)“N
‘3C(‘4C “0)‘9Be *%(n,y) “3 c *‘%xl
Y1’3C
*‘2C(d’p)‘3C ’ 13N *‘2Cfp,~) “Be-Ct.‘67 C D2-14C H c Hz-N 2 C D-N
‘“C Hz--N D “N(3He,gLi)8C 14Nt3He 6He)“N “C(d,a)iZB “N(p,t)‘2N 14C(7Li,8B)‘3Be ‘3C(d,pl’4C “C(xn+)14Be 14Ct7Li’7Be)‘4B ‘4C(‘4; ‘4N)‘4B “C(,T- ;14N “C(pn)*4N 14N(p’n+40 “N(3he,t)140 *C HZ-N *‘4N(3HeeHe)“N *%(d p$C *‘4C(n’- n+)14Be *14C(B-;14N
24 26 -64267 2.4 -31578 i.2 -31576.9 -3’575.6 -4809 15 6342.7 1.4 6346 6 1340.0 0.3 1340.3 .8 19693.1 0.3 19693.05 .38 1340.0 0.3 we. 1340.1 0.3 1145.9 1.4 1137 5 40 -31034 48 -31040 Original Q = 15305.45(.3) to 4438.911.3) level, revised in Q = 15253.95(.31) to 4439.10(.22) level 4470.194 0.005 4470.185 .008 2921.908 0.005 2921.923 ,008 3354.838 0.005 3354.840 ,004 -233.4 1.0 4946.312 0.005 4946.51 .40 4946.321 ,024 4946.337 ,031 2721.80 2721.739 0.005 SO 1943.31 1943.51 0.27 .32 1944.01 ..5 ave. 1943.51 0.27 -37020 50 Q(y) = 1261.844(.006,2) to 3684.4771.023.2) level Q(y) = l26i.$44(.~b,Z) to 3684.493(.030,2) level Estimated systematical error 0.5 added to statistical error 0.038 Original error .22 too small compared to ref. 42660 9311.498 ‘2576.086 12576.0542 11027.815 11027.773 3074.014 3074.0057 1716.269 -42214
150 .OOb .009 .0022 ,018 .007 .019 .0018 ,003
42820 9311.502 12576.0564
120 0.004 0.00’8
11027.7705
0.0019
3074.0074
0.0018
v/s
Dg
.4 .I -.4
2 R R 2 u 1 u 2
-.5 -.4 .o -.l 1.8 -.2
.7 -1.3 -.3 -.5 -.4 -.8 -.l .b -1.0 .o
1.0 .4 -2.2 .7 -1.6 -.2 -.l .b
1716.269 -42253
50 180 361.8 1.4 -22135.5 1.0 -22135.5 - 39990 500 -40150 5951.867 5951.85 .s4 -38100 170 -37880 -2’499 30 -21506 -20494 30 -20487 ‘56.475 155.74 .08 -625.879 -625.88 .09 -5925.41 .08 -5925.39 -5161.3 .8 -5161.63 From ratio N+/CH: = 0.99910267926(16)
0.004 23
.o -.8
1.0 50 0.006 110 21 21 0.004 0.004 0.07 0.07
.o -.3 .o 1.3 -.2 .2 9.2 .o .o -.4
-24760
Q = -25010(100) to 250(150) level Estimated systematical error 0.5 added to statistical error 0.20 Original error 160 increased with 60 calibration uncertamty B: find 17 keV neutrino. See also ref.
1 1 1 2 v u U u 1 2
2 1 II 1 U u u 1 1 R 2 2 1 u U R 2 2 B u 1 u
Sig
239 Main flux Lab
CF
Tex
90
‘7 17 67
90 ‘*B
17 13C 17 “C 67 13C
MSU MSU Brk Man Wis Mull average MIT
B08 1.5 B08 1.5 WA’ 1.5 str ILn Ulf Rez
100
22 30
44 78
100
100 13N average BFX
TO2 BOB B07 25 14N MI1 B07 B08 OH1 44 14N WA1 75 14c BO8 MSU MSU Wis LOO‘*N MSU 21 i4C
ChR ors
100
100 I40
ZIIr AUC
1.0 1.5 1.5 1.5 1.5 1.5 2.5 15 1:5
Reference 7bTrOl 71TrO3 79Ka.A 78Al29 60Ja17 5bDo41 Y 83Ch08 l b4Spl2 8OBulS SOAjSe ** 83Aj.A l * 75SmO2 75Sm02 93Va.B 83An15 79Br25 80Wa24 * 81Va.B a 9OPiO5 * 77Fr20 77He26 ’ 920~04 81Va.B ** 81Va.B l * AHW ‘* 77Fr20 ** 88WoO9 75Sm02 71SmOl 93Na.A * 71SmOl 75Sm02 93Ms.A 93Va.A 75Sm02 76RoO4 74Be20 l 5bDo41 Y 75No.A 83Al20 9OPiO5 * 84GiO9 l 73Ba34 81Na.A 91suo9 * 73Hi.A 81WhO3Z 77VoO2 AHW ** 90AjSe AHW GAu 91NoO7
* * l* l* l
l
240
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item 14N D-15N H 14C(d p)15C “N(d’p)‘5N 14N(p’y)‘50 ‘5N(p:n)‘50
C Hz D-O C D,-0 c4-03
C H4-0 ‘6G-Cl.333 14C HZ-O N D-O N2-C 0 160(a *He)‘*0 ‘60(3;Ie,6He)‘30
‘60(3He,t)‘6F ‘60(n+,n)16Ne ‘C q-0 ‘N2-C 0 l‘6O(3He,6He)‘3O
“8-C1.417
“C(a “)“O
‘60(n’y)“0 ‘60(d’p)‘70 ‘60(n’y)‘70 ‘60(p’y)‘7F ‘60(d’n)‘7F 160(p’y)17F ‘60(n’y)“o ‘%(d:p)“O
l l
Dg
Sig
Main flux Lab
CF
Reference
9241.780 ,008 9241.780 0.012 .o - 1006.5 .8 8608.83 .50 8608.662 0.011 -.3 7297.1 .Q 7296.9 0.5 -.2 -3534.9 1.1 -3536.3 0.5 -1.4 -3537.1 .8 1.1 ave. -3536.3 0.5 .o Estimated systematical error 0.5 added to statistical error 0.061
1 2 u R 1
100
100 “N
B08 Wis Rez CIT CIT
1.5
75Sm02 56Do41 Y QOPiO5 * 72Ne05 72Je02 72Sh08
100
100 IsO
average
34837.202 .ozo 34837.2194 33288.940 ,019 33288.9336 15256.121 ,009 15256.133 36385.5060 .0013 36385.5053 -5085.362 ,027 -5085.3777 23977.413 .014 23977.432 22261.160 ,013 22261.1631 11259 27 11233.393 11233.393 ,004 -66020 120 -65970 -30516 14 -30511 -30506 13 -3015 8 -3013 -3013 4 4983 4 4980.1 -970 15 -957 286 12 266.2 269 10 267 8 270 10 - I5430 10 - I5436 -27763 From ratio O+/CH+ = 0 ;i773026Q;i(7G From ratio CO+/Nt = 0:99959888751(13)
U u 1 1 u I u u I R 2 2 2 2 R R 2 2 2 2 2 2
“O(; Iso(4iCa
50 IO 4 2.3 8 2.3
8 20
45970 860 46930 150 46830 180 47127 250 -1819.07 2.0 -1817.52 0.21 4143.28 .23 4143.33 0.2 I 1918.74 .5 1918.75 0.21 ave. 4143.29 0.21 4143.33 0.21 600.35 .28 600.27 0.25 - 1624.8 .5 0.25 - 1624.30 ave. 600.27 0.25 600.27 0.25 E(y) = 1087.88(.17,2) to 3055.36(.16,2) level Estimated systematical error 0.5 added to statistical error 0.062
,)“N y)‘aF 46Ti)‘8c
“O(‘Li 7’Be)18N ‘*F(fl+ ;“O “O(p n)‘*F “F(b’+ )I80 ‘sNe(b+)‘8F
0.0019 0.0026 0.008 0.0017 0.0025 0.005 0.0025 0.004
v/s
.6 -.2 .9 -.4 -.2 .Q .2 -.4 -.I .4 .4 -.4 .2 -.I -.7 .9 -1.6 -.3 -.I -.4 -.6 1.3
AHW
32 85 5
36
B08 B08 WA1 MI1 OHI 4 ‘4c B08 808 CR1 28 14N MI1 Brk Brk MSU MSLJ LA1 BNL Har CIT Pit MIT Pen KVI 32 I60 59 I60
1.5 1.5 1.5 1.5 2.5 1.5 1.5 2.5 1.5
ave.
943 -21760 -21768 4236 4244 -3205 -3198 -17465 - 17479 3872 5606.2 -21434 -14761 1657 -2437.14 1655.1 4438
85 50 25 4 13 6 35 20 15 .6 30 20 2 .73 0.7 9
937.7 -21766
0.6 23
4246.7
2.4
-3196
5
- 17475
18
1.1
u
.6 -.8 .8 .2 .o .2 -.3 .5 .o
2 2 U -
I 1
GA1 TO2 GA3 Wis
99
100
99 “0
100 “F
1.0 1.0 1.0
Rez average CIT NV1 average
75Sm02
.o u
5606.5
0.6
.6
1655.5 -2437.9 1655.5 4446
0.6 0.6 0.6 5
-.8 -1.0 .6 .9
2 2 R R 2 2 2 2 2 I 2 2 1 R
2.5
88
87 18F
85
72 “0
Hei Can CIT MIT NV1 Ald Hei Can LA1 CIT Can Can NV1 average
l
*
87Gi05 88WoO9 91orO1 56Sa06 Y 77Mc05 * 9OPiO5 * 75RoOS 60Bo21 Y AHW AHW
-.I .I 1.5 .7 .7 .3 -.3 .2
**
75Sm02 93Va.A 93Na.A l 93Ma.A 75Sm02 75Sm02 89ShlO 93Na.A * 78Ke06 70Mell * 71TrO3 77FoO9 78Se04 66Ga08 68Ad03 55Pa50 Y 57WaOl Y 64Sp12 66HelO 80Ja.A 80Bu 15 AHW ** AHW ** AHW
M increased by 7 for more recent calibrator M(‘C) = 21913(2)
“F-C,,, ‘*0(48Ca,5’V)‘5B
‘*O(t
Adjusted value
* **
l
92Ge08 78Bh02 83Ho08 55PaSO Y 67SoOQ 61du02 Y 6lTo03 Y 77No08 82FilO 60Ja13 75Ro05 82FilO 83PuOl 64Ho28 64Ba13 63FrlO
241
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Adjusted
Input value
Item
C D4-H
19F
.05
50178.88
n)*‘Na ‘20Ne
‘CD,-
l‘8O(48Ca
46Sc)20N
l
*‘Ne(p,n$Na
‘80~64~;
Ors Cal’
81Na.A 89Ca25
-16526
17
.7
2
Cal’
83Ho08
.7 .I .3 .7
2 2 2 2 2
Nob CIT Nob MIT Man
54Mi89 Y 54Th30 57Ah19 Y 64Sp I2 65Mol6
2.9
1.6
R
0.6
-.6 .4 -.I
2 2 2
Ric ZUI
61Be13 61Ry04 66Ma60
59AlO6
1210 240 491
40320
220
.3 -.2 .3
u 2 2
GA1 TO2 GA3
1.0 1.0 1.0
87Gi05 88WoO9 91OrOl
23230 23210 23380 23397
280 150 130 69
23370
60
.3 1.0 -.I -.4
u 2 2 2
TO1 GA1 TO2 GA3
1.5 1.0 1.0 1.0
86ViO9 87Gi05 88WoO9 9101-01
.0020 ,090
63966.9354 -7559.823
MI1
1.5
93Na.A
U
OHI
2.5
93Ma.A
.6 -.6
2 2
MSU Brk
78Be26 78KeO6
R R
Brk TeX
78KeO6 83WoOl 70Mell
.8
0.0023 0.003
-2.3
1
58
44*‘Ne
l
-29960 -29730
200 180
-29830
130
-60150 -60197
80 23
-60204
21
-.7 -.3
-26190
50
2
Brk
-25873
60
-25000
50
14.5
B
Call
890103
str
str
82AI’12 85An17
NDm
70Ro06
ILn MMn
83Hu12 Z 87KeO9 Z
3082.4 3081.7
1.9 1.0
3081.9
0.9
-.3 .2
2 2
6875.2
1.5
6877.6
0.8
1.6
1
6601.31
0.05
.2
-
.I4 .05
6601.32
0.05
7032 7026.9 7020.1
6 1.8 1.7
-.I 7024.53
0.08
ratio Ne+/CD:
28
100
28 “0
100 *OF
average
.o
1 u u V
76Ge08 87Va20 89Hel
2
71WiO7
l
AHW
**
= 0.99681056261(10) states in *ON and 46~c
for recalibration
to 24Mg()
T =
27090
200 190 210 131
’
-1.2 -1.3 2.3
7.
15281.2(4.1)
I
GAu
l*
76Fr13
**
100
1.7 .l .8 -.6
v 2 2 2
TO1 GA1 TO2 GA3
1.5 1.0 1.0 1.0
86ViO9 87Gi05 88WoO9 910101
2.5
89ShlO
-9732
50
-9693
7
.3
v
CR1
- 12499
20
- 12481
12
.9
2
Cal’
89025
-11713
15
-11723
12
2
Dar
85WoOl
2
str
84An
MMn
86PrO5
*ONein
6761.12
.04
2431.3
.7
E(p)
75Sm02
2 2
-4020.7
6221.0
20Ne(p:y)2’Na
1.5
.o -1.2
-.l
19F(t p)*;F
l
B08
10019F
39940 40360 40165
26580 27060 26930 27162
20Ne(p’y)21Na
100
16
4819.6
(+5)
Y)~‘N~
86ViO9 87GiO5 88WoO9 91OrOl
-19376
12
Original
61Nij210
1.5 1.0 1.0 1.0
65Mol9
4800
to excited
2’Na-20Na 180~180 lSo~210
TOI GA1 TO2 GA3
u u 2 2
Man
2.8
Probably
2’N-C~,75
Reference
1
1732.5
-14669.1 From
CF
R
8 8 5 8 10 1.9 1.0 .8
Main flux Lab
-.I
20
ave.
“Ne(p
1.5 -.3 .5 -1.0
Sig
-.6
1727 1732 1731 1727 1734
6601.29 6601.32 )*‘Ne
Dg
0.07
- 16540
63966.9326
*‘F(,!-
v/s
2.9
::
-7559.309
20Ne-C~.a7 20Ne(3He,BLi)1’F
3519.7
- 19374 -19334
-4019.6 -4021.1 -4020.7
C D4-20Ne
50178.88
7
3524
“Ott p)‘90 laO(l’BO 17F)19N
120
35250
260 450 130 253
34680 35370 35180 35506
value
= 1168.8c.4)
-.7
1.8
to 3544.Oc.6)
6761.11
0.04
-.2
1 2
level
99
99 *‘Ne
I7 Z
698103
*
90Endt
”
G. Audi et al. / The 1993 atomic mass evaluation (IV)
242
790 250 389
32990 34340 34683
3He)22F 7Be)22F
*22Na’(IT\22Na
U 2 2
GAI TO2 GA3
1.0 1.0 1.0
87Cii05 88WoO9 91Orol
1.0
91OrOl
60
1.5
R
GA3
60
2.1
2
Call
76HilO
-6710
180
-6710
60
.o
2
ChR
79Ba31
.3
u
LA1
61SiO3
Y
MMn
86PrO5
Z
10
4548.
I
1.8
10364.4
.3
10363.96
0.23
-669.7
.5
-669.4
0.4
-10788 -10794
33 18
- 10800
12
-11691
20
-11680
12
2842.2 2840.4 2841.5
.5 1.5 1.0
2841.9
0.4
7407.9
1.0
-1.5 .5 -.3 -.3
1
61
60 22Ne
1
84
84 22Na’
70An06
2 2
Original
value
- 10836
Q = - 12400(20) Reanalysis
(12)
2
890104
-
68Be35 68We02 72Gi17
.4
1
87
84 22Na
7408.9
0.6
1.0
1
32
16 22Na
average
for lower levels of ref.
320 320 150 186
3530
210
2377 2313
3 8
- 14080
90
ave. E(p)=
3570
90
2376.49 - 14090
0.24 80
8794.12
0.16
.17 8480 -4839.2
80 1.2
2.2 to 9653.2c1.4)
981.04(.07,2)
* ** **
GAu
”
GAu
l*
90Endt
**
u 2 2 2
TOI GA1 TO2 GA3
1.5 1.0 1.0 1.0
86ViOY 87Gi05 8awoo9 91OrOl
1.5
86ViO9
.I
U
TO1
-.2 .4
u u
WiS MIT
-.I
2
Call
890034
2
MMn
86PrO5
Z
7lPiO8
l
89Ba42
*
.I
53Do04 64Sp12
u
-.7
I
-.2
R
-.5 1.3 -1.1 1.1
-
.o
I
88
52 23Na
74Go Ric ChR Har Tkm 32
32 23Mg
I7
58Bi41 58Go77 62F1.09 630kOl
Y Y Y Y
level
71P104
**
90Endt
**
240-c2
20080 20000 20659
1070 500 442
20370
330
.3 .l -.7
u 2 2
GA1 TO2 GA3
1.0 1.0 1.0
87Gi05 88WoOY 91OrOl
*‘F-C2
8070 8450 8135 8030
170 240 86 120
8100
70
.I -1.5 -.4 .6
u u 2 2
TO1 GAI GA3 TO4
1.5 1.0 1.0 1.0
86ViO9 87Gi05 91OrOl 9 IZh24
24Mg(3He
8Li)‘9Na
24Mg(a
81;e)20Mg ’ 6 Hej2’Mg 24Mg(3He,
-32876
I2
2
MSU
75Be38
-60677
27
2
T&X
76Tt.03
-27488 -27512
40 18
2 2
Brk MSU
70Mell 71TrO3
22Ne(t,p)24Ne
5584
24Mg(p,t)22Mg
-21194 -21198.3 6959.42 6959.69 6959.38
-27508
16
-.5 .2
2
LAI
61SiO3
1.3
-1.1 .6
2 2
MSU MSU
74Ha02 74No07
0.05
.3 -1.8 .7
2 2 2
BNll ILll Ptn
80Gr12 83Hull 83Ti02
IO 3 1.5 .07 .I4 .08
-21197.4 6959.44
Y
average
level
to 9732.35(.15,2)
70An06 GAu 90Endt
.o -.5 -.I .4
.I2
6. 7. 3 5.
-4839.1 896.8f.5)
110
170
-4836.5 -4848.0 -4836 -4844.2 E(res)=
15690
1.5
l
.6 -.2 1.1 .6
re-calculated
15700 15860 15700 15621
* *
0.4
to 709.0 level
using E (exe)
69St07 88ClO4
2842.1
Original value - 10834(30) re-calculated from Q to 709.0, 1627.0 and 2571.6 levels
8510
22Ne(p:y)23Na
Reference
9970
8794.23
l
CF
- 18850
8794.0
yjZ3Na
Main flux Lab
81
5200.62
l22Ne(p
1.8 .4 -.6
Sig
100
ave.
*22Ne(‘Li
210
Dg
9842
22Nar (ITj2’Na *22Ne(t 3He)22F * ’
34440
v/s
- 19060 4545
*22Ne(t
Adjusted value
Input value
Item
Y
* Z Z
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item
24Mg(p.n)24Al 24Mg(n+ II- )24Si l23Na(n +Na *=Na(~‘y)~~Mg *24Mg(p:nf24Al
26Mg(n-
z~+)~~Ne
l
l26Mg(3He,t)26Al
v/s
11692.87 0.15 -.6 11692.97 .I6 - 14307.5 1.2 .o - 14307.5 1.5 5515.79 0.16 2.0 5511.8 2. .o 5515.8 2. -.5 5516.8 2. 4.3 5511.5 1.0 2.0 5511.8 2. 2.7 5512.5 1.2 - 14660.7 3.9 -23666 19 -1.5 -23588 52 Original value (,Z) increased by ,037 for better recoil correction E(res)rl416.79(.07,2) to 13050.14(.14,2) level Original 7 = 15286.3(2.9) corrected by ref
ave.
26Mg(t 3&,)26~a 26Mg(‘Li,7Be)26Na z6Mg(t,3K~~26Na 26Mg(p,~)26At 26Mg(3He t)26Al 26Mg(p n)&w 26Mg(3he t)26Alm 26~v” wr)‘26A, ‘*%4&P Y)26AI •z6Mg~7~i,7Re~26N~
Adjusted value
12010 12010 12210 12120 11990 7488.8 7330.78 7330.68 7330.65 7330.66 2271.4 2271.3
220 290 150 151 130 1.2 .14 .OS .OS 0.04 1.2 .8
12090
80
7488.8 7330.67
1.2 0.04
2271.3
0.7
19630 130 IO00 19800 640 20940 210 19820 19544 300 210 19490 460 60 90 448 10 -2881 -2909 33 -2921 22 -22170 40 -22050 100 - 19040 40 - 19067 50 11093.09 0.04 .3 11092.9 11091.91 .44 11093.03 .09 11093.18 .05 11093.14 0.04 6306.55 0.06 .ll 6306.45 .OS 6306.38 0.06 6306.40 - 17670 -17676 72 50 14 -9293 -9292 20 14 -10174 -10182 50 14 -9293 -9293 19 -4786.54 0.06 -4787.04 .48 -4022.78 0.06 .I3 -4022.26 -5014.85 0.07 -5013.97 .22 0.07 -4251.09 -4251.3 .6 228.304 0.013 ,013 228.305 E(p)= 316.16(.11,2) to 4610.366(.035,2) level Original value 10222 (30) corrected for contribution of unresolved 80 level Q(to 1057.740(.023) le~el)-‘~N()‘~O= 81.69(.13)
Dg 1 1 u u u B U U 2 2
Sip 89 68
243 Main flux Lab
CF
48 z3Na 68 23Mg MSU
Yd
Reference 67Mo17* 74No07 6X%25 64LeO9 65Be24 69Bo48 72Gi17 76GeO6 690~01 * 80Bu I 5 AHW
l*
90En02 ** 76Frl3 **
.3 .3 -.8 -.2 .8 .o -.a -.2 .4 .2 -.I .o
u u 2 2 2 1 u 1 2 2
1.5 GA1 1.0 TO2 1.0 GA3 1.0 TO4 1.0 IM) 100 25Na Str ILn MMn ORII 99 86 25Mg average
-.l -2.0 -.9 .3 .7 .l -.8 .5 -1.2 .6 .6 2.7 .7 -1.8 -1.2 .9 2.1 2.2 .l -.l .2 .o 1.0 -4.0 -4.0 .4 .a
U U 2 2 2 R 1 i 2 2 U U -
10 22
I
89
TO1 1.5 GA1 1.0 TO2 1.0 GA3 1.0 TO4 1.0 GA3 1.0 lO%a P13 1.0 2226Na P13 1.0 Brk Can MMn ILn MMn ORn 76 2bMg average
79
78 26Al
1 2 1 F
1 u u 1
TOO1
86ViO9 87Gi05 88WoO9 91OrOl 91Zh24 84Anl7 82Hu02 Z 9OPrO2 Z 92Wa06 7lEvOl 72PiO7
utr
60
60 =Na
25
18 26Al
100
96 26Alm
86ViO9 87GiO5 88WoO9 91OrOl 9lZh24 9lOrol 75Th08 75ThO8 73WiO6 85WOO4 8OIsO2 82Hu02 9OPrO2 Z 92WaO6 85Be17 * 91Kio4 z
average LAl ChR average utr ChR AUC Mun
80Nal2 74FlOl 72Ba35
l
69De27 87Ko34 * 84Ba.B 77VoO2 82Al19
atAu9
**
AHW AHW
** I*
82Al19
l*
244
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
km
24Na-2’Na ,336 26Na-27Na ,770 26Na-27Na ,481
Input value
22Na.655 22Na.236 25Na.520
23Na(a yj2’Al 27Al(p,&)24Mg ave.
ave.
ave.
700 770 900 640 300 172 130 38 86 66 86 1.3 .5 .21 0.19 55 60 40 .55 .08 .05
26890
450
7620
100
-3036 -1380 648
14 30 23
10092.27 1600.60
-13370
37~1
2sNa-28Na ,446 22Na.568 26Na-28Na,6,9 22Na,394
ave.
11490 12270 11958 12160 -1220 - 1097 -23073.45 14013.07 -5869 -4229 -4205 -4203 -34274 -61433 -27981 -22009 7724.91 7724.96 7725.08 7725.08 7725.13 11584.4 11585.01 -956.15 1831.8 12541.23 -15115.3 -15112.5
0.21 0.16
40
6443.35
0.04
8271.32
0.17
0.4
7464.9 .9 7463.67 8930 150 9010 .26 -5594.19 -5593.8 .ll -3594.27 Contaminated by 27Na E(p)= 338.40(.12) to 8596.8c.5) level E(p)= 809.90(.05,2) to 9050.7(.5,2) level E(p)=286.6(.3) to 7740.8(.9) level
*27Ne-C2.25 l2BMg(p yj2’Al r26Mg(p’y)27Al *26AI(p,;)27Si
28Si-C2,jj3 28Si, 160-35~1
27500 26005 27100 6010 7470 7567 7670 -3006 -1437 676 734 10090.0 1600.9 1600.14 1600.25 -13295 - 13433 - 13360 6443.39 6443.22 6443.40 8270.3 8271.0 8270.6
Adjusted value
430 560 238 140 190 96 .32 .70 75 613 128 87 25 21 10 3 .10 .30 .3 .I .09 .4 0.13 .03 2.0 .14 4.9 6.
12110
-1110 -23073.51 14012.3 -5950 -4220
-61421
7725.05
11584.94
12541.08 -15114
0.20 40 0.11
120
80 0.22 0.4 30 50
21
0.06
0.13
0.13 4
v/s
Dg
-.9 1.2 -.2 1.7 .5 .3 -.4 -.5 .6 -.3 -.7 1.7 -.6 2.2 1.8 -1.3 1.1 -.2 -.I 1.6 -1.0 2.0 .6 1.9
2 2 2 F 2 2 2 u 1 u u u 1 1 u 2 2 1
-1.4 .5 -1.4 .6
u u 2 2
1.0 -.3 .6 -.4 .4 -.I -.2 -.7 -.7 .o -.I -.2
u u 2 2 u 1 1 1 u u u 1 2 R 2 2 2 u u 2 2 1 2 3 R 2 2
.6
1.4 .3 -.I -.3 -.9 1.3 -.5
-1.0 .2 -3
Sig
14
68
89
22
Main flux Lab
CF
Reference
TO2 1.0 GA3 1.0 TO4 1.0 TO1 1.5 GA1 1.0 GA3 1.0 TO4 1.0 PlO 1.5 11 27Na P13 1.0 PlO 1.5 PI1 1.5 utr ZUI utr 46 24Mg average MUIt CalI 89 27Na average ILII MMn ORn utr utr 15 26Mg average
88WoO9 9lOrol 9lZh24 86ViO9 l 87Gi05 9lOrOl 9lZh24 75Th08 75ThO8 75Th08 75Th08 78Ma23 67St30 78Ma23
AUC
GA3
72 46 17
30
93
72 “Na 46 28Si 1728Si
2S2’Na
71 27Al
TO4 TO1 GA3 ST1 H46 PlO Pll PI2 P13 MSU TeX MSU MSU BNn ILIt MMn
1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.5 1.5 1.5 1.5 1.0
ILn utr average utr
utr Yal BNL
82Hu02 9OPrO2 Z 92Wa06 59An33 * 78Ma24 l
84Bu09 * 73All3 77Na24 85WbO3 9lZh24 ** 78Ma24 ** 78Ma24 ** 84Bu09 **
AUC
TO1 GA1
78Pal2 85Fi08
86ViO9 87Gi05 9lOrOl 9lZh24 86ViO9 9lOrQl 93Je.A 93Ba.A 75ThO8 75Th08 75Th08 75Th08 75Be38 80TrO4 72Bel2 74Ha02 78St25 79BR5 801~02 81Su.A 82Scl4 67Do04 78Ma23 540103 90En02 690~01 7lGol8
*
* * Z ’ Z Z * *
245
G. Audi et al. 1 The 1993 atomic maSS e~al~a~~on(Ivf Item
Input value
Adjusted value
v/s
Dg sig
Main flux
Lab
CF
2 -24544 160 Symetric doubledoublet 22-24 26-28 included Calculated from 7 combinations of two y-rays,Z Based on comparisons, all errors of ref. are increase to .3 E(p)= 1089.74(.07,2) to 12634.9(.3) level Original T = 15668.9(4.2) corrected by ref. Original T = 15666(6) rewllibrated to 24Mg(p,n) T = 15281.2(4.1) Recalibrated to Q(‘60(x+,n-)) = -27704(20)
*‘Al(t PPAI z8Si(n~y)‘gSi 28Si(d p)2gSi %i(P,Y)’ 29P ‘28Si(d,p)2gSi
3oW-C2.s
19433 19300 2820 2838 -5763 -6379 -5252 -5576 - 1708 - 1456 - 19720 -9207 -9250 8679.5 8473.55 8473.56 6249.35 2747.1 2748.3 Estimated systematical
320 -.2 2 531 19350 .I 2 400 2810 100 .O U 230 -.2 I 143 50 1.0 1 91 -5620 1.7 U 293 -.9 U 277 -.7 I 66 60 -.2 u 124 -1750 29 -2.4 B 50 -1574 29 -1.7 2 50 - 19806 55 29 .3 2 -9191 1.3 2 45 2 1.2 8473.555 0.028 .l 2 .04 -.I 2 .04 6248.982 0.028 --.7 U .5 2748.1 0.7 .6 2 1.7 -.3 2 .8 error 0.5 added to statistical error 0.037
2 884 2.0 F 9230 100 540 .l U 370 .5 218 -.8 130 -.4 1 110 230 .5 v 70 -9540 .6 98 -.4 110 2 I 70 -.2 u 40 287 -7560 .5 u 641 -1.5 u 225 -.4 1 117 .4 u 50 213 -2610 2.1 c 70 -16120 $5 0.03 1.0 3 .04 10609.18 -1.2 3 .OS 8384.61 0.03 -.6 I3 8384.92 .53 3 5594s .4 110 .9 I 17167 330 17480 6990 70 1.3 u 6690 240 14 -.5 4 -8520 40 -8542 .2 4 -8545 15 Contaminated by 3oMg Tentative, say authors; four counts only Estimated systematical error 0.5 added to statistical error 0.16 Calculated from 3 values used as calibrators Calculated from value used as calibrator 23872 7620 9200 9126 9330 ave. 9280 -9700 -9597 -9490 aYe. -9550 -7454 - 8060 -7045 -7515 -2750 - 16234 10609.14 10609.24
82M~12*
GAu AHW 801~02 78Ma23 76Fr13 76Fr13 GAu
45 45 2qNa 11 II 29Na
47
45 “Na
GA3 TO4 TO1 GA3 I’10 PI1 P12 P13 PI0
1.0 1.0 1.5 1.0 1.5 1.5 1.5 1.0 1.5
Brk MIXI Can str MMtt ORn Re2
81
96
13
11
Reference
81 30Na
96 )*M8
1230Na
8 3oNa
GA3 1.0 TO1 1.5 GA1 1.0 GA3 1.0 TG4 1.0 average TOI 1.5 GA3 1.0 TO4 1.0 average PI0 1.5 PI1 1.5 Pi2 1.5 Pi3 1.0 P10 1.5 Mun MMa ORn Re2
** l* l* ** ** *’ **
91GrOl 91Zh24 86ViO9 91Gt’Ol 75ThO8 75ThO8 75Th08 75ThO8 75Th08 81Pa17 74Sc26 78Pa12 85FiO8 84An17 9OIsO2 z 92Ra19 9OPiO5 l 73Ba35 74ByOl AHW l * 91OrOi 86ViO9 87GiO5 91OrOl 9lZh24
l
86ViO9 91OrOl 91Zh24 75ThO8 75ThO8 75ThO8 75Th08 75ThO8 78Pa12 9OIsO2 92Ral9 9OPiO5 85Re02 83DeO4 83DeO4 69AjO3 87PeO6 91Zh24 AHW AHW GAu GAu
l
2 * * *
* ** ** l* ** l
246
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
Item
Input value
Adjusted value
v/s
13440 1000 13600 la0 .z 13539 321 .I 13610 210 --.l -3830 220 -3450 80 1.1 -3520 190 .4 -3438 149 .o -3370 120 -.7 26Na-3'Na,373 22Na,657 -7457 286 - 8220 170 -1.8 =‘Al(a y)“P 9667.4 1.3 9669.06 0.22 1.3 1915.8 .2 “P(p,&)% 1915.87 0.19 .4 3oSi(‘B0,17F)3’A1 - 12200 23 -12212 20 -.5 - 12237 33 .7 ‘%i(n,y)“Si 6587.28 .20 6587.40 0.05 .6 6587.40 .OS 4364.18 .55 3oSi(d p)“Si 4362.83 0.05 -2.5 7297.4 1.2 3D~i(P~j,~31~ 7297.07 0.19 -.3 7940 100 3’AlfSpsi 7995 20 .5 •30S;~d,p)31Si Estimated systematical error 0.5 added to statistical err01 0.23
Dg
33A1-C2.,5
%(n,y)% ave.
27386 5460 5203 5710 -9490 -9250 -9167 -9020 8641.69 8641.55 8641.578
1601 900 318 180 250
5590
-9130
160
70
160
142 120 .06 .03 0.027
8641.577
0.027
Main flux Lab
U 2 2 2 2 2 2 U U
I
87
71 3’P
4 4 U 4 U U U
19650 520 -.I 2 636 19720 -.2 2 1100 19900 100 -.I u 260 -800 -850 -890 270 .I 2 -924 .3 2 214 130 -820 -.3 2 - 11880 90 .9 u 220 -12160 -11870 .o 2 210 .o 2 104 -11877 480 -1.1 u 26~a-32Na -9180 -8569 354 22Na,,09 2 ‘=S(‘He ‘Li;“P 35 -31277 ‘ 32S(3He’6He)29S 50 -25520 1 “Si(t p&i 2.2 1.8 4 7307 7308.8 2 3 -19614 %Pip3 2 31Pfn:#P .04 7935.65 0.04 -.b U .lb 7935.74 7935.65 0.26 -1.1 .9 8864.9 8863.90 I.4 .o 8863.9 .9 8865.1 -1.3 -.8 1 0.4 8864.3 ave. L 1.5 -12817.8 I400 19100 18300 490 .b R 1.2 221.4 224.4 2.2 2.5 R .7 0.27 .7 R 1710.1 1710.60 -.I 2 16. - 13468 7 - 13466.7 9. .2 2 - 13469.6 7 - 12704 15 -.3 2 32S(3He,t)32CI - 12699 2 50 ‘=S(n+,?_- )32Ar -22815 Original T = 13899(14) corrected by ref. Original T = 13902(9) recalibrated to 24Mg(p,n) T = 1528I.2(4.1) ‘3Na-C,.,, 33M8-C,,,,
Sip
2 U 2 2 u .7 2 .3 2 -.9 2 -1.9 .9 .o 1
GA1 GA3 TO4 TO1 GA1 GA3 TO4 P12 utr Zur
CF
Reference
1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5
87Gi05 91OrOl 91Zh24 86ViO9 87Gi05 910101 91Zh24 7STh08 78Ma23 678130 88WoO2 89Bo.A 901~02 Z 92Ra I9 9OPiO5 * 68WoO1 73Go22 AHW **
1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.5
910#1 91Zh24 86ViO9 87Gi05 91OrOl 91Zh24 86ViO9 87Gi05 91OrOl 75Th08 77Be13 73Be09 80An.A 74HaO2 85Kell 2 89Mi16 72Co13 73VeO8 74ViO2
Bt?r MMn ORn Rez
GA3 TG4 TO1 GA1 GA3 TO4 TOI GA1 GA3 PI2 MSU MSU str MSU MMn ILn
33
293’P
average MSU
Yal BNL
.I 1.2 -.7 1.0
100 93 3%
GA3 1.0 GA1 1.0 GA3 1.0 TO4 1.0 TO1 1.5 GA1 I.0 GA3 1.0 TO4 1.0 ORn MMn average
73Mo23 83De04 84PoO9 68FiO4 69OvOl * 71Go18 l 89Je07 80Bu15 7bFrl3 ** 76Fr13 ** 910101 87GiOS 91OrOl 91Zh24 86ViO9 87Gi05 910101 91Zh24 83Ra04 Z 85KeO8 z
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
%(p Y)%l 33Si(i-)33P J3P(/r )3’S
34S(l3C 14G)33Si %(n Y$4S 33s(p:Y)34cl 34S(7Li 7Be)34P %(p &Cl 34S&Ie t)“vl l“s(p Y&l 33s(p’Y)34cl *34S&e,t)34Cl
l
%P Y)%I ‘$B’)%I
:::;;:y; 36.4-C) ‘%i-C3
36s(“B
Adjusted value
Input value
Item
‘4N)33si
’ 6Hej3’Ar 36Ar(3He, 36sctlB 13NJ34si 36S(14C,‘60)34Si 36S(64Ni,66Zn)34Si
2216.5 5768 249 248.3
.5 50 2 1.3
5845 248.5
16 1.1
9070 280 8855 476 9190 350 -3070 100 -3760 430 -3400 250 -3262 218 -2940 I20 16 - 14243 75 - 14321 11416.94 0.05 11416.94 .05 5142.38 0.15 5142.34 .I8 5142.5 .3 -6236 5 -6224 40 -6274.55 0.16 -6274.21 .56 -5510.79 0.16 -5511.8 1.0 E(p)= 974.76(.15,2) to 6088.20(.10,2) level Original error .2 judged to small compared with ref. Original value -5510.8(.4) recalibrated 18669 1721 -340 460 -296 298 190 80 .3 23320.8 ,034 23322.239 .I3 140545.01 -7796 40 .05 6985.89 6985.80 .05 0.04 ave. 6985.84 .23 6370.39 .L 167.4 166.80 .15 167.288 .030 167.4 .I 166.7 .2 167.56 .03 167.27 .I0 167.20 .I2 -6747.2 1.6 -6747.9 1.0 -6747.1 _. 2.1 Systematical trends suggest ‘>Mg 1100 Adopted: simple average and dispersion 6187 6500 - 13850 - 13490 -13578 -13110 -29180 -14150 -6380 -4311 -23512 -7321 -2989 -8903
421 400 640 320 191 150 50 140 20 30 30 25 20 33
-60
150
23322.26
0.04
140544.91 -7808.0 6985.84
0.08 2.1 0.04
6370.67 167.18
0.12 0.12
-6747.7
0.8
v/s
Dg
1.5 -.2 .2
2 R 2 2
.5 -.3 1.1 1.3 .9 -1.1 -1.0 -.I .2 -.4 -.3 -.5 1.0
2 2 u 2 2 2 u 1 2 2 u u u
.6 .8 -.7 2.0 .5 -.5 -.3 -.9 .9 .o 1.2 -1.1 2.6 -3.5 -2.2 2.4 -12.6 -.9 -.I -.3 .3 -.2
2 2 2 2 u I 1 u I u B B B B B B B 1 2 2 2
Sii
247 Main flux Lab
CF
76AlOl 73Go33 54Ni06 84PoO9 GA3 TO4 TOI GA1
99
93%
GA3 TO4 Can ORn Oak
1.0 1.0 1.5 1.0 1.0 1.0
Can Auc Mull
GA3
67 18
100
95
67 35C1 18 “Cl
94 34s
1.0 GA1 1.0 GA3 1.0 TO4 1.0 Ml7 2.5 B07 1.5 B07 1.5 Can ORn MMn average Oak
94% Har Auc Mtr
more bound of 7 data 6350
290
-13310
110
.4 -.4 .6 .6 1.4 -1.4
-14180 -6343 -4367
70 16 16
-.2 1.9 -1.9
-7385 -2951 -8907
14 14 14
-2.3 1.9 -.I
2 2 U 2 2 2 2 R 3 3 2 3 3 3
Reference
GA3 TO4 TO1 GA1 GA3 TO4 MSU Dar Mull Can MSU Can Mull Dar
1.0 1.0 I.5 1.0 1.0 1.0
910101 91Zh24 86ViO9 87Gi05 91OrOl 91Zb24 86Fi06 83RaO4 83RaO4 83Wa21 85D106 77Ba16 77VoO2 83RaO4 83Ra04 AHW
Z l l
l
** l* l*
91Orol l 87Gi05 91OrOl 9lZh24 66BelO 71SmOl 71Sm01 88OI-01 83Ra04 Z 85KeO8 Z 83Ra04 57Co62 85Alll 85ApOl 85Oh06 89SiO4 92Ch27 93Mo01 Averag 75Fr.A 77Wbo3 78AzO1 GAu GAu
Z ’ * l l
* l l
*
** **
910101 91Zh24 86ViO9 87Gi05 91OrOl 91Zh24 77Bel3 86WoO7 84Ma49 85Fi03 74Na07 85Fi03 84Ma49 86Sm05 l
248
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
Item
Input
value
4604.4
50
-16140
40
3
MU”
84Ma49
60
-21190
40
-1.1
3
Can
86FiO6
100
-17490
40
-2.4
B
Dar
86Sm05
BNL Hei
84Th08 85KhO4
1.0 -.4
3 3
-2927
10
-2888.0
1.9
3.9
u
MU”
84Ma49
-7521
17
- 7489.5
1.9
1.9
u
Can
85DrO6
-5659
34
-5643.0
2.1
.5
U
Dar
85Wo.A
MM” IL”
SlKe02 82Krl2
Z Z
72Ho40
Z
8579.77 8579.64
.l .09
8579.70
0.07
8506.2
.3
with error
1.2 judged
M -
.36S(14C
Original
rep”*
-2693
Original
T =
13976(S)
-.9
-11275
13
-10257
13 0.26
- 7000
-20390
85D1-06
Can MU” 19
84Ma49 67SpO6
17 36Ar BNL
54,
114, 207 levels
15281.2(4.1)
7lGo18
l
AHW
**
GAu
**
86Sm05
l*
GAu
l*
76Frl3
l*
2
GA3
1.0
91OrOl
.4 1.0 -.5
u 2 2
GA1 GA3 TO4
1.0 1.0 1.0
87Gi05 910101 9lZh24
.5 .3
u F u
TO1 GA1 GA3
1.5 1.0 1.0
86ViO9 87Gi05 9lOrOl
-2.4
41922.2
.2
41922.44
0.05
.5
u
Ml7
2.5
66BelO
.12
123436.53
0.05
.I
1
8
8 37Cl
B07
1.5
7lSmOl
104974.24
.08
104974.24
0.10
.o
1
72
72 37Cl
B07
1.5
71SmOl
15503.80
.09
15503.60
0.07
-.9
1
8
5 37Cl
H31
2.5
77SoO2
159145.17
.I2
159145.08
0.07
-.5
1
14
8 37Cl
B07
1.5
7lSmOl
40
36~(~~ca~~sc)‘~~
- 11490
120
-11550
40
$7,
4303.49
50
8386.53
36Ar&,y)37Ar we.
.8 1.2
8790.5
0.7
1857.77
ave.
0.3
on calibration - 13650(40),
And
Q =
- 11569(80),
*36s(p
E(p)=
996.19(.19,2)
0.4
- 1595.8
m”re
M
88FiO4
*
3
OR”
84Ra09
Z
=
- 19750(40)
A4 =
- 18980(80)
E(exc) increased
E(p)=
917.48(.07,2)
than
u
MU”
84Ma49
.8
U
Can
88OrOl
2
utr
1597 corrected
1
30
average
18 37Ar
Utr
88De03
*
.I 1.0 .9
-
MIT Duk PTB
52ScO9 66Pal8 92Bo.B
Y *
1.2
1
82
average
82 37Ar
quoted peak
is ground-state
if other
peak
due
correction
level
for recalibration
l
2
if other
recoil
84No05 68Wi25 70Ha56
-
level
by .23 for better
to 2750.26(.06,2)
*
84PiO3
3
.2
-2.7 -.I
0.3
uncertain
t” 9355.58(.12,2)
Authors
value
Dar
-2.3
- 1596.2
Q =
880r.A
3
.09 1.0 1.0 .38
And
13
8788.9
- 1596.0 -1596.8 -1596.18
r36Sc48C;47SCj37p
78As06
Can
.23
8791.1 8789.0
Extrapolation
ILL
3
-.8
0.09
-16392
u
.2 .8
0.09
-3872.86
*
.o -.5
0.09
2079.01
7
- 16433
0.3
4303.58
.I3
-3874
,+7c,
4630.2
.I2
2079.12
36S(d’p)37S 36s& 13cj37s
Original
1
T =
40
-14400
*37Cl(p;“)37Ar
3
and
130
7
y)37K
.o
579
40
l36Ar(;
3
l
average
now-26861(7)
t” “Mg(p,“)
4630
*36s(p’y~37cl
71 36Ar
small
- 14410
y+7c,
99 %1
71
.I -.2
-26862(12)
36S(‘80,‘7F)37P
r37p-c3 0 3 .36S(18$$Fj37p
99
1
123436.51
37Ar(n,a)34S
36scp
1
2 M =
recalibrated
430 200 200
37:1
140j36p
.6 -
is typo
-20740 -19910 -20442
37Cl
0.25
708.57
to”
1410 305 150
C3 H6 CJ-~~C:
8505.92
for average of ground-state
- 14482 (59)
-7550 -7310 -6930
H
-.7
8.
a)j4p *36S~6iNi,65z”)35Si
C3 H-37Cl
0.07
.o
36S(64Ni,62Ni)
10310
8579.70
.6
- 13587.7
A =
*
1.9
15
Original
l
-7601.8
708.7 Calibrated
.9
82So.A
5 2
)36Ar
37C,(l3&
Reference
-21122
-10256
36S(”
CF
-16184
36S(‘4C,‘4N)36P
D2 35Cl-H2 C5 H,2-35C1
Lab
74Ha02
27
C2 D8-37Cl
flux
MSU
-11277
*36Ar(p,;)36K
Main
3
‘“S(7&7Be)36P
15N335p
Sig
2
ave.
l36s(d
Dg
3
Y)‘~A~
36Ar(p II)‘~K l 36S~64~i 66z”)34Si
v/s
5.
-7607 -7601
‘%I(/?-
value
-19513
- 17250
35Cl(p
Adjusted
7Li(p,“)
to 47Sc
one 807.89
level
GA”
**
880r.A
l*
88FiO4
l*
84No05
**
AHW
**
88De03
l*
AHW
l*
249
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
‘*Ar(p nj3*K 38Km(;~)38K *38p-C3.‘67 •24~g(‘6~,2n)3*~, l“Cl(d,p)‘*Cl 39p-c3.25 “Wt p)39Cl ‘*A~(;J)‘~K
r38Ar(p Y)‘~K 38Ar(p:y)39K
l
C3 H4-40Ar C2 D8-40Ar 20Ne2-40Ar
%Qp,t)%a 40Ar(‘80 ‘9Ne)39S 40Ar(‘3C”40)39S @Ar(d 31;e)39C1 39K(n ;J4’K 39K(p’y)40Ca 40Ca(‘Li 8He)39Sc %& ‘k)3%c 4oCI(p- +‘Ar 40Ar(7Li ‘BeJ4’Cl 40K(n,p$Ar 40Ar(p,n)40K 40K(n,p)40Ar %a(p,n)% %+(n+~-)~‘Ti *C3 H4 -40Ar lC2 D8-@Ar
Adjusted value
v/s
-4020 290 150 -1.8 - 14420 620 -15530 - 15530 150 5 -1.7 - 12720 20 - 12754 837.2 0.5 .o 837.2 2.4 -5858.2 0.7 1.5 -5860.6 1.8 1.4 ave. -5860.3 1.4 -5988.6 0.8 .2 -5989.3 2.9 3858 7 .7 3838 30 -783 7 -.2 -781 10 6107.78 .I0 3883.21 0.10 -.I 3883.28 .50 10242.2 0.5 -.3 10242.5 I.1 2937 7 -.5 2947 20 .I 2936 12 -6695.4 0.6 -.6 -6694.99 .75 130.4 .3 Extrapolation on calibration mwe uncertain than quoted E(‘60)=24880(30) to 2206(5) level Estimated systematical error 0.5 added to statistical error 0.064 - 13580 160 5699. I 5701.9 2.5 6381.0 6380.9 1.0 6380.9 .6 ave. 6380.9 0.5 - 10851 2 -10851.9 565 5 -7312.9 -7302.5 6. -7314.0 1.8 E(p)=1394.3(1.0) to 7739.1C.5) level E(p)=1394.3(.6) to 7739.1(.5) level -8950 210 -24530 250 68917.004 68917.005 .004 150431.104 ,004 150431.100 22497.229 22497.225 ,004 22497.228 ,006 -29693 20 -57580 40 -24270 50 -24348 -24368 25 -20428 II -20448 -20452 5 - 14504 200 -14410 -16760 50 -7038.4 2.5 -7035.6 7799.50 7799.50 .08 8328.24 8328.24 .09 -37400 40 -37368 -27670 30 -27688 7480 7320 80 -8375 35 -8340 2287.23 2286.7 1.0 -2286.2 1.0 -2287.23 2287.23 we. 2286.4 0.7 -15102.1 4.1 - 24974 160 From ratio Art/C3H: = 0.99827839935( 9) From ratio Ar++ /CD:+ = 0.99624969810(10)
Dg 2 F 2 u u I R u R 2 u 1 3 3 1 2
Sig
Main flux Lab TO4 GA1 TO4
26
26 38K
-1.1
I
0.4
::
1 1
0.7
.3 -.5
1.8
-1.8 .6
1
22
-.2 -.7 .7 .l
50
-1.6 .a -1.8 .a .5
1.8 0.08 0.09 25 24 30 30 0.27 0.27 0.27
I.1 .o .o .a -.6 2.0 .9 .5 -1.0 I.1
5
1 1 1 2 2 2 2 2 2 u 2 1 1 I 2 2 2 2 1
* L
L
91Zh24 870105 91Zh24 72ZiO2 75SqOl 76Sh24
Ha1 Mull average HX
20 38Ar
74
62 38K
50
50 39Cl
TO4 str
75 13
68 38Ar 1238K
average MSIJ
2 2 2
I
1.0 1.0 1.0
20
1.0
Tal
2 2 0.005 0.004 0.004
Reference
MUU MMn Rez
L
1.8
CF
63 48 49 22
59 40Ar 25 40Ar 39 20Ne 17 20Ne
TO4 TO4 MI1 MI1 MI1 MI1
1.0 1.0 1.5 1.5 1.5 1.5
Brk MSU MSU MSU
50 98 98
I5
50 39Cl 88 39K 93 40Ca
15”)K
Catl GIlI Hei ILn Utr MSU Call
ILL Duk average Yal
l
l
75sqo1 85Da15 84Ma49 81KeO2 9OPiO5 l 68En01 71En01 72Vill 78Ja06 90Endt GAu l* 90Endt ** AHW l ’ 91Zh24 84An03 70Ma31 l 84Ha27 * 74Wi I7 50Br66 7OKeO8 78Ra15 70Ma31 l * 70Ma3 I l * 9 1Zh24 91Zh24 93Na.A * 93Na.A ’ 93Na.A l 93Na.A l 76BeO8 77Tr03 68BuO2 73Be23 * 72PaO2 74Se05 84Ho.B 89D1-03 87Kh.~ 84VoOl Z 9oKio7 z 88M018 88WoO7 89Mi03 84FiO2 81We12 66Pal8 * 69OvOl l 82Mo12* AHW l ’ AHW ‘*
Input value
Item *20Ne2-“Ar *2oNez -40Ar *40Ca(3He 6He)37Ca *40Ar(p,n) b0 K *40Ca(p,n)40Sc *“Caf~+,a)40Ti
40Ar(‘80 ‘7F)41Cl 40Ar(n,y) hl Ar 40Ar(p,y)4’K 40K(n,y)4’K 4oCa(n,y)‘% 4oCa(p,r)4’Sc 4’Cl(,9-)4’Ar 4’Ar(/7- )4’K 4’K(p,n)4iCa 41Sc’(IT)41Sc
42Ca(‘He t)?Sc 42Ca(3He’t)42Sc-26Mg()26Alm 4*Sc’(IT)42Sc *~‘Cafpy)4~Sc’-4oCao4’Sc’ *42Ca<3;Ie,f)42Sc
43&83 4's-c
-5200 - 19970 -29620 -29500 - 10530 6098.9 7807.8 10095.19 8362.67 1085.09 5670 2492.0 - 1203.8 2882.39 2882.26 ave. 2882.29 E(p)= 647.25(.05,2)
4ka(n:y)% 40Ca(a y)44Ti 44K& 4'Ca(py)44Sc )44Ca
Dg
Sig
Main flux Lab
CF
500 230 190 270 83
-25740 13400
-25970 -11169.9 7932.7 7933.1 7932.9 4935 4929 1817 1815 -21500 -21450
70
-10430 60 .8 6098.7 0.7 .3 7807.95 0.26 .lO 10095.18 0.10 .3 8362.70 0.26 .09 1085.07 0.09 150 5730 60 1.1 2491.6 0.7 .5 - 1203.74 0.28 .I0 2882.30 0.05 .06 0.05 to 1716.43(.08,2) level
11131.6 5127.1 5580 6694 -5660 3642 3650
900 200 350 10. :: 0.3 5 2 20 10 500 270 .7 .8 2 80 40 5 5
TO4 TO4 TO3 TO4
2 -29350
-25800
170
-11172 7933.0
7 0.3
4929.8
1.9
1815
9
-21460
11132.0 5660 6696.3 -5640 3653.3
240
0.7 1.7 40 40 1.9
Reference AHW AHW AHW AHW 76Frl3 GAu
1.4 2 .6 2 1.2 R -.3 1 .5 1 -.I 1 .I
1
-.3 I .4 R -.4 1 .l 1 -.9 .7 .2 1
1.0 1.0 1.0 1.0
CEWl
67 67 4’Ar 75 7S41K 95 7S40K 74 67 4’Ca 90 90 4’sc
ILII MMn utr
37 31
33 4’Ar 304’Ca
CalI
87 4’Sc’
Utr utr average
97
9iZh24 YlZh24 9OTuOl 9 1Zh24 84Ho.B 70Ha56 89Sm06 84KrOS 801~02 87ZiO2 74GulO 64PaO3 7oKno3 872iO2 89Kill
** l* ** l* ‘* **
Z 2 Z *
Z Z
87ZiO2 **
2 -18510 350 - 26830 120 .9 2 190 - 27000 .2 2 190 -26870 13 -17250 - 17252 5 -.I R i 40 7043 6 -2865 5 -.l 2 -2865 2 .I5 7533.77 11480.60 0.06 .2 1 .06 11480.59 -6.68 0.05 -.2 1 .OJ -6.67 9430 120 -1.5 R 220 9760 -6444.44 0.13 -1.1 II 1.0 -6443.3 -2193.52 .23 -2193.36 0.14 .7 1 6076.33 .08 6076.31 0.08 -.2 I Calculated from resonance energy difference = 5.73c.05) Original value -644X3(.4) recalibrated
ave.
43K(@- )43Ca
v/s
From ratio Ar++/*‘Ne+ = 0.99943734128(11) From ratio AI+/~‘N~+ = 1.99890212105(30) Average of 2 values with small calibration correction Original value 2286.5 corrected for recalibration ‘Li(p,n) Original T = 15491.1(2.9) as corrected by ref. Recalibrated to Q(‘6~(n+,n)) = -27704(20)
3.583
42Ca(p,y)43Sc
Adjusted value
-.3 2 .5 2 -.3 2 .6 -.2 .2 1 -1.0 2 .4 2 -.i 2 .o 2 .l 2 .a 2 2 .5 I 1.2 2 1.0 2 .5 2 2.3 R .? R
TO4 TO3 TO4
95 97
934ka 834?Sc’
LA1 CIT ILll ORIt utr
35 92
24”s~ 76 42Sc
ChR Utr
MUI
TO4 TO3 TO4 Tal
98
95 %a
81
82 44Ca
1.0 91Zh.74 1.0 POTuOl 1.0 9lZh24 722iO2 6iJa07 67MiO2 8x306 89Kill 89Kill 89Mi03 77VoO2 87Ko34 89KilI GAu AHW
1.0 9OTuOl 91Zh24 1.0 PlZh24 67A108 69GrO8 71Bi.A average 65BRl 69Wa 19 54Li24 59Be72 TO3 1.0 90Tu01 TO4 1.0 9iZh24 82Di05 72Wh02 71Po.A 7oLeo5 7OAjOl LA1 SOBr52 558123
z Z * * Z ** **
251
G. Audi et al. / The 1993 atomic mass evaluation (Iv/ Input value
Item
-20300 7414.79 6888.0 258 2066 -2845.4
45Cl-c3., “Ca(n,y) d5Ca 44Ca(p,Y)4%C 4vaor )4%c 45Ti(~+)45Sc 4’Sc(p,n)45Ti
45Sc(p,y)46Ti 46Ti(3Hc tj4% *46Ti(3He’6He)43Ti 46Ti(3He:t)46V
l
47~-C3.w C 3SCI-47Ti 46Ti ‘3C-47Ti
C
46Ca(n,Y)4’Ca 46Ti(d p)47Ti ’ 47 46Ti(p,Y) V 4’Ca(J!-
)4’Sc
47Sc(,5’-)47Ti l46Ti(p,y)47V *4’ca(B- )% 13C 35C(-48Ti 46Ti 3’C1_4aTi 35CI 48Ca(3He “C)40S 48Ca(3He’8B)43C1 - 43 Ar 48Ca(u,9Be) 48Ca(3He 7Be)44Ar ’ 45 AI 48Ca(a,7Be) 48Ca(6Li 8B)46Ar 48Ca(14d 160)46Ar 48Ca(d,o;46K 46Ca(t,p)48Ca 46Ti(3He,n)48Cr 48Ca(‘4C “014’Ar 48Ca(d 31&)47K 48Ca&47K
Adjusted value
VI6
Sig
Main flux
2
700 .3 1.2 2 5 .5
Dg
7414.77 6889.2 256.8 2062.4 -2844.8
0.30 0.9 0.9 0.5 0.5
-.l 1.0 -.6 -.7 -.l
I I I
98
93 45Ca
58 22
45 45sc 16 45Sc
2 2
-4.0 1.5 I.1
.o -.7 1.5 -.l .o .I
-.6 1.0 24261.73 .75 24260.5 .9 1.0 1730.29 .a7 1732.3 230 9.5 -17416 35 - 17080 14.9 160 -29070 60 -28180 -21160 70 - 12791 20 -27840 60 -.I 40 -23325 70 -23330 40 -6739 50 -6740 .o 1915 I5 4 -.6 8752 20 8741 7 .o 5550 18 5550 -18142 100 7 -.8 - 10304 12 -10313 7 .l 4006 15 4007 .6 400 1 10 1.0 4 -3699 10 -3689 4 .l 10630 12 10631 -1.1 10642 10 .o 4 -3689 6 -3689 ave. .9 0.04 11626.32 .3 11626.59 11626.59 .04 .o 24 .3 - 12959 27 - 12952 24 -.5 -11910 50 - 11934 2.0 5 -534 I5 -504 .2 - 506 7 1.1 -511 6 ave. 5 1.2 3986 7 3994 .9 2.4 4008 5 4012.3 -.4 4013.6 3. 4014 7 -.2 .. F: possible “‘0 contamination; mismatch in cross-sections Poor spectrum. Authors say: possibly not to ground-state
II 4%
26 47Ti 1346Ti 89 ‘%a 21 46Ti
96 88
83 47Ca 87 47Sc
1 1 F F 2 2 2 2 2 2 U
31 23
31 48Ti 1546Ti
I
17
1748cr
46
39 48Ca
100
55 47Ti
63 55
4548Sc 55 %c
2 2 2 2 -
I U 1 2 2 1 1 2 2 2
TO3
1.0
90TuOl 801~02 Z 74ScO2 65Fr12 66PoO4 85SC16
MMn
MSU KOP Ald Ald MIT average BNn utr Mlln
26 19 100 32
1 1 2 u u 1 1
Reference
51 46Ti
u
I I
CF
PTB
20 -.2 R - 17422 20 - 17425 7 .2 R - 17410 I2 - 17468 2.4 -.6 U 9339 20 9326.7 2 5998 10 2.4 .a -4144 10 -4136.5 2.4 -1.0 10194 10 10183.9 12 2.4 -.2 I -4135 7 -4136.5 ave. 0.11 .9 2 8760.44 .2 8760.62 -.6 2 8760.7 I .I4 90 0.7 .4 I 10344.7 .7 10345.0 2 - 7070.0 1.0 Average with ref.; Q decreased by 3 for recalibratmn 27Al(3He,6He) Original value -7069.0(.6) recalibrated 110 -25400 600 -27810 1.0 17085.94 .a2 17089.0 1.0 4218.03 .94 4220.6 0.5 7276.1 .5 7276.1 1.0 6654.3 1.7 6653.2 5167.56 .07 1.2 1984.6 5. 1991.9 1992.3 5. 1991.9 1.2 1.9 600 2 600.1 E(p)= 985.93(.05,2) to 6132.35(.05,2) level Original values increased by 4(4) for shape factor
Lab
TO3 H32 H32
1.0 2.5 2.5
NDm utr
H32 2.5 H32 2.5 Pli MSU Brk MSU Brk Brk Mull ANL Ald CIT MSU ANL LAl Aid ANL ANL MIT average MMn Ptn Can MUI?
722302 77Mu03 67BjO6 68Sa09 67BjO5 71Ra35 8OLiO7 82Ti02 7 1Gu.A 77VoO2 75Mu09 AHW
l
Z Z * l’ **
90TuOl 79KolO 79KolO 70004 76JoOl 86De13 l 67Hs03 l 68Fi04 * 87JuO4 56Gr12 86De13 l * 87JuO4 ** 79KolO 79KolO 79Ko.B l 76Ka24 l 74JeOl 76003 74JeOl 74JeOl 8OMa40 65Ma07 67BjO6 67Mi02 85BeSO 66NeOl 66Will 68SaO9 66ErQ2 66Er02 71Ra35 801sO2 z 84Ru06 Z 78We14 80Ma40 67Mc07 68MclO 57vaoa 53Ma64 67KoOl 74Mel5 GAu l* 76Ka24 l *
252
G. Audi et al. / The 1993 atomic mass evaluation (IV)
Item
4sTi(p,y)4gV 4gK(j-)49Ca 4gSc(j-)49Ti 4gTi(p,“)49V l48Ca(p,y)4gSc *%a(p,y)%
Input value
-27220 -26100 800 300 6440.47 6433.56 0.04 .88 -28686 17 - 18365 14 8 3012 I5 3018 3020 10 7965 15 7 8 -15100 -15100 .42 10939.13 0.04 10939.53 10939.13 .04 -6743.1 2.2 I4220 280 14050 300 -7651.5 -7651.54 0.28 1.0 .I7 610.14 0.17 610.14 Q increased by I for recalibration Q decreased by 3, see 46Ti(3He,6He) value - 7650.5 (.4) recalibrated = 40.90(.16) to 651.04(.06) level in “Mn
R U
48Ca(3He p)“Sc %r(p +cr ’ 50TI 49Ti(n,y)
%r(n y)% 50Cr(p’y)5tMn “Cr(c;5tV 5’V(p,n)5’Cr
l“Ca-C4.25 +4gCa(t4C ‘tCj5’Ca .48Ca(18&t5Gj5tCa r48Ca~18G’15,,~51Ca .48Ca(t8G’t5t,j5tCa *50Ti(p y)jtV 5oTi(p’y)5tV *5%&5tMn
l
Dg
u u
%r(p 6He)% 50Cr&e 6He)47Cr “gCa(t,pj”‘Ca
l l
v/s
944.46 .35 942.89 0.09 -1.8 3432.64 .80 3431.10 0.05 -.8 5146.8 1.0 5146.6 0.4 -.2 5146.6 .4 .I 9628.1 3.6 9626 3 -.6 8142.17 .3 8142.36 0.05 .6 8142.36 .05 .l 6756.8 I.5 6758.1 0.8 .9 10970 70 2010 5 2006 4 -.9 -1383.6 I.0 - 1384.2 0.8 -.6 E(p)=l975(2) to 11563(3) level Gives Il562(.6); neglects contribution from calibration
5oK-C4.te.7 49Ti 13C_50Ti C
50Cr(d,t)49Cr 50K(fi-)50Ca 50Cr(3He tj5’M” 50Cr(3He’tj50M”-54Fe054Co *%r(p %-+v 5OCr(3;Ie6He)47Cr *50Cr(3He’t)50M” 5oCr(‘He:t)5oMn--4Fe()54Co
Adjusted value
Original Original Original Q - Q
-1.4 -3.1
1 u I R 1 2
Sig
81
Main flux Lab
CF
Reference
H32 H32
2.5 2.5
79KolO 79KolO 69Ar.A 70004 68ViOl 801~02 83Ru08 72KiO6 86Mi08 6 1Re06 64Jol I 73st03 NDS
43 48Ca
100
84 4gTi
62
62 49Sc Oak
.4 -.2 L
I U 1
84
83 48Cr
100
88 50Ti
.6 .O u .O I
100
100 “Mn
-38800 350 -38550 90 .7 -38900 400 .9 ave. -38840 260 I.1 1 1906. I.8 U 1900.0 1.2 -.8 956.7 .7 957.1 I.2 .I I - 15900 I50 - 15940 90 -.3 - 16886 100 9.5 B - I2040 120 -11950 90 .8 -13900 40 48.8 B ave. - 15980 90 - .I5940 90 .4 I -5860 20 6372.4 1.4 0.9 -.I 2 6372.3 4147.7 I.2 4147.8 0.9 .o 2 I.1 I.1 8058.4 2.1 8060.7 8058.8 2.1 .9 I.4 I 8058.6 I.5 ave. 11051.33 llO51.28 0.09 -.5 2 .I7 11051.14 .8 2 9261.66 .3 926 1.62 0.30 -.I I 5271.4 .4 5271.5 0.4 .2 1 0.24 -.7 u 756 752.73 - 1534.0 2.0 0.24 -.5 u - 1535.09 -.9 u -1533.5 1.8 -1533.7 1.5 -.9 u -1535.11 .24 .l I Unknown long-lived isomers may affect all TO5 measurements May be a 40Ca contamination. There is a - 16900( 150) peak Proposed 970(90) level reinterpretated as ground-state by ref. Weak M - A = -36120(120) state disregarded Systematical trends suggest: not ground-state transition T = 1371.4(2.0) to 9402.7c.4) level T = 1371(2) to 9402.7c.4) level E(p)= 1059.1 (.2) to 6309.6c.4) level
MM” Pt”
I3
13 5’Ca
I9
I5 5’v
58
98 97
99
87
‘t Ca
46 5’V
64 “0 61 “Mn
66 5’Cr
Z Z
** **
TO3 1.0 90TuOl H32 2.5 79KolO 75Mu09 * MSIJ 77Mu03’ MSU 66HiOl Ald LAl 66Will ANL 690hOl 71Do18 Oak MM” 801~02 Z Pt” 84Ru06 Z 76JoOl NDm 86MiOS MU” 77VoO2 l ChR 87Ko34 l AHW l * AHW ** AHW l * 92Ko.A ** TO3 I.0 TO5 I.0 average H18 4.0 HI8 4.0 MU”
87
l
MSU Hei Can average ANL
average MM” IL” MM”
Nvl Oak Can PTB
90TuOl 93Se.A
l
64Ba03 64Ba03 80Ma40 l 85Be50 85BrO3 * 88Ca21 l 66ErO2 7lAr39 76JoOl 7oKIo5 70Ma36 78Ro03 9lMi08 801~02 72Fo25 55Bi29 59Go68 64Jol I 7oKno3 89Sc24 93Se.A 85Be50 85Be50 AHW AHW NDS NDS NDS
l l
Z Z Z l
Y
* ** ** l* ** l* ** ** l
253
G. Audi et al. / The 1993 atomic mass valuation {Iv) Inputvalue
km
-34900
-43500 -43350 5698 5700 7311.2 7311.25 10500. 5700 8020 4711.6 4708.6 2372
=Fe(@+ f5*Mn :“Sc-C4.417
54Ti-C4,s ‘3C 37Clj-s4Fe 3sC12 “Fe(p,6He)4gMn s4Fe(a,8He)soFe 54Fe(p a)“Mn 54Fe(3he 6He)5’Fe 54Fe(d c~)‘~~Mn s4Cr(d’3He)53” %&%r S3Cr(p Y)~~MII s4Fe(d’t)53Fe 54Fe(3bea)53Fe “Cr(t,3Hef’ 54 V 54Fe(3He t1’4Co s4~e(3He’t~s4Co-4zCa~~4zS~ * 49 Mn r54Fe(p,6He) *J4Fe(3He 6He)S1Fe *%(n r&r *s4Fe(3he,t)54Co
500 230 250 10 10 .5 .26 2.8 200 250 4. 6. IO
Adjusted value
-43430
170
5699
7
7311.24
0.23
10504.5 7950 9010 4711.9
1.1 490 160 2.0
-41440 -41620 190 260 -41830 280 7939.17 0.16 7939.48 :: 7939.05 aye.. 7939.18 0.17 6559.8 0.4 6559.5 .5 1595 21 1600.5 30. 1590 30 100 5020 - 1380.4 Systematical trends suggest liE;Sc 8~1~~‘~ound o’4 .Efp)= 1005.2t.2) to 7545.9(.5) level
v/s
Dg
.3 -.3 .l -.I .I .o 1.6 11.2 4.0 .l .5
2 2 2 2 2 2 2 1 B B R R 3
-.7 2 .7 2 -1.0 .6 -.l 1 .6 1 -.2 4 .2 4 .61
-36500 350 -1.0 -36000 500 1.0 -37000 500 -48960 170 -.6 -48820 230 .7 -49130 250 23742.5 1.4 23744.46 1.26 -.6 -28943 24 -50950 60 -3147.4 1.0 -3146.9 1.1 -.5 - 18694 1.5 5163.5 5163.3 1.9 .I 2.2 -6879.2 3.1 9719.01 0.25 .5 9718.85 -1.4 9719.1 :: -.3 ave. 9719.07 0.26 7559.6 1.0 -7121.2 1.6 .I -7121.3 2.1 7 199.2 1.6 -.2 7199.6 2.6 -7023 1.5 -8261.68 0.22 -.5 -8261.2 1.0 -1817.24 0.18 .o -1817.24 .18 Q increased by I for recalibration Average with ref. See 46Ti(3He,6He) Original error 0.19 includes no part for energy calibration Original value -8X0.2(.6) recalibrated
ave.
-30600 -44650 -44880 6246.3 8067.2 9297.86 5064.4 5064.2 5064.2
1100 280 260 .4 .4 .3 .7 .4 0.3
-44770
8067.0 9297.90 5064.3
190
0.4 0.29 0.3
-.4 .4 -.4 .l -.2 .2 .l
Sig
TO3 TO3 TO5 LAl LAl ILlI 17
97 73
8
2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 2 u 1
2 2 2 2 1 1 1
Main flux Lab
21
76
94
100
10 5%
93
Reference
1.0 9OTuOl 1.0 90TuOl 1.0 93Se.A 66Will 71Ca19 84Del5 91MiO8 Z 74Ro44 85HuO3 85Hu53 58Ko57 6OKa20 56Ar33
TO3 1.0 9OTuOl TO5 1.0 93Se.A * MMn SOIsO2 z BNn 8OKd)l z 70 s2Cr average 54 J3Mn 79Swol * 70004 76ViO2 77PaO1 ANB 6 ‘3Mn Oak 64Joll GAu l* NDS l* TO3 1.0 TO5 1.0 TO3 1.0 TO5 1.0 20 54Fe H39 2.5 MSU Tex 39 51Mn NDm MSU Nlh NDm MMn SAo 72 53Cr average NDm NDm LAl Mull 1oO’4Co ChR
TO3 TO3 TO5
85 93
CF
907~01 93SeA 9OTuOl 93Se.A 84HaZO 75Mu09 l 77Tro5 741014 77Mu03 * 761001 79Br.B 8OIsO2 z 89Ho15 l 75WelO 745014 74Jo14 77Flo3 IN002 * 87Ko34 AHW l * 75MuO9 l * AHW ** AHW **
1.0 9OTuOl * 1.0 90TuOl 1.0 93Se.A 72WhO5 78 5% 78We12 76 5sFe MMn SOIsO2 z 77ErO2 80Ha36 87 ‘*Co average
254 Item
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Adjusted value
5956 100 231.4 .4 231.6 230.7 1.9 - 1015.4 2. - 1014.0 -1014.2 .8 ave. 231.5 0.4 231.6 Systematical trends suggest “SC 1800 more bound -41300 -42010 -49470 -49640 - 1052.3 5995
6024 4513 7270.49 10183.60 -4938.3 4566.0
“Cu(/?+ )“Ni *57Ti-C4,75 r56Fe(p y)“Co 56Fe(p:y)57Co
l
350 300 250 260 .8 30 10 14 .3 .17 1.3 2.0
280 280 230 260 18 50 .9 11 18 .3 3 4. 50 17
.5 .5 .7 .3 .2
0.3 0.3 0.3
300
-2.0
-49550
180
-.3 .3 -1.3 .9 -.3 -.1
- 1053.3 6021 4511 10183.58 -4940.3
0.5 9 11 0.17 0.4
220 90 0.11 3 0.6 3 0.10
0.4
90 0.4
16
-43280
200
-55710
170
- 1335.3 - 13984 10044.46 6954.7 8358.8 -29608
Dg 3 u 1
Sig
Main flux Lab
CF
ANB
77Nal7 89Zl.A 901~06 59Go68 64Joll Y
NVl Oak
90
Reference
66 55Mn average GAu
-42010
-35700 1000 -47300 400 -47530 -47640 270 - 56240 250 -56250 -56300 260 2897.67 .47 2898.26 2897.68 .40 -4308 8 -4308 -4302 8 -1770.3 1.8 -1772.6 7438.2 3.6 7439 7646.16 .17 7646.03 7646.08 .3 7645.92 .I5 ave. 7646.03 0.11 6027.1 .7 6027.6 6027.5 .7 ave. 6027.3 0.5 5100 100 5090 -1619.3 2.0 -1618.4 -1618.2 2.0 ave. -1618.8 1.4 8742 130 8770 Systematical trends suggest 57Ti 800 more bound E(p)=l262.1(.5) to 7266.9c.5) level E(p)=1261.7(.4) to 7266.9(.5) level -43210 -43350 -55680 -55750 -27889 -50190 -1335.1 - 17556 - 13987 10044.54 6952 8360.3 -29564 -29613
v/s
0.7 11 0.29 1.1 2.5 17
-.l -1.5
-.6 .4 .O .2 .5 .6 .I -.7 -1.3 .3 -.8 -.2 .7 .o .7 .I .6
-.I .5 -.I .2 .2
B 2 2 2 1 2 2 2 2
44
I
95
u 2 2 2 2 R R U U R R 1 2 1 -
1
8 57Co
98
87 57Fe
I
1.0 1.0 1.0 1.0
90TuOl 93Se.A 90TuO 1 93Se.A 745014 68Ch20 71Ca19 67Mi02 801~02 Z 92Gu03 Z 745014 65Pel8
TO3 1.0 TO3 1.0 TO5 1.0 TO3 1.0 TO5 1.0 H30 2.5 H30 2.5 NDm Can NDm NDm BNn MMn Ptn average
90TuOl l 90TuOl 93Se.A 90TuOl 93Se.A 77BalO 77BalO 76Ma03 78AnlO 74Jo 14 77Ma12 76A116 Z 801~02 Z 80Ve05 Z 700b02 * 71Le21 *
70
50 S7co
9
6 “Co
average ANB Oak CalI average
-::
: 2 2
I 2 R 1
1 2 u 2
78Da04 64Joll 7oKno3 84Sh28 GAu l* 700b02 l * 7oObO2 **
IJ
2 2
.I -.3 .9 -.4 -.9 .3
9
3 -
-.3 .3
-.3
TO3 TO5 TO3 TO5 40 53Mn NDm Ald LA1 CIT MMn 68 56Fe Utr NDm
**
54
41 58Ni
91 14
82 58Fe 13 5%
TO3 TO5 TO3 TO5 MSU TeY. NDm MSU Bld MMn MSU MSU TW.
1.0 1.0 1.0 1.0
90TuO I 93Se.A 90TuOl 93Se.A 75Mu09 * 77TrO5 745014 77Mu03 l 65Ho07 801~02 Z 70ErO3 76Na23 85Sh03 86Ga19
G. Audi et al. I The I993 atomic mass evaluation (‘Iv)
s8Ni(14N
-19900
tsC)s7Cu
-6300
58i%(t 3He)58~nm
95 11 .O
(1.71 as
-38500 -40700
400 350
-51220 -51370
240 270
87Sto4 92Sc.A
LA1
.4 .l .3
1
2.1
-.4 .6
2 2
77Flo3 52Ch31 63RhO2
12
11 58Co
average Yal Har
69ovol* 7bFr13 86Sea4
corrected
7bFr13
by ref.
350
-5.5
B II
180
-51290
-.3 .3
2” 2
TO3 TO5
1.0 1.0
9OTuOl 93Se.A
TO3 TO5
1.0 I.0
9OTuOi 93Se.A
3240.4
1.4
3241.5
0.6
.8
1
NDm
74Jo14
3.2
8662.9
0.6
1.1
II
NDm
745014
- 12738.2
3.3
- 12736.5
2.5
S
R
MSU
7bNa23
6580.9
.2
2
Pm
7359.7
3.0 .7 1.4 1; .23
8999.43
0.14
0.5
-.6
1
54
29 %o
1.1
-.2
1
57
53 s8Co
0.14
-.4 -.8 1.2
-
0.9
f 1.1 40
5200
100
-144730
4 3
29
1565.1
0.6
1074.5
1.3
1072.5
0.6
2.0 4. 1.6
- 1854.9
0.6
1073.7
0.9
1072.5
0.6
we.
9120
40
100
E(p)=1424.63(.41)
to 4817.5(1.0)
add ff (K)
=
8.3 of Ni, changed
@b-C,
-49680 - 50270
240 280
- 50270
280
@Me? -C5
- 56400 - 56660
240 280
-56510
180
60Nifp,ufS7Co
-263.6
58Feft,p)60Fe
6907 6947 6913
11387.5 -5130.2
59 s8Ni
-1.5 .4 -.2 .4
.7
-264.3 6919
2.2 18 13
6084.2 820
.7 2.1
average
83Sh31 77Pal8
ANB
U u
52Me53 63WoOi
MIT
-
-1.4
1
-.3
3
Oak 42
24 JqNi
7491.93 11388.3 -5131.1
7bBe02
*
5IMc48 57Bu37 64Joll
Y Y
average 8i~rl3 AHW
600
-2.4
TO3 TO5
1.0 1.0
9OTuOl 93Se.A
;;. 2
TO3 TOS
1.0 1.0
9OTuOI 93Se.A
2 2
TO3 TO5
1.0 1.0
9oTuOl 93Se.A
B
-2.5 -.5 .5
0.5
-1.1
1
3
.8 -2.8 1.5
2 2 2
1.1
-.2
11
1
53
25
34 6oNi
23 s8Co
NDm
74Joi4
LAI MSU
w
71ca19 7bSt 78No05
NDm
74Jo14
CIT Oak
67Mi02 72Gr39
BNn
84Ko29
l*
* +
I1
.I
2 2
0.08
.o
I
0.5
1.2
-
7SWiOb Z
-
74Jo14
-.I .08
75WiO6 Z 771901 Z 92Ha.A
R
I\
15 10 4
h4Mn 1Lo
7OFoO9 75KlOb 63BoO7 *
3
-1.2
745014
7OHo34 **
-35500
7491.93
.O -.l
99
75Br29
in 7.7 of Co
700 boo
818 821
I 2 2 2
‘2
NDm
Ievel
-33800 -35500
6084.5
.o
.7
-1855.7 -1854.3 - 1855.5
u
-.7 .3 .3
40
5185
80Ve05
**
74Ke14
1336.1
3417.5
144735
13”Co
0.6
-4196.3
1.3
17
7363.7
8999.44
8999.6 8999.60 8999.15
**
75Mu09 **
8659.3
3419 3417 3417.2
Authors
1.1
Reference
AHW
T =
)%u
Bef
2
Original
1563
60v-c5
-9345.4
with ref. See 46Ti(3He,6He)
1570
*-“Nife )J7Co
2307.4
50
1336.5
%n(g+
CF
by 1 for r~~ibratio~
-4196.0
*58Ni(p yfs9Cu en ’ .”
2
Main flux Lab
2
Average
ave.
-.7
Sig
3
2.s 4.0
-16908
58Ni(p,y)sqCu
Dg
3
-9344.4 -9347.8 Q increased
16
v/s
.05 6 4
2306
ave.
value
30
2305 2307
)“Fe
SqNi(c jsqCo
- 19927
40
71.78
S8Mnm(It)58Mn “Co&+
Adjusted
Input value
Item
255
0.5
-.4
IO0
88 6Oco
Z
256
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
Item 59Ni(n y)60Ni 60M”+*T)60MIl 60Mnx (&‘Mn 60Mnm(,V j6’Fe 6oCo(p- 16’Ni 6oNi(p nj60Cu 60Zn(B’+ )%u l60Mnx -C l60Ni(p,n) doCu
Adjusted value
Input value 11387.5 0.7 271.9 .1 136 79 8510 100 2823.6 1.0 -6909.2 2.1 4166 64 60Mnx for mixture of 2 isomers Original 7’ = 7027.8( 1.6) as corrected ave.
ave.
-44500 -45910 -55160 -55540 -4736 7819.5 7819.88 7820.08 7819.99 -3023.9
400 300 300 280 23 .4 .2 .12 0.10 4.
11388.3
8900 2823.9
ave.
ave.
400 300 240 290 1.5 .20 .I8 0.13 .08 ,020 ,004 4. 8. 4.4 2.7 100
190 0.5
1.3
3.9 .3
II
-.I
-45910
300
-3.5
-55360
200
4158
Dg
1
Sig 61
Main flux Lab 37 59Ni
4 3 B
I
CF
92Sc.A GAu 78No03 68WoO2 690~01 ’ 86Ka38 GAu ** 76Fr13 l *
ANB 23
-4744 7820.04
-3019.4
16 0.10
1.2
-.7 .6 -.3 1.3 .8 -.4 .4 I.1
I2 6oCo
2 u
Yal
B 2 2 2 R 1 u
TO3 TO5 TO3 TO5 LA1
400
-3.0
280
-1.9
0.5 0.5 0.5 0.5 20 0.5 0.5 0.5 4
4 II
2.4 .7 2.1 .5 2.6 .7 2.9 .5 2.4 1.6 .6 -1.1 .2 .4 -5.5 -7.0
-50190
300
-2.2
- 59600
150
-1.7 -.l .7 -1.8 -.4 -1.5 1.1 -.I -.I
3756.0 6837.85
0.5 0.07
6122.44 66.945
0.07 0.004
-4149.1
1.6
1:; .2 -.5
99
B 2 B 2 I U U -
57
1
64
74 6’Ni
33 62Ni
38 62Ni
2 2 2 2 2 2 B B 3
B 2 2 2 I 1 1 IJ 1
I
MMn ILn average Oak TO3 1.0 TO5 1.0 TO3 1.0 TO5 1.0 NDm NDm average NDm OrS
NDm average LAI
ANB
6 63Cu
26 73
1963Ni 52 63Cu
100
83 63Ni
I -
7 &
1.0 1.0 1.0 1.0
Bar Ric
9
33
33 63Zn
Reference
average
by ref.
-44200 600 -42400 400 -44200 -52030 270 -51510 280 -52030 .7 345.0 343.3 -345.0 2.3 -346.5 345.0 0.7 ave. 343.6 5612.3 2.4 5611.2 100 -7661 -7921 10597.2 1.5 10596.2 .7 10595.2 -4340.0 1.3 -4340.6 10597.2 0.6 ave. 10595.9 20 -5296 3948 10 3932 10 3942 7 3956 IO -4731 -4733 10. -4734.8 1627 IO 1682 10 1697 26 9171 Not unambiguously ground-state transition -49300 -50190 -59190 -59570 3754.9 6838.22 6837.92 6838.05 6122.36 66.946 66.945 -4146.5 -4144.5 -4150.1 -4147.7 5520
0.5
v/s
TO3 1.0 TO5 1.0 TO3 1.0 TO5 1.0 NDm MMn ILIt average Utr
RiC Oak Tkm average
90TuOl 93Se.A 90TuOl 93Se.A 78WoO1 75WiO6 Z 771~01 Z 92Ha.A 64Joll 90TuO I 93Se.A 90TuO I 93Se.A 745014 745014 74Jo14 84De33 * 7OFaO6 75WiO6 Z 74Jo14 76AjO3 54Nu27 64Sa32 67AnOl 61Ri02 66Ri09 50Ha65 54Nu27 79Da04 84De33 ** 90TuOl 93Se.A 90TuOl 93Se.A 76JoOl 77IsOl z 92Ha2 I 86De14 Z 87He14 92Ka29 55Br16 55Ki28 Y 630kOl 72Fi.A
257
G. Audi et al. / The I993 atomic mass evaluation (Iv) Adjusted value
Input value
Item
-46270 350 350 - 58940 400 300 -2300 150 -19613 30 -6527 IO 20 .? .7 -12320 23 -4875 70 -441 40 -1938 50 21 26 7.506 15 i0 - 11420 60 - 18470 260 20 9658.01 .9 .24 7915.96 .12 -5604.3 1.7 20 1675.10 1.0 -2457.45 .31 1675.10 0.30 ave. 578.8 1.0 4 -7947 -7168 -7183 8 4410 250 e - ~(6*Ni(t*G~oNe))= -2843(20~,~(62~ il: Not unambiguously ground-state transition Increased calibration error (original .4) ,Z -45270 -46270 -58600 -59130 -2730 - 19610 -6511 -21523 663.2 844.1 -12331 -4930 -501 -1915 -1920 -1947 7508 - 12493 -11743 -17931 7266 9656.4 9657.64 7916.04 -5604.9 -7288 1673.4 - 2458.22 1675.65 577.8 -7951
ave.
-43900 - 54470 -55060 4344.6 6098.01 7979.2 7979.5 7979.4 3941.7 3943.0 2300 -2133.55
600 270 300 1.8 20 .8 .7 0.5 1.0 1.0
- 52300 - 54020
700 350 300
-60160
-55060
v/s
Dg
350
-2.9
240
-.8 .6 1.1 -.l -1.6
B 2 2 2 U R R 2 2 2 2 U 2 2 2 2 R 2 F R 2 U 1 1 1 2 1 1 2 2 3
110 29 4
16 14 14 14
4
s .8 1.5 -.5 -.9 .3 -.2
140 140
5.4 -2.1
0.19 0.11 1.5
1.8 1.5 -,6 .3
0.20 0.20 0.20 0.9 4 4
1.7 2.5 -1.9 1.0 1.0 -1.9
300
-2.2
4347.5
1.0
1.6
7979.6
0.5
3942.4
0.7
.5 .2 .4 .7 -.6
-2133.7 -54020
-60170 1543.9 .8 1544.3 6559 6594 2s 7065.93 7065.93 .11 9980 9700 500 225 200 30 5175.0 3.0 2100 30 9550 50 Systematical trends suggest 66As 250 less bound
Main flux Lab TO3 TO5 TO3 TO5 CR1 MSU MSU Tex NDm NDm MSU Tex OrS can Hei Hei MIT Bld Grs Hei LA1
64 91 74
45 73
CF
Reference
1.0 1.0 1.0 1.0 2.5
9oTuOl 93Se.A 9OTuO1 93Se.A 89ShlO 76Ka24 76% 11 77008 74Jo 14 76Jool 79WeO2 77CoO8 81Be40 76Hi14 37Bh03 * 84Ha3 I 67SpO9 72FaO8 82De.A * 83Wi.B 668115 75WiO6 * 92Ha2 I 83De28 Z 76JOOl 72Fl17 83Cb47 92BaO2 Z
64”Ni ILn 91 64Cu BNn 67%n NDm LAl PTB 36 @Ni average 73 @Zn Tex MSU
923(4)
100
.43
Sig
cl.4 350 290 0.8 16
0.11 270 16
-,4 -2.5 .o -.5 1.4 .o .6 .8
2 B 2 1 2 1 2 2 2 1 B 2 2 1 1 1 R 1 2 3 4
30
94
87
94 41 100 28
TO5 1.0 TO3 1.0 TO5 1.0 3065Co NDm MMn
74 %n
62 %u
93Se.A 9OTuOI 93Se.A 76Joo I 771sOl 2 71oto1 75De.A
average
PTB
TO3 1.0 TO5 1.0 TO5 1.0 71 %n NDm 41 66Ni Aid 100 6% BNn 28 66Ni
83Ch47 72Da.A 741016 73DaO 1 AHW ” 84De33 *’ 92Ha21 **
73We24 87ViOl 8lHa44 89Sc24 9OTUOl 93Se.A 93Se.A 76JoOl 7IDa16 83De29 Z 888006 563020 63caO3 7oDe39 79Da.A ’ GAu **
258
G. Audi et al. / The I993 atomic mass evaluation (Iv input
Item
-
50000
-59390
ave.
%t(/?- f6’Zn
67Z"(p.n)67Ga
-67840 4060.21 -8987.5 -8993 7052.4 7052.8 7052.6 577 - 1783.3
67As(b+ )“‘Ge 68Co-C5.667 68Ni-C5,66, @Zn ‘JCI-662, “Cl 66Ni(t p)68Ni-6*Zn()70Zn 6Stici4C ‘5G)67Ni b’Z”~~,~~Z~ %I@)68Zn %n(t 3He)68Cu 68Ga(;+)68Zn
69co-c5.75 6gNi-Cs 75 c5 H9@Ga 69Ga(p c~)~~Zn 68ZlI b-l:y)@ZlI ave.
ave.
ave.
C, H, O- “Ge ‘Ozn 35c1--6*zn 37c1 “Zn1’He *BY%o 70Zn(a,7&)67Ni
ave.
.25 12. 5 .7 .6 0.5 8 1.4 100 350 300 1.0 21 150 .5 60 SO 20 1.2 10 100
-54800 -64350 144852.7 4440 6482.2 6482.1 6482.1 3390 3370 3380 897 -3008.8 - 3006.0 -3009.64 3970 4067 4020 6795
400 350 2.4 10
-63860 154001.3 117616.1 3429.5 -18385 - 19155 -19164 -1661
350 2.2 1.8 1.7 13 36 22 100 1.5 30 30 26 20 13
-10554 1727 172 1694 -11251 - 11242 - 11244
v/s
Dg
-2.0 -1.7 -.4 .2 -.3 -1.1 -1.0
2 U I 2 2 1 2
.3
I
Sig
500
300 300
-55640 -66510 1757.9 -2110 -6052 10198.1 4580 4590 -4410 2921.1 2915 8100
1180.9
ave.
Adjusted value
value
:: 0.5 50 70 40 3.2 4. .55 50 50 40 52
6
-68431 4059.2 -8992
20 0.4 5
7052.2
0.4
- 1782.8
1.3
38
Main flux Lab
TO5 1.0 TO5 1.0 TO5 1.0 26 67Zn H30 2.5 ANL
61
43 67Zn average
84
59 67Ga Oak ANB
3 L
-68155 1760.9 -2098 -6097 10198.2 4460 -4440 2921.1
18 0.7 17 19 0.5 50 50 1.2
-5.5 .8 .6 -.3 .2 -2.0 -2.6 -1.7 .6
c U 1 u 1 2 2 2 2 U
CF
63
32 “Ni
99
94 @zn
TO5 TO5 HI8 Hei On
150 3 2.9 0.5
3390
30
905.9 -3009.6
2.9 0.5
4010
30
6780
40
154000.3 117614.8 3427
1.9 1.9 3
-19162
19
-1988 1180.4 - 10569 1683 186 1683 -11244
19 1.3 5 16 16 16 6
-1.3 -1.3 .o .o .2 .2 .o .3 .2 1.8 -.3 -.9 .o .P -1.1 -.2 -.2
2 R 1 u 1 1 1 u u I 1 1
1.0 1.0 4.0
LA1
-.2 -.3 -.3
2 1 1 1
29
99
93Se.A 93Se.A 93Se.A 77BalO 78MuO5 79A104 710to1 75De.A 53Eall 64Jol I 8OMu 12
ANB
-64820 144845 4439.5 6482.2
Reference
TO5 1.0 TO5 1.0 29 69Ga Ml5 2.5 ANL
93Se.A 93Se.A 64Ba03 77Bh03 84De33 7lotOl 64Bai 3 72SwO1 77Sh08 725103 85Bo58 77Pal3 93Se.A 93Se.A 63Ri07 67Kall 71otoi 73De.A
95 69Zn average 76Ha29 77Ma24
71 34
100
78 52
12 17 26
-.2 .i -3.3 -.3 -.5 -1.5 .6 -.5
2 2 U 1 U -
81
1
68
_:; .o
I 1
70 69Se average 30 69Ga Tkm Oak 10069Ge PTB
78 69As average 30 @Se TO5 1.0 Ml5 25 Ml5 2:5 HI8 4.0 Pli Tax Pri Ots 41 ‘?Ga NDm MSU OrS Hei 68 68Ni average ChR 12”Ge 17 “Ge 23 “Zn
On
99
99
@Ge average
53Du03 630kOl 64Joll 92Bo.B 70Bol9 77Ma24 77Ma24 93Se.A 63Ri07 63Ri07 64BaO3 78Ko24 78Co.A 78Ko28 88Gi04 76JoOl 78Pall 88GiO4 84Ha31 72HsOl 77Gu02
259
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
“Ga(B-
)“Ge
“As@ + ) ‘OGe “Se(fi+ )“As “Br(j3+ )“Se ‘69Ga(n,y)70Ga •70Se(~+)70As r70Se(j?+)70As *“Br(,9+ )‘OSe “Ni-C,,gt7 C5 H,,-“Ga “Zn(‘*O ‘7F)71C~ “Zn(d,p) il Zn “Ge(n,y)“Ge “Ge(p y)“As ‘tGe(c;‘tGa “Gat3He t)7’Ge-65Cu()6sZn ‘tAs(,8+)‘tGe
- 60000 400 161368.0 2.0 161370.2 3.2 -9529 35 3609 10 7415.90 0.05 7415.90 .05 4621 4 4619 5 229.4 0.7 229.3 1.0 1122.0 0.7 1122.0 .Y 2013 4 1997 20 2010 10 2012 10 ave. 2009 7 4428 125 Systematical trends suggest “Se 370 less bound
‘*Ge(d,‘He)“Ga ‘=Zn(j3-)‘*Ga 72Ga(@- )‘=Ge 72As(fl+)72Ge
C4 Hg O-“Ge ‘*Ge H-73Ge 73Br-72Br
v/s
-8936 150 -9020 140 -.5 -5605 10 -5615 7 -1.0 -5622 13 .5 8682 20 8705 7 1.2 7655.1 .8 7655.1 0.8 .o 7651 I 4.1 -3030 7 -3035 3 -.7 6170 110 6599 14 3.9 -6559 20 -6581 14 -1.1 -6602 20 1.1 6360 110 - 1436.3 2.0 -1437.1 1.6 -.4 -1439.3 3.0 .7 we. - 1437.2 1.6 .I 1650 10 1656 3 .6 6220 50 2780 200 2400# 200# -1.9 9970 170 F: E(y) systematically lower than for other authors E+ = 1500(200) to 81.56, 234.78 and 458.21 levels. Fxuthor’s half-life 20(2)m disagrees with NDS 41.1111 Systematical trends suggest “Br 380 less bound
‘*Ni-C6 C4 Hg O-“Ge “Ge Hz-‘=Ge ‘*Ge 35C1-70Ge “Cl ‘OZn(t p)‘2Zn ‘tGa(d,y)‘*Ga
72Ge(p,n)72As ‘=Kr(,9+)‘=Br l“Ga(n,y)‘=Ga
Adjusted value
F: E(y)
-58700 500 135438.5 1.6 135438.4 2.1 17823.7 2.2 17821.3 1.7 776.5 779.8 2.2 5.9 6227 7 20 623 1 1 6521 6521.0 1.0 6519 1 7 -4246.3 -4241 2.1 458 6 458 6 4001.1 2.3 4000 20 3984 10 4356 4 4361 10 4345 10 -5138 4 -5140 5 5040 80 systematically lower than for other authors 141878.4 6443.9 -4625 -4709 6782.90 160 3700
2.1 1.3 330 166 .05 4 150
141880.4 6441.85 -4700
1.6 0.05 240
6782.90 166 3720
0.05 4 140
Dg 2 2 2 2 1 F
I
I I
ANL Hei w 98
74 “Ga
19
1669Ga
95 10
17 “Zn 8 ‘OGa
NYl Oak average
6
6”Ga
100
90 “Ge
64 49 59
64 “As 44’tGa 44 “Ga
36
36 “As
I
26
9 ‘=Ge 16 “Ge
9
67’Ga
98 80
9
“Cie
76 ‘*Ge 80 73As
84De33 78ZeO4 84Ha31 81AjO2 71Ar12 7lVeO3 l 78Ro14 75ReO9 77ShO8 87Aj.A 75ReOY 59Go68 641011
l l
‘8 ** ‘* l*
TO5 1.0 93Se.A Ml5 2.5 63RiO7 Ber 89Bo.A 67VoO5 ANL YlISOl z MMn 75Li14 912101 Pri 84KolO 53st3 I 54Th36 55GtQ8 average 73sc17 * GAu l* TO5 Ml5 Ml5 H40 Ald
1.0 2.5 2.5 2.5
93Se.A 63Ri07 63Ri07 85ElOl 72Hu06 7OLiO4 71Ve03 l 78Rol4 63ThO3 55JoOY 6OLaO4 50Me55 68ViO5 76Ki12 73scl7 AHW **
2.5 2.5 2.5 1.5
63Ri07 63RiO7 89ShlO l YlShlY * YlISOl z 76Scl3 8lHa44
OrS
KYU
9
Reference
57Bu41 63Bo14 75LaO2 79Da.A AHW AHW AHW GAu
ANB
9
1 U 4 4 1 1 3
ors w LA1
2 1
u R 2 2.0 F -.8 1 .o 3 .l u 1.7 u -.5 2 1.1 2 .3 2 5
CF
OK-S
2 F 4
2 1 2 2 .o 1 .4 1 .1 1 .o 1 .8 .3 .I .5 I 2
.4 -.6 -.l .o .o 1.6 .I
Main flux Lab
u 2 2 2 -
-.3
.o .6 -.2 -.2
Sig
Ml5 Ml5 CR1 CR2 MMtl Hei
260
G. Audi et al. / The 1993 atomic mass evaluation (IV)
Item
Input value
73Ge(p
4 -1121.6 15. -1123 2740 10 4660 130 4640 300 4660 140 6670 190 6790 350 Original -4660(330) corrected for isomeric mixture From 72Br/73Br= .98635312(227) T = 1205(15) to 67.03(.01) level
10’~As ’ 73 As 73Se(j3+) 73Br(fl+ )73Se 73Kr(8+)73Br *73Br_72Br l73Br_72Br
l73Ge(p,n)73As C 32S2-74Ge I-I2 C6 H2-74Se 74Ge 35C1-72Ge “Cl
35CI-72Ge “Cl 73Ge H-74Ge 74Se-74Ge 74Se
‘4Brm_‘,Br ‘%(P t)%e 74Ge(i4C ‘50)73Zn 74Ge(d,3ke)73Ga
ave.
l74Se(d,3He)73As l74As(/?+ )74Ge *
*74As(B- )74Se *74Se(p,n)74Br l74Brm(IT)74Br
74Ge(n,y)75Ge 74Ge(p,y)75As 74Ge(3He,d)75As 74Ge(p y)“As ‘%e(n,y)( 75Se 75Zn(~-)7SGa 75As(p,n)75Se
37Cl
ave.
ave.
“Kr(B+
)“Br
7314.0 93173.8 2047.5 2047.74 2052.01 3347.9 10105.1 1298.5 1298.7 - 1230 -11979 -8018 -5515 -5509 10195.94 10196.25 10196.19 -3027 2350 5400 2558 -3343.5 -3348.2 -3346 -3347 2562.9 1351 -7689 6870 100
1.4 3.8 1.1 .71 .26 4.7 1.7 8.5 3.7 410 12 150 7 13 .I5 .07 0.06 8 100 100 4 5.6
7313.0 93173.4 2052.14
1.6 1.6 0.11
3350.5 10106.18 1298.3
0.7 0.07 0.7
-1800
150
-7850 -5514
40 6
10196.20
-3052 2340 5370 2562.4 -3344.8
0.06
4 90 70 1.7 1.7
v/s
Dg
-.I
u 2 3 3 R
.l .o -.3
-.3 .o 1.1 2.5 .3 .2 .3 .o .o -.6 1.1 .2 -.4 1.7 -.7 .l -3.1 -.I -.3 1.1 -.2 .7 .2 .7 -.2 .5
1 1 u F 1 u u II u U 2 II 2 2 1 1 R 2 1
3 2562.4 1.7 1.9 1353.0 1 1.8 4 2 15 1.1 R 6980 50 100 -.6 3 70 40 50 .7 R 3140 60 200 -1.5 R 3327 125 Q = -3033(B) for Q(76Se(d,3He))= -4020.7(2.0), now 4014.5 Original error increased: E(O) -E(2) = 593.1(1.5) but E(2)= 595.88(.04), see also *4Rb(p+) Original value 1350.1(.7), error increased, see *4Rb(,9+) T = 7868(15) to 72.65 (not 63) level Evaluator’s interpretation ave.
C3 H7 02-“As 75Rb--8JRb 7SAs 3sc1_iY&
Adjusted value
123009.8 16371 1079.6 6505.22 6901.6 1414 6905 8027.53 6060 - 1646.8 - 1647.3 - 1647.2 3010 3030 3050 4400
2.6 8 5.0 .08 5. 4 3 .08 80 2.0 1.1 1.0 20 50 20 200
123007.9 16371 1087.2
1.8 8 1.0
-.3 .o .6
1 1 U
6899.4 1405.9 6899.4 8027.53 6000 - 1646.0
1.0 1.0 1.0 0.08 70 0.8
-.4 -2.0 -1.8 .o -.8 .4 1.2 1.3 1.0 .o -1.0 2.5
-
Sig
Main flux
20 3
20 74Ge 3 7%
7
3 74Ge
97 20
69 73Ge 20 73As
14
4899
21
1 3 1 2 2 2 U
CF
82 20
82 14As 18 14As
7 100
7 “As 100 75Rb
9 100
8 “As 95 ‘4%
641011 l 56HalO 74Roll 87He21 73sc17 GAu l* AHW ** NDS **
Ml5 2.5 Ml5 2.5 HI8 4.0 H40 2.5 H44 1.5 H40 2.5 Ml5 2.5 H40 2.5 H40 2.5 CR1 2.5 Win Ors OrS Hei ILn MMn average Ors
63Ri07 63Ri07 64Ba03 85E101 91HyOl 85ElOl 63Ri07 85ElOl 85ElOl 89ShlO 74De31 84De33 78Ro14 84Ha31 85Ho.A Z 91IsOl.Z
KYU average
59 =As
83Ro08 * 72Er05 62Ei02 71BoOl l 630kOl 64Joll 70Fi03 73Kill 71BoOl 75LuO2 89La15 83WiOl 74Roll 75sco7 AHW AHW AHW AHW AHW AHW
Ml5 2.5 MA2 1.0 H40 2.5 MMn Hei average ILn stu NV1
67
Reference
Oak
Tkm Oak
L
I
Lab
Oak average
* * *
** * ** ** l* ** l
63Ri07 930t.l 85ElOl 91IsOl z 74Wa08 76Sc 13 84Toll Z 86EkOl 59Go68 64Joll 52FuO4 61Ba43 69Ra24 74Ro12
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item
c ‘=S2-%e cg H,-7% %b-%tb 74Ge H2 _‘tze 16Ge ‘5C1-74Ge
“Cl
‘%e '5C1-74Ge "Cl 76Ge-7%
l“jRb(fl+)%
22738.6 22741.6 1.5 112085.9 112100 a 13933 13931 8 15425.0 15425.6 1.7 3174.6 3175.7 1.5 3170.41 .74 3174.61 .41 986.0 986.30 .65 2190.92 2188.6 .59 2188.60 .42 -1180 -1140 170 -3974 40 250 163 40 - 1240 -1219 21 - 10354 - 10580 150 -6545 -6544 -6536 2: 7328.44 7328.452 ,075 I 1154.07 11153.9 .3 4160 80 7010 90 -1705.7 -1705 5 2962.0 2970 2 5002 4963 20 5745 5730 15 -5745 -5738.6 15. 44 8500 8063 8094 162 8250 150 29.6% feeding above 2571.4 level found in ref.
c,
H,-“Se 7’Rb-8sRb ,906 75Rb-77Rb,32s 74Rb,6,6 76Rb-77Rb,494 75Rb,507 76Ge(n,y)77Ge 76Ge(3He d)“As ‘%e(n,yhe ave.
“SI(CP)‘% “ZlQ)‘7Ga “Ga(B)“Ge “Ge(p)“As “As(@- )“Se “Se(p,n)“Br ave. “Kr(,‘3+ )“Br “Rb(@+ )“Kr
Adjusted value
119211.9 10327 -1340 525 6072.9 6071.8 2497 7418.7 7418.81 7418.80 3850 7270 5340 5690 2670 679 -2147 -2147.0 -2147.0 3012 2760 5272 5113 5320 6986
4.2 8 380 30 1.3 2. 3 .2 .07 0.07 200 120 60 300 100 4 4 4. 2.8 30 42 26 69 70 227
119210.4 10323 -1190 558 6072.6 2498.7 7418.81
3710
1.6 1.6 a 0.5 0.5
v/s
Dg
-.a -.7 .3 .l -.2 2.3
1 u 1 v u F 1 1 F 1 1 2 2 2 R 2 2 I 1 3
.o 0.6 0.5 220 50 50 70 7 0.07 0.29
-.3 -1.6 .o -.2 2.3 -1.2 -1.5 .l -.4 -.2 .6
Sig
261 Main flux Lab
CF
Reference
18
1876Ge
98
98 76Rb
73 38
4376Ge 23 ‘%e
59 74
33% 74 74Rb
2.5 2.5 1.0 2.5 4.0 2.5 1.5 1.5 2.5 1.5 1.5
100 96
85 “As 87 75Se
16
15 76As
63RiO7 63Ri07 930t.l 63Ri07 64Ba03 85ElOl 91HyOl 91HyOI 85ElOl 91Hy01 82AuOI 84BelO 84Be IO 84Ha31 84De33 78Ro14 84Ha31 90HolO Z 831020 Z 86EkOl 86EkOI 70Fi03 69Nall 71DzO8 78An14 75LuO2 82MolO* 83Lill l 93Alo3 84Mo22”
2.5 1.0 1.5 1.5
63Ri07 930t.1 82AuOl 82AuOl 72Gr34 72Ha74 76Sc13 81En07 Z 85TolO Z
L
0.9 0.8 9 9 9 13
1.6 a 290 9 1.1 1.8 0.07
I50
5340 2702.0 682.9 -2147.5
60 2.1 1.8 2.8
3064
9
5344
11
6850
150
-.I -4.0 -2.0 1.0 -.4 9.9 2.5 1.7
u I 2 2 2 F F u
-.I -.5 .3 .7 -.3 .4 .6 .5 .o .2 -.7
u 1
-1.2 .3 1.0 -.I -.l -.2 1.7 7.2 2.8 3.4 .3 -.6
I u 2 2 1 1 3 4 3 u u 1 1
I F B B u R
Ml5 MI5 MA2 Ml5 Hl8 H40 H44 H44 H40 H44 P20 015 On Hei OrS OIS Hei ILn ILn stu stu
ILL
BNL Pbu
94 26
94”Rb 26 74Rb
35
32 “As
99
71 “Se
Ml5 MA2 P20 P20
Hei BNn ILn average stu stu stu
19
99 9
18 “As
99 “Br 8 7%
Ok Tkm average
BNL Pbu BNL
76Ha29 86EkoI 77Al17 86EkOl 52Sm13 51JeOl 58JoOl 63OkOl 55TbOl 82MolO 82MolO 83Lil I 93Alo3 83Lill
G. Audi et al. I The 1993 atomic massev~~u~t~~n (Iv)
262
item
Input value
Ca H6-“Se C6 H6-78Kr 78Rb-8JRb ,918 78Sr-8JRb 78~~
35~12”&
‘8%
33Cl--76ck
37~1
2
3’a
78Rbm (@+ )78Kr 78Rb” (IT)78Rb 78Rbx (IT)78Rb *‘%(d ‘He)“As *78RbX;IT)78Rb Cg H7-“Br “Rb-“Rb ,929 7ySr-8SRb 77Rb-79Rb ‘;, 75Rb ,513 77Rb-79Rb ,325 76Rb.671i 78Rbx-79Rb,4y4 “Rb.506 78Se(n,y)‘%e 78Kr(3He,d)7qRb 79Zn(,9-)79Ga 79Ca(@- )19Ge 7qGe(fi- )“As “Kr(,9+
)“Br
129640.5 1.6 2.2 129642.6 7 126562 3.6 126548.3 9118 8 8 9118 8 13157 0.6 203 1.5 2.2 2030.4 -1143.1 0.5 - 1147.60 .92 .72 - 1143.57 1045.53 0.29 1042.03 I.35 1044.58 .45 -67 10 40 -130 -1135 10 -1192 19 -41160 60 -41120 70 870.8 0.8 2.3 870.9 14 -12581 4 6310 5 6310 5 6310 -9434.93 0.27 4.3 -9433.7 -20350 8 10 -20351 - 12842 8 15 - 12840 -4905.0 1.8 4 -4904 10497.95 0.26 10497.7 .3 7 -5802 7 -5804 140 6440 8200 80 954 10 30 967 20 987 4 -4356 -4344 10 IO -4370 7.4 -4355.5 5 -4356 10 7224 7240 50 7180 80 7336 10 50 7300 111.20 0.10 .1 103.4 .I 111.2 74 12 12 74 Originid value -4910(4) corrected, see 74Se(d,3He) C&ected 136444.3
5934 11655 -1010 - 1060 -990 940 6962.9 -1585 8550 7000 4300 4110 1612 1620
79Rb(fl+ )“Kr
Adjusted value
2.4 8 9 40 40 70 40 .7 10 240 80 200 loo 10
136437.3 5946 -996 -996 914 -1570
2.0
7 9 9
v/s
Dg
Sig
Main flux Lab
CF
Reference
--.4 1.6 .o
1 1
8 62 97
8 78Se 62 78Kr 97 78Rb
2.5 2.5 1.0 1.0 1.5 2.5 1.5 2.5 1.5 1.5 1.5
63Ri07 63Ri07 930t. 1 930t. 1 9lHyOl 85ElOl 91HyOl 85ElOl 91HyOl SZAuOl 82AuOl 82Ma23 82ZuO4 87Mo06 78Arl2 81StI8 82ZuO4 82Mo23 81Ma30 83RoO8 81En07 87Mo06 86EkOl 86EkOl 65FrO4 65KvOl 6 IRi02 6lScli 630kOl 7OFiO3 81Ba40 93Alo3 93AlO3 72De54 9lMc.A 82AuOl AHW GAu
.3 2.0 .5 1.0 1.4 1.1 2.0 -.6 .o .o .o -.3 .l -.I -.3 .3
-.4 -1.6 -1.2 1.4
: 1635 3649 8 50 3530 80 3720 70 3650 78 5318 11 5259 67 5059 7120 450 From y’s to 95.7, 527.5, 1088.5 levels (,Z) Systematical trends suggest “Zn 540 less bound
18
11 %e
1
12
6 “Rb
13
11 75As
2
1 2 2 2 u 2 2
1 4 3 R R 2 2
LAI Phi
Tky 19 76 89
18 “As 49 78Se 7977Kr
Bar LA1 Tkm
I
92
89 “Rbx
-1.2 I.5
I 1 2 U u u u 2
12 73
12”Br 71 “Rb
I
54
27 78Kr
-.8 .4 1.4 1.2 -1.8 2.4 -.9 .o .8 3.9
5 4 3 3 2 2 2 V u u U u 3
ors BNn stu stu
.o
1.5
3
14 78Se
2 U U u F 2
7
1626
24
-::, -.3 .6 .7 78.0
14
90
I F 1 u
I .8 I
.2 1.1 -.I -.4
4150
I 2 u F
Ml5 Ml5 MA2 MA2 H44 H40 H44 H40 H44 P20 P20 Tex NDm
Pbu Pbu
MIS MA2 MA2 P20 P20 P20 P20 BNn Phi stu stu stu
Pbu BNL
2.5 1.0 1.0 1.5 1.5 1.5 1.5
* Z
* l* l*
63Ri07 93Gt. 1 93Gt.I 82AuOl 82AuOl 82AuOl 82AuOl 81En07 l 87Stll 86EkOI * 86EkOl 7oKao4 8lAl20 52Bess 54Tb39 648025 7lLiO2 72Br31 93Alo3 81Lil2 82De36 92Mul2 AHW ** GAu ‘*
G. Audi et al. / The 1993 atomic FYMSS evaluation (Iv) Adjusted
Input value
Item
C6 H*-*‘Se
,658 ;$342
‘gRb-*oRb
,494
1;06
8oKrtjHe
6He)77Kr
80Se(d,a)‘8As *%eo&*Se we.
1
8
8 %e
Ml3
2.5
4
-.3
1
13
13”Kr
MI5
2.5
63Ri07
5526
7
-.3
1
87
86 *ORb
MA2
1.0
9301.1
2
MA2
1.0
930t.l
2162.5
1.7
-.4 .l
u u
Hl8 H40
4.0 2.5
64BsO3 8533101
5528
8
7531
8 ;:: 27
-1134
a
2.1
u
P20
1.5
82AuOl
-1313
24
-1310
10
.I
u
P20
1.5
82AuOl
2.0
.3
1
49
32 77As
- 10398
24
- 10386
9
.5
1
13
1377Kr
3755
12
5768
10
I.1
2
Phi
77Mc13
.2
-
NDm
822~04
2.8
-8395.1
3.0
-0394.2
2.1
3.0 .20
120
2640
70
2630
20
5470
90
1970 2040 1997
20.
6952
152 242
7278
*oRb_*tRbx
-1130
,325 ;;::7, ,494
SO6
927
3.8 8
4471.5
3.0
*‘Ga(b-
5646 )*‘Ge
*‘Ge@-)*‘A* *‘Gem
(fl-
fa’As
*‘As(fl-)*‘Se *‘Kr(e)*‘Br *‘Br(‘He *‘Rb(@+
-631 8320
4
83MoO9
Imm
82ZuO4
21 21
ILn
78Do06
stu TfS
86EkOl 86Gi07
2
stu
86EkOl
u
stu
77Al17
.o
1
.9
3 3
.4 2.0
1
1.9
u
-1.2
-2.3 .8
0.3
.I
1
1
.2
1
5723
8
.7
u
8
-1.1 .o .I
130
100
81 71
88 79Br
32 *OGe 71 *‘As
u u u
1.1 -1.8 .7
100
87*OBr
Trs
86Gi07
Tm
86Gi07
LAI
79AjO2
Tkm Oak
63Okol 64Joll 7OFiO3
PTB
92BoO2
1
19 16
17 8oICr
93Alo3
BNL
8lLll2 82De36
72Ja.A
13*ORb
3 3
-.2
I
10
lO*tBr
MI5
2.5
63RiO7
1
66
63 *‘Rb
MA2
1.0
930t.l
2
MA2
1.0
930t.l
12
--.4
u
P20
1.3
82AuOl
12
-.3
u
P20
1.5
2
BNn
81En07
u
NDm
82Zuo4
3647
3
120
6930
280
6910
3730
100
3856
470.6
.3 -.5
1.8 30 50
280.7 -299.3 472.0 2238
120 5 0.5 0.3 0.6 6
82AuOl
1
71
5680Kr
Oak
86Bul8
1
42
33 *‘Rb
Phi
87Stll
stu
81Al20
3
stu
8lAl20
I3
stu
8lAlZO
1.3
u
stu
17All7
.o
1
-.l
-.6
99
8SAxOl
878’Kr
.8
II u u
*
84Bu23
II
--.=I -1.0
Z
NDS
4
6230
2260 2290
6
4
6
l*
**
-.7
.07
.5
AHW
3
-.4
* ’
GAu
6
0.6
Z
wetage Pbu
3057
4476.4
*
32FuO4 54Li19 69KaO6
-
154134
150
679.14
t)*tKr j8’Kr
Phi
R
4
-642
10
280.7
8’Bt~3He:t~8tl(t-S1~~~51C~
2
-.4
2004
916
29
*‘Se(d
s1Gem(IT)8’Ge
-.6
1.7
.l
-1146
.6
*°Kr(3He,d181Rb
5
a 30
6701,O
*%fd,p)*tKr
83RooS 83Wi14
see 74Se(d,3He)
*0setsypse
p)*‘Se
ors Hei
trends suggest *OY 2200 less bound
3063
8’Sr-8sRb,,,, 7’Rb-*lRbx
2 2
-.I
6950
79AIl9
u
18
-6505
average
.3 .2
:8 10
-6484.0
43 80Se
.5
.31
9
57
87MoO6
5
120
-2652.9
I
NDm
10
0.20
-5623
2.8 3.0 5.
100
154135.3
C6 Hg-*‘By
7892.19
564 1
2003
-3927(7),
-7688.8
2670
5650
6934
-.I
7290
25
-2632.93
1.6
8401
IO
10380
-8394.3
-3919
7 13
2Oo 150
1020.9
3004
30
7540 7150
-2653.2 -2652.5 -2653.2
*‘Rb-*5Rb,9s3
1.3
-1218
-3360
Ori8inally
63RiO7
2.0
7892.20
S~stemati~l
Reference
146222
8407
)%r
CF
t46078.2
-7687.6
**oY&
Main tlux Lsb
4.6
2990
*BoSe(d 3He)7gAs
Sig
2.9
-5921 -3921
ave.
Dg
146225.7
1020.0
*0Selpa)77As
v/s
146048.5
2164.8 2160.8 79Rb--80Rb
value
263
Pli
82KoO6 * 7sva24 77Lil4
264
G. Audi et al. / The I993 atomic mass evaluation (Iv)
Item
Input value
%‘()%r C6 HIO-**Se C, H,o-**Kr 82Rbm - 85Rb,965 82Sr-8JRb 52Se %,,_.t 8 k 37(-l *&--8*~
*%e(t u)*‘As **Se(dd)*‘Se %(*‘#Br *‘Ge& )**A$ **Asf~- )**Se *‘Se@ 3He)82As %r& )%r **Rb(j?+ js2Kr 82Kr(p njs2Rb **Rb” ;@+ )**Kr
C6 H’, -83Kr 83Rb-83Rb.976 83Sr-83Rb *3~--82~, 8’RbX-83Rb,4~8 *‘Rbx -83Rb,J23 82Rbx -83Rb,65g *‘Rb” -83Rb.qp4
79Rb,513 80Rb,673 80Rb,)42 *’ Rby,506
Adjusted value
86.29 .06 21 42 25 34 42 25 3932 3990 30 5510 5408 86 5620 89 7160 290 Q(<-, = 4.7t.5) to 275.99 level Q - Q to 456.89(.03)level=l3.7(1.8) 161550.0 161545.0 4.6 164765.3 164769.8 3.4 3404 3407 9 3517 3524 8 3128.3 3128.92 .63 3216.1 3215.3 1.6 -1626 - 1536 29 -1621 - 1680 40 365 440 40 -8809 -8822 31 -389 -449 60 -1886 -2020 40 -389 ave. -500 30 - 7494.8 - 7496. I 3.0 we. -7495.8 2.1 -6856 -6864 10 -6861 18 7464 7467 6 -7051.1 -7051.8 2.8 7592.90 7592.90 .20 4700 140 7350 7054 200 7200 200 -7400 -7340 7s 3092.6 3092.5 1.5 4401 4370 60 4360 100 -5184 -5161 20 4470 4470 z 4510 68.30 68.3 .2 32 34 20 41 34 20 7820 7868 185 7793 123 4000 500 Recalibrated to 64Ni()62Fe= - 1938(15) Originally -6870( lo), see 74Se(d,3He) Q = 7500(25) to lOOf70) isomer Corrected Corrected 17 1946.8 1207 2447 648 -529 - 1054 627 1098
3.4 8 9 12 26 27 24 23
171938 1204 2443 652 -531 -1022 635 1078
v/s
Dg
18 22 10 60
-.9 -.3 -1.9 1.2 -1.2
2 1 1 u 3 3 4
2.2 2.8 7 6 1.2 2.2 12 22 10
.4 -.f -.4 .9 -.4 -.3 -2.1 1.0 -1.2
1 1 1 1 I 1 1 1 u
4 23 23 23 1.2
.4 1.0 3.4 3.3 .4 .5 .8 .3 -.5 .3 .o
u 1 1 2 IJ 2 R 1 3 2 2 2 1 u u I 1 u 1 I 1 2 2 3
5 5 1.3 0.20 70 70 1.5 7 7 7 0.20 17 18 100
4 6 7 4 18 19 18 20
1.5 .8 .9 .I .5 .4 -1.1 .o -.7 .o --.I .3 -.3 .2
-1.0 -.3 --.4 .I -.l .8 .2 -.6
1 1 1 1 1 1 1 I
Sig
Main flux Lab
53 80
SO ‘tRbx 79 “Rb”
4 11 65 56 62 81 8 13
4 g*Se 11 8% 63 *‘Rb”’ 54 82% 49 “Se 6482Kr 5 78RbX 9 *‘RbX
48
48 8OGe
31
24 8%
76 S’B,
94
76 82Br
12 22
II 82Rb 20 82Rbm
100 74 78
83 “Rb 71 ‘*Rbx 75 **Rb”
Ml5 Ml5 MA2 MA2 H40 H45 P20 P20 P20
2.5 2.5 1.0 1.0 2.5 1.5 1.5 1.5 1.5
Or5 Hei average NDm
Pbu
Pbu
BNL
1783Kr 58 83Rb 54 83Sr 1 83Kr 21 *‘Rbx ZO*‘Rbx 24 **Rbx 2582Rb”
Ml5 MA2 MA2 Ml5 P20 P20 P20 P21
63Ri07 63Ri07 930t.1 930’. 1 85ElOl 93NxOI 82AuOl 82AuOl 82AuOl 87Mo06 83Be.C 83Wi14 * 822~04 83RoO8 * 83Wi14 82Mo04 822~04 78Do06 2 8 IA120 7oKao4 70va3 1 79AjO2 * 56&24 69Be74 93Alo3 72Ja.A 69Be74 93Alo3 91Doo5 82AuOl * 82AuOl * 81Li12 82De36 82De36 AHW ** AHW ** NDS ** GAu ** GAu **
-
Hei Phi NDm ILlt stu
Ml
17 61 56 2 22 21 25 34
Reference NDS 82AUOl 82AuOl 7381’32 81Li12 82De36 82De36 AHW l * GAu **
On
100
CF
2.5 1.0 I.0 2.5 15 1:5 1.5 1.5
63RiO7 930t. 1 9301.1 63Ri07 82AuOl 82AUOl 82AuO I 82AuO 1
265
G. Audi et al. / The 1993 atomic mass evaluation (Iv Input value
Item
Adjusted value
3593.4 3.0 3211 4 3207.4 5.6 278 6 288 10 2260 90 2750 100 5460 220 228.3 .2 3897 5 3910 20 972 4 982 10 967 15 966 6 ave. 970 5 2276 6 2264 10 4470 40 4410 50 4530 40 4571 85 4644 84 62. I .I 5806 85 7500 300 E+ = 3353(50) to 35.47 level Recalculated value 5802(50) of ref. not accepted 182392 3 182399.4 2.5 1536 3 1536 8 180474 4 180470.8 2.6 6017 14 6016 15 -12297 6 -12310 10 - 12295 12 ave. -12304 8 1.9 10520.4 10520.5 2.0 -5661 9 -5720 30 1826 27 1818 50 100 I808 ave. 1820 40 4654 25 4650 30 2681.3 2.3 2679 3 2682 5 aye. 2679.8 2.6 463.62 .09 330 40 230 60 894 3 892 4 6410 170 6470 80 6464 106 6475 124 Original value 105 19.2 remlculated Q = -5755f30) to 35.47 level Original error increased: E(O) - E(2+) = 877.2U.S) E(2+) = 881.36(~08), see also 74As(@+) Originally 891.8(2.0), error increased see s4Rb(8+)
C6 H,z-BQKr B4Rb-8sRb,g** cg IQ*-*% *%e(t pj*4se *%r&)*%r
Cb H,3-8’Rb *3Rb-*sRb,4** “Kr(d p)*kr 8JRb(;d)s4Rb *4Sr(d ;)85Sr *%e$)*% 85Brf@- )85ti *%(/3js5Rb IS’Rbc3He t)85Sr *5Y t/l+ #Sr *SYm@+ )*%r 8SYm(IT)8SY
Fzr(/s+)**Y
%b(&Y+)*5Zr
**Rby,512
189927.6 -351
3.9 22
4895 -8275 6303 6182 2870 687 -1083 3305 3262 19.8 4693 6000
8 6 I? 23 19 2 3 20 10 .4 99 200
189933.0 -359 4895 -8263 6304
2.7 13 4 3 4
v/s
.b
-1.0 -4.9
-.7 -1.0 .4 1.1 .5 1.2 1.1 -S -1.4
-1.1 .5 .5 .l 1.3 -.2 .9 -.I 2.0 .2 .2 .2
.I .8 -.I .6 1.6
Dg 2 1 1 B 3 3 IJ 1
I
Sii
56
37
Main flux Lab
50
83Br 34 *‘Rb
67 40
50 83Bs 38 8%
1.9 2.7 25 25
average @Et01 82De36 81Li12 82De3b 87RaOb 82De36 88Ku14 NDS 87RaOb
2 R R 3 4 5
I I 1
I I 1 1 -
I 1 -
I 2 1
.b
1
.o -.l
2 2 2
27 16 32 93
278% lZs4Rb 32 84Sr 93*4Se
Ml5 2.5 MA2 1.0 Ml5 2.5 LAl Oak WitI average
54 91 9
46 *%r 6483Kr 8 8%
36 71
29 “Br 71 84Br
average
81
45 84Rb
average
50 63
50 “Rbx 38 84Sr
1
1 .o 1 2.0 I .1 1
8
.o
-.I -2.5 1.2
1 I 2 R 3 3 4
gt l*
63RiO7 930t. 1 63RiO7 73BaS6 74De3 1
NDS 82AuO 1 71BoOI * 82De36 81Li12 82De36 NDS ** NDS ** AHW ** NDS ** AHW **
88sRb 12*‘Rb”
MIS P21
20 25 25
10ssKr 18 84Rb 13 8%
MIT Bld BWS siu
9o**Kr 78 8%
*
7OHa21 64LsO3 ?lBoOl *
15
95 83
*
72Ma42 * 7OBe24 * 68Rc12 7OEiO2
but
.b -.2
Reference 78Mo12 83ZuOl 8JStl I 83HaOb 77AI17 NDS 68SclO SlDu03 63PaO9 69Ph03
NDm NDm Phi StU
3 2 687.0 - 1083.4 3255 3274
CF
Pri
25 1:s
63RiO7 82AuOl 63Ho.A 78Shll 7 1Moo2 92Gr.A 79Al05 7OWoO8 82KoO6 63DoO7 63DoO7 NIX 82-36
88Ku14
266
G. Audi et al. / The 1993 atomic mass evaluation (IV)
Item
Input value
C6 H,4-*6Kr C* H,4-*6Sr *6Rb-*‘Rb 1.012 **wp t)*%r *5Rb(~,y)*6Rb ave.
*%p- )%r 86Br(fl- )*% 86Rb(fl-
)*‘Sr
ave.
198936.7 200264.9 441 -11535 8651.5 8651.3 8651.4 5099 7620 7626 1774 1770 1779.2 1775 1775.2
5220 5260 7978 C, H, 02-*‘Rb c4 II, o,-s7sr 87Rb-85Rb I.024 *‘Sr-*5Rb I.024 85Rb-87Rb ,489 83Rb.w 84Rbx-87Rb,24, 83Rb,759 *‘sr(p t)*%r *‘B&II)*~K~ **Kr(n y)*‘Kr **sr(n ;)*‘sr **sr(p’y)*‘Y *7Mo(&)*6zr 87Se(fl-)*7Br *‘Br(B- )*‘Kr *‘Kr(p*‘Rb(p-
)*‘Rb )*‘Sr
*‘Rbc3He t)*‘Sr-*‘Br()*‘Kr 8’S,@ n+‘Ym *7Ym (;T)*7Y *%w/3+ )*‘Zr *‘M&9+ )*‘I%
C4 H8 02-**Sr **Krct pj**Kr *‘Rb(d,p)**Rb *7Sr(n,y)**sr **Se(8- )**Br **Br(fl- )**Kr *%(fi)**Rb **Rb(fi- )**Sr
**Nb”(/?+
)**zr
l**Iwp+ )E8Zr
135417.8 135722.2 -490 -781 -310 1080 -11440 1335 5515.4 8428.12 5785.4 3700 7275 6830 6855 3888 272 274 564.0 -3025.0 380.79 5169 6378 6589
Adjusted value
2.7 3.4 9 10 1.5 1.5 1.1 II 60 I1
i 2.5 3 1.5 20 20 80 2.7 3.5 9 9 30 40 10 25 .a .I7 3.3 300 35 120 25 3 1.5 1.5 .07 60 308 300
198935 200285.8 436.0 - 11538 8651.2
7626
5 2.5 1.1 1.0
v/s
Dg
-.2 2.3 -.6 -.3 -.2 -.I -.2
1 1 U 1 -
58 7
58 *‘%I 7 8%
12
9 8%
I
95
55 “Rb
11
.I
u
.I
-
Sig
Main flux Lab
CF
Ml5 2.5 Ml5 2.5 MA2 1.0 Oak
5240
1.4
14
135418.7 135722.8 -489.7 -793.8 -315 980 -11437 1337 5515.4 8428.12 5784.2 2820
18 0.8 0.17 1.4 230
6853
18
2.8 2.5 2.4 1.9 40
1.6 -1.8 -.I -.3 1.0 -1.0
1 2 2
.I .I .o -1.4 -.I -1.6 .3 .l .o .o -.4 -2.9
1
1
88
61 86Rb
average 62YaOl 65Va02 82De43
17 a
u U u
I 1
50 10
Ml5 Ml5 MA2 MA2 P21 50 84Rbx P21 9 8% Oak 17 87Rb 8 *‘Sr
2.5 2.5 1.0 1.0 1.5 1.5
63Ri07 63Ri07 930t. I 930t.1 82AuOl 82AuOl 73Ba56 84Kr.B 77Je03 86Wi16 Z 71Um03 83Ha06 92Gr.A 79A105 92Gr.A 73WoOl 59Fl40 61Be41 82Ko06 71Um03 NDS 82De43 82De43 l 91Mi15
2.5
63Ri07 76FlO2 7lRa17 ‘IIT 87W115 z 92Gr.A 79Alo5 92Gr.A 78Wol5 80De02 82Br23
R
I 1 R B
99 100
59 *‘IQ 62 *%r
ILn
B% 3887 283.3
1.5
564.0 -3024.8
1.5 1.4
6490
210
2.5 146789.1 4.7 146812.8 13 409 1 I5 4087 3858 3855 3837 :z 0.22 .22 1 I 112.63 11112.63 6854 31 40 8970 130 8960 36 8960 14 30 2914 2930 4 5318 5316 5 5313 aYe. 5316 3622.6 1.5 7550 100 7590 100 Systematical trends suggest **Nb 350 mcne bound
.2 -.I -.I 3.8 3.1 .o .I
stu
u 2
I
Bw 48
41 8’Kr
94
76 *‘Rb
PI-i
Ml5 LAI Oak
B B
1 R
.4 -.3
4 4
2.0 -.3 -.2 .9
1 1 u u
4 a1
4 **sr 79 **Kr
I
100
64 **Sr
ILtt
22
21 **Kl
99
99 **Rb
Bwg stu Bwg TIS GSII Tm average
.o -.I
u 2
-.5 -.5 .6 -.l
I 1 2
63Ri07 63Ri07 930t. 1 73Ba56 69Dal5 7OQr.A 92Gr.A 79Al05 92Gr.A 64Da I6 66AnlO 75Be2 I 75Rao9
2 1774.7
Reference
79An36 840x01 * 840x01 GAu l*
267
G. Audi et ai. / The I993 atomic mass evaluation (If0
InputY&e
Item
c, H5-*gY **Rb-*‘Rb ,494 89Y(d,a)*7Sr **wn
y)*%r
*8Sr(d’p)*9Sr **sr&*9Y 8qBr(;- js9Kr
“Rbm (IQ9’Rb %Rb* (lT)~Rb wRb(@- )%r
9OY (p-
)9OZr
*‘Rb.m
133247.0 545 7889 6358.70 4133 7078 8140 8155 4970 5030 4486 4510 4503 1488 2841 2832 2828 -3613.8 -3620 2833.0 4340 7510
3.4 23 15 .13 5 4 140 30 60 100 12 8 7 4 10 10 7 4.1 6 2.8 50 210
Adjusted value
vis
Dg
2.6 4 2.3 0.13 0.13 2.3 30
3.3 .5 -.2 .l .2 -1.3 .1
4990
50
4501
6
.3 -.4 1.3 -1.1 -.2 2.2 -.9 .o .6 -.2 .9 -.2 -1.0
1 u I.I 1 u 1 u 3 2 2 1 1 1 R 3
133276.6 564 7885.5 6358.71 4134.14 7073.0 8155
1496.6 2832.3
-3614.7 2832.3 4290
2.3 2.5
2.5 2.5 40
2.4 163377.4 163377 6 -1829 10 - 1826 24 -40136 30 - 12083 8 10 - 12805 0.15 6857.08 6857.1 1.0 6857.24 .30 6857.02 .17 6857.08 0.15 1.7 4 8356.7 8351 -9746.8 2.9 -9728 10 -5714.2 2.9 -5719.2 7.1 2.9 -9744 -9746.8 6 70 10350 9800 400 10350 7s 4392 17 4410 30 4390 :: 4380 106.90 .03 10 71 83 12 6590 8 6578 15 6587 10 6584 8 546.2 1.4 546 2 546 2 1.4 546.0 1.7 2282.0 2271 2 2284 5 2280 5 2279.5 2.9 2280.5 2.2 6111 4 4 2489 240 8900 8880 400 8870 300 Systematical trends suggest ‘OTC 260 less bound
.o -.l
.o -.6 ‘4 .o 1.4 -1.9 .7 -.5 1.4 -.6 .o .5 1.0 .8 .3 .7 .l .l .I 5.5 -.4 .4 .9 .J
.o .o
1
I 2 2 2 u 1 1 1 B 3 2 2 2 2
1 1 1 B 1 2 3 4 4
Sig 9
Main flux Lab qs9Y
100
84 *‘Sr
33
1gs9Y
CF
MIS 2.5 P21 1.5 Mtr ILn MIT stu I% Tts
stu
89 34
83
88 *9Rb 18 89Y
78 *9zr
GSU average
Tkm Oak average
Reference 63RiO7 82AuOl 72Br13 89WiO5 Z 67SpO9 75Be.B 81Ho17 92Gr.A 78Wo15 81Ho17 66Kio6 8ODeO2 7owoo5 51Hy24 53Sh48 60Ha26 63OkOl 64Joll 74VoO8 9lHeO4
2 8
2 90Zr 6”Rbx
Ml5 P21
2.5 I.5
INS MSU Oak ORn
100 19
25
62 “Y 1289Y
22 *9Zr
ILn average Oak SPa average stu BW8 Tn BwIt
73
59 %Rbx
87
86 90Rb
GSA GSXl average
100
99 9%
average
63Ri07 82AuOl 9OKaOl 78Pall 71Ba43 81RaO7 83De17 93Mi04 75Be.B 71Ba43 79Bo37 81Ha17 92Gr.A 70MaI 1 78Wo15 87Gr.A NDS 82AuOl 8ODeO2 92Pm3 64Da16 83Ha35 61Ni02 64Da16 66RiOl 83Ha3.5
59
38 9oY
average 68PeOl 66PelO 741aOl 810x01 ’ GAu l*
268
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item
90Zr(n y)9’Zr 90Zr(d’p)g’Zr 9’Zr(d’t)90Zr 9°zr(P'y)9'Nb ' 90MO 9’Ru(ep) 9'Br(p-)9'Kr
ave.
-83532 149143.1 -686 7194.40 4970.3 -940.3 5167 4300 9790 9805 6420 6450 5857 5850 5860 5857
21 4.4 24 .5 2.2 3.7 4 500 100 50 80 80
2699
280 10 6 4 3.0 15 a
I544
2
2684
2704.5 2709
-2045 -2038.8
9’Mo(/?+)9’Nb 9’T~(,9+)9’Mo l9OZr(p y)9’Nb g1R”(;p)90Mo l9’Sr(B- )9’Y
l
g2Rb-C7.ee7 C’ tIs-=zr C, Hg-g2Mo *8Rb-92Rb,410 g5Rb.w 89Rb-g2Rb ,553 g’Rb.449 9’Rb-92Rb ,848 *'Rb.'u g0RbX-92Rb,699 85Rb,303 90RbX -=Rb 226 89Rb.b74 92Mo(a,8He) ‘MO 92Mo(p ajs9Nb 92Mo(‘;ie ‘Hejs9Mo “Rb(B-n’)“Sr 9’Zr(n yjg2zr g2Mo(;,d)g’Mo
Adjusted value -83509 149131.8 -710 7194.6 4970.0 -937.3 5158.8
30
6220
200
12 0.5 0.5 0.5 2.4
9800
40
6440
60
5861
5
1544.0
6 3.4
4460
a 2.3
2.0
-2035.7 4434
2.4 13
v/s
Dg
.7 1 -1.0 1 -.7 .4 -.I .8 -2.0 .l -.I .2 -.2 .5 .6 .l .6 3.8 -1.7 -.6 .o .o 1.5 .P -.P
1
1
Sig
Main flux Lab
CF
Reference
7 5 11 99
7 5 9 67
1.5 2.5 1.5
89Al33 63Ri07 82AuOl 81Lo.A 79Bo37 79Bo37 75Be.B * 83HaOb * 8961Q3 92Gr.A 78Wol5 89GrO3 8ODeO2 83Ia02 92PrO3
u U R 4 3 3 2 2 -
I
9’Rb 1.5 9’Zr Ml5 90RbX P21 90Zr SPa SPa
Bw Bw
83
59 9’Rb
B B B 1
69
66 9’Sr
I
98
97 9’Y
Tn Bwg GSII McG Gsn average G%’ McG
Oak KYU
2 2 R 3
5bSm96 741aO 1
71RaO8 l * 83HaOb ** GAu ”
Taken to superseed 5167(5) in ref. May be lower limit; probably l/2- isomer Adopted: simple average and dispersion of 3 data - 80323
32
157569.4 155790.0 -3258 -3457 -1703 -2059 209 -43278 -1306 - 14465 785 8634.68 - 10446
3.8 3.2 22 24 25 24 24 20 50 15 I5 .35
- 10432
::
-80317 157561.7 155791 -3286 -3439 -1774 -2078 189 -1360
763 8634.8 -
100 55 80 80 5987 10 8111 I5 8080 30 8096 16 8107 I5 ave. 8103 8 1929 50 1930 30 1920 20 ave. 1924 lb 3640 20 3630 15 ave. 3634 I2 -2790.7 2.3 -2792 5 ave. -2790.9 2.1 -8672 50 -7882 30 T = 9040(50) to 270.15 level
10448
.l -.8 .l
1
2.3 4 5 8 9 12 12
.5 -1.9 -.5 -.6
1 I
40
-1.1
10 0.3 I2
-1.4 .2
II
12155 12220
12200
50
6160 6045
5987
10
8105
8
3625
-2788.0
12
10
1.8
-8653
26
-7889
26
1
I -.9 u
-.I
1 1 2 2 2 1
I
-.6 .5 -.3 -2.2 -.7
2 2 3 3 u u 2
-:“8
1
.b
-
.3
1
-.l 1911
73Hall 80De02 83Ia02 Averag * 75Ra08 7OKiOl 71Ma47
1:: -.5 -.8
I -
1::
I I
-.7 1.2 .8 1.4 .4 -.2
I
5 6 25 5 6
12 11
42 99
84
54
5 92Rb 1.5 1.5 6 g2Zr Ml5 2.5 25 92Mo Ml5 2.5 P21 1.5 3 89Rb P21 1.5 3 g2Rb P21 1.5 9 90RbX P21 1.5 9 90Rbx P21 1.5 INS ANL MSU 33 92Rb 63 9’Zr ILn TeX Gm Bwg Bwg Trs Bwg Bwg GSll McG Bwg Gsn 57 92Sr average
33 92Sr
McG 64
64 92Y
74
65 92Nb
-
1 2 2
TIS McG average
89A133 63Ri07 63Ri07 82AuOl 82AuOl 82AuOl 82AuO I 82AuOl POKaOl 75Se.A 80Pa02 84Kr.B 79Br25 Z 73KoO3 73Mo03 89Gr-03 92Gr.A 78Wo15 89GrO3 92Gr.A 8ODe02 83Ia02 92Gr.A 92Pl-03 57He39 78Wo15 83Ia02 62Bulb 83Ia02
average KYU
74KuO I 75Ke12
average
Tal ChR
66MoOb *
73Ha02 NDS **
G. Audi et al. / The 1993 atomic ma
-78036
21 3.5 9 23
164046.9 g1Rb-g3Rb
-471
,489 “Rbs,,
-656
9’Rb-g3Rb
463 2220 3230 6733.0 6734.7 ave. %bfr
8069.71
’
g2Mo(3He
6134.2 -8823
n)%b
92Mo(;y)g3Mo 93 92Mo(~,~) Tc
4086.3 -1411
d)g3Tc
p3Kr(,5-
lb3Rb
8600
g3Rb(fl-
)g3Sr
7483 7440 7435 7436 we.
7466
%r(B-
)93Y
4110
93YlB-
193Zr
2890 2880 ave.
93Zr(B-
2884 93.8
)93Nb
-1188 -1190
93Nb(p,n)93Mo ewe.
-1190 6337
-73602 171929.4 C7 H, 94Mo
Adjusted
Input value
Item
-p4Mo s 5Cl-g2Mo
173159.6 37Cl
1234.0
g2Rb-g4Rb;g,
8pRb,4,3
-764
g2Rb-g4Rb:89
‘ORbl;,,
-717
g3Rb-94Rb;42
p”Rb;s8
- 1296
p3Rb-p4Rb.495
g2Rb.SOs
-840
94Zr(d
oilg2Y
8218
94Rb(;-n)93Sr 94Zr(d
3380 - 1960.2
t)p3Zr
7227.47
%b&~%b g4Rb(fi-
)p4Sr
10304 10333 10333 10312 ave.
10314
%rfS-
)94Y
3312
94Y(fl_
)%r
4920
94Nb(B-
2043.3 2046.3
jp4Mo ave.
2043.7 4261 -3103.3 73.5 9930
F: possibly
*-R”-C7.a33
r93Rb-94Rb,4p5
‘*Rb,SOS
Rejection
isomer&
-78049 164049.0
23 30 6 1.1
value
v/s
I3
-A
54 3.9 3.2 2. 24 23 23 40 2s 80 2.4 .09 30 100 4s 20 13 3 5 6. 3. 2.7 3 7. 1.9 400
.2
Sig
Main flux Lab
CF
Reference
89A133 63RiO7 86Au02 82AuOl
1
18
1Sg3Rb
1.3
1.3
1
8
gg3Nb
Ml5
2.5
P31
1.5
-486
8 10
-.I
I I
39
-660
9
4 “Rbx
P21
1.5
436
10
-.3
1
9
6 “Rb
P21
1.5
2146
14
-2.3
1
22
13 93Rb
3314
16
97
489%
6134.2
-8831.0 8069.71
0.6
2.0
-1.1
13.9
F
1.1 -.8
-
-.l
1
-2.0
0.09
.o
24”Rb
- 1407.0 7460
1.0 9
1.0 -1.7 .7 *I .3
79Ke.D
1
46
33 p2Nb
McM
79BaO6
1
100
53 $*Mo
MMn
911~02
u
Hei
83Wi.A
I.%
87Gr.A
-
GSll
80DeO2 83IaO2 87Gr.A 92PrO3
McG
B-s
GSD
1
89
66 93Sr
average
52
34 g3Sr
McG
831a02
MCG
39Kn38 83IaO2
4083
14
-1.3
I
2874
II
-.s -.4
-
-.8
1
83
82 g3Y
1
62
33 p3Nb
91.1
1.6
-1.3
4
.o .3
average 33Gl.A 68FiOl 75ChO5
-
5
I
61
33 g3Mo
average 83AyOl
3
-7337a 17193S.9 173163.7 1227
13 2.6 2.0 4
.4
F
.7
1
.s -.8
Z
83AyOl
2
-.6
-1188
82AUOl 84Kr.B EOKIO? 72Gr23
average
2
7
79%
1.3
1.5
89M33
Ml5
2.5
63Ri07
1
6
6 g4Mo
Ml5
2.5
63RiO7
1
24
22 g2Mo
HI 1
4.0
638112
*
-739
16
.7
1
19
14”RbX
P21
1.5
82AuOl
-710
14
.2
1
17
10g4Rbx
P21
1.5
82AuOl
- 1269
19
.7
I
27
2094Rbx
P21
1.5
82AuO
-998
13
P31
1.5
86AuO2 ’
-2.6
F
8274
10
-.2
1
3360
19
-.2
u
-1.1
- 1962.8 7227.41 10307
1.9 0.09
.o
74GiO9
1Sg2Y
Gm
1
66
41 9%
SPa
79Bo37
1
100
6294Nb
MMn
88KeO9 2
GStl
GS?i
8ODco2 82Br23 67Gr.A 92PcO3
average Gsn em
SOD&2
84Kr.B
13 _::
I
-.6 -.3
-
-.4
1
TrS
Bwg
72 97 91
66 “Rb 94 p4Sr 97 9‘+Y
3
-,l
1
4919
3
-.t
1
2045.1
1.9
.3 -.4
-
-.t
1
4236
4
-1.0
2
4
-1.3
R
73Mc04
3
NDS
3
800x01
BODe02 66Sn02 68HOlO
$2
38 g4Nb average 64Na.29
92AJ.B analysis
I
13
3511
-5114
mixture
based on line-shape
I$
2.4
.7
0.6 3 .a9 1.0 4 100 13 30 35 15 10 20 20 1.5 12 2. 10 3 4 83
269
evaluation (IV)
**
86Au02 ‘*
270
G. Audi et al. / The 1993 atomic mass #a~uation (Pj
Item
Input value -70618 180236.5 - 1323 -1376 -16
95Y(895Zrf/r
)%r )%b
gsNb(jT-)9sMo %cm,,+
)%o
86 3.5 25 24
Adjusted value - 70707 180234.8 -1261 -1302 22
28 88 80 23 -745 -654 12 451 433 15 462 28 4903 5120 100 6462.6 6462.3 1.0 4238.1 4237.4 2.0 6462.6 6462.2 0.9 7369.06 7369.06 .I0 9296 9276 100 45 9280 9272 35 9275 28 10 6082 6OS2 25 6078 9 4420 4445 3 4417 10 1125 1124.5 8 1119 1122.7 :. 1122.0 2.4 925.5 .5 925.6 1722 f 730 10 1732 4 1730 5 38.95 .04 2572 2558 30 5110 150 Rejected by authors E- = 8595(100) to 680.82 level, corrected by F: possible systematic error in response function
96Rb-C, CT Ht2-%r C7 Hi2-96M~ C, H,2-g6Ru 93Rb-96Rb ,554 “Rb.4a 95Rb-96Rb,g48 B9Rb,,52 94Rb*-96Rb,699 89Rb,sz 94RW -96Rb,s8, 9’ Rb.4,3 y5Rb-96Rb ,742 92Rb.25s “Ru(p tj9’Ru 96zr(t lr)95Y %r(d t)%r 96M0&)‘Wb 95Mo(n,y)96Mo
ave.
ave.
-65508 185628 189226.9 186304.6 -2210 -1590 - 1250 -441 -1116 -1143 -11165 8294 - 1595.8 10524 9154.2 9 154.26 -8470 11547 11590 11709 11690 5332 5412 5362 5345 5354 5347
43 6 3.0 3.8 27 30 30 25 27 16 10 20 2.8 20 .5 .05 10 100 80 40 40 30 20 10 50 40 8
v/s
Dg
17
-.7
u
2.0 14 13
-.2 1.7 2.0 .9 .2 -5.1 .8 -.3 -2.2 .3 .3 .4 .o .2 .4 .7 .8 -.2 1.1 .3 -5.0 .3 -.l 1.1 .6 1.0 .2 .8 -.3 .I
25 10 12 14 16 0.9 0.9 0.9 0.10 18
9
IO 1.9
0.5 5
13
.5
Sip,
Main flux Lab
CF
Reference
1 1 I
5 13 14
1.5 5 95Mo Ml5 8 93Rb P2l 9 93Rb PZI
1.5 2.5 1.5 1.5
89Al33 63Ri07 82AuOl 82AuOl
1 1 B 1 1 u -
34 9
30 94Rbx P21 6 92Rb P21 P31 27 94Rb P31 8 94Rb P31
1.5 1.5 1.5 1.5 1.5
82AuOl 82AuOl 86Au02 ’ 86Au02 86Au02 84Kr.B 79Ke.D 79Bo37
I 1 u 1 I F 1 1 I 1 2 I
41 12
95 lo0
52 94zr 7794Mo
41
26 95Rb
spa average MMn GSEI Bw GSII avera8e GSII
93
85 95Sr
average GSII Gsn
92
92 95Y
60 98
47 “Zr 87 “h’b
avera8e
98
97 9*Tc
average
18
15 95Ru
21 2.0 9 14 15 25 24 14
8322 - 1596.7 10516.3 9 154.26
10 2.5 0.5 0.05
-8468 11756
10 21
5371
8
-3.4 -.2 -.6 -.8 .81 1.5 ‘31 .6 -.4 .5
F 1 1 1
5 7 81 13 11 31 40 12 35
5 96Zr 7 96Mo 81 “Ru 7 93Rb 6 96Rb 2694Rbx 39 94Rb” 7 95Rb 21 9sRb
1.4 -.3 -.4 .l .o .21 2.1 2.1 1.2 2.0 1.3 -2.0 .9 .5 .4 .5
u 1 v u 1
1 1 1 I
u 1 l
36
1.5 Ml5 Ml5 Ml6 P21 P21 P21 P21 P21 P31 Oak
1.5 2.5 2.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5
60 95Mo MMn 85 9sRu Oak TrS Bw GSII 24 % Rb average GSII GSII BJ%
97
88 9%
80De02 * 84Bl.A 54Za05 55Dr43 74An22
NDS 68PiO3 75weo3 86Au02 ** 92P1-03 l * 84Bl.A l *
80
100 91
84Bl.A 90Ma03
63IaO6 65Cfi4 74AnDS
ref.
185626 189222.4 186297 -2179 -1524 -1236 -418 -1130
9lIsO2 2 8ODeO2 * 87Gr.A 92PrO3
average
89Al33
*
63Ri07 63Ri07 63DalO 82AuOl 82Au01 82AuOl 82Au01 82AuOl 86Au02 71BaOl 83FlO6 79Bo37 83FlO6 70He27 911~02 Z 71BaOl 82Br23 87Gr.A 92PrO3 79Pezl7 8ODeo2 84Bi.A 87Gr.A 9UMa03
271
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Inputvalue
Itern 96Y(/9--
)‘6Zr
ave.
7120 7079 7030 7067
50 15 70 30
7078
13
8600 8231
200 21
3186.8 -3760 -3754 3450
94RW -97Rb.485 96Rb-97Rb
122937.6
9JRb-97Rb .490 93
96Rb-97Rb %r(o
-21
9’Rb.sL6
650
‘=Rb.=o9 ,792 93
-165
Rbstt Rbxs
v&F
ave.
ave.
02-9sMo
94Rb”-98Rb,4,,
91Rb,,90
97Rb-98Rb
.792 93Rb.zos
96Rb-98Rb
,490 94Rv
97Rb-98Rb
.660 9SRb::::,
%c(t
96Ruf’6d 98Mo(t
p19*Nb t4C)98Pd a)‘?%
97Mo(r;,y)98Muro
ave.
-3756
5
Main flux Lab
.7
1
-1.8
.4 -.3
CF
GSA
Bw 92
92 96y
average
U 2
88St.A 92Gr.A
2
68AnO3
2 2
74DoO9 78KelO
2
7OA~08
3
85RyO2 92Al.B
-62668
64 2.3
122934.3 -34
25
642
30
-108
25
25 2.0
-1.6
1
7
7 “Rb
1.5
1.5
89Al33
-.6
1
12
lZ9’Mo
Ml5
25
63RiO7 82AuOl
24
-.4
I
42
4094RV’
P2I
1’5
18
-.2
1
16
996Rb
P21
1’5
82AuOl
15
I -.I 1 1.1 1 .o u
16
11 9fRb
P21
1’5
82AuO 1
P31
I:5
845
17
5
5580
3
6821.1
1.0
6821.13
0.25
1.5
.l
25
229 220
8 8
224
6
5886 5892
3 7
10440 10462
60 40
10460
30
7452 7480
40 18
7475
Reference 8ODeO2 84Bl.A 87Gr.A 90Ma03
Gsn
-
.7
10.
19
225
4
-.5 .6 .I
5886.9
2.8
10420
24
7467
15
.3 -.7 -.3 -1.0 -1.1
16
11
7361
26
37
22 96Rb
43
23 96Zr
99
54 96Mo
7355
10
10
86AU02 73De39
-
1
53
53 97Tc
MMn
911~02
ANL Pit
14Co27 74027
CalI ANL
77Hca2 77MeO4
-
Bwg GSU
8’lGr.A 92PrQ3
1
-,5
1
52
35 “Rb
average Gsn
88
83 97Sr
-.6 .o
-
-.3
1
-.2
R
84B1.A 92Gr.A
Bw8 average
NIX 84BI.A 92Gr.A
Gsn 95
95 9’Y
Bw average
92Gr.A
Bw
2657.3
2.
2658.1
1.9
.4
1
91
80 97Z~
1933.1
2.
1933.9
1.9
.4
I
91
89 97Nb
--.I
1
47
47 97Tc
-.2 .2
3 3
62Ba28 62Cb21
4
8OGoll
6
3533 3513
50 50
4790
300
-1103 3520
4 40
131375.4
2.8
131372.5
2.0
204263.5
2.9
204263
7
I
8
.o
1
86
869SRu
-.4
8 98Mo
74Ra.A 14Ra.A ANL
74Co27
Ml5
2.5
63Ri07
Ml6
25
63DalO
-290
40
-287
27
.l
1
20
1794Rb”
P21
1:s
82AuOl
-250
60
-202
26
.5
1
8
49SRb
P21
1.5
82AuOl
22
.6
1
23
1096Rb
P21
1.5
82A~Ol
23
I.8
1
9
597Rb
P21
1.5
82AuOl
1.6
1
32
1S9’Rb
P31
1.5
86Au02
1
90
909%
359
30
-300
SO
-232
27
-166
3508
20
w
69BIO 1
5728
5
2
Phi
75Mel3
- 12529
20
2
BNL
82TbOl
10019
20
LAI
83Fl06
MMn
911~02
ANL McM
74Co27 76Ma16
3485
10019.8
8642.4
.5
8642.50
.07
680 686
8 10
682
6
8642.50
19
-1.1
1.9
.o
u
0.07
.2
u
.o
I
.3 -.3
-
3
.o
1
Z
average
2 2
-
**
77Ba33
2 6688
25 13
1
.4 -.7
.23
6691
330
p)98zr
96zr{iHe
21
848
-1102
Cg H,
8237
5574
6702 6688
C7 H,4-98Ru
.5
Sig
.a -
150
667.52
ave.
-.I
3.2
6821.1t
ave.
Dg
v/s
mixture
-62512
97Rb-Cg.os3 C5 H, 02-97Mo
value I2
10 6
-7229.4 Possibly isomeric
Adjusted
7lHelO 100
29
60 98Mo
29 9gTc
avera8e
Z
272
G. Audi et af. / The I993 atomic mass evaluation {Iv
km
Input value 11200 12343 12270 12440 12380
110 150 30 75 65
12307
26
12710
120
5730 582 I 5815
40 10 40
5821
IO
8974 8780 8963 8830
100 30 41 17
8818
I5
9233
27
-2458
Assignment
*99Pd(B+
j9’Rh”’
E+
*99Pd(j3+
)99Rhm
=
3 7
1796
avera@
2
Bwg
87Gr.A
2.4 s .3
B -
GStl
79Pe17 84Bl.A 87Gr.A
s
1
-1.4 1.7 -3.2 .5
u C -
.8
I
Bw 98
82 ‘*Sr
-.8 .o
average 79Pel7 84BI.A 88Ma.A 92Gr.A
GStl
95
84 98Y
Bwg average
1
Ii
i19*Tc
Bw ANL
1
II
92Gr.A 74Co27
8 9sRu
730k.A
2
7OAsO8
3
79Ve.A
’
AHW
**
8
8 99Ru
Ml6
2.5
63DalO
I
6
6 98Ru
Ml6
2.5
63DalO
100
100
IS0
70
.5
I
24
23 99Rb
P21
1.5
82AuOl
690
I80
510
90
-.7
1
10
1099Rb
P21
15
350
60
230
60
-1.3
I
211436.9
2.2
-11779
20 1. I .6
17
5925.39
0. I 5
-.8
-2.8
I
-2.3 -1.6 I.3
U LJ u
.I
.I5
-6740 -6755
5 9
-6744
4
-6742
II340 10960
I20 130
11250
8030 8360
80 75
8030
3
100 120
1
70 38
65 36 99Pd 99Rb
P31 BNL
100
71 99Mo
911~02
Bld
76SlO6 77EmO2
.3
I
59
57 98Tc
average
-.8 2.2
1 c
77
45 99%
McG BWS McG
-
8210
160
-1.1
I
56
55 99Sr
I4
7567
14
-.I
I
4559
15
4558
15
-.I
I
100 100
99 99Y 99 99Zr
J% Bq
1
92
62 99Tc
1.0
.5
.Ol 3 4
292.5
1.5
435.7
2.0
2103
IO
2200 2160
30 30
2180
21 20
5430
150
I.4
436.2
1.4
.5 ,9 .7
I
.2
R
71NaOl
85
49 99Ru
average 80At02
2
52Scl I
-
59Ta.A 74An.23
-3.0
1
I4
20
136.4
F
3352
I7
-2.8
1
see Q”
for both
Rh”’
92Gr.A
51Ta05 52Fe16
-2.8 -1.4
874.1 levels above
92Gr.A
NDS
I7
1510(20)
841a.A 87Gr.A
-
2
of 64.6 level doubtful, 1930(20),
293.5
Z
84ia.A 87Gr.A
2
2117
.5
3408
464.0,
1357.2
82ThO I
MMn
-
7568
1.0
I’5
73De39 74Er.A 76ChO2
-.4 1.4
.o -4.4
82AuOl 86Au02
B% average
2180(20),
to 200.4,
66 98Rb
I
-64.6
)99Pd
GStl 84
.o
292 290
99Ag(j3+
B%
7
142.68
l99Rhm(IT)99Rh
MCC
652
1356.7
99Fd(/?+)99Rhm
I
Reference 79Pe17 82Br23 841a.A 87Gr.A 92PrO3
frs
2 -2466
3.0
5925.38
99Rhm(IT)99Rh
1.5
CF
II
5927.7 5927 5924.6
j9%
B u -
Main flux Lab
652
-11723
%(+v
10.4 .o 2.5 -1.3 -.b
Sig
to 1541.7 level
211442.8
H,s-99Ru
Dg
I50
6880(150)
99R~-98Ru
I4
8830
v/s
IO.
8420
C,
IO
5826
22
-5839.7 =
value 23
12344
10
1795
Q+
Adjusted
70
35 99Pd
69PhOl
*
69PhOl
*
ElHu03 AHW
**
69PhOl
**
NDS
*’
213
G. Audi et al. / The 1993 atomic mass evaluation (Iv/ input value
Item C7 H16-‘wMo C,
H,6-1~Ru ‘O”Mo 3sCl-98Mo 37Cl 96R”(‘60.‘2C~‘ooPd looMo(d 3He)99Nb ‘%%o(t h)% ‘mMofd 3Hef99Nb 99Tc(n,y;tWTc 99Ru(n,y)100Ru
‘%rij- )‘%b “‘Nb(fl- )"'Mo ‘%b’” (/3- )‘O”Mo ‘wMo(t,‘He)‘“Nbm ‘~Rh(~+)‘~Ro ‘~Ag(~+)‘~Pd lmAgm (fl+ )‘O”Pd ‘ooAgm(IT)lM)Ag ‘“Cd(e)‘“)Ag ‘%n(p+)‘%l “9Ru(n,y)‘00R” *~R~(o,~)‘~Ru *‘WY (fi- )‘oozr *‘%n(j?+ )‘%n C8 Hs-‘“‘Ru ‘WMo(n,y)‘o’Mo
‘“‘Cd(fi+
217724 6 -.6 4.2 22098 1.6 2.2 -.2 3.7 5020 6 .I1 2 -5577 13 .a -5599 26 -5652 12 -.9 -5639 15 8668 12 1.3 8642 20 -5652 12 .I we. -5653 12 1. 6764.4 9673.16 0.14 _::; 9672.99 .06 .05 9673.21 .o 0.14 we. 9673.16 7070 100 -3.2 7520 140 7075 loo 9310 70 13.9 7920 100 9310 70 3335 25 6245 25 6714 28 -.4 6745 15 -6695 28 -.2 -6690 30 3630 20 7070 80 -.3 7140 200 7090 80 .2 7075 90 15.52 .I6 3890 70 7270# 200# .o 7270 200 Original value 9672.68(,Z) revised with better level energies Original value 9673.42(,2) revised with better level energies Not unambiguously ground-state transition Estimated value for ‘%%I, accepted and treated as sysf
C8 H6 - ‘02Ru Ca H6 - ‘O*Pd ‘“Mo(t,p)‘02hio ‘~Mo(~H~,~)‘~‘Tc t”Pd(p,t)t~Pd ‘0’Ru(n.y)102Ru
2.2 133543.7 .7 5398.50 .2 6802.1 .7 110 80 90 25 18 2824 40 1614 30 4 4200 200 200 150 5480 130 200 may 80 to excited state
133549.5
5399.6 5398.5 6802.0 11810 9505 8545 5485 4569 2836 1620 1980 4100 4350 4180 5530 5350
)‘O’Ag )t”‘Ag
y/s
217730.3 220983.8 5019
‘wRu(n r)‘O’Ru ‘OtRb(,9’- )‘O’Sr ‘%(/r )‘O’Y ‘O’Y(B_)‘O’Zr ‘O’zr@- )‘O’Nb “‘Nb(/J)“‘Mo ‘“‘MO@- )‘*‘Tc ‘“‘Tc(fi- )“‘Ru ‘“‘Pd(#+)‘o’Rh “‘Ag(fl+)“‘Pd
l“‘Cd(fi+
Adjusted value
Measured E+
142604.8 141324 5034 6054 - 10356 9220.4 9219.59 3420 8815 9850 4605 7210
3.2 19 20 20 ‘2 .9 .OS 310 70 70 30 35
2.2 0.20 0.7
-1.1 - 1.6 .O .I
24 24
-.3 -.2
100
.5 -.7
110
-.4 .6
142601.4 141343
2.2 3
602s -10361 9219.59
10 11 0.05
Dg
1 1 1 1 2
35 5 59 25
la0
I 1 C 5 c 4 3 2 2 2 2 2 R
100
1
16
U I 1
100 97
6 5 4 3 2 1 1
Main flux Lab
CF
35 5 57 17
‘O”Mo Ml3 2.5 ‘OaRu Ml6 2.5 ‘O”Mo Hll 4.0 lwPd BNL Tex LA1 lOa%b merage
Reference 63RiO7 63DalO 63Bil2 82ThOl 74Bi08 83FlO6 79PiO8 88Col8 * 911~02 l
IL” MMn 58 ‘O”Ru averme MCGBwg McG Bwg Bwp Bwg Bwg LA1
841a.~ 87Gr.A 841a.A * 87Gr.A 87Gr.A 87Gr.A 87Gr.A 79AjO3 53Ma64 79Ve.A NDS 89RyO2 92P101 l AHW l * AHW ‘* GAu ** 92PlOl l *
16 ‘O’Ru Ml6 ORn 99 ‘O’MO IL” 61 ‘O’Ru
2.5
63Da10 79WeO7 Z 9oSe17 82Ba69 92Ba28 92BaZa 92Ba28 92Gr.A 92Gr.A 57Ok.A 71Ar23 7lIbOl 72We.A 78Hall 79Ve.A 7OBe.A * 72We.A 70Be.A **
2.5 2.5
63DalO 63DalO 72CaiO 82Deil3 74De31 74Ri03 911~02 Z 91Re.A ’ 92Ba28 92Ba28 87Gr18 870x18
Bwg Rwg Bwg Bwg Bwg 37 65
36 ‘O’Tc 64 ‘O’Tc
4 4 4
1 U 2 1 -1.4 I -.4 -.9 U .O 1 5 6 5 4 3 -.4 .4
Sig
7
27 a4 loo
7 “*Ru
Ml6 Ml6 LA1 20 ‘% Pri 83 ‘O”Pd Win 77 “*Ru
MMn LM Bwg Bwa R% Bwg
274
G. Audi et al. / The 1993 atomic mass evaluation {Iv)
inputvaiue
km
we.
7333 2317 2325 -3’13 2323 -63 140.75 5800 5350 5880
40 10 IO 15 6 25 .08 6 200 200 110
5990 3900
100 100
1150
9.3
Adjusted value
2323 -3105 2323 140.75
5 3 5 0.08
1150 5920
5 SO
5930
50
57
149212 3.3 149263.5 154 -1320 -1534 17 -8275 .3 6232.39 6232.4 7624.7 7624.6 1.5 85 6945 5530 30 3750 60 45 2615 2660 4 764 763.3 6 760 5 762 4 769 2.3 ave. 764.6 39.756 .006 .8 543.0 543.1 20 524 503.3 27 2622 2688 200 4250 4142 11 4131 200 5380 20 6050 From ‘02Cd/‘03Cd= .99029800(150) 157171.5 158612 -1241 7180 - 5289 9048 -2644 6999.05 8105 8320 2155 5620 5590 4350 4357 -5061
.6 -.2 .7 -.l 8.2 .1 .6 2.9 .4 -.6 .3
.4
2587 8 2587 8 Estimated from proton spectrum from 1450 to 32QQkeV No easy fit of E+ = 2260(40) with later decay scheme 2554
v/s
3.4 IO 231 10 10 30 4 .06 90 80 40 70 60 200 71 4 24
3 60 0.30 1.5
10 2.1
.6
1.0 .9 .o .l
1.0 -.2 .5 .3 -1.4 -.6
20
.l -1.0 2.4 -.5 1.0 3.3
157171 158566 -1580 7187 -5287 9033 -2646
4 5 IS0 9 9 9 3
-.I -1.8 -1.0 .7 .2 -.5 -.6
5600
50
4279
4
-.2 .2 -.4 -1.1
4286
0.8 0.0 17 10
4
-.9
Dg 3 1 F 2 1 2 C 2 R R 3 U 3
1 R 2 I 1 5 4 3 u 1 2 1 u 1 u I B 2
1 1 R 1 2 2 1 2 4 4 3 2 2 u u 2 u
Sig
Main flux Lab
CF
87Grl8 61Hi06 63Bo17 83Doll
Bw
52
57
51 “*Rh
avera8e 83Doll NDS 6lHi06 67Ch05 l 72We.A 79Ve.A 67Ch05 70Be.A NDS 72We.A YIKeO8 GAu ** NDS **
49 ‘02Rh
OS1
14
100 97
14 ‘0%
Ml6 CR2 Pri
2.5 1.5
85 ‘03Ru 90 “‘Pd BW8 Bw8 Bwg Bw8
87
80 ‘03Rh average
99
92 lo3Pd
39
38 lo3Ag Dlf
90
62 ‘03Ag Dlf Brk Dlf
20 4
20’“Ru 4 lwPd
82
70
Reference
Ml6 2.5 Ml6 2.5 CR2 1.5 60 ‘02Tc Pri VLlll LA1 61 ‘04Ru Jul MMlt Bwg Bwg Bwg Bw Dlf Dlf
63DalO 92Sh.A * 64ThO5 82Ba69 70Bo29 87Gr18 87Gri8 87Gr18 87Gr.A 58RoOV 65Mu09 7OPeQ4 82OhQ4 NDS S&Be53 34Ri09 88Bo2S 72We.A 88Bo28 83WoO4 88Bo28 AHW ** 63DalO 63Da10 91Sh19 * 82DeO3 83-20 SIR02 86RuQ4 * 81KeO3 Z 87Grl8 87Gri8 87Grl8 78SuO3 87Gr18 72We.A 88Bo28 79De44 88Bo28
275
G. Audi et al. 1 The 1993 atomic mass evaluation (Iv) Inputvalue
kern
6.9
Adjusted valw
v/s
Dg
-7.5 -10.2 4.0 2.6 .4 -.I
3 B B B B 3 u 4
.4
I130 1580 60 1396 26 7910 7100 200 7260 230 7800 230 4520 4550 300 4515 60 From L031n/1alIna .99038900(222) From L? - Q(14*Gd(d,t)) = -82(3) P+ = .~19(.0005) to 90.6 level also ref
11 140
60
Sig
Main flux Lab
CF
NDS 70Muf7’ 79P106 * 78Hu06 83WoO4 88Bo28 88BalO 91Kel I AHW * AHW ** NDS l* 84Gr.A **
GSI Brk Dlf GSI
ice
ave.
165357 -3618 3909.9 5910.1 5910.07 7094.1 6485 4930 3640 1916 570 360 368 366.3 1347 1310 1328 25.47 2600 2713 2717 2714 5140
$4 144 s .2 0.19
165342 -3660 5910.07
130 0.19
7094. I
0.7
.7
70 45 53 4 5 3 4 2.6 ave. 25 23 18 ave. .a3 200 3 11 ave. 3 2OO _?@9 13 From ‘04h/‘“‘ln= .99050293( 139)
ave.
174764.0 171789.3 4323.5 -9173 5892 - 10802 - 10829 - 10819 9362.8 9561.5 322 -4661 9728 -4606 3520 6547 39.2 39.6 3530 3550 3550
4.3 2.7 30. 17 20 15 12 12 I.1 .3 ti 30 23 22 17 11 .3 .3 10 10 20
1917 566.7
1346
25.47 2139 2713
4849
4 2.5
11
0.03 4 4
13
-.4 -.2 .3 -.I .o -.I
.21 -.7 1.3 -.3 .2 -.I 1.4 1.0 .o .7 .o -.3 -.I -1.5
u R 1 I 4 3 2 1 1 1 u 1 B 2
Ml6 2.3 CR2 1.5
100 83 ‘OsRu LOO 96 ‘04Pd
92
58 to5Pd
average 67PiO3 67Sc26
38 100
34 losti average 79 ‘O’Ag”
97
76 ‘OSCd average Brk
NDS 72We.A 53Jo20 86Bo28 83WaO4 86Bo28 AHW
174767 171792 -9147 5893 -10819
9561.51 320.4 -4618 9702 -4618
39.40 3541
6
13 8
0.30 2.9 12 12 12
0.21 6
.3 .4
1 I
1.3 .O -1.1 .9 .o -1.2 .o -.2 .9 -1.0 -.s
3 1 R 2 2 2 u I 1 1
.7 --.7 1.1 -.9 -.4
4 3 3 2 2 2
l
7oBo29 87Gr18 87Gr18 87Gr18 67ScOl 3 lDu03 36La24 64Ka23
Be 66 ‘0%l1
63DalO 91Sh19 74HrOl 78Gul4
average BWE Bwg
82
Reference
22 91
22’“Pd 91 ‘@Cd
Ml6 Ml6
76
72 ‘O’Cd
MSU w MSU Pri ors
IG~J 67 IwPd 13 11 ‘@Ag
BNn Bid
29
24 losCd
2.3 2.5
Man average BW8 BWK
**
63Da10 63Da10 SlscIf 78Pall 72CalO 82Clul 83Deo3 84Ro.A 7OBc29 87Fo20 * 73AoO7 73De16 75Cb2t 92Gr.A 92Gr.A SOAgOl
58Gro7 52AlO6 58Gr07 6OSeOS
C. Audi et al. / The 1993 atomic mass evaluation (Iv)
276 rrem
*“‘Pd(n y)‘06Pd r106Cd(p:n)‘061n c HI,-‘~‘A~ ‘09 S,_to& ‘o’Tee(o)‘o3%
‘07Rh(,!- )“‘Pd “‘Pd(fl) “‘Ag “‘Agm (IT) “‘Ag “‘Cd()+ ) “‘Agm ‘071’t(fl+)‘07Cd *‘OTS,- to+& “o’Ag(p,t)‘05~
Input value
Adjusted value
3677 10 2.8 3011 72 2945.3 2.8 -3756 5 -3747.6 ave. -3748 3 2.8 305 1 4 3054.9 .07 89.66 II 6479 30 6521 I1 15. -7304 -7312.9 If 11 6521 ave. 6522 6545 6550 11 6563 :: 28.6 .3 50 3195 60 3180 3200 100 ave. 3200 50 Calculated from 9 y energies in 2 keV n-capture T = 7535(‘S) to 151.1 level 180986.4
3.1 -1148 86 3980 30 4010 50 -9015 15 - 7305 Ii 6160 60 4820 85 3140 300 2900 135 1510 40 33 3 93.13 .02 1324 4 3426 11 From ‘07Sn,‘io6Sn~ I.~943OS3(81 Recalibrated with (p,t) results on
C8 H’2-‘o*Pd C8 H,2-‘08Cd ‘08Sn- ‘O’Sn ‘o*fe(a)‘%
ave.
190014 189715.6 -3650 3406.4 3448.0 3441.8 3406.4 4030 -4456 -2977 7269.6 5135 7720 1315 1420 1380 4.505 4434 4510 I902 1650 5148 -5986 5147
6 2.9 76 30. 20. 4. 25. 50 12 30 .b 60 so 100 185 80 105 50 100 25 40 28 20 II
180982
6
-1220 4000
90 50
-8997 -7313
11 7
120 ISII
33.0 I324
13 3.0 4
v/s
-.6 1.7 .3 1.0 1.4 .6 -.I .2 -S -.2 -.2 -.2
Dg 2 u 1 R 2 -
I R R 2 1
Sig
Main flux
Lab
CF
bbDel1 8bBo28 79De44 83
100
72 “‘Ag
99 ‘%n
average
ANL average
GSI 91
90 ‘%n
190006 189717 -3700 3442
-.5 -s .4 -2 1.2
-,7 -.7 .3 .o
1
1
59 51
59 “‘Ag 41 ‘%
Ml6 2.5 CR2 1.5
51 36
45 “‘Ag 19 “‘Ag
Min Bld
3 3
I 1 4 3 2 2
I .o 1 2 .o R
-.6
I
.2 -.5 1.2 -.3
1 1
1.4 12 7
.o s
‘360
60
.5 -.3 -.2
4450
40
1918 1649 5148 -5930 5148
6 8 11 11 11
.3 -.6 .b .o .o 2.8 .I
-4456 -2963
66CaO9 86Bo28 NDS 79PlOb 88BalO AHW NDS
Bw3 Bwg Bwg 11 99
9 “‘Rh 98 ‘O’Pd
to6Pd and “*Pd 4 6 90 4
78GeOl NDS 86Bo28 84FiO5 *
average
3 f ‘04Pd, “‘Pd,
Reference
7 lo8Pd 71 ‘%d 59 ‘o7S~
Ml6 2.5 Ml6 2.5 CR2 1.5
92
91 “‘1311
Gltl Pit
U U : 3 1 U 2 5 4 3 3 3 2 2 2 U II -
1
63DatO 92Sh.A * 79Sc22 91HeZl 75Ku14 l 75An07 89Gr23 89Gr23 62PiO2 89Gr23 62PiO2 49Pa.B NDS 62LalO 86Bo28 AHW ‘* AHW
7 71 62
100
99 to%”
ANL average
* ‘* l
**
63DalO 63Da10 92Sh.A l 65Mal2 81Scl7 91He21 91PaO5 9lPa05 86Ka43 64Coll 85Ma54 92Gr.A l 89Gr23 62PiO2 89Gr23 92JoO5 89Gr23 69PiO8 84Bh02 62FrQ7 6OWalO 8bBo28 84FiO5 *
271
G. Audi et al. / The 1993 atomic mass evaluation (Iv) .em
?nm (p + ) “*Cd %nm (IT)“%” ‘%“(8+)‘%” )8sn-l’J7~,,
‘*Mo(,9- )“‘Tc ‘*Cd(p,n)‘081n
:a H13- ‘09Ag MTe(o)‘05S” 19Ag(p ’t)‘07Ag “Pd(“,y) 109Pd )9Ag(d,t)108Ag ‘8Cd(3He,d)‘091”-“oCd()“‘In
Input value
Adjusted value
Y/S DgSig
Main flux
11 2.OR 5149 14 5177 29.75 .05 25 .1: 9897 ‘0%” 2089 25 2092 From ‘07S”/‘08S”= .99076701(70) Systematical trends suggest “‘Mvlo 500 more bound Q(not -T, PrvCom Fi)=-6191 (E), -6244(9), errors statistical only, to 198.37. 266.00 levels.
Lab
GSI
CFReference 868028 NDS 793106 AHW l * GAu ‘* AI-IW l * NDS l*
3 -.31 1212 “‘Ag 196972.1 3.8 196970 50 .6U 3200 50 3230 .6U 3200 50 3230 50 6 1.3: 1713 ‘07Ag -7995 15 -7975 .Ol 10090 “‘Pd 6153.3 .3 6153.30 0.30 6 .6U -2947 30 -2930 2.5 11 9646 lo91” -806.5 2.6 -806.2 60 .Ol 9998 ‘09Te 7140 60 7140 1.9 .36 819 820.4 -.I6 820.6 :.O 6315 70 4 4160 65 3 12 .3U 2577 50 2591 2.0 .Ol 9790 ‘09Pd 1028 2 1027.9 2 88.03 .Ol 2.7 .4125.8 124 4 10.6C 94 3 -.3127 4 .I1 9585 “‘Cd ave. 125.5 2.8 6 .72015 8 2020 -.62030 15 .31 6954 ‘091n ave. 2018 7 6380 16 3 Recalibrated with (p,t) results on ‘04Pd, “‘Pd. ‘06Pd and “*Pd Systematical trends suggest ‘09Tc 330 more bound From LMN/K = .228(5); but Q = 109(5) from L/K = .195, authors say Q =104(4)
Ml6
2.563DalO 65Mal2 79Sc22 9lHe21 75Kul4 Min IL” 80Ca02 Pit 64Coll 80Ta07 73Bo20 84FaO4 92He.A 89Gr23 Bwg 89Gr23 Bwg 78KalO 62Brl5 NDS 65LeO6 68Go.A 70Go39 average 62No06 7 1BaO8 average 82JoO3 AHW GAu AHW
204389 .41 2727 “‘Pd 9 204398 12 -.31 206548.4 4.6 206544 3 8 8 “‘Cd 2 2723.1 15. 3570 50 .I7 3580 50 -.17 3590 50 .24 3878.3 30. 3886 14 -.14 3887.6 15. -6495 15 -6489 .41 5250 “‘Pd 11 .22 -5134 5 -5133 5 9206 25 9187 5 -.82 6809.2 .I 6809.20 0.10 .Ol 10067 ‘09Ag 6680 120 8780# 460# 17.5F 4 2810 50 3 0 200 2 5400 ‘00 117.59 2 .05 2891 4 1.5 .32892.1 ave. 2892.4 -.I1 9567 “‘Ae * 1.6 1.5 .2R 3009.0 3. 3009.7 -.6R 3011.0 2. 12 -2.52 3990 20 3940 .52 3930 20 3900 20 2.02 3 62.08 .04 8750 200 1.33 9020 90 9085 100 -.73 Recalibrated with (“.t) results on ‘04Pd. “‘Pd. ‘06Pd and “*Pd F: very low and coming only from Annual Report Systematical trends suggest “‘Sb 720 more bound
Ml6 Ml6
2.563DalO 2.563DalO 8lScl7 81Scl7 9lHe21 81Scl7 92He.A Min 75Ku14 VU” 87Ka29 LAl 82FlO9 8lBo.B 89Jo.A Jyv 91Joll Jyv AHW 70PiOl NDS 67Mo12 average 63DaO3 67Mol2 51Mcll 53B144 62KaO8 89Kr12 72Mi26 72Si28 AHW GAu GAu
* Z
l
l
* * ” l
l
*
l
l l
* * l* l
l
G. Audi et al. / The 1993 atomic mass evaluation (IV)
278
Input value
Item
Adjusted value
v/s
Dg
213184.4 3.9 213193 3 .9 1 3270 50 3280 50 .l 3 3290 50 -.3 3 3690 50 3710 50 .4 4 3710 50 .o 4 3720 50 -.I 4 6975.5 6975.84 0.19 .7 6975.9 :: -.3 -6975 3 -6975.84 0.19 -.3 U 4750.68 .88 4751.27 0.19 .7 u ave. 6975.84 0.19 6975.84 0.19 .o 1 5070 70 3 2150 100 2130 40 -.2 R 2130 50 .O R .3 R 2100 100 59.82 .04 3 1035 2 1036.8 1.4 .9 2 1038.6 2. -.9 2 -1635 20 - 1648 5 -.7 u 4470 50 3 Estimated systematical error 0.5 added to statistical error 0.73 Systematical trends suggest ” 'Sb630 less bound
Cg H,,-“‘Cd “‘1(cr)‘07Sb
“‘Cd(n,y)“‘Cd “‘Cd(y,n)“°Cd “‘Cd(d,p)“‘Cd “‘Cd(n,y)“‘Cd “‘Te(ep)“‘Sn “‘Pd(p)“‘Agm
“‘Agm(IT)“‘Ag “‘Ag(B- )“‘Cd “‘Cd(p,n)“‘In “‘Sb(p+)“‘Sn l“‘Cd(d p)“‘Cd .‘l’Sb(&“S,
222445.3 3.9 222442.9 3.0 220384 9 220379 5 2990 50 3317 12 3329.1 20. 3310.4 15. -8686 9 5659 20 5648 17 5543 29 5526 11 -7891 5 -7892.1 2.2 - 10485 15 -9403 5 -9398.1 2.2 7170 7173.6 2.2 10 7171 5 -9398.1 2.2 ave. -9399 3 -4529.0 5.7 710# 6060 130 9700# 4520 80 6200 500 17 299 20 288 20 17 3967 3956 6 -3369 5 -3376 656 6 663 5 7029 50 7055 23 7062 26 165 -7837 23 -7995 F: very low and coming only from Annual Report Systematical trends suggest “‘Ru 850 more bound Systematical trends suggest ‘12Rh 600 less bound
C, H16-“2Cd Cg H16-“‘Sn “‘I(,)“%b “2Xe(a)‘osTe “2Sn(3He,6He)‘ogSn ““Pd(t,p)“2Pd l12Cd~14C160~l10pd
“2Cd(p,t)i’oCd ‘%n(p,t)“%” “‘Cd(y,n)“‘Cd “‘Cd(d,p)“2Cd “2Cd(y,n)“‘Cd “‘Sn(d,t)“‘Sn “2Tc(,?-)“2Ru “2R~(p)‘12Rh “‘Rh(p)“‘Pd ‘12Pd(,!- )“‘Ag “2Ag(fi- )t’2Cd “2Cd(p,n)“21n “2In(8)‘%I “2Sb(b+)“2Sn “2Sn(p,n)“2Sb *“2Tc(~-)“2Ru l“2Ru(B- )‘12Rh l“2Rh(fi- )‘12Pd Cg HS-“‘Cd C9 H5-“31n “31(,)‘ogSb “3Xe(a)‘ogTe . .
134721.1 135015 2710 3090 -7456 -810 -746.3 43’5.56 -3180 7741.9 5518.2
3.9 9 50 50 5 10 4.1 .64 25 2.3 3.2
-.3 -.2 -.6 .4 -.6 -.6 -.2 1.0 .4 .5 .2 28.0
-.6 -.6 1.2 1.2 .5 -.3 1.0
134723.8 135063
3.0 4
.3 2.1
3100 -7456.5 -807 -746 43 15.6 -3185 7742.9 5518.3
50 2.2 5 4 0.6 5 1.8 1.8
.o -.l .3 .o .I -.2 .4 .o
1 1 3 6 6 2 I 1 1 2 I 2 F 3 2 1 1 1 1 2 2 B
1
I 4 1 1 1 1 1 U -
Sig 11
Main flux Lab 11 “‘Cd
Ml6
CF
Reference
2.5
63DalO 79Sc22 92He.A 79Sc22 81Sc17 91He21 86Ba72 90Ne.A 79Ba06 9OPiO5 *
McM
100
51 “‘Cd
Re2 average
68BaS3 52Mc34 57Kn.A 6OPrO7 NDS 7 1NaO2 77Re12 74KiO2 72Si28 * AHW ** GAu l*
Oak
9 4
9 “‘Cd 4 “%‘I
70 60 “‘Pd 14 14 “‘Pd 19 12 “‘Cd
44
27 “‘Cd
MI6 Ml6
2.5 2.5
MSU LA1 LA1 Min Rot McM Yal MIT average SPa
JYV JYV Jyv 70 70 62 62
40 70 57 43
‘12Pd “‘Ag ‘121n ‘121n
Tky
vun
9 2 99 20 26 78 91
9 ‘13Cd 2 “3In 98 12 12 76 49
‘13Xe “lCd “‘In “‘In ‘12Cd
Ml6 Ml6
Min ROC SPa Re2 Pit SPa
2.5 2.5
63DalO 63DalO 81Sc17 8lScl7 92He.A 78Pall 72Ca 10 84Co 19 730001 7OFlO8 79Ba06 67Ba15 67SpO9 75Be09 89Jo.A l 91Joll * 88AyO2 * 55Null 6211101 80Ad04 53BI44 72Si28 821003 76Ka19 GAu l* GAu *’ GAu ** 63DalO 63DalO 81Scl7 79Sc22 730001 74Ma09 80Ta07 9OPiO5 * 67HjO3 75Sl.A 75Be09
219
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Adjusted value
Input value
Item
7742.2 1.9 -2400 40 7920 150 4 967 994 5 3340 35 43.5 2010 20 30 2075 .I2 263.59 320 10 8 ave. 321 15 590 30 580 5.0 1034.6 -1809 6 4 ave. 1031 3934 30 3945 50 5520 5720 Estimated systematical error 0.5 Systematical trends suggest “‘Te ave.
C8 H18-“4Cd C8 Hts-“%n “4Cd 35&.’ j2Cd ‘%(cY)‘toI “%n(t,p)“%n “%n(p,t)“*Sn “3Cd(n,y)“4Cd “4Cd(y,n)“3Cd “3In(n,~)‘t4In “4Sn(d.t)“3Sn
‘%l(jr
)‘%l
jL4Sb(fl+ )1’4Sn ‘j4Sn(p n)‘14Sb “4Cs(r;)“3I l1’4Ru(/l-’ )‘j4Rh l“4Ru(f’ )‘j4Rh r”4Rh(@- )‘14Pd
l
Cq H7- ‘151” Cg H,-“‘Sn “4Cd(dp)“5Cd “4Cd(3;1e,d)“51n “5In(y,n)“41~ ‘%l(n,y)“%n 114Sn(d,p)“5Sn “%(n,y)“% “‘Xe(ep)‘j4Te
37C1
7742.9 -2438 7910 978
1.8 24 140 ‘3
2016 2060
17 17
316
3
579
3
1035.9 -1818.3 1035.9 3905
2.8 2.8 2.8 24
5660
v/s
170
added to statistical 440 less bound
.4 -1.0 -.l 2.6 -3.3
.3 -.S -.4 -.7 -.7 .O .3 -1.5 1.2 -1.0 -.8 .5 -.3 error 0.40
3.0 237487.6 4. 237492.0 3 238092 10 238068 3551.0 0.7 3548.5 1.0 50 3360 9560 3 15 9579 15 -9582 3 -9560 9042.71 0.30 .30 9042.68 4 -9050 0.30 -9042.71 1.2 7274.0 7274.4 1.2 4.2 -4043.7 2.8 -4041.7 ‘50 8730 6100 200 500 6500 1451 25 1450 100 1414 30 5076 26 150 4850 260 4900 110 5160 35 5018 ave. 5030 30 1987 2 ‘988.7 0.7 1989 1988.5 t.0 ave. 1988.6 0.7 5880 200 5690 100 200 -6875 105 -6660 Systematical trends suggest ‘j4Cs 540 less bound E- = 5910(120) doublet to 127.0, 255.2 levels Systematical trends suggest ‘14Ru 1300 more bound Systematical trends suggest ‘j4Rh 1400 less bound
ave.
150910 151411 39’6.30 1320 -9039 7545.3 5320.6 7545.3 6200
8 8 .59 15 2.0 3.4 1.7 I130
‘50896 151428 3916.3 1311 -9039 7545.7 5321.1 7545.7
4 3 0.6 4 4 1.6 1.6 1.6
Dg
Sig
Main flux
1 2 1 7 7 3
96
77 “%I
92
90 “‘Te
stu
17
11 “31,
R R 43 ‘j3Sn
61Se08 69Ri16 74Bu21 74Ch17
9
9 ‘14Cd
8
4 “‘Cd
98
64 l14Cd
93 44
70 “3In 38 ‘j3Sn
Ml6 Ml6 H26
2.5 2.5 2.5
Ald ROC ILn McM SPa
JYV JYV JYV
.o u 1.2 1.5 .7 -.8 1.7 1.4 .8 -.3 .2 .2 1.9 2.0
1 u u 1 1 2 2
--.7
1
.8 .o -A
I I u
9:
1 -
I
.2 .1 .2
68Co22 82P105 84FaO4 92He.A 9OFoO7 NDS 57Je.A 9OFoO7 NDS 88Mi13 51Ca43 54Del3 93Li10 73Ra13
R R 3 3
.4 1 -1.0 u 1.01 6 -1.3 u 1.5 u .I I 1.8 U .3 1 .5 t
.o
CIT average
Oak 52
Refennce
average
stu
-
1
CF
Sac
2 R
1
Lab
69
39 ‘14Ag
stu
stu
stu 61
61 ‘14Ag
l l
AHW
**
GAu
l
*
63DalO 63DalO 73Me28 81Scl7 69BjOl 7OFlO8 79Br25 Z 79BaO6 75Ra07 Z 75BeO9 82PlO5 l 92JoO5 * 88Ay02 * 89Ay.A 9OFoO7 71Roi9 72Wa06 84LuO2 90Fo07
average 61DaOl 61Ni02 68ZeO4
98
67 ‘j41n
average
69Bu.A 76Ka19 GAu l* 92JoO5 l * GAu ** GAu u
vun
“5In
3 ‘%I 86 “%d
Ml6 Ml6 Rea
50
40 ‘%n
McM
91
64 “4Sn
SPa average
5
5
2.5 2.5
63DalO 9OPiO5 70Tb.A 79Ba06 78Ra16 75Be09 72Ho18
l
G. Audi et al. f The 1993 atomic mass evaluation (Iv)
280 Item
Input value
6000 500 4584 SO 41.1 .2 3180 100 3100 3105 100 3132 40 3140 181.0 .s 1460 4 1446 1443 6 ave. 1612 5 1627 1621 2 336.24 .03 480 30 495 495 20 482 15 488 9 we. 830 20 832 830 30 3030 20 860 100 3872 50 3789 3822 50 3672 50 10 20 Estimated systematical error 0.5 added to ‘15Te feeds 770.4, 1071.7 levels ‘ISTem feeds 725.6, 1098.7 levels
“sRh(fl)“‘Pd “5Pd(@-)“SAg “SAgm(IT)“5Ag “‘A&-
)‘15Cd
“sA~m(@- )“‘Cd “5Cdm(IT)“5Cd “‘Cd(@- )‘%
“5hm(1~)“5h “k8-
)‘%I
“5m~(/?-)“%n “sSb(~+)“5SR ‘i5Sb~(IT)“5Sb i’sTe”(fl+)t’sSbx
C9 Hg-‘%d C9 H8-‘%n '16Cd
35f._l14c4j
37C,
“6Cs(ra)“2Te ave. l16cd~14c
160~l14pd i14Cd
‘%d(p,t) “‘?d(y n)“‘Cd ‘%(n,y) ’ Il6,,,
“‘Cs* (IT)‘% “6Css(IT)“6Cs *“6cs”(cp)“5~ r”6Rh(fi)“6Pd rl16Xe(j++)“61
Adjusted value
157837.4 160861 4348.7 12500 12300 12330 2497 -6363 -8702 6784.2 6784.4 9562.2 9563.41 -3305.0 -1722 6450 8000 2620 2607 81.9 5800 6199 6110 6241 -5483.2
2.9 8 1.2 900 400 370 29 5 4 1.2 I.1 1.5 .I1 2.5 10 300 500 100 30 .2 200 100 ‘30 50 6.
1554
100
7760 7710 4340 500
130 200 200 300
30 30 4 4
-3.6 .s 2.9 2.8 s .o .9 .7
4
.I
Dg Sig 4 3 3 2 2 R 2 1 R R 2 -
I
Main flux
Lab
2531 -6359.3 -8700.2 6784.3
24 2.0 2.0 0.8 0.11 0.11 5
1.0 -.3 -.4 -.I .3 .2 1.2 .7 .4 .I -.I .8 .o -.3 1.9
2607
30
-.I
1.8 -.4 1.0 .O
6160
40
6240
40
- 549’3 1500 7750
90 110
5
19 Systematical tr:ds sug$t ‘IsI 73261more bound Systematical trends suggest ‘16Rh 900 less bound Systematical trends suggest ‘16Xe 320 less bound
-1.1
-.5 -.I .2
.o
1 1 1 1 1
I 1 2 2 U 1 u
I 3 4 u 3 3 U 2 R R 1 1 2 2 3 2 1
CF Reference
JYV
stu stu stu
43 35 ‘%I
88AyOl POFo07 90Fo07 64Ba36 78Ma18 9OFoO7 NDS 74Bo26
average
75Bo29 76Ra33 NDS 62Wa15 72Mu02 78Pfol 16 13 “‘In
average
498e53 62Se03 61Se08 NDS l 65KbO5 65ReOl 74ChS I NDS AHW l * NDS ** NDS l*
R .I R 2 3 29 -1.7 4 -.I 4 2.3 4 5 statistical error 0.32
3 3 2.2 260
-3306.16 -1703
-.8 .o .3
4
157844 160835 4347.4 12400
9563.41
v/s
23 23 %d 3 3 ‘%I 52 43 ‘%d
52 71 16 26
42 70 13 21
‘%s ‘14Pd ‘%d “‘?d
100 68 “5Sn 28 26 “%b
75 74 “%b 84 84 ‘16T,
Ml6 Ml6 H26
2.5 63DalO 2.5 63DalO 2.5 73Me28 76Jc.A 77Bo28 average LA1 84Co I9 Mltl 730001 McM 79Ba06 72Ra39 74co35 72Mc08 9lRaOI Z ORE’ SPa 75Beo9 VUll 78Ka12 78Da07 * 88Ay02 ’ JYV 89Ay.A JF POFo07 stu stu 9OFoO7 82BrlO 9OFoO7 SW 82Ai29 SIU 9OFoO7 stu 77JoO3 Oak 61Fi05 70Be.A 76Go02 76Go02
l
86Au02
100 58 ‘%
86Au02 GAu
‘*
GAu
l*
GAu
**
281
G. Audi et al. / The 1993 atomic mass evaluation (Iv) km
Input value
“6S”(d,p)“7Sn “%“(“,y)“‘S” “6Sn(3Hed)“7Sb 11’Xe(rp)i’6Te ‘17Ba(rp)“6Xe “‘Agm(IT)“‘Ag “‘Ag(,V)“‘Cd “‘Ag”‘(,O-)“‘Cd “‘Cd(,!-)“‘Inm “71nm(IT)“71n “‘I”(/!)“‘S” “‘I”“(B)“‘S” “‘Sn(p,n)“‘Sb “‘Te(,9+)“‘Sb
C9 H,O-‘l*Sn “SCSX_‘33CS 87 iiaSn 35C1_‘ifSn 37Cl “%l;,,
“*C~(ca)“~Te
‘%d(t p)“*Cd “8S”(d:3He)“71” “‘S”(“,y)“%” ave.
‘%(rp)“‘I ‘18Pd(,v)“8Ag “*Agm (IT)“*Ag I’*Ag(B-)“*cd “*Agm(P-)“*Cd “*I”(fi- )“%” “*Sn(p,“)“*Sb “*Sbm(~+)“*S” “*I(~+)~‘*T~ ave. l18p(~+)l18~e
“*Im(IT)“*I “*Xe(fi+ )“*I
v/s
Dg
-.5 u 12 167470 3 167486 .9 1 2 3603 3 3596 2 1.0 3552.66 .3 2 6944.5 I.1 6944 .8 2.0 6942.9 -.6 1.8 4719.9 1.1 4721.0 .2 I I.1 6944.5 I.1 ave. 6944.3 .3 1 - 1088 9 -1091 10 -.4 1 4020 170 200 4100 4 300 7900 4 28.6 .2 4180 40 .2 3 4170 50 4210 -.5 R 40 100 4260 -1.0 u 2201 6 20 2220 2 .Ol 315.30 .3 1455 4 10 1452 -.3 1 4 ave. 1457 -.5 R 1771 4 1773 5 -.7 1 -2539 9 20 -2525 -.9 3535 17 20 3552 1.4 30 3492 .l I 17 ave. 3534 -.3 4650 70 100 4680 .7 100 4584 .3 1 ave. 70 4630 .6 1 6450 180 6270 300 3 100 150 2 SO 50 Estimated systematical error 0.5 added to statistical error 0.85 Q - Q(“‘S”(‘He,d))= 1373(10,Ka), Q(120) =282.1(2.0) Systematical trends suggest “‘Ba 760 less bound Q+ = 4310(100) assumed to 274 level May be lower limit
Cg H9-“‘8” c %~-“‘S” “6Cd(dp)‘17Cd ~‘%“(“:y)“‘S”
“‘cs~-“*cs~96
Adjusted value
176645 10429 2814 -1160 11100 10600 5650 -4481 9326.5 9324.8 9325.7 4700 4100 127.74 7159 7096 4310 -4439.0 3907 7077 7073 7070 7130 104 3720
7 13 2 400 500 200 20 15 2. 2.1 1.4 300 200 .I6 139 140 100 3. 5 150 100 80 300 2 110
176642 10434 2812.5 -1050 10670
3 12 1.9 150 190
-.I .4 -.2 .2 -.9 .3
-4506 9326.3
5 1.4
-1.6 -.I .7 .4 .I
4730
7060 7190 4423
7040
90 2940
70
100 100 8
80
310 1000
-.7 .7 1.1
-.2 -.3 -.4 -9.3 -7.0
1 1 u I 3 3 2 U 1 u 4 4 3 R u 2 2 I 2 F F
Sig
15
Main flux
15 “‘S”
Lab
CF
Reference
Ml6 H14 R.Z
2.5 4.0
63Da10 62Ba24 9OPiO5 75BhOl 78Ral6 75BeO9
SPa 97 80 72
64 “6s” 80 “‘81) 66 “‘Xe
78Kal2 * 72Hol8 78Bo20 ’ NDS 82Al29 82Al29 75Ta06 NDS 55Mcl7
stu stu
96
95 “‘In
average
20
20 “‘Sb
Oak
99
99 “‘Te
average
55Mcl7 7lKe21 62KhO5 67Be46 69La33 70Be.A
88 37
87 “‘I 34 “‘Xe
85LelO l AHW AHW AHW l * AHW ** GAu l* AHW ** AHW l ’ 2.5 1.0 4.0 1.5
Ald MSU
52 “‘3”
63DalO 91St.A 62Ba23 86Au02 76Jo.A l 77Bo28 * 67HiOl 7lWeOl 7COr.A 75Sl.A
average Jyv stu stu Oak
86
l
average
Ml6 MA1 H15 P32
93
l
78Da07 89Ko22 * NDS 82Al29 * 82Al29 * 87Ga.A 771003 6lBol3 68Lal8 70Be.A
85 “*I 68La18 68Lal8 70Be.A
l
282
G. Audi et al. / The 1993 atomic mass evaluation (IV)
Item
Adjusted value
Input value
“8Cs(fl+)“8Xe
v/s
rl18~gm~~-~l18~~ eIl8~m(~~~lt81
182778 7 182765 3 -.8 7018 I3 7005 II -1.0 3306 2 3305.6 2.1 -.I -3039 139 -3210 100 -.8 -3570 155 -3450 100 .51 530 80 540 90 .I1 870 50 940 40 .9 980 40 -.7 -127 6 -127 6 .o 6484.6 I.5 6485.2 1.4 .4 -391 10 -384 8 .7 6200 200 5350 40 146.54 .I1 3800 90 3800 60 .o 3940 80 3940 60 .O 579 20 594 8 .7 - 1369 15 -1376 8 -.5 we. 584 I2 594 8 .8 2293 2 2293.0 2.0 .o 3630 100 3510 60 -1.2 3370 100 1.4 ave. 3500 70 .2 4990 120 5000 110 .lI 6260 290 6330 120 .2 100 70 33 22 33 22 .o From “81/‘191= .991615X4(117) From “71/“91= .9X321059(130) Q - Q(‘20Sn(3He,d))= 673(1O,Ka), Q(l20) =282.1(2.0) H12-‘20S” 35~1,
37c1-‘20s”
C9 H,2- -120Te ‘20Cs*-t33Cs o2 120S”
3+_
1I&
Sig
Main flux Lab
CF
37C,
“8cSx-‘2q28
“‘CS&
‘t9w-‘2q6’
‘t’cS;39
“9cS~-‘20cS1(,,6
“8cS;04
191709 4758 189879 5956 3546 460 -940 - 1220 -1180 - 1200 - 1270 9300 -9343 -5169 -692
-2847.0 8200 100 5300 5370 5280 5340
11 3 I2 L
I20 50 30 60 30 50 300 12 20 6
2.5 100 70 170 40 200 170
191701.8 4764.3 189874 5974 3540.8 470 -950 -1183
8990 -9342 -5195 -690
-2849.9
2.7 2.7 11 10 2.7 50 30 II
90 I2 7 6 2.2
-.3 .5 -.2 I.5 -.7 .l -.I .8 .o .4 1.2 -1.0 .l -1.3 .4 -1.2
70 5370
60 40
-.5 .4
5440
70
.8 .6
I 1 u 1
1 1 I I
1 4 3 3 2 R 1 I 1 1 2 1
v 1 1 1 u I I 1 U 1 F 1 1 1 1 1 3 3 u 2 R R
Reference 76Da.C 82AuOl 82AuO I GAu 93Ja03 AHW AHW NDS
9300 IO00 3 500 300 3 24 I9 2 Systematical trends suggest ‘14Te 410 more bound Original value 4000(200) corrected for new branching ratios From transitions to the 2789 and 3224 levels From transitions to the 3182, 3266 and 3382 levels Not well established
“8Csm(IT)“sCs ‘%sx (IT)“*Cs *“8Cs(ca)“4Te l“*Pd(fl- )“‘Ag l“*Ag(,5-)‘%d
C9 ‘3~
Dg
3 73 24 I7 54 30 I:: 93 59
3 “9s” Ml6 73 “9Csx MAI HI5 15 ‘? CR2 9 “71 CR2 54 ‘%* P32 29 “‘Cs’ P22 46 “‘Cs* P32 loo “81” MCM 55 “8s” 59 ‘19Sb VU”
2.5 1.0 4.0 1.5 1.5 I.5 1.5 1.5
stu stu stu
10”:
80 86 I9 100
5 25 63 9 16 6 6 IO 100 13 92 77
Oak 41 ‘19Sb average 100 ‘19Te
79 ‘1% average 82 ‘19Xe 18 ‘19Xe 99 “9Cs
Ml6 5 120Sn HI4 25 12’Te Ml6 63 ‘20CsX MAI HI5 9 “7Csx P22 I4 “‘Csx P22 4 “9CSX P22 P32 4 t’9Csx P32 P32 9 ‘16Te 99 ‘IaTe Win I3 ‘191” MSU . .a 87 “‘In McM 50 “9s” SPa stu stu
stu
2.5 4.0 2.5 1.0 4.0 1.5 1.5 1.5 1.5 1.5 1.5
l* ** ** l* l*
63DalO 91St.A 62Ba23 92Sh.A * 92Sh.A * 86Au02 82AuOl 86Au02 85PiO3 78Ra16 78Kal2 ’ 78Bo20 82Al29 NDS 82Al29 82Al29 570105 7lKe21 6OKol2 69La33 70Be.A 70Be.A 83Pa.A 82AuOl 82AuO 1 GAu l* GAu l* AHW ** 63Da10 62Ba24 63DalO 91St.A 62Ba23 82AuOl 82AuOl 82AuOl 86Au02 86Au02 86Au02 76Jo.A 74De3 1 7lWe01 85PiO3 75Be09 82Al29 CORR 78All8 87Ga.A 64KalO 78All8
l
283
G. Audi et al. / The 1993 atomic mass evaluation (Iv/
‘20Cs”’ (IT)lZoCs ‘20Csx (IT)‘20Cs ‘*OBa(,Y+)‘20Cs +%sx - ‘20Cs&
l19Csx_lzlCsx ,328
“qo4
“q’2
‘%X
-‘%&,
“*Csi;39
‘-%Y
- 12’ Cs&
“9CS&
C8
C
Adjusted value
Input value
Item
Ht2 N-‘22Sn
HI2 N-‘**Te H ‘* Csm-‘33Cs.9,7 U2CsY _ ‘33C$ .4’7 ‘228, 3&J-~* sj) 37CI
-3462.9 7.1 5615 15 150 5930 40 1960 7920 7300 300 7800 lo00 7380 230 8210 200 300 300 23 24 19 5000 300 Rejection based on line-shape analysis 197903.2 197910.3 3.7 3164.3 3162 3 3269 13 3285 3461.7 3452 2 -1045 -1080 30 275 30 280 805 790 30 50 860 14 813 6170.8 6170.3 2. .7 6170.3 3946.2 1.7 3946.2 6170.8 6170.3 0.6 ave. -1321 4.4 -1320.5 4200 300 * 30 837 6400 120 150 4890 3364 3406 50 .08 6.30 388. I 383 3 3 383 383.4 2.3 ave. 394.4 3 391 1330 1374 30 .03 293.98 2271 2364 50 100 2384 40 ave. 2370 3732 3790 100 140 4160 20 5400 54OO 5210 220 3469 100 5370 0.3 68.5 46 8 E- = 334(S) to 37.13 level p+ = .024(.01 I) t0 37.13 level, recalculated 193541 193923 2961 2880 4196
8 9 12 12 2
50
19
v/s
1.2 .l 2.4 -1.4 -.l
DE 2 2 2 3 u u F U 2 1 2
2.6 2.6 11 2.9 13 10
-.8 .2 -1.2 1.2 .8 -.l
1 1
9
.3 -.7 -.4 .2 .4 .o .4 -.2
u u 1 1 1 4 U 4 3 R 2 1
0.6 0.6 0.6 4
27 1.9
1.9 25 26
26
20 20
-.8 1.0 1.7 2.0 .7 -1.5 -1.9 -1.1 -2.2 -.6 -3.1 .9 1.0
Main flux Lab
sip
CF
Tklll
Pbu 100
8
100 t20cs
8 3 71 8 5 3
‘*‘Sb ‘*‘Sb ‘*‘C# “9Sn “9CSX ‘%sx
Ml6
2.3 4.0 1.0 4.0 1.3 1.3 1.5 1.3 1.3
20
HI4 MA1 HI4 P22 P22 P22 P32 13 ‘*‘Csx P32
98 99
SPa 67 ‘*OSn average 96 ‘*‘I Hei
5
I
70
I 1 1
13 8 5
stu stu
stu
72
41 ‘*‘Sn
70
70 ‘*‘Te
34
30 “‘Te
2.9 2.9
-.4 -.3
2890 4192.7
11 2.7
.8 -.4
60Mo.A 70Be.A 81SoO6 83Pa.A 93AIo3 91GeO2 GAu NDS ** AHW *’
U u 2
1
78SzO9 78Bo20 90Bo39 82Al29 82Al29 78AllS NDS 49Dul5 68SnOl
average
: u 3 2
U
63DalO 62Ba24 9 1St.A 62Ba24 82AuOl 82AuOl 82AuOl 86Au02 86AU02 76Ca24 81Ba53 73BeOY
68SnOl * 7SMe23 * NDS 53Fi.A 63BuO3
Q+
193333.2 193918.6
63OkOi 7OGa32 68La18 74MulO 76Ba.A 76Da.C 83Pa.A 93Alo3 82AUOl 82AllO I 92XuO4 86AuO2 *’
average
R
I 2 1 U c
Reference
86
Ml6 Ml6 MA1 86 ‘*‘CgY MAI HlS
2.3 2.3 1.0 1.0 4.0
63DaiO 63DaiO 91St.A 91St.A 62Ba23
284
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item
-1600
80
-1531
-724
27
-702
350 360 -1100 -1169 -8560 -5910 -5861 -2558.8 6806.2 -6350 6136 6590 1970 1980 we. 1977.4 4234 7050 7000 6950 7300 127.0 11 61 Original 45(33) revised
‘22Csn (IT)“‘Cs ‘22Csx (IT)‘22Cs ‘22CsJ’(IT)‘22Cs l‘22CsX(IT)‘22Cs Cs HI3 N--“%b Cg HI3 N-“‘Te ‘23Cs- 133Cs 123sb 35Cl_i9ii;b
37C,
“9csx-‘23cs~93
“%;o,
‘22Sn(n,y)‘% ‘22Sn(d,p)‘23Sn ‘%l(n,y)‘%n ‘23Sb(y,n)‘22Sb ‘22Te(n,y)‘23Te ‘22Te(d,p)‘23Te ‘22Te(n,y)‘23Te ‘22Te(3He,d)‘231 lZ3Cd(,!- )12’In t%m(1~)‘% ‘231&r )‘%n ‘23w (B - ) 1% ‘%nm(IT)‘% ‘23Sn(,9-)‘23Sb
’24sn_~3C
Cl
“C
124~~_13~
‘24T,_34F,
37cl
HI3 N-‘24Sn 37c1 35Cf2
Cl 13C H,3 N-‘24Te t24x,_~3c 37cl t24Xe_54Fe 35~:~
Adjusted value
200580.0 200538 453 3343 - 1480 5948 5945.8 3721.8 5946.3 -8966 6931 4706 6934 -574.2 6115 327.09 4410 4645 24.6 1420 1399 1407 1420 1260 2616 4050 4200 159 7 4210.47 202886 1754.63 25501.65 205336 4831.15 28575.78
50 17 40 15 12 50 43 3.0 1.0 50 200 180
13 12
.6
U
.5
1
-.3
u
I
-1128
11
-1.3 -.5
-8565 -5902
10 27
-2557.1 6806.6 6660
2.5 1.0 130 2.2
: 2.6 5 7050 90 180 150 7170 90 250 150 .5 14 6 6 47 I2 14 from “‘Csm = 114(18)
.71 8 1.26 2.56 13 1.58 .99
Dg
10
327
1978.6
3.3 16 13 2 60 3 1.5 2.6 1.2 4 5 6 4 3.5 33 .I 31 72 .4 IO 20 7 10 7 15 180 100 1 4
v/s
200583.5 200528.4 448 3343.9 -1458 5946.0
2.2 2.0 12 2.6 13 1.2
3721.4 5946.0 -8969.3 6939.4 4714.8 6939.4 -579
1.2 1.2 2.4 2.5 2.5 2.5 3
4391 4718
23 23
1403.6
2.8
1428.2 1242
2.9 4
4200
6 4211.9 202879.8 1756.1 25498.7 205335.5 4832.8 28575.3
19
1.8 -.4 .2 -1.0 .6 .4 -.4 .4 1.7 -.5 .5 .o .4 .9 -.9
1 1 2 2 1 1 2 2 2 1 2 2 2 R R 2
1
.4 -.2 -.4 .I .2 -.7 .l -.I -.2 -.8 .5 1.5 1.3 -1.3
1 u 1
-1.6 .2 -.4 .8 -2.5 .8 .o
4
-.I
1.5 1.5 1.6 2.0 1.6 2.1 2.0
.8 -.3 .5 -.5
Main flux Lab
CF
Reference
P32
1.5
9
4 ‘20Csx P32
1.5
86Au02 86Au02
P22 9 ‘20Csx P32 P32
1.5 1.5 1.5
82AuOl
17
15 ‘2’Csx P32 1.5 72 “‘Te Win Sac MSU 39 “‘Sn SPa 51 “‘Sb LA1
86Au02 74De3 I 69CoO3 71WeOl 75Be09 72Sh.A 78AjOl 7 ITa 78Al18 55Fa33 68Hs.02
u
.4 -1.0
-.6 1.0
Sig
1
I U 1 1 1 1 3 3 2 R 2 1 R
1 2 U u 2 1 1 u 1
1 .o u .4 I -.2 I
25 13
67 95
stu
73
47 “‘Te
average 77Re.A 83Pa.A 93Alo3 83Pa.A 93A103 87We.A 82AuOl * 91St.A GAu ‘*
Pbu Pbu 96 78
60 lz2Csx 64 “‘Cs
7
7 lz3Sb
85 10
85 lz3Cs 7 “‘Sb
94 35
50 ‘% 23 “‘Sb
41 82
34 “‘Te 74 lz31
18
13 ‘2%
28
26 lz31
Ml6 Ml6 MA1 H14 P32
2.5 2.5 1.0 4.0 1.5
SPa average McM MIT average Hei stu stu stu stu
83 “‘Csx
70
70 ““Sn
26 10 28 65
63DalO 63DalO 91St.A 62Ba24 86Au02 75BhOl 77Ca09 75Be09 79Ba06 68Ch.A 75Li22 78SzO4 87SpO9 86Ho24 87SpO9 87SpO9 NDS 5OKell 66Au04
average 49Du15 86Ag.A 60Mo.A 83Pa.A 93Alo3 NDS 82AuOl
Pbu 98
86Au02 86Au02
H39 Ml6 26 ‘24Te H39 6 lz4Te H39 Ml6 28 lz4Xe H39 52 lz4Xe H39
2.5 2.5 2.5 2.5 2.5 2.5 2.5
84Ha20 63DalO 84Ha20 84Ha20 63DalO 84Ha20 84Ha20
285
G. Audi et al. / The 1993 atomic mass evaluation (Iv Inputvalue
km
‘24Sn(d t)12’Sn ’ 124sb ‘23Sb(n,y) 123Te(n,y)‘24Te me. ‘24Cd(fi- )‘241n ‘*%f~) ‘%I ‘%nm (fl- ) ‘%I ‘24Sb(fl-)‘24Te we.
Original Isomeric
‘25c$._‘33cs ‘25Te 35Cl_i%oTe
37c3
‘22csx-‘25cs.244
‘2’cs;56
‘24Sn(n,y)‘25Sn
‘24Sn(d,p)‘2sSn lz4Te(n y)‘*‘Te ‘24Te~d’p~‘z5Ta ‘24Te&)‘2STe ‘24Te(3Hed)‘251 ‘24Te(a,t)i2SI ‘24Xe(n,y)‘25Xe ‘2SCd(@- )12’In ‘251n”(IT)‘251n ‘%(/l - ) ‘25% ‘*JI”m(&?- 1’% ‘*‘Sb(@- )“‘Te
371 370 13 3212 15 4783.5 4784 2 2713.0 2728 2 2455.7 2458.51 .89 3076.7 3076.00 1.78 320 3fO 30 -1314 - 1360 30 -1342 - 1390 30 -5214 -5216 24 -5101 - 5098 30 -6604 -6610 50 -6572 66 -2231.6 -2233.4 3.7 6467.45 6467.45 .07 9424.1 9425 2 9423.7 1.5 9424.2 1.2 4166 39 7360 49 7341 51 2905.4 2907.7 5. 2903.7 4. 2904.7 2. 2904.9 1.7 3159.6 3157 4 3160.3 2.1 5917 5900 90 462.54 .09 32 30 20 error increased sea 84Rb(jJ+) ratio assumed <.I as in 118,120,122 111363 -1382
C7 Hs 35Cl-‘2sTe
Adjusted value
3090
6 14 2 23 1.5 .6 3.6 3. 8 2.1 3.0 7 .4 43 .I 31 43
111378.8 -1403 3103.2 704 5733.0
715 5132.2 5733.1 3508.4 3509.4 6575.9 6569.0 4344 4351.4 6372.7 6575.9 115.1 114.0 _ 14203 .14206.4 7603.3 7603.3 7159 360.40 5443 5418 5730 5778 767.7 766.7 765.7 :: 186.1 .3 179.3 186.1 2.0 3092 3072 20 3082 3100 ave. 3077 14 4560 250 Original error 1.0 increased, abstract only
v/s
2.5 0.07 1.2
1.5
I
84
-.I -1.9 -1.2 .2 .2 1.0 1.1
2 I 1 I 1 1 1 1
I2 11 55 29 6 6 11
.l -.l .I -.5 .5
2 2 R R
-.4 .3 .o
1 3 2 2 1 2 2 u 2 I
I .o I
-s
12
.4 .3 .3 .6 -.3 .2
1s
.I
1.9
2.0 9 2.0 15 0.6 0.6 1.4 1.4 1.4 1.4 1.4 0.4
Sig
.I
12 2.8 2.6 1.6 2.4 11 11 15 19 19 23
I&
1.1 -1.5 1.6 -.3 .5 -.2 -.3 2.3 .9 1.6 -.4 -.5 .o
25 25 2.1
-.8 1.1 -.3 .3
0.3 9
3.4 1.0 .5 -.I 1.1
u I U I 2 2 2 I R U 1 4 4 3 R 2 2 2 u u
I 2
Main flux Lab
CF
Reference
84 ‘24Cs MA1 MA1 11 “‘Sn HI5 10 12*Te HI6 31 lz4Te H39 19 lz4Xe H39 3 ‘%sx P22 4 ‘2’csr P22
1.0 1.0 4.0 4.0 2.5 2.5 1.5 1.5
6 ‘23Csx P22
1.5
91St.A 91St.A 62Bs23 63Ba47 84Ha20 84Ha20 82AuOl 82AuOl 82AuOI
47 100
43 ‘%‘I 73 12’Sb
94
90 lz3Te
82
73 lz4Sb
79Ja21 7est1 I 690~03 7lWe.01 75Be09 81Su.A 69BuO5 700r.A
MSU Sac MSU SPa
average SU %I StU
average 7lBoOl ’ 92WoO3 93Alo3 NDS AHW l AHW ** Auw l’
Pbu
56
40 lz4Csx
46
44 “‘Cs
18
Ml6 MA1 HI6 16 ‘22Csx P32
2.5 1.0 4.0 1.5
spa
47
40 “‘Te
MIT average
,o,,
Y9 l25xe
” stu stu stu stu
40
87SpO9 87SpO9 87Sp59 65Hs02 66Ca10 69Na05
Pbu 39 IZ5Cs average
63Da10 91St.A 63Ba47 86A~02 77Ca09 8lBa53 75Beo9 71Gr.A 6YGr24
l
785~04 7SSzO4 82Ka.A 87SpOY 86Ho24 87SpO9 87SpO9 64Ma30 66Ma49 868046 9OLi14 54Ma54 75We23 93AIo3 68DaOY AHW **
G. Audi et al. / The 1993 atomic mass evaluation (iv
286
C,, H6-“%e i26cs- ‘%s,9‘t, ‘%a-‘% 94, i*6T, 35C1-124Te
37CI
‘2~~s~-‘26c~390
‘2*,3x
124cs~-126&59g
%;,O
‘24c.s-
‘**csfso8
‘26cs,492
‘*4csx-‘*6cs.328 125cs_126cs
143623 -1011 786 3432 3431.28 -1160 -340 -570
,610
‘23cs;72
390 -1130 5445 5444 9113.7 5486 8207 8309 378 2151 1258 4830 4730
,496 ‘24c$)4
‘*4sn(t,p)‘26S” ‘2sTe(n,y)‘26Te
‘26Cdf@- fi2% ‘%(,r ) ‘%n %tm (/9 - ) ‘%I ‘%(,9)“‘%a ‘zaI(/3+)‘26Te ‘%fl)‘26Xe ‘%tg+ f’26Xe
Cl0 H7-“‘I
127I,,&
)127sn
‘*71nm(/r ‘27&P
150297
)‘2’Sn
m’2’sn
‘2’Snm
(@- ) “‘Sb ‘27Sb(/5-)‘27Te ‘27Te(fi-)‘271
we. ‘*7Xe(c)‘*71 ‘z71(3H~,t)‘27Xe ‘z7xecr FI ‘27Cs(J3 + ) ‘2’Xe
we.
we. ‘27Baffl+ f “%s Cl0 H8--IZBTe C’. H8-‘28Xe ‘28cs‘33~s 962 ‘281&33&9~~ 128Te 3Sc,_ i26T,
37cI
150305.3 -2287 -1098 6289 -9145 8468 7910 6514 6976 4.7 3206 1581 683 695 689 663.3 -676 662.6 2115 2076 2089 2090 3450 158112 158141.2 159068.2 159069.7 -1293 -720 4106 4102.3 931.26 -1130 -1070 -350 370 -1440 -610 -965 -1160
9 13 I5 2 1.54 30 30 30 30 30 15 15 .4 36 39 51 30 5 5 40 loo
143645.2 -1010
2.0 11
1.0
u
.I
I 2
3436.3
1.5
.5 2.2
u
6 3.4 13 18 3 3 63 200 31 64 .I 24 5 IO 10 7 2.2 6 2.1 25 20 20 12 100
150308
9 7. 4.2 .7 13 13 2 1.8 1.20 30 30 30 50 30 30 16 30
1
-1117
13
1.0
I
-331 -532
16 16
420 -1080 5445
16 13 II
.2 .9 .7 1.1 .o .o .3
1 1 I 1 2 2 1 4 3 3 3 I
9113.8
0.4
2155
4
.9
78
42 9 12 12 12 8
98
54
Ml6 MA1 MA1 HI6 35 ‘26Te II43 6 ‘23Cti P22 10 ‘%b[ P22 10 ‘%Y P22 10 ‘%ti P22 3 ‘% P22 Ald ROC 60 ‘2sTe %U stu stu
77 “ks
2.5 1.0 1.0 4.0 1.5 1.5 1.5 1.5 1.5 1.5
63DalO 9 i St.A 91St.A 63Ba47 90Dy04 82AuOl 82AuOi 82AuOl 82AuO I 82AuO I 69BjOl 70ROS 77Ko.A 87Spo9 87SpO9 87SpO9 71oro4 59Ha27 55Ko14 92oso7 93AIo3
2.5 2.5 1.0 1.5
63DalO 63DalO 91St.A 86AuO2 72Mu.A 86TsO4 87SpO9 87SpO9 87SpO9 87SPO9 NDS 77LuO6 67Ral3 55Da37 56Kn20
50 ‘261
L
4826
-2290 -1104 6290.6 -9143.5
13
4 9 Ii 2.8 2.7
u
-.l
1.0
u
.7 .3 -.2 -.2 .5 .5
1 1 I 1 1 I 5 u 4 4
8010
100
.5
3206
24
.o
JAE Pbu 2: 46 16 88 84
7 22 43 9 86 50
‘271 ‘2’1 “‘Cs ‘2sCs 12’Te 12%
Ml6 Ml6 MAI P32 MMn stu stu stu stu
stu
R 2
698
662.3 -680.9 662.3 208 I
4
2.0 2.0 2.0 8
158138.7
1.9
159069.7
1.5
-1290 -731 4106.7
6 12 2.4
931.0 -1109 -997 -334 366 -1359 -562 -935 -1112
1.6 12 17 12 16 14 12 9 10
1.5 .3 1.2 -.4 -.8 -.I -1.4 .2 -.4 -.8
1.2 -.l .I .o .2 -.8 .I 1.0 -.2 .s 1.6 .4 --.l 1.8 1.1 1.2 1.1
1 1 I 2 u u 1 1 I I 1 1 1 1 1 1 1 1 1 I 1
34
19 ‘2’1
average
98
Pti 93 ‘2’Xe average
68Sc14 89ChOl 54Ma54 67SpO8 75We23
47
40 ‘2’cs
average 76Bell
7: 23 81 9 29 78
2 76 19 81 5 15 59
7
6
14 7 5 9 8 14 5
10 6 4 6 5 11 3
Ml6 c3 ‘28Xe Ml6 ‘28Xe C3 ._^ “‘CS MA1 ‘=~a MAI t=re H16 ‘26Te C3 12’Te H43 ‘*ks P22 ‘24CsX P22 ‘26Cs P22 ‘%s* P22 ‘24Cti P22 ‘2% P22 lz7Cs P32 .“_ “‘0 P22
2.5 2.5 2.5 2.5
63DalO 7OKeO5 63DalO
1.0
91St.A 91St.A 63Ba47 7OKeO5 90DyO4 82AuOl 82AuO’ 82AuOI 82AttOl 82AuO I 82AuOl 86Au02 82AuOl
1.0
4.0 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
7OKeOS
281
G. Audi et al. / The 1993 atomic mass evaluation (Iv) km
Input value
‘2’I(n y)‘% ‘%d;)?)‘%n ‘%n(~) ‘2%
6826.07 7070 8992 8910 9306 9230 1265 1290 1260 10 4391 439s 1277 2116 3928 3930 6650
‘%P c/3-f ‘%n
‘28Sbm(IT)‘28Sb ‘28Sbm (/?- ) ‘28Te ‘2aI(~+)‘z8Te ‘%/!)‘2*xe ‘28Cs(J?+ >‘28Xe
C,. H9-‘*‘Xe ‘29X&C ‘29Xe-C10~~~lj ‘29Cs_‘3 s (J$,970 ‘29X,_ l2fJXe 128Cs_‘29~.
‘26CS.339
‘28Te(n,y)‘2G:
‘2gNd(rp)‘28Ce ‘%n@ - ) ‘%n ‘2%n~ (j3_ )‘%I ‘2qSn(,9- )‘29Sb ‘2qSb(@- )12’Te ‘2qTem(IT)‘2qTe ‘2qTe(fl- )12’1
‘29I(JY-
)‘29Xe
‘29Cs(p+)‘2qXe 12qBa(@+ )‘29Cs
165643.6 3.6 -95228.1 5.4 - 1777.98 .68 -2216 14 1247 12 310 30 6083 3 5300 300 7655 32 8033 66 120 3996 30 2343 103.30 .OS 1480 10 1504 4 1500 3 ave. 1593 10 7 1607 190 3 1197 5 2447 15 2446 ave. 13 2450 30 8.42 .05 3720 50 5600 200 Systematical trends suggest ‘%e
C9 H8
N-“*Te 13C C8 N H,-130Te CIO “IO- ‘30X, 13C C8 N H,-‘30Xe ‘%-%s.9,, ‘30Te
‘30T,-
3+1-‘2’3~e
.os 290 43 90 43 90 30 40 13 7 40 30 13 10 6 100 400
37~1
‘3”Xe
ave.
159446 154990.6 174743.6 137693.4 -916 4715 4711.7 4711.37 2706.2 2712.98 - 1270 -9482 -4350 6500.33 9254.7 9255 9254.8
10
7. 4.2 .7 13 2 1.8 .72 7. 3.02 40 24 30 .04 1.3 2 I.1
Adjusted value 6826.07
40
9290
40
1264
13
4394
24
1251 2118 3930
4
2380
.o
0.03
8980
165643.4 -93220.1 - 1778.2 -2220 1249.3 302 6083.2 6120#
v/s
4
-.4 .7 -.3 .7 .o -.7 .3 .l .o -2.0
Dg
Sig
Main flux Lab
1
100
87 ‘2%
5 4 4 4 4 3 3 3 3 2 2 1 1 u
.2 1.6 -.3 -.3 .I
u U 1 1 u
7
-.2
v
2.7 860#
-.b 2.7
1.2
1 c 4 4 3 2
1.8
-
0.9 0.9 0.9 6 1.7
21
MMn stu stu Gsn stu G.%I stu Gsn stu G!m
15 79
13 ‘% 77 ‘% Pbu
78 16
Ml6 ACC 78 lz9Xe H47 12 ‘*‘C, MA1 Ml6 P22
79
2.5 1.0 1.5 1.0 2.3 1.3
71 ‘2gTe stu stu stu
L
1497.9
2.8
-1.3
1603.4
2.8
194 1193 2433
3 5 11
2442
11
-.6 .8 -.S .7 -.3 -.9 -.9 -.3
-
1 R R 1 1 1 R 2
77
48 12’)1
43 84
42 “$1 83 ‘2qCs
62
38 ‘*‘I&
2.1 2.1 1.1 1.1 9 1.0
2714.0
2.2
-1212 -9522 -4522 6505.33 9235.2
14 12 21 0.04 0.9
.2 -.s -.2 -.I .4 -.4 .Ol .o .4 .2 1.0 -1.7 .9 .o .4 .1 .4
64DelO 68Go34 34Del7 76Ma35 6i~r05 average
;
Pbu
‘3 u u 1 1 u
MI6 c3 Ml6 C3 MAI Hlb C3 H43 c3 H43 P22 Win Oak ILn
I
42 48
42 ‘)OXe 49 13’Cs
5 91
4 130Te 76 l”Te
24
20 I_^ 13’Te 4 ““CsX 19 ‘28Ba
u
1 1 1 R 1 1
2:
LOO 90 1301
73
63DalO 9OMeO8 93Ba.A 91St.A 63DaIO 82AuOl 72Mu.A 78Bo.A nspo9 87SpO9 77LuO6 7OGh05 NDS 64DelO 68Go34
average
blArO5 NDS 79BrO5 93Alo3 l GAu **
550 more bound 139431.3 134981.1 174741.4 157693.2 -911 4711.5
Reference 901~03 Z 87SpO9 87SpO9 9ost13 87SpO9 90st13 76NuO1 77LuO6 90st13 NDS 77LuO6 90st13 6ILa16 36Be18 76Cr.B 93Alo3 66LiO4
v
.2 .3 .o
5
CF
2.5 2.3 2.5 2.5 1.0 4.0 2.5 I..5 2.5 I.5 1.5
$3 130Xe average
63DatO 7OKeO5 63DalO 7OKeO5 91St.A 63Ba47 7OKeO5 9oDyO4 7OKeO5 9ODyo4 82AuOl 74De31 l 68AUO4 89Sall Z 7lGr28 74Ge05
288 Item
G. Audi et ai. / The 1993 atomic mass e~~luat~~n(fv) Input value 5 -4001 10249 9880 i 0300 10170 10650 9880 1946.88 2190 2100 2145 3955 5046 4960 5020 4990 2983
20 15 38 90 37 170 49 200 .I0 30 50 1.5 50 100 25 100 70 IO
Adjusted value -3 -4017
v/s
Dg
-.4 -1.0
I I
4.1
10250 10300
.a
“u
3.9
;: 4 3 3 3 R u 2 R R 1 1 2
13
4000 4960
40 25
5060
50
2949 2983
3 a
2992 20 2972 20 ave. 2982 14 163.25 .11 40 14 27 15 11 442 50 373 Not resolved peak. Original uncertainty 16 Combining isomer ratio of ref. with E (exe) = 163 Value given without indicated error 180992.5 180991.6 3.0 -94917.2 -94925.5 5.7 - 1405 -1419 14 1573.9 1574 11 -46 -100 30 758 21 783 -871 30 - 1030 5929.7 .5 7493.50 7493.5 .3 4270# 4600 400 9184 33 9547 46 ‘3450 163 241.8 .3 20 4638 4638 110 4600 4880 4796 80 120 4680 3190 70 182.25 .02 2415.0 2457 10 2460 15 970.8 971.0 .7 970.4 1.2 332 355 10 10 355 I5 360 we. 356 6 16 1370 12 1371 ave. ‘37’ 10 2960 100 4020 400 5250 150 6560 ‘50 Rejection based on line-shape analysis
1.8 1.8 6 2.1 9 8 6 0.30 510#
20 20
2.7 0.6 5
7
-1.3 1.0 .4 .a -.9 .4 1.0 -3.4 -.3 .5 *l .9 -1.4
17 53
4 B
10650 2150
Sig
1
Gsn
stu
GSll
‘3%
II
10
35
35 130Cs average
89
86 t3’Cs*
6 “‘Xe
83WeO7 AHW * 52Sm41 l GAu ** 82AuOl l * AHW **
u
1 .o u
19
1.2 -.8 3.5
u F B 2
1
100
Ml6 ACC 15 13’Cs MA1 Ml6 P22 P33 P22
2.3 1.0 1.0 2.5 1.5 1.5 I 5
64 13’B,
C 5 5 5 5 4 u u u 3 3 B B 2 2 -
stu stu stu
Bwg Bw
stu
I .o -.I -
69
67 ‘3’Cs
average
-.l
53
36 “‘B,
average
1 2 3 4 5
Reference 8lHaO8 74Gr22 87SpO9 90st13 87SpO9 90st 13 s7spO9 9ost13 NDS 77LuO6 77NuOl 90st13 90% I3 71Ki15 90st 13 77LuO6 90st 13 65DaOl 52Sm41 7SWe23
GSlt
6
-4.2 -3.0 -.2 .4 -.3 -.3 -.6 -.7
‘7 130Cs ChR 42 ‘29Ba Tal stu cisn stu Gsn stu Gsn
GSII
1 u
.3 1.0 1.7
CF
stu
.1 1.5 1.0
.o -.8
Main flux Lab
63DalO 9oMeOS 91St.A 63Da10 82AuOl 86Au02 * 82AuOl 77Ko.A 82Ka.A 18Bo.A 88FoO5 88FoO5 88FoO5 NDS 84Fol9 87Gr.A 84Fo 19 87Gr.A 77LuO6 75Ja03 61Be20 65De22 5 I VeOS 52Ro16 54Sa22 56Ho66 57Mi63 76Ge 14 78Va04
Pbu Pbu
6000 I 66No05 93A103 93Aio3 86Au02 **
289
G. Audi et al. / The 1993 atomic mass evaluation (Iv Itern
C o H,2-‘32Xe I3‘2Xe-C,’ “2X.?-C ‘3c %I* ‘%-‘33cs,992 ‘32Ba-‘30Ba
Input value
3’Cl
‘3ks-‘32cs,,94 ‘*‘Cs.206 ‘%-‘=cs.744 ‘%s.2j6 t3ocsx - ‘3*cs.4qz ‘%s.~** ‘3’xe(~,~)‘32x~
Adjusted value
189745.8 189740.8 3.3 -95845.4 -95856.2 4.0 -2808.2 -2807.67 1.08 226.4 14 232 -1254 4 -1241 - 1092 -1118 16 -1218 30 -1200 -322 40 -210 8936.0 1.0 8936.3 2 8935 ave. 8936.0 0.9 13600 400 3103 3080 40 3103 12 200 SO 70 5486 5530 20 5486 493 4 3577 3596 15 3558 15 3685 10 667.67 .Ob 1452 1460 6 4710 4820 100 4680 50 Rejection based on line-shape analysis
1.5 1.5 1.5 2.1 7 6 6 16 0.9
12
20
11
ave.
6891.540 6891.540 6891.540 8400 8420 8280 8510 1560 4170 138.7 70 2058.6 3772 3692 500 2770
204 156.0 -94605.5 1381.8 205047 2023.01 - 197222 -552.8 -1215 6891.540 .017 .027 0.014 300 8420 120 8470 240 110 90 60 .l 80 40 2058.7 .4 3713 50 30 200 150 3.2 5.4 .60 20 14 20 4 50
Dg Sig
.bl 2.7 -.4 -.4 -1.3 1.1 -.4 -1.9 -.3 .5 -.I
3 u 1 u 1 F u 1 -
I
88 51
1
Main flux Lab 3”*Xe
Ml6 ACC 88 ‘32Xe H47 MA1 47 13’Ba Ml7 P33 P22 7 ‘%sX P22
2.5 1.0 1.5 1.0 2.5 1.5 1.5 1.5
3 40
71GdJS 93
13’Xe
average
86BjOI 77Alo9 90Sp.A 89StOb 77Alo9 9OSp.A 651~01 biDe17 6SJo13 74Dio3 NDS 87De33 bOWaO3 67FrO2 8bAU02 **
stu SW stu
u 4
stu
-1.3 2 1.3 2
0.9 0.9 0.9 3 0.03 3 1.2 lb 0.014
110 100
40 0.4 26
-1.4 1 -1.1 2 .b 2
-.4 .l
1 1 6
-.4 .4 -.b .4 -.2 .l .ll
4 R 3 3 2 2
33
93 100
30 ‘%s
70 “*Cs MMn 96 13*Ba MMn stu stu
85TsO2 9OIsO7 2 83B116 90Sp.A NDS
5
99
68PaO3 59Ho97 bbEi01 52Be55 blEr04 67SclO * SONaO9 AHW ‘*
96 ‘33Ba
2
.I
5.4 .o .4 -.7 .I .o 1.5
u B
1 u u u u 1
.o .o .Ol .I 4 .o 4 .8 4 -.4 4 3 2 * .2 .2 -1.2 .7
; 1 2 2 3 3
63DelO 90MeO8 93Ba.A 91St.A 66BelO 8bAu02 * 82AuOi 82AuOl 7lGr28
98
6 .b V 5 -.b
CF Reference
L
-8986.8 1.9 -8986 2 7189.9 0.4 7189.91 .36 7830 70 4003 13 334.14 .07 2920 70 2960 100 3250 70 3210 100 1771 26 1800 50 1760 30 427.4 2.4 428.0 4. 427.0 3. 517.4 517.3 1.0 1.0 2230 200 From L/iv = .371(.007) to 437.01 level; recalculated Q 204155.5 -94634.4 1381.76 205025 2033 - 197229 -553 -1330
v/s
Ml6 ACC 100 100’34Xe H47 Ml7 MAI Ml7 Ml7 5 3 ‘30Csx P22 MMn
2.5 1.0 1.5 2.5 1.0 2.5 2.5 1.5
63DalO 90Me08 93Ba.A 6bBelO 91St.A 66BelO 6bBelO 82At101 84Kell 2 87Bo24 Z
100
98 99
98 ‘34Csx 66 ‘34Ba
77LuOb 87Gr.A 77LuOb 87Gr.A 77LuOb 61JoO8 7SVa12 82AUOl 68HsOl 6SBi12 73Al20 7bGr09 77Ko.B
G. Audi et al. f The I993 atomic mass ~~a~uati~n(Iv
290
Inputvalue
Item
Adjusted 14
1957 -203860
1
8762
6971.96
ave.
.4 .18 .17
1.0 0.12
200 130
5960
90
2780 2600
80 40
2648
24
10 10
‘3JcE+?+
2027 2016
1:
3720
150
10
1151
5
2026
217982.
3.9
-92793.6
9.0
136cs_‘3s~s~o,3023
4021
14
4034.4
‘~~T~(B-~)‘JJI
1285
50
I290
‘3%(fi-
)‘36xe
ave.
E-
=
91St.A
2.5
66BelO
.o
1
-3.1 -1.1 1.1
u -
5100
80
6960 6690 6925
100 150 70
6940
60
7100 7705
230 120
89HoO8
.o .o
2 2
8JSa15 87Gr.A
-1.6 1.2
-
I
2870
70
5084 5114 5134
50 75 20
39
1
91
90 ‘3Jxe
7lBa18
; 3
76Ga.A 81Sa09
4
54Ha68
9OMeO8 9LSt.A
-.l
1
50
.21 .2
0.04
1.9
-2.0
.o
I
I 1
-.2 -.2
-
-.3
I
-.3 1.6 .o
B -
-.2
1
2.1 -1.1
2 2
.l -.2
2 2
.8 .2 -.4
81
77 ‘36Te
59
57 ‘351
8 100
48
6 13*Xe 66 ‘36B,
25 ‘3%
84Kr.B Oak
7 I Wi04
Oak
68Mo21
MMn
901907
Bwg average
39Jo37 76LuO4 87Gr.A
stu 75
75 ‘3?
BY3 average stu
76LuO4 87Gr.A
Bwt?
540105 65Re07 59Gi50
75Bt16
25
3 4 of two isomers
83AlO6
l
NDS
**
‘3’cs-‘%l.03(J
4470
14
4474.0
0.5
.3
u
MA1
1.0
‘37Ba-‘3$‘a
1249
3
1251.28
0.03
.3
v
Ml7
2.5
66BelO
143
3
138.64
0.05
U
Ml7
2.5
66BelO
‘371(@-n)‘36Xe
1850
30
‘36Xe(n,y)‘3’Xe
4025.7 4025.4
‘37B,_
‘35&q
1852 .6 .3
4025.46 1922 6905.76
12
‘36Xe(3Hed)“7Cs
1918
‘36~~~~,~~~3’~~
6905.76
.03
‘%?(n,y)‘3’Ce
7480.7
.4
“‘Tef,V ‘wp‘37Cs(b-
)13’1 )‘3’Xe )13’Bam
ave.
7030 6925
300 130
5880
60
5877 .84 .26 .23
513.97
.17
.l
2
-.4 .2
2 2
7
.3
1
0.03
.o
1
0.27
513.97
120 27 0.17
--.3 .I
91St.A
84Kr.B 77FoO2 77Pl.07
37
._ 33 ‘>OXe
ChR
81 Ha08
100
66 13’Ba
MMn
9OIsO7
2 6940
511.63 513.89 514.03
27
-.6
81Ko.A
3 3
Bwg
85Sal5 87Gr.A
B%
87Gr.A
.O
R
2.8 .3 -.3
F -
.o
I
z
77Sc21 87Gr.A
682h04 7lKeO7 83Al.B
200 2100 _ Mixture
62 ‘36Xe
2 2 2
7850
to several levels ammd
62
L
2211 4732(70)
52Be55
1
1.0
18
5126
43
MA1
110
2548.2
-.3 .7
70Ma19 76LuO4
‘39
1
v
50
2.0 5
-.4
Z
66 13*Ba
3
1.0
60
7580
77Ko.A 901~07 93BoOi
2.0
12
9107.74
92UI.A
BNn MMn
63DalO
-1803 5070
ILn
1.0
40 .04
100
99 ‘JJCS
2.5
- 1723
150 100
I
100
Ml6
23
2548. 2549
1.0
Ml7
ACC
-4432
we.
MA1
u
U
30
5100 5095
Reference
1.5
-4438 9107.74
CF
8
8
217981 -92780
Lab
u
40
I200
Main flux
-.I
.3
‘3sLa(,?+)‘35Ba
Sig
-1.0
.I
5970 5960
2640
Dg
v/s
a.12 50
1155
I i&“x,:C
8762.0 6971.97
8120
‘3Jxecfl- )“JCs )13JLa
I.1 3
-203867
6973.2 6972.17 6971.78 ave.
1943.4
20
value
68WoO2 78Ch22 83Bel8 LOO 96 13’Cs
average
z
291
G. Audi et al. I The I993 atomic mass evaluation (Zv)
‘37Bam(IT)“7Ba ‘3’Ce(B + ) ‘%a ‘3’Pr(!3+l’3’Ce
‘37Ndm(IT)‘37Nd ‘3’pm”t{,J+ )‘37Ndm *‘37Nd(@+ )13’P, +‘37Nd(~+)‘37Pt
.Ol 661.66 1222.1 1.6 2702 10 3690 3804 40 3690 54 519.6 .5 5160 130 E+ = 2400(40) assumed to 381.8 level E+ = 2592(54) to 75.5 level
Cl, HI -13*Ba ‘3*cs- f 33cs,.o3* ‘3*&,_‘33Cs
1.058
‘3*B+
‘37Ba
13*g,_
‘368,
‘3*c+.
‘36Ce
‘37Ba(n,y)‘38Ba ‘3*1@“*Xe(jr
)‘3BXe )‘3Vs
ave.
ave. ‘3pBa(~-
Adjusted value
Input value
Item
bi3’La ave.
235609 9157 3388 -582 676 -1158 8611.72 7820 2760 2830 79.9 40 5388 5370 5375 4437 4801 6900 7090 12163 7649 -1774 770 4723.4 4723.43 6553 -2522 6806 5020 5062 4214 4211 4213 2307 2316 2312 278 2129 2790 3014 231.15 4450 4540
20 14 14 2 3 20 .04 70 40 80 .3 23 25 15 13 10 20 400 loo 14 14 24 40 .3 .04 3 5 23
50
40
Dg
-2.9
2 3 3 F 4 5 6
3 10 0.5 0.04 0.05 50 0.04
.o .o .o .4 -.6 .o .o
2770
40
.4 -.7
33 5373
20 9
-.3 -.6 .2 -.I
235608 9156 3388.2 -580.14 671.14 -1’60 8611.72
12167 7644.2 -1771 791 4723.43
3 0.5 4 21 0.04
6553.4 -2520.8
2.6 2.6
5057
21
4213
3
2317.1
2.7
z 4 5 3 5 4 3 7 3 50 50 .OS 80
Y/S
2790 3020
.3 -.3 .I .3 .I .o .l .2 .6 -.2 -.3 .3 -.I 2.0 .3 1.5
40 40
--.I .I
40
.9 -.4
u 1 u I3 U 1 1 3 2 2 2 1 1 2 2 4 4 u u F 1 u 1 2 2 3 2 2 1 I 2 3 4 R 5 5 5
Sig
Main flux Lab
CF
Reference NDS
81Ar.A 73Bul7 73Bul8 * 85Af.A * NDS
83AlO6 AHW ** AHW l *
48
100 100
Ml? 47 ‘38Cs MA1 MAI Ml7 Ml7 100 13ke Ml7 70 13*Ba MMn
2.5 1.0 1.0 2.5 2.5 2.5
Bwg
78
75 ‘3SC*X
49
49 ‘3kS
91St.A 91St.A 66BelO 66EelO 66BelO 901~07 Z 87Gr.A 72Mo33 78Wol5 NDS 82AuOl 81De25 84He.A 71Am5 64FuO8 SlDe38 83AlO6
13 100
MA1 MA1 P33 13 ‘3*Csx P23 70 ‘39B,
1.0 1.0 1.5 1.5
MMU
loo
loo ‘39CS
Tal Tal BwS3 TXX Bwa MCG Gsn average
73
43 ‘39L,
M& average
9 I St.A 91St.A 86Au02 l 82AuOl 80Ba.A 901~07 Z 71DuO2 72La20 92cm)6 78Wol5 92GrO6 84He.A 92Pro4
75Flo7 84He.A Averag * 81Ar.A 75VyQ2 75VyQ2 NDS 77DeO6 83AlO6
‘3gFmm (IT)“9Pm ‘3Qsm(p+)“Q~m ‘3qSmm (fl+ ) ‘39Pmm ‘JgSmm(IT)‘39Sm *‘33Cs-‘3Qcs2j9 “‘0 *139Ce@)l39L,
76’
* * * * * * * * * *
110 110
.2 -.2
NIX S2De06 83AI06 NIX 86AuO2 AHW 54Pr31 56Ke23 67Ma07 68AdO8 68VaO8 7X807 72ScO8 7SHa43 753106 76Ha3ti
6 6 R 7
px:= .73 pK
2
1.01) .68 1.02)
pK = .75 (x31) pK = .69 (.02) pK E .716(.02) pK G .78 (.02) pK = .726(.010) pK = .801(.034) pK = .705(.020)
i‘@Q_‘33Cs LO53 ‘4*Ba-t3fCs1.0~3 Ct, Hg--‘%e C” Hto-‘%e ‘@Ce-‘33Ce t39Cs-‘4*Cs,**3 ‘3QCs-‘4ocs,*69 ‘%e(t,p)%e ‘%e(p,t)‘%e ‘38~e(r,~)‘4~ce ‘%a(n,y)‘%a
188.7 .3 5460 5430 150 5730 5757 150 457.8 .4 Reiection based on line-shaoe analysis
“‘cs,‘,g ‘32cs.,32
‘“La(d,p)‘%a ‘@Xc@ - )‘% ‘@C*(fl- ) *%a ‘%a(8)“%a
‘%a(B)‘4OCe ‘4oPr(j$+ )%e 140Nd(e )‘40Pr ‘4oPm(ft+ )‘4%Jd
I2 I6838 14 16836 10162 9 10150 14 164991 3 164956 40 172816 3 40 172765 -552 Ii -343 8 10 -2271 -2280 40 -2236 10 -2210 40 8175 10 8184 15 -8175 10 20 -8167 8175 10 12 ave. 8178 5160.97 0.05 1.0 516I.f 1 SI60 5iSD.97 .os 2936.45 0.05 3 2938 40.50 60 6219 12 6212 20 8 1047 20 1060 1050 20 1055 30 ave. 1033 13 3761.9 1.9 2.0 3760.2 6 3388 222 20 160 60 6090 40 100 6080 6090 4’3 70 6484 3QO 3400 8400 400 4800 400 800 11300 Systematical trends suggest ‘4OSm 380 more bound Systematical trends suggest 14’Gd 660 less bound Lower limit Systematic@ trends suggest 140Tb 500 more bound
t4tBa-%51.060 %s-‘%,,, ‘3tcs,~t* t%a-‘4’Cs.*9, I%s,to, ‘39cs-‘4%s., , ‘%~,, 8 3a %s(p-“)‘4 ‘%e(n,y)%e ‘4’Xe(/r )14’Cs ‘*“Cs(#- )t4’Ba “4’Ba(8- )%a
ave.
14625 -?I90 -970 -3210 735 5428.6 6130 3242 3010 3208 3217 3215
15
40 41, 40 30 .7 90 15 60 3.5 20 I?
14636 -3279 - 1059 -3191 135 5428.6 5255 3216
11 IO I4 10 14 0.7 12 IO
.f
1
.8
I
.f .5 -.4 .2 -.4 -.6 -.4 -.3 -.l 1.0 .o -.5 .3 -.6 -.I -.3 -.6 .9
68 41
u u
I u u 1 u u 1 u 2
1
29
71
IO0
67 14’&s MA1 I.0 40 14’Ba MA? f.0 MI7 2.5 Ml7 2.5 29l%e Ml7 2S P23 1.5 P23 1.5 LA1 Brk 71 “‘Ce average
57
139LaMMn Tat
Tr3 Gso
36
24 ‘%s
43 90
42 14’Ba average 56 1401_a
3 4 5 6 7
3 i -1,s L1 -1.5 i .3 w .o 1 .o 1 2 .9 1 3.4 I.I .2 --.I .l 1
91St.A 91St.A 66BeIO 663elO 66BclO 82AuOl 82AuOl 72Mu09 77ShO6 7OJuO4 72RllO 901so9 z 67Ke52 78Wo15 92PrO4 49Be36 59Bo61 6SBu07
-
1 1 2 1.0 R .I 3 33 3
** ** ** ** ** ** ** *’ ** l* ** **
72NaO4 68Abl7 72Ba91 75KeO9 83Al@5 75KdB
87DcO4 9IEi03 9lFi03 9lFiO3 GAu GAu 9IFi03 GAu
LBL LBL LBL
50
49 i4tEa
6
3 *ws
21 97
15 ‘% s5 ‘ace
63
42 t4’Cs
35
31 “tBa
MAI P23 P23 P23
I.0 I.5 1.5 1.5
rrs Gsn Tn Gsn McG average
9tst.A
82AaoI 8tAuOl 82AUOl 84Kr.B 70Ge03 78WOlS 92PrO4 78Wo15 81De25 84He,A
* * * ** ‘* ** *+
G. Audi et ai. / The 1993 atomic mass evaluation (fv) Item
Input value 2430 30 4 2502 584 3 4 585 576.4 2.0 581.4 2.0 582.2 2.6 580.6 1.1 ave. 1816 8 1824 3 1823.0 2.8 ave. 3730 40 4580 40 4463 60 4540 30 ave. 4760 60 4700 80 4740 50 ave. ‘75.8 .3 6030 100 5950 40 6035 60 5550 100 B and C: large difference with later
“‘Smm(IT)‘4iSm
“‘Eu(/3+)‘4’Sm
'42&s'33Cs C
I HI,-
142'g
1 I4 Cc-C,,
HP ‘42Nd-C Hp 4b’ l”Ce-’ Ce ‘%s-‘42cs6*5 ‘%-‘%:,89 '4'cs_'42cs
'40~~_'42~~
'3'cs,~06 ,329 '39c%7'
'4'cs.- '42CS662 '4'Q_
'42Cs,49a
'4Oc&p)'42Ce
14’Nd~~,t)‘~Nd ‘QPr(n,y)‘42Pr ‘42Xe(@- )‘% ‘42Cs(/I- )‘42Ba
‘%a(/r-
‘%;/I-
‘%S3’6 ‘32cs:2,2
.794 '37C?206
'%sX-'42Cs,,94
)‘%a
)%e
‘42Pr{#7- )‘42Nd
Adjusted value
'39CS.336 '40c~so4
17410 168955 -161176 -162665 3818 -4840 -2950 -580 550 260 -410 -640 -663 4112 -9150 5843.06 5040 7280 7315 7311 2200 2216 2215 4517 4510 2164 2158 2162.2 4800 4880 4880 2050 2100 7400 7000 8150 8174 7480
IS 40 40 30 3 40 40 40 40 40 40 40 ‘9 5 20 .lO 100 40 15 14 23 5 5 25 6 2 3 1.7 80 80 160 70 400 100 300 100 50 100
2502
4
580.7
1.1
1822.9
2.8
3715 4543
24 23
4719
23
175.8 5550
0.3 100
y/s 2.4 .o -1.1 -1.1 2.2 -.3 -.6 .I .9 -.4 .o -.4 -.9 1.3 .o -.7 .2 -.4 .o -4.8 -10.0 -8.1
Main flux
Lab
97
96 14’La
McG
93
57 “‘Ce
average
Dg Sig IJ 1 1 1 1 I 1 1 B B C 2
293 CF
4115.7 -9143 5843.06
8 4 4 3 2.7 9 14 13 21 12 13 I2 2.5 19 0.10
7306
12
2212
5
4505 2162.3
5 1.5
4870
40
2100
50
7360
90
8170
40
1.6 .5 -.I -.5 -1.6 -.3 .l -1.2 .5 .6 -1.7 -.3 .2 .7 .3 .o .7 -.6 -.3 .5 -.8 -.l -.5 -.8 -.9 1.4 .l .9 -.I .o .7 .o -.4 1.2 .2 -.I 4.9
1 u u u 1 u I I 1 U u u 1 I 2 1 2 1 1 u 1 1 2 2 2 R u 3 3 3 3 B
51Du19 84Ht.A 5OFr58 52Ko27 55JoO2 68BeO6 79HaOY 73Bu21 77Ga.A
100 100 14’Nd 36 36 14’Pm
47
23 100
43 “‘Pm
21 “‘Pm 98 14’Smm
awn& 7OCb29 77KeO3 83AlO6 average Pbu average
26
13 6 5 13
19 24 100
7’
77KeO3 93Aio3 77De25 77De25 83AlO6 * 85Af.A ’ 93A103 AHW **
value of same group
17434 169010 -161185 - 162706 3805.8 -4858 -2942 -650 579 295 -509 -656
Reference
23 ‘42Ba
MA1 1.0 Ml7 2.5 Ml7 2.5 Ml7 2.5 9 ‘42Ce Ml7 2.5 P23 1.5 3 ‘% P23 1.5 3 ‘41Cs P23 1.5 13 ‘3aCsX P23 1.5 P23 1.5 P23 1.5 P23 1.5 14 ‘4’cs P33 1.5 17 ‘42Cc LAI ch 64 14’Pr MMo Tt3 Rw Gsn 64 ‘42Cs averwe
89
70 ‘42Ba
McG average
84
80 ‘42La
Mffi
85
64 ‘42Pr
average
LBL LBL LBL
Pbu
9lh.A 66BelO 66BelO 66BelO 66BelO 82AuOl 82AuOl 82AuOl 82AuOl 82AuOl 82AuOl 82AuOl 86AuO2 72Mu09 7iYalO 81KelI z 78Wol5 87Gr.A 92Pt04 83Ch39 84He.A 65PrO3 84He.A 66Be12 75RaOY 60Ms.A 83AlO6 91FiO3 60Ma.A 91FiO3 82Gr.A YlFi03 75KeO8 83AlO6 93Alo3 *
294
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
Item
300 4200 700 10400 200 7100 Measured half-life 73.4(.5)s Systematical trends suggest Systematical trends suggest Systematical trends suggest ‘43&-‘33Cs
1.075
‘43Nd-C,l H,‘, ‘43Nd-C,l Hg “‘cs-‘43cs,493 ‘39Cs,,or
“%-
‘43cs
497
‘4’cs,,04
‘“Ce(n,y)%e ‘42Nd(n,y)‘43Nd ‘42Nd(3Hed)‘43Pm ‘43Csffl- ) “43 Ba
‘431.afB-)‘43ce ‘43ce(,/- )‘43Pt )‘“Nd
‘43Pr($-
‘42Cs-‘~Cs.592 ‘39cs,409 ‘43cs- ‘“es 745 ‘%s.255 ‘%-‘%:329 ‘4’Cs,6,1 ‘43cs_‘44cs
,662 “‘c4338 ‘44cs,,g, ‘42c$.,04
‘44Sm(3He 6He)‘4’Sm ‘4dSm(pt)~42Sm ‘43Nd(n:yf’44Nd ave.
we.
25347 1911.9 -60 -920 290 -651 -790 -8693 -10649 7817.06 7817.00 7817.02 -804 402.7 -4262 -1536 8560 8462 8480 3055
v/s
Dg Sig
Main flux Lab
4 5 6
CF Reference
LBL LBL LBL
91FiO3 91FiO3 91Fi03 GAu GAu GA” GAu
cornsponds to ‘42Eum ‘42Gd 300 less bound ‘42Tb 340 more bound ‘“Dy 200 more bound
22250 14 16 22268 3 -168440 30 -168422 -160615 3 30 -160594 -175 14 -230 40 -115 22 665 14 647 15 5145.11 0.26 5145.9 s .3 5144.8 0.26 ave. 5145.09 6123.59 0.13 6123.58 .13 5 -1193.7 2.4 -1195 6243 18 6240 70 6270 25 6267 24 ave. 4243 17 4240 50 4259 40 4210 70 4245 29 we. 3425 15 3425 17 1461.6 1.8 1460.6 2. 2 934.0 1.4 932 2 935 1.4 ave. 933.5 3443 4 3500 60 5170 40 5100 50 5240 70 5250 80 6160 200 .5 152.6 Based on ‘4bNd(‘He,d)‘47Pm Q = -87.6t.9)
‘44Ba-‘33Cs,,083 ‘44Sm-‘44Nd
‘43c*-
Adjusted value
Input value
15 1.1 40 50 40 21 50 12 15 .12 .08 0.07 5 1.6 10 2 80 35 30 70
-.6 1 -.2 II -.3 u .91 -1.8 I .81 -1.6 1.0 .l 1 .o I .3 1 .o -1.1 -1.0 1 .1 -.4 .5 .o 1 .o 1 .5 1 1.0 -.5 .3 I -1.0 u 1.4 2 -1.0 2 -1.0 2 3 4
-.4 1 .2 I .61 .51 -.I 1 1.0 1 1.31 -.l 1 2 7817.02 0.07 -.3 .3 .I 1 -790.6 2.2 2.7 1 403.1 1.5 .3 1 -4262.6 2.4 -.I u - 1536.0 2.0 .O 1 8465 24 -1.2 .I -.4 1 3120 60 .9 I 25342 1912.6 -27 -885 283 -619 -696 -8694
14 2.0 17 19 14 18 17 12
72
5 18 36
72 ‘43Ba MA1 Ml7 Ml7 4 14’Cs P23 12 r41Cs P33 20 142Cs P33
1.0 2.5 2.5 1.5 1.5 1.5
100 100 23
71 “%e average 68 ‘42Nd MMn 22 ‘43Pm McM
60
Rwg Gsn 46 ‘43C, average
37 78 84
GSI’ Bwg 23 ‘43La average 77 ‘43La 70 ‘43ce
* * * ** ** l* **
91St.A 66BelO 66BelO 82AuOl 86Au02 86AuO2 76GeOZ 80Ba.A 821505 z Eostlo * 87Gr.A 92PrQ4 79Scll 81De25 87Gr.A 84IsO9 77Ra18
49Fe 18 76Ra33 92
86 ‘43Pr average Pbu
Pbu Pbu
91 52 8 7 3: 5 94
100 20 89
90 49 5 3 3 20 4 94
‘“Ba ‘%m ‘44Cs 14ks ‘42Cs ‘43Cs ‘43Cs 14’Sm
MA1 1.0 Ii25 2.5 P23 1.5 P23 1.5 P23 1.5 I’33 1.5 P23 1.5 MSU Ham MMn ILn 66 ‘44Nd average 19 ‘44Pm McM 58 ‘43Pm
100 100 14’Sm
57 63
Bwg GSI’ 49 ‘+Ts average 61 ‘44La Bwg
93A103 74Ch2 1 83AlO6 93AIo3 93Aio3 NDS AHW ‘* 91St.A 72Ba08 82AuOl 82AuOl 82AuOl 86Au02 82AuOl 78Pa 1 I 73GeO2 82IsOS 2 9lRo.A 2 80StlO * 75Ma04 72k28 86RuO4 87Gr.A 92PrO4 87Gr.A
295
G. Audi et al. / The 1993 atomic mass evaluation (Iv km
Inputvalue
Adjusted
‘%a(/r )‘“Ce ‘44ce(8- )‘44Pr
5435
5540
ave.
90
315.6 320
1.5
318.6
0.8
I
3 4
2996 3000 ave.
‘“Sn~(p,n)‘~Eu
-7110.0
144Gd(,9+)‘44Eu
4300
30.
*‘44Gd(,5’+)‘44Eu
Systematical
I
2.4
.5 -.6
-
21
-7111
.o
1 2 u
.o
39
Main flux Lab 39 %a
CF
Bwa
Reference 87Gr.A
-
.o -.v
21
Sig
66Da04 76Ra33 100
100 ‘%e
average 59Po77 66Da04
100
100 ‘44Pr
average 83AlO6 93Alo3
Pbu
2
65Me12
3
70ArO4
Q = -87.6(.9) 560 more bound
”
GAu
**
50
203
22
1
9
6 ‘45Cs
P23
1.5
82AuOl
450
50
462
24
.2
I
10
9 ‘45Cs
P23
1.5
82AuOl
._ 7 ‘43Cs
P23
1.5
82AuOl
P23
1.5
82AuOl
P33
1.5
86Au02
P23
1.5
82AuOl
-.5
-700
80
-571
25
1.1
u
-310
40
-288
22
.4
1
14
348
20
1.0
1
55
642
18
9
320
18
600
40
5755.3 5756.9
.7 2.0
5755.5
0.7 1.6 .3
-2184 -2174
4 4
-2179.0
2.8
7930 7865
75 50
7880
40
.7
I
0.6
.2 -.7
-
2.2
-.7
.o -683.6
5
6751.1
5755.5
107.0 6757.09 -2178.9
1.5
1.1
0.30
.o
2.7
1.3 -1.2 .o
40
-.6 .4
1
35 %s 5 ‘“Cs
75Na.A 77Md)V 87
59 ‘45Nd
average
1
8OStlO
1
75Ma04
1
99
70 ‘45Sm
94
93 14’Eu
-
Gsn
1
90
81 ‘45Ba
82Sc25 84Ru.A
average BWR
.o
87Gr.A 92PrO4
average
4925
80
4930
60
.l
1
64
45 14*La Bwa
87Gr.A
-
)“%
4110
80
4120
60
.I
1
64
55 14’La
Bwa
87Gr.A
‘%e(p-
)‘4sPr
2490 2600 2530
100 100 50
2540
40
.5 -.6 .l
B=%
67HolV 80Ya07 87Gr.A
2540
40
.o
1
91
90 ‘4sCe
1805
10
1805
7
.o
1
50
50 ‘45Pr
143 150
15 5
1.3 2.6
-
149
5
2.9
1
21
20 ‘45Pm average
607 622
6 5
‘%a(B
Bye.
aYe.
ave.
‘4sTb(fl+) 14’Gd
._
mDy(&q+)M)~
*‘44Nd(3He ‘45Q(p+
l
d)14’Pm ;‘45Tb
616
4
5000 5070
70 60
5070 5090
;:
6700 6400
200 150
7300
200
Based on ‘46Nd(3He,d)‘47Pm Systematical
163.2
616.7
2.2
2.4
5050
40
6510
120
1.6 -1.1 .2
1 2 2 2 2
.7
trends suggest 14’Dy
420 less bound
average 59Dr.A 59Br65 74To04 71MyOl 83VolO
-
.8 -.3 -.4 -.2 -1.0
Q = -87.6(J)
-
l
79Wa22 MU?
1
*
AHW
240
105.2
‘45Ba(p-)‘45h
.o 2997.5
trends suggest ‘“Gd
-680
ave.
I
2.0 -1.3
400
Based on ‘46Nd(3He,d)‘47Pm
aYe.
1.2
0.8
6329
30 80
l‘43Nd(3He,d)‘“Pm
a”e.
60
Dg
318.7
2.4
2997.4 6330 6400
Y/S
value
40
24 14’Prn average 77Ho18 79Fi07 83Ve.A 85Al13
3 3
Pbu
86Ve.A 93Alo3
4
Pbu
93Alo3
*
AHW
”
GAu
l*
296
G. Audi et a/. I The 1993 atomic mass evaluation (Iv)
Item
Input value
‘%e(p“%e
)‘46Pr
(p - )
‘46Pr
y/s
Dg
-1.2 I 5982.8 1.1 3979.6 0.7 -740 40 -1.4 I -580 80 1.4 1 320 428 23 50 .2 I -440 -430 30 30 -652 1.7 I -730 25 30 1.2 1 2524.3 4. 2529.0 2.9 -.2 I 2797 2794 7 12 4 2 u 977 30 982 -3095 7 .o 1 -3095 10 .I 1 7565.23 0.14 7565.24 .14 .3 1 12162 3 12161 5 3 1127.8 10. 3 1198.3 10. 1.1 40 9380 9310 60 .o 9375 SO .7 1 9350 40 -1.6 4120 40 4280 100 1.8 4030 50 .9 1 4080 40 2.4 50 6530 6380 70 -1.0 6620 70 .9 1 6500 50 -.8 1040 40 1100 80 -.l 1050 100 1.7 951 50 -.3 I040 40 1065 100 .7 1 1010 40 .2 4200 60 4150 200 -.3 4250 200 1.5 4050 100 .3 4150 100 1.2 1 4120 60 2 1542 3 .7 3878 6 3871 10 .3 3871 20 -.9 3896 20 .3 1 3875 8 -1.3 u I030 8 1300 200 -1.1 3 8080 110 8240 150 I.1 3 7910 150 .o s lSO# lOO# IS0 100 4 5160 100 Q - Q(‘48Gd(3H~,~)) = -567(S) Reported half-life 24.1 (.S)s corresponds to t4%-? Original 8060( 100) minus estimated isomeric excitation energy Estimated value for ‘46Tbm, accepted and treated as syst
‘45cs-‘47cs ‘44cs-
Adjusted value
,705 ‘40Cs.296 ‘47cs.,,, ‘4bS,’
‘%s- %s.,,, %s 50, ‘47Eu(n)‘43Pm
ave.
-170 80 -87 2990.6 2981.5 2987.5 2988 -17921 -28280 -6287 5292.03 -98 -1945 ‘062.2 1057.2
170 250 22 10. 20. S. 5 23 50 8 .I5 IO 18 6. 10.
-330 330 -90 2990.4
30 40 30 2.9
- 17956.3 -28331 -6275.7 5292.07 -85.0 -1947 1061
1.4 13 2.0 0.15 3.0 12 5
-1.4 .7 .o .o .4 .6 .5 -1.4 -5.0 1.4 .3 1.3 -.l -.2 .4
u u 1 u 1 u F u
I u R 3 3
Sig
Main flux Lab
CF
Reference
46 30 49 30
4 10 5 33 16 48 29
2.5 1.5 1.5 1.5 1.5
50 99 37
Bid 30 14SPr KVI 59 ‘46Nd MMn 28 ‘%m
72Ba08 82AuOl 82AuOl 86Au02 86Au02 87MeO8 84Ru.A 79tio7 79Sa.A 821~05 Z 86Ru04 l 92Wo.A 92Wo.A 87Gr.A 92PrO4
6 10 10
‘46Nd 14’& 146Cs ‘46cs ‘% t4%m ‘48Eo
H25 P23 P23 P33 P33
Bw
GStl
92
89
86
54 ‘46Ba average Gsn Bwg 46 ‘46l3a average TXS Bwg 57 ‘%.a average
81DeZS 87Gr.A 828123 87Gr.A 54BelO 67Ho19 80Ya07 8lEbOl
93
70 ‘4%
average 54BeIO 63RaO2 68Da13 781kO3
61
Got 37 ‘46Eu average
74ScO6 62Ful6 64Tal I 88Sa06 81KaO7 83AlO6 93Alo3 l 93Ki.A * 93A103 AHW ‘* GAu ** GAu l* 93Kl.A l *
100
39
99
100 ‘47cs
P23 P23 P33
20 ‘43Pm average Ors Hei Mitt 71 14’Nd ILn McM
1.5 1.5 1.5
82AuOl 82AuOl 86Au02 62Si14 Z 64ToO4 Z 67Go32 Z 83Be24 85GyOl 12De47 75Ro16 Z 75SiO3 87Sc.A 82KlO3 92Wo.A
G. Audi et al. / The 1993 atomic mass evaluation (IV) Input value
Item
we.
ave.
we.
1124.7 5750 4945 3290 2790 894.6 223.2 224.3 224.5 224.0 1723 1702 1692 2185 2199 2186 5200 4490 4560 4620 4560 4660 50.6 7180 7034 750.7
6. 50 55 40 100 1.0 .5 1.3 .4 0.3 3 13 18
12703.6 8721.4 6723.7 -370 2703.2 3271.29 -6011 -6018 -6013 -7844 -7843 -3726 - 1072
2.1 2.6 .9 90 30. .03 a 15 7 14 4 40 4 1.2 1.8 1.0 0.7 5 2 2 3 1.3 60 140 55 75 200 200 100 .I 15 30 30 30 30
8140.0
ave.
we.
Adjusted value
8140.6 8142.6 8141.4 -6755 -842 -843 -842 -842.4 5115 7310 7255 2060 0 4800 4963 137.0 2480 2480 2594 3122 3150
1: 5 150 60 80 65 60 I5
2690 896.1 224.1
40
0.9 0.3
1721.5
2.3
2187.8
2.8
4611
12
4662
12
v/s
Dg Sig
-1.0 1.5 1.9 -.I -.9 .5 -.5 1.5 1.6 .6 -.7 .3 -3.9 2.0 1.3 .6 1.7 .l
3 5 4 3 2 1 1 1 u U 1 B B U U u 2 3 3 3 4
.9 7070
100 60
50
-1.1 .6
.3 12706.0 8722.8 6726.5 -370 2761 3271.21 -6002.0
-7843 -3740 - 1075.7 8141.5
-6739.2 -842.3
1.9 2.2 1.8 130 17 0.03 3.0
4 40 1.6 0.7
1.4 1.2
7260
50
4930
90
2468
6
2605 3107
6 17
.5 .2 .3 .o 1.9 .o 1.1 1.1 1.5 .l -.4 -.9 1.3 .5 -1.1 .2 -.a -.I .4 -.l .I -.3 .I
CF
a2
53 ‘4’Pm
98 58
55
34
18 14’Eu .average
51
14’Sm 14’Eu
Pbu
I
18
u 2 R 17
85
4 4 3 3 .7 2 -.3 2 3 -.a u -.4 u .4 u -.5 2 -1.4 2
83Ve06 85TiOl 85AlO8 85ScO9 93Alo3 9lKell 87LiO9 83Al18 85Af.A NDS
2.5 72Ba08 2.5 2.5 73Me28 1.5 86AuO2 64Td)4 73Go29 Z 90 ‘48Gd 72De47 Min 74Ge03 Ham 16 14%rn average 83FlOS LAl 86Ma40 Liv 79Sa.A KVI 778122 16 ‘48Nd McM 69ReO4 70Bu19 71Gr37
12 9 60 100
5I
‘48Nd ‘“Sm ‘48Nd %s
H25 H25 H26 P33
‘48Smaverage 86RuO4 86RuO4 86Ru04 86Ru04
u -
I 5
84Ho.A 87Gr.A 87Gr.A 87Gr.A 81YaO6 67Ca18 5oLao4 5aHa32 66HsOl 80Bu04 84Scl8 84Scl8 SOVyOl 84Sc18
Got Pbu OS1
100
Reference
average
Got
13 I1 62 loo
I
Main flux Lab
Bw BW Bw
1 1 1 1 R 1 -
I
291
95
l
84 14’Gd average Bw TI-S Bw Bw
Bw
90GrlO 82Br23 9oGrlO 87Gr.A NDS 79fkO6 87Gr.A NDS
62ScO4 63Ba31 63Ba31 63Ba32 7OAgOl
l
298
G. Audi et al. / The 1993 atomic mass evaluation (Zv) Input value
Item
j 148~~
.‘48m(,q+
j 148~4
l
‘493,
35CI-‘47Sm
‘49Gd(a)‘45Sm
‘49Tbm(a)‘45Eu ‘49Sm(na)‘46Nd ’ ‘49Nd ‘48Nd(n,y) ‘48Nd(3He,d)‘49Pm ‘49Sm(d,3He)‘48Prn ‘48Sm(n,y)‘49Sm ‘49Er(ep)‘48~y ‘49Ce(/r 1’49Pr ‘49Nd(,9-)‘49Pm ‘@Pm(B- )‘49Sm
‘49Hom (IT)‘49Ho ‘49E”“‘(e)‘49Ho ‘49Erm (IT)‘49Er l‘48Nd(3He,d)‘49Pm l‘49Er(cp)‘48Dy
v/s
Dg
Sig
Main flux
30 .8 2 5630 80 5690 1.9 2 5580 60 3.0 B 5390 100 -.I 2 5700 80 30 -2.0 R 5925 70 5780 -.2 R 5800 100 -1.6 R 5910 80 3 90.1 .3 10 .3 u 2660 60 2678 -2.1 u 2805 60 -.4 u 2700 60 -.4 U 2700 60 -.I u 2682 60 -1.0 u 2740 60 3 2678 10 4 9400 250 Q - Q(208Pb(p,d))= -1612(S) E- = 5862(100) supposed to go to levels around E = 1450(100) KL/fi+ = 1.54(.09) to 1863.42 level gives Q+ = 5295(45) but assuming 7(7)% side feeding; compare 90Sa32
‘48Hom(@+)‘48~y *‘48Gd(p,d)‘47Gd r’48hcp-
Adjusted value
37r.J
1.1 .8 5236.2 5239.8 3 3102.4 10. 3101 3096.4 10. 3099.4 5. 3099 4 ave. 2.4 4076.7 3. 4077.3 4081.8 5. 4077.4 2.5 aYe. 2.4 4113.3 4109.5 7. 1.3 9429 4 9434.9 0.10 5038.68 .10 5038.68 3 455 5 454 - 2064 6 0.9 5871.6 5872.5 1.8 5850.8 .6 7080 470 4190 75 3 1669 10 1691 1072 2 4 1071 1062 2 1067 5 ave. 5 680 10 692 5 3610 50 3672 3671 10 36.0 .3 150 10 3930 3812 3926 64 3812 10 100 3950 19 6043 50 6014 6000 90 6009 20 49.0 .l 470 9350 650 8880 .3 741.5 Based on ‘46Nd(3He,d)‘471” Q = -87.6(.9) Systematical trends suggest lqYEr 400 more bound
-1.8 -.I .5 .4 .5 .2 -.9 .o .5 1.5 .o -.3
1 1 1 R 1 1 1 2 -.5 1 34.7 c 4 3 2.2 1 -.5 4.5 .8 1 1.2 R 1.2 u .I 1 2 -.8 U -1.8 U 2 -1.4 u -.6 3 .2 u .2 3 4 -.7 B 5
Lab
CF
Got Pbu Got Pbu
Got GSI Pbu
29
17 ‘49Sm
M21 2.5
68
62 ‘49Gd
aYerage
Reference 76Cr.B 83Ve06 85TiOl l 93Alo3 83Ve06 85ScO9 93Alo3 87St.A 8lSc21 8 1SpO3 82Al.A 82Ve.A 83Ve06 85ScO9 9lKell 93Alo3 AHW ‘* 90GrlO l * 85TiOl l * AHW l * 75Ka25 65Ma5 1 Z 66Wil2 Z 67Go32 Z 67Go32 Z 82Bo04
95
88 ‘49Tb
average
1: 48
996 ‘49Sm ‘49Nd 42 ‘49Pm
McM ILn McM
27
15 ‘49Sm LBL Bwg
12
11 ‘@Pm
49
47 ‘@Pm
22
12 “+b
Got GSI
Got GSI Pbu Pbu GSI LBL LBL
74To07 670aOl 76PiO4 Z 80StlO * 88NoO2 70Sm.A 82Bal5 89FiOl * 87Gr.A 64GoO8 60ArO5 78ReOl 85Ad.A 85ScO9 9 lKeO6 NDS 84Al36 90Sa32 91Kell 93Alo3 83AlO6 93Alo3 91Kell 89FiOl 89FiOl 85Toll AHW ** GAu l*
299
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item l5ONd
35C12_14$,,
150Sm 35c1-~4Q,
37Cl 37c1
*‘50Dy(a)‘46Gd *‘50Ho(~+)‘50Dy r’50Ho(,8+)‘50Dy a’50Hom(,q+)“ODy l
l‘50Hom (p+
)‘50Dy
‘5’Eu 35Cl-‘49S’,, ‘5’Tb(‘b(a)‘47Eu ‘5’Dy(a)‘47Gd ‘5’Ho(a)‘47Tbm
37Cl
2
Adjusted value
Y/S
Dg Sig
Main flux
2.5 .4 1 31 28 “‘Nd 1.8 13674.5 13672.5 .6 1.0 -.8 1 43 24 ‘48Sm 5404.8 5403.5 1.2 2.4 -.6 1 63 59 15’Nd 3615.2 3617.0 3 2.9 1.3 1 15 10 “‘Nd 3988 3997.9 6 .4 10. 2809 2804.9 18. .9 2792.6 .8 1 49 45 “‘Gd 9 ave. 2802 5. 5 .3 1 92 78 “‘Tb 3585.8 3587 5. 1.5 1.0 3 4346.1 4351.1 5. .4 3 4349.2 3. 4351.3 .o 3 2. 4352.2 -.5 3 L 10 -4501 2.7 -.l u 10 -1122 -1122.7 .a 7985.2 0.7 .6 7985.7 -.4 1.8 7986.4 0.7 ave. 7985.4 .4 1 84 60 ‘49Sm 4. 1269.6 3 90 3010 3 2 80 5690 2 20 3454 2264 6 1.6 U 25 2303 42.1 L .5 1020 4 -.7 10 1013 4 1010 .8 we. .5 1 92 49 lSoEu 3.7 1011.4 9 -.9 1 34 22 ‘+b 15 4670 4656 60 4620 .6 U 100 5040 50 .9 2 5130 40 1760 9 .8 U 1794 6980 100 -2.8 B 150 6560 4 100 6560 4 50 7360 120 6625 50 6.1 B 7360 6900 3.5 u ‘30 80 7060 3.8 C 80 4010 15 1.2 u 4108 15 4108 5 With correction like in ref. E+ = 4550(150) to 1410 level, uncertain assignment says author Systematical trends suggest lSoHo 680 less bound Q+ = 6819(+117, -100) from p+ to 2402 level; could be raised 140 if 4% feeding of higher Dy levels Q+ = 7385(65) from local mass relations including excited levels 5620.3 3499.9 4176.0 4181.0 4647.3 4645.2 4644.2 4645.3 4736.7 4737.8 4732.6 4734.7 7870 -5872 5334.43 1503
2.6 5. 5. 3. 5. 3. 3. 3.
5616.6 3496 4179.6
0.9 4 2.6
4645.1
1.7
4736.8
1.9
:: 4. 3. 7862 20 -5869 5 .2 5 1501
6 4
-.6 -.7 .7 -.4 -.4 .o .3 .o .o -.3 1.1 .7 -.4 .6
4
-.4
U 1 2 2 3 3 3 3 u u u u u 2 2 1
Lab
CF Reference
H25 M21 H25 Ml7
2.5 2.5 2.5 2.5
72Ba08 75Ka25 72Ba08 66BelO 62Si14 65OgOl
average
KVI McM
67Go32 67Go32 79HolO 82BoO4 82Dell 79Sa.A 73Bu02 69Re04 70Bu19
2 2 Z * Z
average Bwg Bwg
84Ho.A 87Gr.A 87Gr.A 77Ho09 65GuO3 82So.B 63YoO7 65Gu03
average
Pbu
Pbu Got Got Pbu GSI
76Cr.B 83Ve06 93Alo3 81KaO7 84Al36 93Alo3 83AlO6 85ScO9 90Sa32 93Alo3 82NoO8 91Kell 91RyOl AHW GAu 90Sa32 90Sa32 92Ke.A
*
* * ** ‘* ** ” l
l
H25
58 49 “‘Tb
81 77 ‘J’Pm
2.5 72Ba08 67Go32 67Go32 82BoO4 79HolO 82Bo04 82Dell 87LiO9 79HolO 82Bo04 82Dell 87LiO9 ILL 74EmOl Min 75Ta12 ILn 76Pi13 McM 8OStlO
* ’
Z Z Z Z Z Z Z Z Z
Z l
300
G. Audi et al. / The 1993 atomic mass evaluation (Iv
Item
Input value
5596.44 0.10 5596.42 .1 -5721 9 -5709 6 9000 300 1239.2 3. 4170 75 1’87 1195 5 IO 75.9 76.8 0.5 .6 463 3 464.2 2.8 2565 4 2562 5 2566 12 ave. 2563 5 5128 I2 5080 50 5100 80 41.10 0.20 41.4 .9 41.1 .2 7530# 200# 7074 50 Based on ‘46Nd(3He,d)‘47Pm Q = -87.6t.9) E(p) estimated 7300(300) to levels around 1700 Lower limit: positrons escape detector
‘5’Tm(,9+)‘5’Er
l‘5oNd(3He,d)‘5’Pm *‘5’Yb(ep)‘50Er r’5’Tm(,Y+)‘5’Er C’2 H8-‘5ZSm ‘5%m %12- “%m ‘52Sm 35Cl-‘5~Sm
Adjusted value
37C12 37C1
‘52Dy(a)‘4sGd
ave.
ave.
142867.0 10810.8 10807.9 5402.7 3728.3 3726.3 4507.9 4507.8 4505.8 4507.9 4575.7 4576.7 4935.2 4935.1 4934. I 4125 8258 6306.70 -2338 3600 3520 3400 3500 3603 3753 1870.8 1872.8 1871.7 1917 1912 45.60 1827 1812 1855 1852 3990 6270 6850 6430 6330
5.0 2.0 1.4 .8 8. 5. 3. 2. 3. 3. 3. 3. 5. 3. 2. 30 1 .I0 10 200 150 200 100 ‘00 150 2. 1.5 1.1 5 5 .Ol 7 3 10 4 40 90 ‘00 140 100
‘42872 10810.6
3 1.2
5407.0 3727
0.7 4
4507.4
1.3
4576.1
2.2
4934.4
1.6
8257.6 6306.72 -2331.8 3500
3650
0.7 0.10 3.0 70
80
1874.1
0.7
1919.7
0.7
1818.2
1.1
1863.8
1.1
6470 6630
30 30
v/s .2 1.3
-.8 1.4 .4 .7 -.l .6 1.0 .3 -.3 9.1
.4 .o .8 2.2 -.2 .1 -.I -.2 .5 -.I .2 -.2 -.I -.2 .2 -.4 .2 .6 -.5 -.I .5 .o .5 -.7 I.7 .9 2.1 .5 1.5 -1.3 1.8 .9 2.9 2.3 -2.2 1.4 3.0
Dg
Sig
Main flux Lab CF
Reference
1 I 6 3 3 1 I 1 -
100 52
52 t5’Sm IL” 51 “‘Eu
23 82 86
23 “‘Pm 51 “‘Et’ 84 “‘Gd
86Va08 z 82So.B 86Tol2 * 82Ho04 9OGrlO 64Be10 59Ac28 83VolO 77005 84Sc18
1
66
51 “‘Tb
Bwg
u u u 4 F
1 1 1 1 2 2 3 3 3 3 4 4 4 4 4 2 I 1 II 2 2 2 2 2 2 1 R R 2 -
I R R 2 B B R B
average 83AlO6 93Alo3 87LiO9 9lToO8 91Kell l AHW l * GAu ** 9lKell *’
Pbu
7
5 II 14
47 ‘00
41
7 3 6 9
‘52Sm ‘52Sm ‘52Sm ‘52Sm
M22 HZ5 M2l M21
2.5 2.5 2.5 2.5
Ald 30 ‘52Sm 53 ‘52Eu ILn KOP
75Ka25 72Ba08 75Ka25 75Ka25 65MaSl 67Go32 828004 82Dell 82To14 87St.A 82Bo04 87St.A 79HolO 82Bo04 82Del I 72Chll 7lGr22 85Vo15 67TjOl 71Dal9 72Wa04 75WiO8 77Ya07 7lDal9 72Wa04 72SvO2 77Mi.A
Z Z Z Z 2 Z Z Z
Z
23 ‘52Sm average 58Al99 62LolO NDS 6OLaO4
11
7 “‘Gd
average
Pbu
Pbu
58Al99 69Anl8 76Cr.B * 93AIo3 K3AlO6 * AHW * 93Alo3
1s2Yb(fl+)Is2Tm &52T,,(p+ )t52Gd til52I.Iom(,y+)l52~,, *152~orn(~t)l52~y *1521.1am(/9t)‘52Dy *152H,m(,9+)‘5$y *152Hom (@+) 152Dy
3 5465 195 E+ I 2830(15) 8(4)% to 8mund.stare, 5.2(l)% to 344.28 level Et = 3390(100) to 2437.1 8+ level From adopted KLM/B+ 3 .97(.13) to 2437.1 8+ level AAer extra 3(2)% side feeding correction; see ref. p+ = .52(.04)/.967 gives KLMfJ?* = .86(.14) KLM/@+ = l.lt(.lO) afier .967(.008) side feeding correction 4 -.2 8. 3559 3560.3 .7 3555.2 5. 3557 .5 I 4 ave. 3 4015.2 5. . 5. 4121.0 4802.7 1.S -.7 ; 4804.9 3, 4801.8 .5 3 2. .o 3 4802.8 3. 1.4 -.7 4 5248.1 5252.3 s. .8 4 5246.1 3. -.3 4 2. 5249.2 5248.5 -*l 4 3. 5242.3 1.4 .3 R 5241.8 4. 5867.73 0.23 3867.2 1.3 2 -.6 2 5867.9 :;* ./ -1.0 2 5868.4 0.12 .o 1 8550.28 .I2 8550.28 0.3 .2 1 6247.3 .35 6241.27 1.1 121.4 F 484.8 2 242 4 -.5 I 1570 5 1573 1.9 -.2 I 2170.6 2 2171 7 -s IJ 4129 4i53 -.f u 416Q $ 42 4 43.20 0.20 .3 u 43.2 .2 5 Contain a 8% 5.8(.2) keV lower 153Tmm(o) branch ,Z Q(o) corrected +.SkeV Average pK = .391(.018) to 172.85 level fmm: pK = .42(.03) to 172.85 level pK = .38(.03) to 172.85 level pK = .3l(.O7) to 172.85 level pK = .34(.04) to 172.85 level pK = .433(.039) to 172.85 level Value 240 rejected et CL. 99% by ref. From ‘49Hom(IT) and “53Tm(n)-*53Tmm(af = 7(4)
*‘J3Tm(n)t491io s*53Tm(,)‘49Ho *‘53Gd(c)1s3Eu I * * * * * *‘53Tm~(~)1~3Tm
-esm
C$$ 8, ’54sm lS4Sm
s Jct2-
__
353m 37Cf 2 35p&_. ISa& 37Cf
‘54&,-‘“Gd
1J4Sm-C12 Hg 1s4Dy(o)‘50Gd ‘54Ho(a)‘5%
156035.7 10832.9 5427.2 1342.8 -148211.0 2946.7 4041.2 4042.2 3820 3820 4280.4 4279.4 5100 5090 5174.6 5170.6 5171.5
4.0 3.2 .4 .8 8.0 5. 5. 5. 50 50 5. 3. 50 SO
156045 10834.2 5427.1 1343.4 -148220 4042
4
3820
50
4279.6 5090 5171.5
:, 2:
3 1.1 0.9 1.3 3
2.6 30 1.6
.8
I
.I
u
-.I
I
.3 -.4
I 1 2 2 2 3 3 4 4 5 5 5 5 5
.I -.I ,l .o -.l .I -.I .o -.6 .3 .a
90Sa.A NDS ** NDS l*
Got
AHW
‘*
90Sa32
**
85sco9
l*
9osa32
l*
65Ma51 Z 6lGo32 z 73
44 lS3Dy
100 75 153E~ 99 93 ls2Gd 64 94
average 7iTCiOl 68Go12 Z 82BoO4 Z 82Del I z 87Sc.A z 79HolO* 82BoO4 * 82Dell * 87Sc.A ~?SC.A Z 69ReO4 7lBe41 82BalS 85Vol5 Z 8SVolS Z Avera ’ 78Crt32 78Gr13 83A.w 93A103 87Sc.A + 89KoO2 87Sc.A *+ GAu l* AHW l + 62Blll ** 64CrO8 ‘* 67Boll ** 8OSeOl l * 85SiO3 l * 92Ch16 ** AHW **
ILn ILo
61 ls3Tb 56 lJ3Dy P&i
II
llt%Sm
86 45 3
62 ‘%Srn 25 ‘“Sm 3 ’54sm
M22 M2f M21 M21 M2l
2s 2.5 2S 2.5 2.3
7sKa25 75Ka25 7SKa2.5 75Ka25 75Ka25 67Go32 2 6BGo.C Z 74sc19 Z 7lToOl Z 74sc19 2 68Go.C 2 82BoO4 2 79HOlOZ 828004 79Ho10Z 82BoO4 2 82Dell Z
302
G. Audi et al. I The 1993 atomic mass evaluation (Iv) Input value
Item
‘54Eu(8-
)‘J4Gd
ave.
5473.5 5474.5 -3623 10748 6442.0 8895.25 210 3980 4190 3940 3900 4396 3840 1978 1967 1975 1970.3 3562 5700 5750
‘J4Hom (fl+) ‘J4Dv
5. 2. 25 20 .3 .30 70 200 l70 200 200 180 200
Adjusted value 5474.3 -3592 10728 6441.99 8895.29 20 4050
4070
1968.5 : 3 1.6 50 80 80 100 80
1.9 16 16 0.30 0.30 160 110
110
1.1
5751
II
6010
70
v/s .2 -.l 1.2 -1.0 .o .l -2.8 .4 -.8 .6 .9 -1.8 1.2 -1.9 .8 -2.2 -1.1 .6 .o .l -.8
14289.4 1.4 .4 6.3 ‘4282.4 -.5 4345.4 4342.5 1.2 2.4 50 4120 6 .1 4568.1 4569 10. -.l 8. 4570.1 2.7 5336.7 -1.4 5. 5344.1 .o 5. 5337.0 1.2 4. 5331.8 .l 50 5720 5730 50 5730 .o 50 .o 50 50 5800 5800 .o 5800 50 7570 50 1.3 1.2 6 8331 8338.6 .3 5807.2 .2 .4 8151.4 0.4 8’51.3 .o .30 6435.13 0.30 6435. ‘4 .o 1.1 5 232.2 252 1.4 5 245 1.4 5 245 1.7 2.9 ave. 247.3 1.9 -.8 2094.5 6 2099 .2 2 2094 20 3’02 Doublet from ground-state and isomer, less than 5 keV apart 4340 4350 4571.5 4813.6 4809.6 5590 5590 5710 5710 5710
50 50 10. 10. 10. ::: 50 50 50
Dg 6 6 2 2 1 1 B 2 2 2 2 2 2 1 2 U U R R u 1 3 4 4 3 3 3 5 5 4 4 4 u 2
1 1 1 3 3 3
4340
50
.o .o
4812
7
-.2 .2
4 4 5 5 5
s590 5710
50 50
.o .o .o .o
3 4 4 4
Sig
Main flux
Lab
CF
98 99
7.5 ls4Eu 91 “‘Gd
LA1 ILn ILII
45
26 ls4Gd
average
Pbu Pbu
4
98 99
2 “‘Gd
93 “‘Eu 53 “‘Gd
M21 2.5 HZ5 2.5
McM ILn ILn ILlt
Reference 79HolO Z 82Dell 76Su.B 78Bul8 87Ba52 Z 85Vol5 Z 727813 7 lDa28 72Tal3 74YaO7 71Da28 72Tal3 74Ya07 6OLaO4 77Ra08 8 1Bu.A ?OAsO3 83AlO6 93AlO3 83Al.A 93AlO3 lSKa25 72BaO8 74To07 7lToOl 92HalO 79HolO 82BoO4 9lToO8 89Iioi2 91ToO8 89Ho12 91ToO8 89Hol2 69Bel7 82ScO3 86PrO3 86Sc25 54LeO8 586156 59Aml6
Z * * Z
2 Z
63Pel3 80Bu04 72To07 9OPol3 ** 71TolO 8lGa36 71TOOl 77Ha48 79HoiO 79HolO 91Po.A 79HolO Z 9lPo.A Z 92HalO
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Inputvalue
‘**Gd(a t)‘56Tb-‘*aGd()1*9Tb ‘56Dy(d,;)155Dy ‘*‘Ta(p)‘**Hf ‘s4T~~~p)1**Hf ‘*6Pm(fl-)‘*6Sm ‘*%n($9-)‘*6Ell
156Ho(~+)‘*6Dy 1*6Er(~+)136Ho ltS4Eu(t p)lS6Eu .‘56~o(;+)l*6Dy
l‘*6Er(/3+)1*6Ho ‘*7Gd **Cl-‘**Gd
37C]
‘*7Ybf,)‘*3E,
‘57Ta(rr)‘53L~ “*Gd(t,p)‘*‘Gd ‘*%d(n y)‘*‘Gd ‘*6Gd(a’t)‘*7Tb_‘*sGd()‘*9Tb ‘56Dy(d:‘#*7Dy
‘%n(~-- )‘*%I$ 1*7Eu(~- )‘*‘Gd
‘*‘Tb(e)‘*‘Gd
Adjusted value
v/s
Dg
6033.0 IO. 8010 50 25 4568 9 .5 4556 10 6007 5 .4 6003 6489.7 0.3 -1.5 6493. I 3.6 8536.37 0.12 -.9 8336.8 .3 .12 .2 8536.34 0.12 .o ave. 8536.37 -821.9 3.6 -822 4 .o -3184 10 1028.6 13. 1111.2 6. 5155 35 10 122 8 .I 721 721 I5 .I .2 ave. 721 8 2.1 2430 10 2451 5 -.9 2460 10 .l 2450 15 2478 20 -1.3 .4 ave. 2449 6 4400 400 1670 70 Q = 5569110) to 434.23 3- level Systematical trends suggest 156Ho 660 less bound Systematical trends suggest ‘*“Er 300 more bound
4 4 1 1 u 1 1 2 3 3 2 I 1 2 3
0.21 -.5 4288.83 .66 4287.99 .o 50 4620 50 4620 .o 4620 50 3 .o 20. 5053.0 5053 2.3 -.I 10. 5127.9 5128.9 -.l 5131.8 5. -1.1 5133.7 5. -.2 5128.9 5. 1.8 5118.7 5. .3 5125.8 6. 5870 50 .2 50 5880 5880 -.I 50 6380 50 0.19 -1.1 6417.8 2.9 6414.59 0.15 .o 6360.05 .I5 6360.05 0.8 1.2 -616.2 2.0 -613.9 6 -.3 4748 10 4745 4753 10 -.8 -.8 ave. 4750 7 2700 200 6 .6 1350 20 1363 -.4 1370 20 .o ave. I363 6 0.30 -3.9 62.4 .6 60.05 -3.6 62.2 .6 .2 60.0 .3 2540 50 3470 80 4480 100 32 2 Origiaal value 66(6) recalcotated Original value 62.9( ,7) recalculated Fmm difference in E(a) for ground-state and isomer
u 4 4 u 5 5 5 5 5 5 3 3 3 u 1 1 1 2 -
I F F I 2 3 4 6
Sii
:;
100 100
303 Main flux Lab
CF
26 13 ‘*6Eu 15%rn Aid LAl McM ILn MMo 68 ‘*6Gd average 100 15%% McM KOP
90
Reference 79HolO 8iHo.A 66BjOl 84LaO6 ’ 89LoO7 82Ba28 821~05 Z 75BuO2 7OGr46 92PaO5 92Wo.A 90Hell 63GuO4 65WiO8
87 ‘*%m average 62EwOl 63ThO2 64Pe17 67Va23
70
70 1*6Eu average 76Gr20 * 82VyO6 * 9lBaO6 ** GAu ** GAu *’ H41
99 15
66
2.5
McM 62 ‘*‘Gd ILn 8 ls7Tb McM Tel Kop 34 ‘*lDy average
85DvO4 7?H;48 79HolO 91To09 79Al16 79HolO 83ToOl 91Le15 91ToO9 92HalO 73EaOl 79HolO 79Ho10 89LoO7 87Sp.A 75BuO2 68Be.A 7OGr46
Z Z 2
z 7.
Z
73Ra23 64Sh21 66FuO5 100
98
100 ‘*‘Eu average
92 ‘=l%
67Na08 * 83Be42 * 92P.al8 72ToOS 75Al.A 93Alo3 9lLel5 * 92HaO3 ** 85VoO9 ** 91LelJ **
304
G. Audi et al. / The 1993 atomic mass evaluation (IV)
Item ‘JsGd
Input value 35Cl-‘56Gd
‘58Eu(/3- )“*Gd ‘58Tb(e)t58Gd
ls8Tb(fi-
)“*Dy
‘5sHom(,9+)‘58Dy ‘58Hom(IT)‘5*Ho “*Er(,!?+ )“gHo
‘58Tm(j?+)‘5*Er *‘58W(a)‘54Hf l‘58Gd(t,a)‘57Eu *‘s8Tb(p,d)‘57Tb l‘58Tb(e)‘5*Gd *‘58Tb(e)‘58Gd l‘5*Tb(e)‘58Gd l‘58Ho(fi+)‘5*Dy I r158H,,m~,j+~158Dy l
l‘58Er(,9+)‘s8Ho
37Cl
Adjusted value
v/s
Dg Sig
1.4 u 4924.2 1.4 4931.09 0.21 .7 .2 u 4930.8 .3 u 4930.13 1.36 -.6 1 54 54 3.3 3081.4 3076 6 -.4 5 4174.9 IO. 4171 8 .5 5 4164.6 12. 50 .O 6 4790 4790 50 .O 6 4790 50 -.5 7 5. 5406.1 5403 4 .5 7 5401.0 5. 3 6210 50 3 30. 6600.4 3 30. 8495.5 -.5 1 14 14 15 -7535 -7543 6 .I R 11296 6 11296 6 -.I I 98 81 .I2 7937.34 7937.33 0.12 1.0 1 13 12 1.5 195.0 196.5 0.5 1.8 I 28 27 - 198.3 1.0 -196.5 0.5 .l 1 28 27 - 196.6 1.0 -4560.3 4.2 -4552.8 0.9 1.8 U -2804 10 -2798 6 .6 10 .6 -2804 7 .8 I 66 66 ave. -2804 120 3490 80 -.5 2 3550 100 .5 2 3440 1237.542 ,018 1220.0 0.9 -975.9 F 1220 13 .o u 9 6 -.7 I 1222.1 3. IO -1.5 952 936.8 2.4 933 6 .6 21 19 -.2 I ave. 938 5 100 4237 26 -1.1 2 4350 60 -.9 2 4290 4280 30 4304 26 .8 R .04 3 67.25 80 -2.0 3 1940 1780 30 -1.3 3 1860 60 1710 40 1.8 3 100 4 6530 Original value E = 6450(30) (Q = 6617.8) recalibrated Q - Q(‘56Gd(t,o)) = -512(5,Bu), Q(l56) = 11807.3(1.7) Q - Q(‘58Gd(p,d))=l152.5(4.2) pK = .00009(2) to 1187.147 level, recalculated Q pK < .00002 pL = .689(.01) to 1187.147 level, recalculated Q E+ = 2890(20), 700(60) to 317.11-637.66 and 2436-2605 levels, first one NOT 16’Er(b+ ); reinterpreted E+ = 1300(30), 1850(25) to 1920.24-1940.72 and 1441.75 levels, reinterpreted Systematical trends suggest ‘5% 880 more bound 8625.64 4333.3 4337.01 4530 4530 5220 5230 5220 5220
1.03 1.2 .6l 50 50 50 50 50 50
8624.5 4336.5
0.8 0.8
4530
50
5220
50
-.4 1.1 -.3 .o .o .o -.I .o .I
I I I 5 5 4 4 4 4
Main flux
Lab
CF Reference
‘56Dy
H25 M21 H41 H25
2.5 2.5 2.5 2.5
Is6Dy ls8Gd ‘5% “‘I% “‘Tb
Is7Dy
P’i LA1 MMn McM McM McM Pri Tal KOP average
65Sc19 66Da06 83Ra25 l 87Br33 85Vol3 * 68ScO4 85VoO3
ls8Tb
ls8Dy
10 5 Is9Tb 7 4 ‘%b 26 14 Is9Tb
72Ba08 75Ka25 85Dy04 72Ba08 77Ha48 92HalO 79A116 2 83ToOl Z 79HolOZ 83ToOl Z 79Ho10 89Ho12’ 89Hol2 77Ko04 79Bu05 * 821~05 Z 84Bu 14 75Bu02 84Bu14 85AlO2 l 68Be.A 70Gr46
average
Pbu
H41 H25 H41
6lBo24 * 68Abl4 l 68Abl4* NDS 6lBo24 * 68Ab18 * 82VyO6 * 93Alo3 81Holo** AHW ** AHW ** 85TbOl ** 87Br33 ** AHW ** NDS ** AHW l * NDS l* AHW ** GAu ** 2.5 85Dy04 2.5 72BaO8 2.5 85Dy04 8OAl14 92Ha10 73EaOl Z 79HolOZ 83ToOl Z 92HalO
5750
6440 6440 5398.9 5943.21 13686.6 -85.7 -474.3 4Mt8 46W
ave.
46Q4 969.0 365.9 1837.6 1837.6 2768.5 2810 3400 3850 5QSQ 585t.l
so 50 SO 2.3 .I5 IQ. 2.2 1.0 IO
50
6440 5398.80 5943.29
0.19
.13682.3 -88.2 -475.8 4606.9
0.15 0.7 1.9 Q.5 2.4
IO 7
1.5 1.3 6. 3. 2.0 1oa 300 100 200 I50
970.6 365.6 1837.6
2768.5 3850
SYgO
0.7 1.2 2.7
2.0 100
230
.o .a .o ,I .4 -1.1
6 3 3 IJ
I
99
u
i -1.5 f -:: 1 .4 I 1.I 1 -.2 1 .o 2
71
29
79HolO BlHalO l 92Pa05 89LoO7 87Sp.A Z 758~02 84Bul4 84Bul4 63Lk.A fQGr46
McM ILo McM 39 1*4Dy McM 26 +% McM 88 “‘Gd
rat 12 24 80
IQ
“*Dy
Koo a&age
12 t5gGd 70 ‘%y
“0 2 3 -,4 u 1.5 w 4 S .9 R
77Bo.A 68My.A 79Ad08 82VyO2 8dKa.A 93Alo3 75s107 93Alo3 Y3A103 Y3AlQ3 AHW **
PbU Pbn Pbu Pbu
see‘t58w(,) rema*
ave.
10831.70 5900.0 5899.88 3731.8 1854.5 4892.6 4904.9 4903.8 4901.8 5550 5540 6072. t 6704.9 4912.0 -4919 4913.1 -6924 -b!XZi.i
ave.
‘60Gd(t,a)‘$YEu--s8Gdf)‘57E~ ‘+bfn y)‘*oTb ’ 159 ‘*ODy(d,t) Dy ‘6ORe(p)‘59W ‘60Eu(B- )16’Gd ‘*OTb(fl- )‘*‘Dy
*‘b”Dy(p,t)‘5”Dy l‘M)Eu(,!7)‘“Gd .,n .<.. *‘o”~“(p+)1o”yb
L.27 .s .96 2.3 .8 IO. :: 6. 50 SO 10. 16. 2.2 5 2.0 :,4 2.8 5 .3 10 10 6. 300 2QQ 10 10 la 1s I5 .Q3 306) 100 240
10831.3 5900.2
0.8 0.7
3739.2 1856.9 4902.7
2.3 1.4 3.0
5550
6699 4912.8 -4912.8 4912.8 -6925.8
50
13 0.7 0.7 0.7 2.2
-6924.8 -665 -666 5 0.29 6375.1 6375.38 1.5 -2339 -2318.9 -2323 50 1268.9 1290 170 3900 4110 4200 1838 1.3 1835.4 1827 1825 11 3290 3292 3333 3351 11 39.98 loo 5600 5890 5890 7290 90 7210 7300 100 a - Q(‘@Dy(p,t)= - ld77.9(3.4), see ‘*4Dy(p,t) Systematical trends suggest !~!Eu 470 less bound Systematical trends suggest ‘““Lu 590 less bound
-.I .1 .I 1.3 1.2 1.0 -.4 -.2 .2 -.t .I
1 I 1
1
1 6 6 6 6 4 4 5 -.3 4 “4 1.2 -.1 L -.4 -2 I -.4 1
.o t .3 I 2.0 .4 2.7 .7 -.S -3 .8 1.Q .1 -,t
u 1J R 2 2 u u u 2 R 3 1.0 u 3 .J 4 -.l 4
6 34 9 16 46
4”j0GdH41 27 16’Gd M21 7 160GdH41 15 “‘Dy H25 24 ‘*‘Dy H25
25 2:5 2.5 2.5 2.S
McM II
9 ‘“Gd
Min average Min McM
59 56 lsaDyaverage loo ml LA1 96 91 ‘M”Tb lx Ko(op
%zu
Pbo Pbu
8SDyQ4 7Xa25 85DyO4 72Ba08 72BaOS 73JzaOl 2 79HolO Z 83ToQl 2 92HaIQ 79liotQ Z 92HatO 79HolO 92Pa05 89LoO7 730001 73G&“u 88BuO8 * 79BuQS 74KeOf 68Be.A 7QGr46 92Pa05 73DaO5 73Mol8 S7Na03 SYGfi3 63WuOl 66AvQ3 66~~Q3 NDS 758112 93Alo3 83GeO8 93Alo3 AHW GAu GAu
*
* * ‘* l* l*
306 Item
*160Dy(t,p)‘62Dy *‘62Dy(p,t)‘60Dy l‘62Er(p t)16’Er r1621&+ )162yb
G. Audi et al. / The I993 atomic mass evaluation (Iv) Input value
Adjusted value
v/s
Dg
1.0 1.4 4535.0 4336.3 4720 30 4720 50 so 4730 4720 50 4720 50 30 50 5280 30 5280 5920 50 6440 50 1.3 -6546 3 -6548.7 -6547.9 2.5 ave. -6547.3 2.2 3433.4 1.0 0.7 677.1 678.0 1.0 7696.6 0.5 7696.3 .b 0.09 .09 6434.36 6434.36 2.0 2.0 - 1406.5 - 1406.5 9 18 2003 i 980 90 3160 200 3100 100 3180 3830 250 3300 100 Q - Q(‘64Dy(pt)= -1100.7(2 5) Systematical tredds suggest 16’Yb 300 less bound
.b .l --.I -.I .l .o .o
I 3 5 3 5 7 7 4 4 1 2 1 1
2.7 10574.7 2.9 10577.3 1.1 4331.12 0.17 4552.1 1.9 4674.5 2.9 4674.6 10. 4417 6 4417.2 10. 4420.2 9. 4414.2 3010 50 3000 :: 5010 3674.4 2.9 10. 3670.3 10. 3668.0 3. 3677.3 4. 3674.3 30 6270 30. 6778.8 3.8 3999.5 1.9 6169.49 0.15 6169.5 -6169.49 0.15 3 -6168 2.1 -6169.7 51 -7944 8196.93 0.12 8196.94 .I2 -945.3 3.0 -943.3 3.0 -2956 9 -2952 IO 1390 40 1442 100 2310 40 2448 100 2323 :8 2528 4810 40 4840 30 4705 70 4900 100 6930 90 6740 270 6960 100 Q- Q(‘62Dy(tp)= 722.3(1 9) Q - Q(‘64Dy(;,t) = -722 3;2 1) Not resolved peak. Original uncertainty 28 Systematical trends suggest 16*Lu 290 less bound
-.4 --.4 .o .O -.3 .3 .I .o .4 .6 -.6 .o
-.5 -.3 -.5
-.P .3 .O I .a 1 1.3 R .3 3 -.2 3 4 3
.o -.3 .I .I .o -.4 -.S .6 -.3 -.3 -.6 1.5 -.9 .7 -.3
I U I 6 6 6 7 7 8 8 8 a 4 4 2 u U u 2 I
1 2 R 2 2 2 2 2 2 3 3
Sig
Main tlux Lab
CF
Reference
30
18 16’Dy H23
2.5
42
Min MCM 28 jsqDy average
72BaO8 73EaOI Z 82Scl5 z 83ToOl Z 92HalO 79HolOZ 92HalO 7PHolOZ 79HolO 730001 88Bu08 *
33 83 100 100
26 74 72 100
7 IGr42 75BuO2 73He.C &SC16 z 73Bu02 84Ka.A 75AdO8 93Alo3 8lAdO2 * 93Alo3 AHW l * GAu l*
16’Tb McM ‘6’l-b t60Dy ILn 16’Ho McM
Pbu Pbu
19 38
16 ‘62Er H25 HZ5 31 ‘62Er HZ3
100 100
McM MCM Min McM Win 60 ‘62Dy MMn 100 16’Ho McM KOP
Pbu Pbu
2.3 2.3 2.5
72Ba08 72Ba08 72BaOS 82Sc13 83ToOl 92HalO 8bRuO5 92HalO 73EaOl z 73ToO5 Z 8lHolOZ 82Dell Z 79HolO 89Ho12 89LaO7 88Bu08 * 730001 88BuO8 l 74De31 ’ 82IsO5 z 75Bu02 69TjOl 7CChOZ 66FuO8 66Sc24 77KaO8 63AbO2 74De47 93Alo3 83GeO8 l 93Alo3 * AHW l * AHW l * GAu ** GAu **
G. Audi et al. / The 1993 atomic ms Input value
Item
Adjusted value
v/s
0.16 4744.7 1.2 4748.05 1.1 4740 30 .2 50 4750 4730 .O 50 4730 -.l 30 .o 3520 5520 30 30 .o 3320 30 .o 3320 30 --.l 3330 30 6070 30 6670 30 5986.06 0.14 1.5 -.2 5986.3 2.2 ‘5986.06 0.14 -3987.1 .3 .I1 6270.93 0.07 6270.94 -.l .09 .1 6270.92 .O ave. 6270.93 0.07 1.9 1.0 -733.7 -734.3 .6 4678 5 -.4 4682 10 4 1785 2.0 lb84 30 1721 100 .b 2.576 0.016 -.4 2.63 .20 .03 -.8 2.60 ,020 2.561 .8 2.63 .07 -.8 ave. 2.376 .O 0.016 1210 1210 6 5 .o 2439 3 2360 2439.0 100 .8 3.0 3370 100 -1.3 4600 200 4860 170 4600 2oo .r. ,,. Origina assignment to 13 s “?‘a changed to ““la Originally assigned ‘66Re, m-assigned by ref. Griginal E(n) = 3372 recalibrated Q - Q(‘@Dy(tp)= 339.1(1.5) Q - Q(‘~Dy(~,t)= -539.9(2.2) Partial M-half-life 4370( 50) y 3372.2 1.3 2.7 -.3 2.1 -.b 5278.7 5. .8 5. .o 3. -.l 3. -.3 8. 3920 SO 6478.3 20. 3447.3 5447.19 1.9 0.14 -.l -3450 -5447.19 0.14 3 .b -7262 -7267.6 2.3 -.6 10 11153 4 7658.08 .12 7658.06 0.12 .2 -331.6 1.1 .6 1.4 -330.7 3 .4 -2393 -2589 10 3890 100 3962 20 90 -1.0 6390 6250 140 6250 90 OriBinally assigned 16’Re, re-assigned by ref. Original E(a) = 5 136 recalibrated Q - Q(‘60Dy(t,p))= -722.3(1.9), see ‘62Dy(p,t) Output 1992 -3447.24c.17) used for calibrations Q-162DyO’6’Tb= -123(4) + 54 - 584 = -633(4) See ermtum 3373.3 3282.1 5274.9 3279.0 3279.0
‘64~e(,)1M)Ta ‘640s(a)‘6”~ ‘62Dy(t,p)‘64Dy ‘64Dy(ptl’62Dy ‘“Er(p,$% ‘64Dy(t ,)‘63n) ‘63Dy(r; ~)t~~Dy ‘63Dy(3;Ie,d)164Ho-‘6QDy()16SHo ‘64Er(d,t)‘63Er ‘%btfi) ‘64Dy 164Tm(fi+)‘64Er ‘64~u(~+
)‘64yb
*164W(o)‘60Hf l*64W(o)‘60Hf l162Dy(t p)‘“4~ ’ ‘62Dy l‘64Dy(p,t) r’64Dy(t,o)163Tb *163Dy(3He,d)‘64Ho-‘64Dy()‘65Ho
307
evaluation (Iv) Dg Sii
Main flux Lab H2S
u 6 6 6 3 3 3
u 4 Ll u 1 IJ 1 u U u 1
I z 3 B 4
1 7 7 7 7 u s 6 u U U 2 1 1 1 2 2 B 3
CF Reference
100 60 163Dy 23 20 163Er
100 98 ‘63Ho 61 39 ‘63Er
2.5 72BaO8 83Scl8 * 8bRuOS 92HalO 73EaOl 2 79HolOZ 82Del I Z 84ScO6 * 79HolO 8lHOlO MCM 88BuO8 l MCM 88BuO8 l MMtt 821~03 Z ILlI 89Sc31 z average 73Bu02 M&i Koo 69TiOl 66FUO8 7lKa22 83Ba32 * 86Yal7 92Hal3 92JuO 1 average 63Pe16 82VyQ7 Pbu 93Alo3 7SAd09 83Ge08 Pbu 93Alo3 86Ru03 l * 92MelO’* GAu l* AHW ** AHW ** AHW =
69 48 16*Er HZ5
2.5 72Ba08 73EaOl z 73To03 Z 79HolO 82Dell Z 84ScO6 * 79HolO 8lHolO McM 88Bu08 l 73GoOl l Min 73GoOl Mio MCM 92Gal3’ 821~05 Z 99 60 ‘(“IDy M&I 73BuO2 l 67 67 ‘@Ho McM 69TjOl 24 21 163Er Kop 7lGul8 67VrO4 83Ge08 Pbu 93Alo3 92MelO** GAu l* 88Bu08 l * AHW l * AHW ‘* 75Bu02 l *
308
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item ‘65Ho 35C]_‘63Dy 37C] ‘65w(,)‘61Hf
*‘65W(,)‘6’Hf *‘65W(u)‘6’Hf l‘65Re(a)‘6’Ta *‘65Re(a)‘6’Ta l‘63Dy(t,p)‘65Dy ‘6$
35C]_‘64Er 37C]
‘66W(a)‘62Hf
Adjusted value
4 4539 4541.6 2.0 5030 50 5030 50 5030 50 5630 50 50 5660 5640 50 5660 50 50 6350 50 6320 6320 50 4890.6 2.9 0.16 4892.15 0.10 5715.89 5716.31 .25 .ll 5715.92 5715.66 .30 717.3 10. 1.9 726.2 -7987 2 1.1 -7988.8 0.7 6650.1 .7 6650.1 - 1298.0 2.0 1.5 -1296.8 10 2.1 376.3 370 371 6 371 5 1591.3 2.0 1.5 1592.5 2762 20 80 3920 4250 140 3920 80 Originally assigned ‘68Re, reassigned by ref. Original E(u) = 4894 recalibrated Originally assigned to ‘@Re Originally assigned to ‘@Re Q - Q(“=Dy(t,p)= -556.6(2.9)
v/s
Dg
.3 .O .O .5 .3 -.I -.7
u 6 6 8 8 8 F 5 u B 2 2 u 1 1 1 1 1 2 B 3
.5 -1.7 -.3 .8 .9 -.9 -.I .6 .6 .9 1.1 .6 -2.4
4040.9 1.4 4043.2 2.1 .7 4856.2 5. 4857 4 .I 4855.2 10. .I 4858.2 8. -.2 5460 50 5640 50 3.5 5570 50 1.2 5640 50 6148.5 20. 6130 6 -.9 6129.0 6. .3 6700 50 4276.4 4.4 4277.6 0.4 .3 -6641 5 -6642.6 1.9 -.3 7043.5 .4 6243.65 .11 6243.640 0.020 -.I 6243.64 .02 .o 1859 3 1854.5 0.9 -1.5 1857 3 -.8 1854.7 1.5 -.2 1851.6 2.0 1.4 ave. 1854.1 1.1 .4 3043 20 3040 11 -.I 3031 20 .5 3039 20 .l 280 40 304 14 .6 5480 160 Originally assigned to ‘67Re Q - Q(‘62Dy(t,p)= -1170.8(4.4) From average pK = .712(.038) to 82.29(.02) level pK = .74(.05) to 82.29 level pK = .675(.059) to 82.29 level
1 7 7 7 B F
Sig
Main flux Lab
CF
Reference
H23
2.5
70WhOl 75To05 84ScO6 78sC26 8lHOlO 82Dell 78Call 8lHOlO 88Bu08 79Br25 821~05 90&x21 75Bu02 85TsOl 70Bo29 75Bu02 63RyOl 63ZyOl
McM
33 92 59
IL” MM” IL” McM 33 ‘64Ho MM” 55 ‘65Er 50 ‘651, MCM
16 13 ‘65Er average 59 50 ‘65Tm
Pbu
35
31 ‘e48r
H25
2.5
8
9 9 5 ll 1 3 u 1 F 1 2 2 2 R 3
McM
15
100
72
13 ‘@Er
Min
MM” 54 ‘66Ho MM”
82VyO3 67Pa04 83Ge08 93Alo3 92MelO GAu AHW AHW AHW 72Ba08 75To05 79HolO 89Hi04 78Sc26 82Dell 92MelO 77Ca23 8lHolO 81HolO 88Bu08 730001 83Ke.A 821~05 84Kel5 63Ful7 66Da04 74Gr41 83Ra.A
Z l l
*
* Z Z Z
* ** ” ** ** l
Z Z * *
l
Z Z
46 ‘66Ho average 6lGr33 6 IZyO2 63Prl3 axrag 74De09 AHW AHW AHW 63Ja06 73De22
* * ** l’ l* ** l
309
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Adjusted
Input value 154040.4
6.2
4679.5
1.2
ave.
ave.
‘67Ho(fi-)‘67Er ‘+b(B+)‘%n ‘67Lu(B+
)%b
‘6’w(@+
)‘67~a
l‘67Rem(,)‘63Ta l‘67W(bt 1167~~ Cl3
H,
Originally
37C12 37C1
12
5390
50
5980 5980
50 50
5980
50
6540
50
4
CF
Reference
4 ‘@Er
M23
2.5
79Ha32
8 16’Ho
H25
2.5
89MeO2 91MeO5
2.5
F 7
78Sc26 92MelO
6
8lHolO 82Dell
-.I
6 8
-6428.7
6436.
2.0
I
-.3 .3
0.4
-666.5
1.0
26
23 ‘65Er
average
1 -
.f
1
96
69 ‘%r
average
.o
1
99
99 16’Tm
McM
‘JOB029 70MiOl 75BuO2
3
970
20
1007
5
1.8
R
4
1954
4
,I
1
3130
100
5620
270
77Tu01 68Fu07 91
90 ‘%b
77KK.A 64Ag.A Got
89MeD2
trends suggest 16?Ta 620 more bound
161543.3
5.1
161532
3
10612.8
8.7
10624
4
5027.9
1.5
5028.9
Z z
730001 75St08
.2
1954
l
8lHolO Min
-
.o -.I
1.0
72Ba08
7 7
.O
0.4 60
Lab
.1 -.I
.6 .48
2350
Main flux
assigned to ‘@Re
Systematical
-“gEr
‘%% &l+Dy 16*Er 35<31-‘6$,
4
I
50 50
6436.1
‘67Dy(/3_)‘67Ho
I
-.9
5270 5390
-6429
Sig
-.7
50
6 5
Dg
1.0
4670
-6427 -6430
v/s
3
50 50
-666.5
'6yTtD
4676.8
4660 4670
6436.0 6436. I5 ‘66Er(a,t)‘67Tm-‘6*Er()
154030
value
0.5
I .5 u
-.9 -.3
6
6 16*Et
u
l
AHW
8’
GAu
l*
M23
2.5
79Ha32
H27
2.5
74Ba90
H25
2.5
728808
‘68Wf,)‘64Hf
4506.5
12.
5
9lMe05
‘68Re(a)‘64Ta
5063
13
3
92Me.10
l
‘680+)‘64w
5818.8 5800.4
8 B
82Dell 84ScO6
l
82Dell
‘%(a)‘64Re ‘%t~,)‘640s ‘6*Yb(p
t>‘@%b
we. ‘67Er(~,t)‘68Tm-‘68E~()16yTm
2.3
6
6990.8
20.
1
7771.24 1770.94
.48 .30
7771.02
0.25
7771.07
-262.3 -2794
2740 2930
2914
loo 30
Min
730001
1Ltl
70MiOl 79Br25
0.25 99
1.5 12
100
1.5 5
Z
8lHolO
7
-2797
)%r
3
50
-262.3
‘68Yb(dt)167Yb
5819
6410 -7647
‘67Er(n,;)‘68Er
‘68Hc&
3. 8.
18
55 lb8Er
Z
average
100 16*Tm McM
75Bu02
10 16’lYb Kop
66Bu16
29
73Kao7 9GCh37
‘6g~u(,~+)‘%b
4475
80
7OCh28
‘6ELum(~+)168yb
4695
100
72Ch44
l‘68Re(a)‘64Ta
E(a)
*‘6*0s(a)‘64w
Used for recalibration
= 4833(13)
1.1
9792.5
1.4
5113.2
1.1
5115.7
1.2
5190 5190 5180
50 50 50
5720 5700
50 50
6280
50
6840
50
6003.05
GAu
of other results of same ret
9793.0
6002.7 6003.1 aw.
92MelO **
to 111.7 level
-.2
1
26
.9
1
18
16 165Ho HZ5 9 167Er
H25
**
2.3
72BaO8
2.5
72BaO8
5190
50
.o .o .I
4 4 4
82Dell 84ScO6 * 92MelO
5720
50
.4
7 B
82Del I 84Sc56
9
82Del
6
8lHOlO
:!
6003.13
0.28
.5 .1
-
0.28
.3
1
70Bo29 70Mu15 99
PO 16yEr
average
l
Iz
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
310 Item
Input value
‘68Er(a,t)‘69Tm ‘69Tm(d t)‘68Tm ’ ‘69 ‘68YbhY) YLJ
- 14244.8 10. -14241.9 1.1 - 1775 6 -1776.1 1.5 6867.21 .46 6867.2 0.3 6867.2 .5 aYe. 6867.2 0.3 3200 300 343.8 3. 351.2 1.1 347.8 5. ave. 344.9 2.6 913 ;‘9 909 4 908 2293 3 3365 200 3270 80 3250 90 Original E(a) = 5050 recalibrated Used for recalibration of other results of same ref.
‘69Yb(e)t69Tm ‘@Lu(p+ )‘%l ‘69Hf(i3+
3’69Lu
l‘69Rem(a)‘65Ta *‘690~(a)‘65~ 170Er 35C]_‘68E, 37C] 170m 35c]_ 16Eyb 37~1 ‘7OOs(a)‘66W
“OL”(B+)‘%b
l‘700s(e)‘66W ‘7’yb 171yb
35q-‘67~~ 3Scl_ 169Tm
Adjusted value
37~1 37$
‘7’0+)‘67w
‘7’Yb(p,t)‘6%b ‘70Er(n,y)‘7’Er ‘70E,(a,t)‘7’Tm-‘6gE~()‘byTm ‘%b(“,Y)‘7’Yb ‘70Yb(a,t)‘7’L”-‘74Yb()‘7~L” 17’Ho(fi- )17’Er 17’Er(b- )17’Tm ‘7’Tm(,5-)t7’Yb ‘7’L”(8+)‘7’Yb ‘7’R,(,5+)‘7’W ‘7’Rd(IT)‘7’Re *‘7’Ir(,)‘67Re r’7’Ir(u)‘67Re l‘7’R@(IT)‘7’Re
v/s
Dg
.3 -.2 .o .o .l
u u 1 3 1 1 u 2 3 3
2.5 .7 2.5 -.3 .o -.5 .2
1.7 -.9 I 6042.7 6046.9 1.8 3806.0 4 .4 1 3814 7.6 4 .7 8 5540 5533.5 IO. 5541.4 -.3 8 4. 2.1 B 5523.2 8. 6170 6180 50 .o 9 50 .o 9 50 6170 6 .1 10 6704 8. 6703.0 -.I 10 6705.0 10. 5 .5 2 7038 5 7036 1.6 1.0 I -4780. 5 -4785 3 .9 1 -6856 6 -6861 2 20 -3107 1.1 -.7 6593.3 2.5 6595. .8 1.5 6592.1 .3 I ave. 6592.9 1.3 3 -.2 u -2213 I2 -2211 2 50 3870 0.8 -1.0 968.0 2 970 .7 1. 967.3 .L 1 0.9 ave. 967.8 19 -.4 2 20 3459 3467 1.0 2 50 3410 Used for recalibration of other results of same ref. 10178.0 1.7 5061.9 1.7 50 5370 5370 50 50 5390 6159.2 5. 5 6159 50 6610 50 6610 5 -6599 5681.5 .5 817.9 1.0 6614.7 .8 -1156.2 2.0 3200 600 1490 2 96.5 1.0 1479.3 3. 5670 200 100 50 E(o) = 5925.2(5,2) to 92 level E(a) = 5925(5) to 92 level No y seen following “‘k(a) but
-6603 5681.5 817.7 6614.8 -1156.4
3 0.5 0.9 0.7 1.7
-.2 -.l .l .I -.5 .o .o .o .o -.9 .I -.2 .I -.I
1490.5 96.4 1478.8
1.3 1.0 1.9
.3 -.1 -.2
10177.0 506 I .3 5370
1.5 1.2 50
6159
4
6610
50
I 1 6 6 6 9 9 7 7 1
1 1 I I 2 1 I
1 3 4
not to ground-state
Sig
Main flux Lab
CF
McM Pit
100
Reference 75Bu02 73KoO6 68Mi08 68Sh12
56 ‘68Yb average 90Ch34 56Bi30 65Du02
18 9
10’69Er average 8 ‘69Yb
14 4
10 170Er H25 4 ‘%b H27
2.5 2.5
NDm :y
337 “‘Yb 17’Er Min
69
39 17’Tm average
72Ba08 74Ba90 72To06 Z 82Dell Z 84ScO6 * 78Sc26 Z 82Dell Z 8lHolO 82E1-103 83Ta.A 730001 730001 76Su.A 66Sh03 700r.A 66Bu16 78Tu04 54Po26 69Va17
KOP
85
86Ad07 87Sa53 77Bo31 69Ar23 73Me09 GAu l* GAu **
61 17’Tm average 60Dz02 65Ha30 GAu **
12 9
8 ‘67Er H27 6 ‘69Tm H27
48 96 80 82 74
48 68 53 78 68
‘69Yb Min 17’Er 17’Er McM 17’Yb 17’Lu McM
39 92 42
32 17’Er 89 17’Tm 32 17’L” Got
2.5 2.5
74Ba90 74Ba90 72To06 78Sc26 79Ha10 82Dell 92Sc16 8lDe22 8lHolO 73GoOl 71AlOl 75Bu02 72WalO 75Bu02 90Ch34 6lAr15 57Sm73 77Bo32 87Ru05 92Scl6 92Sc16 92Sc16 92Sc16
l
* Z z
* l* ‘* l*
311
G. Audi et al. / The 1993 atomic mass evaluation (Iv) km 172~
Adjusted value 35C12-168Er
l72y,, 35c1_170yb
37cl Xc1
9906.7
2
'720s(a)'68~
‘%(a)‘68Re ‘721~(a)‘68Re “2P1(,)‘68OS ‘70Er(t,p)‘72Er “‘Yb(‘l,ypYb
we.
*“k-m *“k-m
E(a) E(a) E(o)
(,)‘68R, (a3’68Re
'73yb
35c12-'69Tm
173yb
35~,_'7lyb
371~ 37(-l
'730s(a)'69W
‘731r(a)‘69R@ ‘731rm(,)‘69Re
‘73Au(a)‘6gIr “%(‘I ypYb “2yb(a:t)“3Lu-“4yb()“5L” ‘73Ta(B+ )‘73Hf ‘73W(j3+ )“)Ta ‘73~rpi~~)173~~ *“‘Irm (a)16’Re l‘73If’ (o)‘~~R~ •‘731rm(ap9~e l‘73Ta(8+)‘73Hf 174yb
35c1_172yb
2
= = =
37,-,
‘741r(a)‘70Re ‘741rm (a)‘70Re “4Pt(,)“oos ‘74A~(a)‘701r “%b(Il,y)“%b
“%(a
t)“4L”-“4Yb()“~Lu )'74fi
‘74Ta(/3+ ) ‘74Hf •?r(apO~e *‘741rm (a)“ORe l‘74If” (a)“ORe l‘74Au(a)‘70Ir
.8 .l
.o .o .4 -1.5 -.8 1.3 .I .o .5 1.0
-7.5
9895.9 1.3 -.8 9898.3 1.2 4834.6 0.6 -.2 4835.3 1.6 5060 50 5544.4 10. 5941.8 2.6 2.3 5930.4 5. 5947.1 4. -1.3 5944.8 5. -.6 6350 50 -.I 6360 50 .O 6350 50 6900 50 6367.6 0.5 .l 6367.5 .5 -595.6 1.0 .o -595.6 1.0 3670 200 4000 300 175.1 .5 E(a) = 5660.0(5,2) to 136.2 level E(a) = 5676.2(4,2) to 136.2 level E(a) = 5674(5) to 136.2 level Systematical trends suggest ‘73Ta 880 more bound
"4OS(,)"OW
174Tm(j-
9910.1 1.5 1.7 4569.2 0.8 2.0 10. 10. 6129.2 2.6 3. 5. 4. 4036 4 4 8019.72 0.27 8020.9 .8 8020.1 .5 8019.27 .35 8019.70 0.27 -791.9 2.0 -791.9 2.0 891 5 888 5 1880 6 1870 10 350 50 4920 180 2500# 200# 3250 100 5510(10) to 349.2 level 5828.2(3,2) followed by 162.1 y-ray 5828(5) followed by 162.1 y-ray 4568.5 5226.8 5990.6 6129.3 6129.1 6464.6 4034
v/s
E(a)
=
E(a)
=
E(a) E(a)
= =
5430.3 1.1 5430.5 0.5 4872.2 10. 5624.1 10. 5817.6 6. 5817 4 5816.4 5. 6176.3 10. 6184 5 6185.5 5. 6683.9 20. 6782 10 6782.2 10. 7464.59 .lI 7464.60 0.10 7464.58 .35 7464.59 0.10 -202.1 1.0 -202.1 1.0 3080 40 3080 100 3080 50 3845 80 5275(10) to 224.7 level 5478(6) to 210.4 level 5478(S), 5316(10) to 210.4, 370.2 levels 6530(20) to level above 76
.I
-.l .I .7 -.4 4.9 .I .l .l .o .o .o
Dg 1 1 4 4 4 4 9 1 1 1 1 1 2 3 c
1 u 6 4 3 3 3 8 8 10 1 1 3 4 5
Sig 12
89
98
100 83 30
19
92
100
CF
Reference
8 ‘68Er H27 3 “‘YLJ H27
2.5 2.5
74Ba90 74Bs90 7lBd)6 92Scl6 l 82Dell l 92Scl6 l 81De22 Z 80Shl4 71All4 75Gr32 85Ge02 Z
87 172Er
76 100 70 30
ILn “‘Yb average ‘72Lu McM ‘72Tm ‘72Tm
14 ‘69T~ H27 H27
69
74Ba90 74Ba90 7lBo06 92Sc16 67SiO2 * 82Dell l 92Scl6 l 79HalO Z 8lDe22 Z 84Sc.A 7lAlOl 75Bu02 73ReO3 * 80Vi.A 84Sc.A 92Sc16 ** 92Scl6 l * 92Scl6 l * GAu *’
2.5
74Ba90 7lBoO6 92Scl6 l 67SiO2 l 92Sc16 l 79Ha10Z 8lDe22 Z 83Sc24 l 84Sc.A 821~05 Z 87GeOl Z
‘72~
MMn
100 100
75Bu02 62GuO3 66Hal5 79Tol8 73CalO 74Ca.A 92Sc16 ” 92Scl6 ‘* 92Scl6 ”
2.5 2.5
100 ‘73Lu McM
3 ‘72Yb H27
1 6 6 6 9 9 F 10 1 1 2 2 2
Main flux Lab
ILn 60 ‘73Yb average 100 ‘74Lu McM
75Bu02 64Ka16 67Gu12 7 lCh26 92Scl6 92Sc16 92Scl6 84Sc.A
* * l* l* l l
G. Audi et al. / The 1993 atomic mass evaluation (IV)
312
Input
Item
‘75,_u 37C]_‘42N,j 35C,2 ‘751r-C14.583 ‘75L” 35~,_‘73yb
value
61249.5
2.5
-34353 37(-l
Adjusted 61246.1
1288
5507.3
-35910#
1.4
5520 5520
value 2.3 380#
5511.2
50 50
1.4
5520
50
5 5.
6179
4
6780.9 6775.8
IO. 10.
6778
‘75Hg(a)‘7’Pt
7040
50
‘74yb(n,y)“%
5822.32
‘7SIr(o)‘7’R@
6179 6178.1
.I2
- 14303
“%(,
t)‘=L” ‘74Hf(n,y) ’ 175Hf
10
6708.8
)“‘Yb
2385
50
t’5yb(J‘-
)“5L”
466 468 471 467
3 5 3 3
468.0
1.6
‘75Hf(e)‘75L”
ave.
630
3
?~P(IT)‘%
100
20
From
g0Zr(89Y,a)‘751r
E(a)
=
6037(10),
*175Pt(,)“‘os
E(a)
=
5959.2(5,2)
E(a)
=
6440(10)
to 190.0(.5)
E(a)
=
6435(10)
to 190.0(.5)
From
dependable
l‘75A”(a)‘7’Ir
176~” 176yb
37Cl_t43Nd 35C,2_172yb
35C12 37Cl
17eyb
35c,_l74yb
37(-l
‘76Hf
35Cj-
174Hf
2
37C’
nuclear
9 14’Nd
H31
CF
Reference
2.5
77SoO2
2.5
91Brl7
2.5
74Ba90
I
.o .o
5 5
67SiO2 92Scl6
.I
5 5
79HalO’ 82Dell *
.3
10 10
75Ca06 84Sc.A
8
84Sc.A
-.I -.3
.I
1.3
-.I
0.5
-.2
1
16
100
13 17%‘b
50 ‘75Yb
‘J 1
99
H27
MMn
821~05
McM
75Bu02
81 175Hf
66WiO4
-
55De18 55Mi90 56Co13 62Ba32
1.3
1.3 .4 -.3 1.0 1.2
I
685.8
2.2
18.6
F
88Si22
6
84Sc.A
62
50 ‘75Yb
**
level
84Sc.A
**
level
84Sc.A
**
AHW
l*
level
686(2)
2.3
.7
1
42
28 ‘43Nd
H31
2.5
77SoO2
1.3
.3
1
l:
3 176yb
H27
2.5
74Ba90
6656.3
1.4
6660.4
1.2
1.2
1
10 ‘76yb
H27
2.5
74Ba90
4311.9
1.9
7’ ‘74Hf
H37
2.5
.86
-1.1
1
71
5. 4. 3.
6410 6541.5
50 IO.
6924.7
IO.
5886.1
6541
2.2
IO
-.8 1.0 -.3
3 3 3
79Ha10Z 82Bo04 Z 82Dell Z
2.7
F 5
75Ca06 84Sc.A NDm
5
-4204.7
1.1
2.3
U
-6397
5
-6392.3
1.8
.9
1
12
0.15
.I
1
100
2.1
u
6287.98
8
- 1908.2
1.8
100
5130 5655.0 5640.7
74 ‘=L”
to
168.4(.5)
suggest
Min
730001
IL’I
9lKlO2
Tal
73Za08
1.3
I
-2.5
level 320 more
bound
10.
6730 6750
50 50
67 ‘76Hf
73Vall 84Sc.A
l*
84Sc.A
**
GA”
**
67SiO2
50
6251.5
77
7lBelO
‘76Tm
6. 3.
NDS
L
1314.5
level trends
174Hf
67Gull* .Ol
3110 6228(10)
II
200 1
78TalO 730001
-4216
.I5
* ’
84Sc.A
10
4.4
122.86
77Sh12 67SiO2
50
1317
** *’
level
12090.9
4200
*
84Sc.A
76.4(.5)
61069.6
-1925
Z
84Sc.A
reactions,
6287.96
* *
average
1.4
7628.8
Z
71AlOl
2
2.4
5890. I 5881.9 5887.1
*
I.1
12088.9
‘76pt (0)‘72Os
Systematical
13
flux Lab
61067.2
5240
=
II
Main
470.0
to ground-state,
to 76.4(.5)
‘761r(o)‘72Re
E(a)
6708.7
5963.0(5,2)
4314.21
To unknown
1
-.5
Sig
AHW
*‘751r-c14.5*3 *‘75Pt(a)17’0s
*‘75~“(~)‘~‘1~
-.5
0.12
-14303.8 .5
“‘Tm(B-
7
5822.33
Dg
v/s
5643.5
2.7
-1.9 .9
6740
.I
50 -.2
5 5
79HalO 82Bo04
6
75Ca06
9 9
79Ha10 9 1Ko.A
Z Z
313
G. Audi et al. / The 1993 atomic mass evaluation fZv) Input value
Iiem
we. i76Hf(d,p)‘77Hf 177Hf(d,t)‘76Hf “‘Lu(fl)“‘Hf ave.
“aPt-c,4.83 “8Hf =Cl_ ?‘6Hf 37'3 '78pt-t7S~r "8Ptb)"40S
C,, Hj,-‘79Hf “9Hf 5C]_‘77Hf ‘79Pt(o)“SOs
3’C]
-6071 5566.8 614. I 7072.4 7070.8 7071.4 4150 -127 497 497.1 497.1 1166
Adjusted value 5 1.2 1.0
.4 .3 0.8 7 II 2 1.0 0.9 3
-6062.4
1.7
Dg
Sig
Main flux Lab
CF
i
20
19 “‘Hf
Min
89
87 “%‘b
McM
86
51 ‘76Lu
average Tal Tel
L
673.7 7072.2
4 154.2 -121.5 498.2
- 34783 II81 .35110 5244.9 5239.5 1.3 -472 1052 8W# 5583.7 5. 5573.9 5570.4 3. 6120 50 6060 6120 50 6578.1 6. 3865 10 4482 4492.2 5 -5531 5 -5523.3 .3 7626.32 7626.2 30 645 641 123.7 3 120 2099.1 2046 50 2096 50 2223 2249 30 1912 IO 0 100 91.3 2. 4660 180 From 90Zr(89Y p)‘78Pt From 90Zr(89Y~p)‘751r-90Zr(~qY,~)‘78Pt Sees in addition a higher E(a) branch 1.8 140260.3 5544.4 .7 5270 50 5310 50 5280 50 5982.0 5. 643 1.O 5. 6710 50 7364.5 20. -72 2 6099.02 .lO 1350 50 1380 70 129 16 2710 50 With correction like in ref. As corrected by ref.
2.2
v/s
140259.9 5545.2 5280
0.9 0.7
1.5 1.5 0.8
370 1.6 530s 2.; 50
3.0 1.5 0.29 10 2.6 2.1 3
-.4 -.4 4.7 1.1 .6 .5 .6 1.1 1.3
-.I 1.7 .5 -1.9 I.1 1.2
2.0 1.5 .4 .l 1.2 1.1 .I -.9
1 I t-J u 1 2 u
I u 5 5 F 4 10 2 1 u I u 1 u u u
4
2.7 0.3 50
-.I .4t .2 -.6 .o
1
90 62 “‘Lx
110
1.9 0.10 5 5
68Ri07 72ZaO4 55Me.12 62El02 61Wel
I
2.5 91Br17 * 2.5 74Ba90 2.5 91Br17 * 79HalO 2 82Boo4 2. 68SiOl * 86KeO3 79HaiO 82ZuO2 Phi 81GiOl 35 34 “‘L@ LAI 730001 Mitt 86Ha22 Z 96 68 “‘Hf ILn 73oro3 93Bu02 77 66 ‘78Lum McM 73orO3 75Ka15 75Ka15 61Ga05 6IGaOS 67NiO2 7OGo20 AHW ** AHW ** 86KeO3 ** 25
22 ‘76Hf
37 37 ‘79Hf 4 2 “‘Hf
H27
M23 2.5 H27 2.5
5 5 5
-.8 I .ll 1.1 u .4 u -1.2 R 3
72Al19 758~02 71Ma45 72Mi16
average
4 12 11 -73.6 6099.03 1405
Reference
90 89 “8L” 99 66 ‘78Hf
MCM ILn
79Ha32 74Ba90 66SiO8 79HalO 82Bo04 68SiOl 79HalO 83Sc24 83Sc24 93Bu02 89Ri03 61KulO 63StO6 613015 75Me20 9lRyOl 76He.B
* 2. Z
Z
* ** l’
G. Audi et al. / The 1993 atomic masx evaluation (fyi
314
Item
Inputvafue
‘80Hg(o)‘76Pt ‘80Hf(t.~)‘79L”-“sHf( ‘79Hf(n y)‘80Hf ‘80W(d.t)’ 179x&J “‘Lu(@- )‘*‘Hf
)“‘Lu
‘*“TE,(B- )‘*“w
‘*OR,()+)‘@‘W +‘*OAU(*)‘76Ir l‘*OAu(a)““Ir ‘*iTa 35Cl-“gHf ‘8’~~
170
2.7 147356.6 4.8 147351.6 1.7 11045.7 11036.1 3.0 0.4 5798.4 5800.8 10. 5257.1 40 5850 10. 5814.5 5848 40 6258.4 s. 5 -669 5 -669 0.4 7388.2 .4 7388.0 -2155 13 3100 70 3148 100 3058 100 4 705 15 712 15 ave. 708 11 3800 30 3830 60 3790 40 E(a) = 5685(10), probably not to ground-state, E(a) = 5648(101 to 70(40) level
37Cl
35~,_180~$n
0
37~~
‘*‘pt(a)‘770s ‘*‘A~(a)‘~~k
ave.
‘*‘W(d,p)‘*‘W ‘*‘Hf(p- )‘*‘Ta
‘*‘W(c)‘*‘Ta
Adjusted value
5128.6 7572 5130 5750.3 5752.3 5753.4 5736.0 6288 6283 6320 6710 7370 7203.5 - 5738 5695.5 -7580 -7579 -1317.7 -7577.0 7652.3 7652.13
2.1 21 so 5. 5. 5. 8. 5
10 50 SO SO 15. 5 .7
1.8 1.3 ::o
5130.9 7617.0
2.8 0.3
v/s
Dg Sig
-.41 1.31 1.41
5 5 6
5 3.3 F 4 3 .o 1 .6 1
*
Main flux 5 ‘*OHf 4 ‘76Hf 5 ‘*OHf
100 100 ‘79L” 94 75 i@Hf
L
-.4 .5 .2 -.3 -.l -.5 .3 see
2 2 1 16 2 2 next ref.
.4 1 .9 u 5 5751.9 3.0 .3 4 -.I 4 -.3 4 2.0 c 4 -.2 4 6287 .4 4 300# 5.6 C 6600# 9 10 12 -5740 5 -.4 2 0.7 .3 1 5695.7 -7577.0 1.3 .6 1.0 1.3 -1.1 -1319.7 1.3 .o 1 -7577.0 0.19 -.3 2 7652.15 .I 2
13 ‘*OW
29
f9’*‘Ta
98
84 ‘*‘Hf
99
98 ‘*OTa
9 ‘*‘w 4457 6 -.8 1 15 4468 15 1023 8 1027.4 2.7 .5 1020 5 1.5 ave. 1021 4 1.5 1 40 24 ‘*‘Ta 184 I2 188 5 .3 190 6 -.4 ave. 189 5 -.2 1 72 70 ‘*‘w 3030 200 3 E(rr) = 6147.O(lO,Z), 6005.0(5,2) to ground-state and 147.5 level E(o) = 6136.6(lO,Z), 6005.6(10,2) to ground-state and 147.5 level More information needed 4928.5 30. 4943 17 .5 2 4948.9 20. -.3 2 5529 IO 5525 5 -.4 3 5524.7 5. .2 3
Lab
CF Reference
M23 H27 H27
2.5 79Ha32 2.5 74Ba90 2.5 74Ba90 66SiO8 86KeO3 l 93wa.2 * LY’l 79HalOZ McM 92Bu12 748~22 72CaOl KOP 7lGu02 7lSwol 5lBr87 62Ga07 averam 670022 67Hoi2 AHW ** 93Wa.2 ** H3f H35
2.5 80ShO6 2.5 SOShO6 66SiO8 68SiOl 2 79HalO Z 90Bi.B 92Sa03 79Hal0’ 86Ke03 * 92h.D * 84Sc.A 86KeO3 89100 1 Min 730001 71Al22 79Ba06 E 81Col7 NDm 79Ta.B average MMn 8lCo17 ILa 84Fo.A 2 KOP
72CaOl 52Fa14 53Ba81
average 66Ra03 83Se17 average 670025 NDS l* NDS *’ GAu ** 63G@8 66SiO8 79HalO’ 908i.B
315
G. Audi et al. f The 1993 atomic mass evaluation (Zv Item
Adjusted
Input value
value
v/s
Dg
Sig
Main flux
Lab
CF
Reference
‘8zHg(a)‘78Pt
5998.
5.
4
79HalO Z
‘**Tl(u)“*A”
6550.2 6190
IO. SO
3 c
86KeO3 92Bo.D
‘82Pb(,)‘78H8
7076.8 7074.8
10. 15.
II II
86KeO3 87To09
‘*OHf(t
p)la2Hf
‘*oW(t,;)‘*2W
t)‘**w
‘*zw(p
’
3931
6
6265
5
-6261
182W
‘BOWkP)
I
ave.
6062.95
1811.9
ave.
83Bu03
2
t&M
4
-.2
-
LAI
76CalO
4
-.3
-
Min
730001
6264
4
-.l
1
6062.96
0.16
.l .5 --.7 .o
-
-1807 1813.6
73 ‘*ow
7iHe13 775115 81Co17 83Fo.B
MMn ILn
I
100
75 ‘*‘Ta
average
.2
1
22
21 ‘*‘W
Kop
1.8
.Y .2
-
.6
I I
20
.o
l
average
.o
1.6 2860
74
5
0.16 5 3
1813
'82R,m(~t)'82W
.4 .5 .5 .2 10
I809
7.3 -.l .1
4
-1809
9
-6264
6062.9 6062.7 6063.3 6062.95 ave.
10
7076
6264
10
6264
‘*‘Ta(n,y)‘82fa
6550
72CaOl
15
64Da 67BaOl 1:
100 25 **%a ‘82Rem
average 63Ba37
2860
20
60
100
848
15
848
15
5700
200
5610
140
-.5
‘*2Pt(j3+)‘*2rr
2900
200
2850
140
-.3
‘8zAu(@+
)la2Pt
6850
200
2
72We.A
l
‘=Hg(/?+
)‘**Au
4950
200
3
72We.A
l
NDS
**
‘**Rem (IT)‘**Re 1820s(e)‘*2Rem ‘**I@+
)‘**os
+‘*2Au(,)‘7*Ir
E(u)
l‘**w(t,~)‘**w d8ZAu(fl+
Q -
1182~
*‘82Hg(~+)‘**Au
‘8’w
0-q
ls3W
02-“*Hf
= 5353(10) to 55(l) level ._^ Q(““Y(t,p))=ll2(5,Ca),Q(i70)
.o
63Ba37
1
100
100 ‘*20s
7OAkO2
1
50
50 ‘*%
72We.A
I
50
50 ‘8%
72We.A
= -6153(4)
AHW
‘*
Systematic
trends Suggest Ia2Au 930 less bound
GAu
l*
Systematical
trends suggest ‘*lHg
GAu
**
‘5Cl
J‘Cl
‘*3W G2-‘*OW 35~3 183W ‘S(-,_‘8lTa “(J
‘*3W o2 3’cl_‘*+
2
35~1~
‘*3Pt(a)“90s
100858.0
2.7
100875.3
3.0
30455.7
5.0
30452.8
3.0
-.2
1
24509
6
24495
4
-.Y
I
5 177.2
1.2
5178.1
20045.6
1.8
20045.4
‘83w lE3W ‘*‘W ‘*‘Ta ‘**W
H29 H35 H28 H35 H28
2.5 2.5 2.5 2.5 2.5
77ShO4 8OShO6 77Sh04
1
-.I
1
-.1 .I
7 7
66SiO8
77Sh04
5470
50
.l .O .3 -.l
6 6 c 6
68SiOl 82Bo04 84Br.A 90Bi.B
6. 5.
6039
4
-.7 .6
4 4
76ToO6 79HalO Z
6490 6480
50 50
6480
50
.O .O
6 6
8OScC’9 87ToOY
6950 7030 7030
50 50 50
7030
50
1.5 .o .o
F 3 3
8OscO9 86KeO3 89ToOI
6940
50
6190.4
89ToOl ILI’
.20 1.5 1.5
6190.7
I.1
1.0
-.1 .4 .2
83
69 ‘*2W
average 67Mo13
30
3
556
8
2
69KuO3
3450
100
3
70Be.A
.08
6
NDS
.5
5
NDS
230.5 assignment
3190(100)
by evaluators
mainly to 258.35 level
*
67SpO3 7OOr.A
f 1
Z Z
83Fo.B
2010
34.50
=
19 3 8 25 4
50 50 50 50
:oo
5460 5470 5450 5470
6190.8 6190.1
E+
19 6 8 39 5
.3
1.9 1.0
1
50
6934.18
Tentative
2.6
4840
4850 4840
6043.4 6036.2
ave.
170 more bound
*
AHW
*’
NIX
**
316
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Adjusted value
23917.5 2.8 23912.6 5675 3 5677.1 5676.3 2.2 18734.7 3.0 18734.5 4579.8 20. 4590 4600.2 20. 5290 50 5300 5300 50 5658.2 15. 5662 5662.2 5. 6300 :: 6300 6290 6765.4 10. 6775 6779.6 10. 6781.6 IO. 7411.9 .3 7411.74 7411. .6 we. 7411.72 0.27 1340 30 2866 26 5100 250 4560 4300 100 4285 2:: 4562 6450 50 7130# 3660 30 4050# Q+ = 4720f250) to 383.77 level Adopted: simple average and dispersion of 3678.7 -26480 4540 5180 5180 5778.2 5777.2 5483.8 5485.9 6112.4 6107.3 6102.2 6680 6630 5753.7 -310 6625.4 2013 432.6 1012.7 1012.8 1012.8 4707 103.8 452.8
1.0 14 50 50 50 15. 15. 15. 10. :: 15. SO 50 .3 4 .9 20 1.0 1.0 .5 0.4 40 1. 2.
5681.4
1.9 1.1 0.3 14 50 5 50 6
0.27
270
350# 360#
Dg
-.7 I .3 u .2 1 .o u s 5 -.5 5 .3 3 .o 3 .2 4 -.l 4 .o 3 .I 3 1.0 4 -.4 4 -.6 4 -.5 1.2 .I 1 3 2 -2.2 B 2.6 B 4.0 B 2 13.6 C 13.1 c
Sig 7 4
98
Main flux Lab CF 5 lslTa H35 2.5 H22 2.5 3 t8=W H28 2.5 H28 2.5
1.0
50
5778
11
5485
9
6108
4
0.30 4 0.9 14 0.9 0.4
1.1
.o .o .o .o .l -.I -.5 .2 .4
.l .o .o -1.0 .4 .l .o .o
1 2 5 7 7 4 4 5 5 4 4 4 3 4 1 1 1 2
1 1 6 4 3
Reference 8OShO6 fOMc03 77Sh04 77Sh04 63GrO8 66SiO8 70Ha18 9OBi.B 70Hal8 76ToO6 76To06 Z 8OScO9 Z 80Du02 8OScO9 87Tc09 74Grl I 75BuOl
55 ‘84w average 73Wal8 73Ya02 70Be.A * 73Ho09 89PoO9 Averag l 84Da.A 84Da.A AHW ** GAu **
3 data
5180
5753.74 -310 6625.4 1992 433.0 1012.8
v/s
16
11 ‘85Re H28
2.5
77Sh04 9oKa19 91Bi04 ;;$)l4
1::
100 72 ‘85~ “‘Re Rot BNn
99
98 ‘840s
78
50 t85Re
100
z
70Ha18 Z 8oTO.A 76Gr.A 8OTo.A 75Co.A Z 76To06 Z 8OScOP 8OScO9 8O!kO9 87BrO5 Z 76El12 74Prl5 69Ku07 67Wil9 67Sc15 7OScQ6
99 ‘850s average 86Da.A 87Ki.A 77Sco3
317
G. Audi et al. I The I993 atomic mass evalwtion (iv) Retem
Inputvalue
Adjusted value
3 104392.7 104608 3.2 1.9 23122 23114.2 5 1.8 6379.7 6382.0 1.4 20 4324 4323.2 20. 13 4753.1 4733 IS. 13 3206.2 3206 15. 5890 30 7 6438.2 20. 647 1 6470.4 10. 6474.3 IO. 7330 50 1.7 -4474 5 -4466.2 14 1’410 11430 20 1.7 -939 -937.0 10 0.7 6179.7 6178.6 1.5 6179.9 .8 6179.6 0.7 ave. 60 3901 0.9 2 1064 1069.5 1071.3 1.3 1076 3 t064 3 ave. 1069.4 1.0 3831 20 140 3930 6040 200 140 3230 200 3300 373.9 .J Not assigned to groundstate, contrary to authors 23794.7 23797.4 3.5 5743.1 3744.2 1.2 4790 50 3130 50 5641 3630.7 20. 3649.1 10. 3632.7 12. 6393 6393.0 10. 6397.0 10. 6213 6223.3 10. 6203.9 10. IO. 7139.0 7749.1 10. 5466.72 3466.3 3467.17 :: we. 3466.73 0.21 6292.6 629 1 2 2 1311.2 1314 2 1310 ave. 1312.0 1.4 2.62 2.663 .09 2.64 .05 2.667 ,020 ave. 2.663 0.019 1502 1330 200 -1321 6 40 3600 5 332 330 Assignment uncenain Propose feeding of 9/Z- 12.3 level E(a) = 6190(10) to 67.4t.3) level E(a) = 6194(10) to 67.4c.3) level Only statistical error .04 keV @en. ,Z corrected
1.6 1.3
7
7 7
0.21
1.4 1.3
0.019
6
4
v/s
@
1.9 -.6 -.I .o .o .o
I
U 1 1 1 1 3 .6 4 .o 4 -.4 4 5 1.6 1 -1.0 R .2 U .I -.3 .ll
*
2.8 -1.5 -2.2 1.8 .ll
Sig 13 28 99 99 100
Main flux Lab CF
Reference
13 ls6W
77ShO4 llSb04 77Sh04 63GrQ8 9oAkO4 70Ha18 77IjOl 74L.eO2 Z 8OScO9Z 84ToO9 Z 84.k.~ * 730001 8OLolO 72CaOi 700r.A 730106
‘8 99 30 30
ls6W ‘8% ls6Au ‘%Ig
12
8 Is6W
94
69 ls6Re
HZ9 2.5 HZ8 2.5 HZ8 2.5
Min LAl Kop
average 69Mol6 56Jdx 56Po28 64Ma36 68Anll
f 88
37 ‘860s
30 30
30 ls6Au 30 ls6Hg
average
I
.5 f .31
LVII
-.3 ‘3
I 1 4 5 .5 4 -.8 4 .7 4 .2 3 -.2 3 -.9 4 .9 4 5 3 1.4 -1.5 -.I 1 .8 1 -1.4 .6 -.6 I .5 u .s -.2 .o 1 .8 U 2 5 .5 3
2:
2 “‘Re HZ8 2 .5 13 '85 Re HZ8 2.5
LVn
BNn 100 46
80
57 ‘@w 30 r860s
63Em02 72We.A 72We.A 9lVa04 AHW ** 7X%04 77ShO4 68SiOl * 70Hal8 76ToO6 * 8OScO9 * 8SCoO6 l 75Ca06 * 8lMil2 * 8OScO9 81Mil2 84.k~ 84Sc.~ 87BrO3 Z 92Be17 l
averagt 74PrlS 69Na03 70Hcl4
37 18’W average 65Brl2 67HuOS 92cQ23
100
63 “‘Re
avera@ INS
7 1Ma24 9OKa27 83GoOl 77ScQ3 NDS l* 9lWa21** NDS l* NDS *’ GAu **
G. Audi et al. / The 1993 atomic mass evaluation (Iv
318 Item 37”
‘8gPt(a)‘%s
C14 H ,-‘8g0s ‘890~
Adjusted value
Input value
18SOs 35633_186~
3 5~1-187~~
37~1
‘@pttfl+ )‘% ‘89Au(fl+ )ls9Pt ‘89H8(~+ )“‘Au ‘89Tl”ffl+ )‘89Hg t189AU~,y+~‘89pt
~‘89H8(~+)‘s9Au ‘900, 35C’--1880$
v/s
1.4 -.3 4423.9 4426 3 5 -.8 4007 4015.7 10. .7 4000.3 10. I.1 3990. I 1.5. .4 7 4005 4710.4 20. 61 I I 4 .I 61 to.3 10. .2 6 109.2 10. -.9 6120.5 10. .3 6110.3 5. 7274.5 25. 6968.5 20. 1.4 .4 - 5800.1 - 5802 5 .7 4 -5803 -5803 3 5871.6 .3 0.30 .o 7989.29 7989.3 .3 349 3 I -2.4 2809 2833 10 1.4 2781 20 -.6 2827 30 -1.6 2823 9 7 -1.8 507 525 10 lOO# -7.3 5300# 5520 30 200# 12.9 2300# 2040 20 268.8 s E(a) = 7005(25) to 117.0(S) level Assignment of evaluarors to grmmd-state and isomer different 206181 206188.3 3 6.2 5344.2 0.6 5341 3 5850 50 5840 50 7270 4 7270.2 15. 6817 5 6814.5 10. 6816.5 5. 7360 50 -5428.1 -5431 0.6 5 -5432 4 5920.6 0.5 5920.6 .5 2500 200 1009 8 1000 20 1015 20 1971 14 1950 20 3160 300 4200 200 5460 200.^^ Systematical trends suggest ‘aVAu 310 more bound Systematical trends suggest “‘Hg 250 more bound
37C’
5557
Hz, ‘9OPt(rr)‘86os ‘poOs-C,4
ave.
ave.
-205897.8 3238.3 3248.5 3243 5700.2 5697.1 6862.2 6961.9 6589.0 7643.2 -5234 -5237 -5236
3 5.8 20. 20. 14 10. 5. 5. 5. 10. 20. 5 4 3
5559.3 -205881 3249
1.1 3 6
-5
.4
.o .2 .l .6 1.0 .I .5 -.3 1.0
.4 -.2 .l
6967 6593
4 5
-.2 .4 .7 1.7 1.7
Sig
Main flux Lab
3
2 “‘W
65
63 ‘88Pt
19
12 ‘860s
99
51 l@os
65 52
64 ‘881, 36 i8sIr
H22
CF
Reference
2.5
70McO3 63GrO8 78Ell I 79HalO
average
Min McM average
i 1 3 1
I C C 4
1 u 3 5 3 R R 3 U u 1 3 R R 1 2 3 4
1 I .5 .o -
5
1.0
I 1 4 3 3 3 3 3 5 -
.3 1.2
5698
-5230.4
Dg
1 2 2 4 5 R 5 I
72Sh13 83FeO6 64BulO 62Wa20 69Ya02 7OAgO3 average
LVn
4
4 ‘890s
M23 2.5 H22 2.5
LV’I LVn Min McM 97
61 “‘0s
49
29 ‘@Ir
2 4
16
1 ‘900s 4 1900s
15 t9’Pt
ILn
HZ2 2.5 M23 2.5
7 ‘“OS
78Elll 84Da.A 84Da.A 91Va04 84Sc.A ** 84Sc.A ** 79Ha32 70Mc03 72Ga21 74LeO2 85CoO6 Z 74LeO2 Z 85CoO6 Z 84Sc.A 730001 75Th04 92Brl7 65KaO7 63Ci-06 65B106 71PlO8 75Un.A * 75Un.A ’ 75Un.A * GA” ** GAu ** 70McO3 79Ha32 61Pe23 63GrO8
average
LVll LVII
11
79HalO 74LeO2 Z 77De32 2 8OScO9 Z 817002 Z 8OScO9 * 8OScO9 730001 75ThO4
Min McM average
74Le.02 8lElO3 91Va04 91Va04 74LeO2 88Qu.A 730001 7sTho4
Z Z * *
319
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item ‘VoPt(p,t)‘88Pt
‘QOos(t,o)‘8QRe ‘8QOs(n,y)‘Q00s
‘voPt(p,d)‘*vPt ‘vOW(~-)‘vORe ‘voRem(IT)‘vORe ‘“Re(,‘)‘voOs “‘Rem (,9 - ) ‘voOs ‘V%(/3 + ) ‘900s lwAu(,9+ )“‘Pt lVoHg(,8+ )“‘A” ‘voTl(,9+ )“‘Hg “‘Tim (p+ )“‘Hg ‘voBi(~+)‘voPb l‘v0Bi(a)‘*6TI r’VOBim(o)l86Tlm
“‘Bim (a)“‘11 ‘v’Po(a)‘87Pb ‘V’Ir(p,t)‘% ‘V00s(n y)‘V’Os
‘Q’os(p’-
)lv’~r
‘vlAu(@+ )“‘Pt “‘Hg(,9+ )“‘A”
‘V20s 02 - ‘8Vos ‘%I ‘920s 35Cl_‘q)s 37Cl 1v2Pb(a)‘88Hg 1v2Bi(a)188T1 192gim (aj188T1m 192gim(a~188Tln
‘V2Pt(p,t)‘VoPt lv20s(t a)“‘Re ‘V’Ir(n:y)‘% ‘Q2Pt(p,d)‘v’Pt ‘v2Pt(p,d)‘Q’Pt-‘v4Pt()‘y’Pt ‘%r(8 - ) ‘V2Pl
‘v2Au(,9+ )lQ2Pt
E(a) E(a)
-7150 11796 7791.5 -6693 1270 190 3090 3190 3350 2000 4442 2105 7000 7170 5720 = 6716(5), = 6819(5),
Adjusted value
10 -7163 10 11795 1.0 7791.6 11 -6687 70 40 300 3150 300 200 3340 200 15 80 1470# 400 300 300 8700 6507(5), 6431(5) 6734(5), 6456(5)
7 8 0.9 10
v/s
Dg Sip
-1.3 --.l .1 .6
I 44 23 lvOPt 2 1 87 52 ‘%k 1 84 80 ‘8vPt 3 3 IS0 .2 2 -.I 2 150 .O R 2 2 lSO# -7.9 c 4 4 210 9.9 B to ground-state, 215.2, 293.7 levels to levels 0, 89.5, 373.9 above ls6Tlm
4 5400 50 3 6781.3 5. 7 1.7 R 6440.1 5. 6449 -.6 R 6455.4 10. 6446.2 5. .5 R 3 7023.4 5. 3 7470.8 20. -5903 15 -.8 1 -5915 13 5758.69 .16 5758.67 0.16 -.2 1 313.7 1.1 .I 313.3 3. -.3 314.3 2. -.9 316.3 3. -.2 314.3 3. 318.3 3. -1.5 -1.1 1 ave. 315.1 1.2 2 1830 50 -1.3 U 3430 200 3180 70 3180 70 3 5140 200 Systematical trends suggest “‘Tim 350 more bound4 24301 5984 5221.0 6376.0 6484.9 6212.6 6222.8 7322.8 7319.8 -4835 -4837 ave. -4836 -6629 10993 6198.1 -6448 -307 1456.7 1453.3 ave. 1454.5 3514 3520
6 3 5. 5. 5. 5. 10. 20. 7. 5 4 3 7 10.2 6 3 4. 3. 2.4 20 25
24310.7 5983.9
2.5 2.3
6483 6214
4 4
7320
7
-4834.8
2.1
-6631
6
6198.08 -6451.8 - 306.0 1459.7
3516
Main flux
0.20 3.0 2.7 1.9
16
.6 U .o I 3 3 -.4 4 .3 R -.8 u -.2 u 3 .o .5 .4 1 -.4 1 -.l -.6 .3 .7 2.1 2.2 .l --.I
: 1 I 1 2 2
Lab
CF Reference
OIS
78VelO 76Hi08 79CaO2 Z 8OKal9 76Ha39 NDS
MCM BNn OrS
55At21
69Ha44 64FlO2 6OKa14 73Joll 74Di.A 75Un.A 76Bi09 76Bi09 91Va04 ** 91Va04 **
LVII
LVII LVll 71 71 l8% 100 65 ‘v’Os
McM ILn
74LeO2 85CoO6 Z 67TrO6 Z 74LeO2 Z 85CoO6 Z 85CoO6 Z 88Qu.A 78LoO7 91Bo35 Z 48Sal8 5IKol7 58Na15 6OFeO3 63PlOI
91 56 “‘lr 76Vi.A 75Un.A 76Vi.A 75Un.A l GAu ‘*
9
9 ‘920s
46 45 ‘Q20s 62 58 “Opt 100 57 ‘9% 24 27 “‘Pt 81 73 ‘V’pt
60 59 lv2Pt
H22 H22
2.5 70McO3 2.5 70McO3 79To06 Z LVll 91Va04 l LYI’ 9lVa04 * 67Tr06 l 74LeO2 l 8lLe23 LVU 93Wa.3 Min 730001 McM 75Tho4 OrS
McM ILn OrS On
8OKa19 76Hi08 91KelO 8OKa19 78BeO9 65JoO4 77Ral7
average 66Nyal 74Di.A
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
320 Item
Input
Adjusted
value
‘g2Hg(@+)‘g2A”
1745
30
‘92Tl(p+)‘92Hg
6380
200
*‘92Bi(a)‘8sTI 192Bim(,)l88Tlm
l *
E(a)
=
6245(5),
6060(5)
E(a)
=
6348(5),
6253(5),
to levels
103.1,
rl92Bim~,)‘88T~n
E(o)
=
6050(5)
r’%?Bim(,)‘88T]n
E(o)
=
6060(10)
.192T,(8+)192H8
Systematical
‘93Bi(a)‘8gT1 193Bi~o;189T,m
‘93Bim(a)‘*9TI ‘93P”(a)‘89Pb
‘93P”m(,)‘89Pbm
‘%(p,t)‘9’Ir
trends
‘920s(n,y)‘930s ave. ‘9’Ir(t,a)‘~~0s-‘~‘1r()‘~~os
-43.1
to ground-state, 6081(10),
302.4
t” level
33.6
6052(5)
Lab
CF
Reference
C
74Di.A
7
75Vn.A
*
level
91Va04
l*
to ground-state
91Va04
**
above
‘88Tlm
91Va04
l*
above
‘88Tln
GA”
l*
“‘Tin
GAu
**
260 less bound
GAu
l*
t” level
33.6
suggest
19’Hg
above
6
LV”
85CoO6
2
602 I
3
.7 5 -.4 5 -.5 5
LV”
67TrO6 74LeO2 85CoO6
2 Z Z
6617.4 6612.3
IO. 5.
6613
5
-.4 7 .2 7
LV”
74LeO2 85CoO6
Z Z
7130 7090 7100
50 50 50
7100
-.6 U .2 u 3
LV”
67SiO9 77De32 93wa.3
7143.3 7148.4 7152.5
10. 20. 5.
7151
.7 6 .I u -.4 6
LV”
77De32 81Le23 93Wa.3
I5
-5488.11
0.28
.I
McM
0.9
.8 -.I -
5583.5 5585.2
2. 1.0
5584.9
0.9
‘92Pt(n,y)‘9JPt
6247 1132
4
5585.1
50
5
u
2.1
1.9 1
I I
7771.85
0.20
3
6255.5
1.9
2.8
5
1140.6
2.4
1.7 1
.3
56.64
0.30
19’A”(,9+
)“‘Pt
1355
20
1069
9
‘93Hg(jI+
)‘93A”
2340
20
2340
2482
30
2481
140.76
-.3
1
.I
78LoO7 78Be22 79wa04
1
.3 -653.3
.2
56.6
‘93Hgm(IT)t93Hg
flux
5.
7771.9
‘g3Hgm(j+)‘g3A”
184.6
Main
5. 10. 5.
‘%r(n,y)‘%
‘93Pt(r)‘%
720#
Dg Sig
6304.9
-661
) ‘9%
268.8,
v/s
6017.9 6025.1 6024.1
-5490
19’Os(jr
450#
value
98 79 ‘930s
average
28 28 ‘92Os
LAI
82Ia22
99 58 “‘11
IL”
85Co.B
39 37 ‘92pt
68Sa13
23 21 ‘93Os
58Nal5 83JoO4
99 84 19’Pt
B
76Di15
17
.o 3
76Di15
17
.O R
58Br88
-14.3
.05
NDS
4
‘94Pb(a)‘90HS
4737.9
20.
3
‘94Bi(a)‘90TI
5918.3
5.
5
LV”
91Va04
*
194Bim(a)190Tlm
6015.7
5.
5
LV”
91Va04
*
6
LV”
9lVa04
* Z Z Z
LV”
67SiO9 67TrO6 77De32 93Wa.3
194Bim (,)‘90T,ll
5717.5
5.
‘94P”(a)‘90Pb
6991.4 6991.4 6984.3 6986.3
10. 7. 5. 6.
194Atm(n)t90Bim
7350
50
‘%(n,y)‘%r
6067.0
‘94Pt(p,d)‘93Pt ‘94os(j?‘?r(fl‘94Au(@+
‘94Hg(r
-6142
)‘%r
3
96.6 2251
2
2465 2509 2485
20 15 30
40
-.4 -.6
6066.8
84Ya.A
0.4
-.4
I
98 73 ‘%I
1.6
-1.3
I
28 16 ‘94Pt
-6145.8
82Ra.A On
2246.9 2492
1.6
-2.0
II
1
6’
I
56Thl 60Bal7 7OAgO3 81Ho18
3
5799(5),
5645(5)
t” ground-state,
151.3
lt94Bim(o)t9OTk”
E(a)
=
5892(5),
5791(5)
to levels
0, 112.2
E(a)
=
5660(5),
5599(5),
5335(5)
to levels
r’94Pt(p,d)‘93Pt
Q -
-445(3)
91Va04
level
above -63.9,
*
76Ra33
34 lg4Pt
1.4 2 -1.1 2 .2 2
20
=
78Be09 64WiO7
2
E(u)
Q(‘96Pt(p,d))=
3 3 .5 3 .l 3
2.
)‘94Pt
)‘94Au
3
6 .4
) ‘94Pl
*‘94Bl(a)‘90Tl *‘94Bim(,)‘9”Tlm
6987
87E109
‘90Tlm 0, 272.4
above
19’Tl”
**
91Va04
l*
91Va04
l*
AHW
‘*
321
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item
Adjusted value
v/s
Dg
Sig
Main flux
6 5. 5 -.7 5 5535 10. 5542.9 .4 5 5. 5533.8 3 .8 7 5. 6232 6228.0 -.6 7 10. 6238.3 -.4 7 5. 6234.1 .o 3 6750 50 50 6750 .o 3 50 6740 3 -1.0 4 6841 10. 6850.7 .2 4 5. 6839.5 .2 4 5. 6839.6 L .I1 7231.87 0.12 -.l I 100 53 ‘9%’ .12 6105.06 6105.07 3 2000 2 20 1230 2 1.0 226.8 3 50 1510 .I 202.9 6 550 4850 Average pK = .179(.006) to 129.78 level from the following references: pK = .195(.015) to 129.78 level pK = .166(.020) to 129.78 level pK = .160(.017) to 129.78 level pK = .183(.009) to 129.78 level pK = .176(.012) to 129.78 level Assuming 511 y is annihil. of /3+ to ground-state and 61.44 level Systematical trends suggest 19’Pb 1000 more bound 5832.9
‘%r(n,y)‘% ‘94Pt(n,y)‘9SPt ‘950&E?- ) ‘9% ‘95IP(p- )‘95P, 195Au(~)‘95Pt ‘95Hg(,8+ )19’Au 19’Pbm (IT)‘95Pb ‘95Bi(fl+)‘95Pb l‘95Au(c)‘95Pt l
* I l
:‘95Hg(B+)
‘95Au
l195gi(8+)‘95Pb
5260.5 5. 5218.6 5. 6662.1 8. 6654.0 ;: 6658.1 6657.1 5. 7200 50 7921.89 .15 1100 150 3150 60 3250 50 1498 7 1490 10 ave. 1495 6 685 4 158.3 .3 Probably preceded by very low -26919 5890.8 5890.9 5900.0 6420 6410 6410 6510.4 6511.4 6517.5
9 10. 10. 5. 50 50 50 5. 9. 3.
6657
3
7921.88 1160 3210
0.15 60 40
1505.8
2.9
3 686 4 167 energy transition
5897
4
6410
50
6515.3
2.5
-.l .4 1.0 -.8 1.1 1.6 1.8 .2 30.2
5 8 3 3 3 3 4 1 u 2 2 1 1 F
.6 .6 -.6 -.2 .o .I 1.0 .4 -.7
2 5 5 5 3 3 3 4 4 4
-.7 .6 -.2 .o
Lab CF
Reference
LM
85Coo6 z 74LeO2 Z 8SCoO6 z 67TrO6 Z 74LeO2 Z 85CoO6 Z 671x-06 Z 93Wa.3 67SiO9 Z 67TrO6 Z 93Wa.3 87CoO8 Z 81Ho.C z 57Ba08 73JalO Avemg l 71FrO3 * 9lGr12 91Grl2 l AHW ** 65De20 l * 68Jall l * 73Go05 ** SOSaIl l * 82Be.A l * AHW *’ GAu l*
LVII
LVll LM
LVn ILn 1Lll
Oak
Oak
LVll LVll
LVII 100
53 ‘96pt
ILn
25 60
24 ‘96Au 31 ‘96Hg
average LVII
LVll
91Va04 91Va04 67SiO9 Z 67T106 Z 7lHoOl Z 93Wa.3 67TrO6 81Ho.B 77Ha32 66VoO5 67MolO 631kOl 62Wa16 62LiO3 87Va09 l 87Va09 ** 89KaO4 72Ga27 74LeO2 85CoO6 67SiO9 67TrO6 7lHoOl 671106 71HoOl 828004
Z Z Z Z Z Z Z Z Z
G. Audi et al. / The 1993 atomic mass evaluation (Iv
322
Input
Item
ave.
ave.
value
Adjusted
35Cl_t96Hg
3’Cl
‘98Po(a)‘94Pb
7100
50
6
50
8
5846.3 5846.7
.4 .5
5846.5
0.3
-8080 -8072
5 7
-8077
4 .6
718.9
0.6
Main
flux
Lab
CF
67TrO6 78Ya07 83Ca04 100
53 ‘9’Pl
average 79Ba06 79Be.A
1.8 .I
-
1.5
1
48
48 ‘96Au
.2
I
97
84 19’Hg
78Zg.A
1
98
51 19’A”
71PrO3
-.I
McM average
100
600
3
-.l
u
92Da14
100
2183
28
-.4
u
61JuO5
3
NDS
.7
3885.91
1.66
3887
3
.3
I
6312.7 6305.6 6301.5 6310.7 6307.7
5. 5. 8. 3. 5.
6309.1
2.1
-.7 .7 .9 -.5 .3
3 3 3 3 3
6887.4 6904.7 6893.3
5. 7. 3.5
6893.3
2.7
1.2 -1.6 .O
6 6 6
6995
3
1.0 -.3 -.7
6 6 6
5. 10. 4.
Z
86Co12
LVU
1
Reference
610
57
56 ‘96Hg
H33
2.5
LVII
80Ko25 67SiO9 67TrO6 71HoOl 82Bo04 93Wa.3
Z Z Z Z
67TrO6 75Ba.B 92Hu04
z Z *
67TrO6 z 8OEw03 Z 92Hu04
LVlt
84Ca32
7344.7
10.
4
6130
40
3
BNL
83Bo29
10885
20
3
LA1
83CiOl
3
2
OrS
78Be09
*
ILtl
79Br26
Z
.22 .7 1.2
6755(4).
Q(‘96Pt(p,d))=
6512.17
0.22
-.l
I
1372.4
0.5
.l -.3
-
-.I
0.6
1372.4
I
100
51 ‘98A~
65KeO4 65Pa08 80
51 ‘98Hg
average 61Gu02
2
80 6539(10),
LVII
6
.5 6360(10)
to ground-state,
218,
92Hu04
396 levels
365(3,Be)
.53
124023.43
123999
3
-18.6
H34
B
2.5
92Hu04
**
AHW
l*
8OKo25
5598.7
6.
4
66Ma5
6074.3
2.
7
68Go12
Z
6190.6 6177.3 6182.4 6183.5
5.
-1.4 1.2 .3 -.I
8 8 8 8
67SiO9 67Tr06 68Go12 82Bo04
Z z Z Z Z Z
6183.2
1.9
:: 3.
6780 6780
50 50
6780
50
.I .O
6 6
67TrO6 75Ba.B
7130 7130 7140
50 50 50
7140
50
.o .I
4 4 4
8ODi07 82Hi14 84Ca32
7210 7210 7200
50
7200
50
.o .o .o
5 5 5
80Di07 82Hi14 84Ca32
6667
3
-.I
:: 8
-6658
-1.1
5556.1
.5
7583.90 7584.28
.21 .06
7583.88
6665.3
.9
6664.0
0.6
-1.4
453.0
1.0
452.6
0.7
-.4
1420
150
I440
110
2880
information
2 needed
1
16
16 19’Hg
OIS
311.9
0.21
100 90 2.8
I
-.l -6.7
82Be2
I
I
83Ca04
3
2870 310 More
Sig
2220
248.5
Q -
.3 -.5 -.l
719.0
3460 =
2.8
1.5
1372.3 1372.8
E(a)
8071.1
6785.4
6512.2
l‘98At(a)‘94Bi l‘98Pt(p,d)‘97Pt
0.3
1.5
-5332
ave.
5846.4
6785.1
6989.5 6997.6 6997.6
t98T1(fl+)‘98Hg 198Bim(IT)‘98Bin
Dg
V/S
6850
319.3
‘9gHg
value
98
77 ‘99A”
B
ILIt ILU
79Br26 Z 91Ma65*
I 1
43
25 ‘98Hg
75Loo3
46
23 ‘99Au
68Be06
.2
1
43
43 ‘99Tl
75Ma05
.I
1
69
57 ‘99Tl
70Do.A
.9
u
NDS GAu
**
323
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
2wHg-C 13C %I5 2ooHg 35~,_I98 Hg “Cl 2wPo(,)‘96Pb
*O”A”W
Adjusted value
Input value
Item
)*O”Hp,
*O”Aum(fl- )*“Hg 2wTl(,9+ j200Hg 2wAtm (IT)*“At” r200Atm ca)196Rim
*“Hg-C2 “Cl4 “Cl *0’Hg 35C1_‘99Hg 37C1 20’Bim(a)‘97Tl 20’Po(a)197Pb
120690 3 1.22 120707.97 4507.1 0.7 .48 4508.80 5981.5 2.0 s979.9 5. 5979.9 5983.9 6596.5 1.4 5. 6595.2 2. 6597.1 2. 6596. I 6670.1 2.3 5. 6670.7 5. 6669.5 3. 6670.1 3. 6709.5 2. 6542.1 7043.5 2.6 10. 7020.6 8. 7050.3 10. 7040.1 7043.5 2.5 20 4356 0.25 8028.26 .5 8028.3 .30 8028.39 ave. 8028.37 0.26 2240 50 100 2200 60 2260 3202 50 2456 6 2450 10 7 2459 230.9 E(a) = 6538(3), 6306(5) fkn 200Atm, *O”At” 128995.43
4972.65 5346.6 5793.5 5799.6 5800.6 5898.5 5904.6 5903.6
20’Fr(u)‘97At *“Pt(8)*“A” 20’Pb(,S+)20’Tl 20’Bim(IT)20’Bi
6471.0 6476. I 6474.1 6860 6860 6870 6860 6906.7 6908.7 6907.7 6909.9 7540 2660 1900 846.4
.61 .37 6. 5. 2. 4. :: 4. 3. :: 50 50 50 50 5. 8. 20. 2.5 50 50 40 .5
v/s
Dg
-5.8 -1.4 .3 .6 -.8 .3 -.3 .2 -.l .l .o
B I 3 3 3 4 4 4 7 7 7 5 6 U u u 4 3 1 2 2 2 2 2 6
2.3 -.v .3
--.l -.4 -.4 .4 -.3 .6 -.4
128972 4972.9
3 0.7
15.6 .2
5799.0
1.7
5904
3
6473.4
1.6
1.1 -.3 -.4 1.1 -.3 .I .8 -.5 -.3 .o .o -.I
6860
6909.2
50
2.3
.5 .I -::
30
.l
B I 5 3 3 3 R R R 3 3 3 u u u 4 5 u u5 7 3 R 4
Sig
Main flux Lab CF
Reference
30
H34 2.5 16 198Hg H33 2.5
8OKo25 8OKo25 67SiOV Z 67TrO6 Z 7oRa14 z 67TrO6 Z 75Ba.B Z 92HuO4 67TrO6 Z 75Ba.B Z 92Hu04 * 92Hu04 92Hu04 67Va.A 71HoOl 84Co.A 93Wa.3 81CiOl 75Lca3 79Br25 Z
LM
LM LWl LM
LV’I LM
93
ILn 58 *O”Hg average
6OGiOl 72He36 72CuO7 57He43 62ValO 92Hu04 92Hu04 l *
LVll
51
26*“Hg
H34 H33
LW’
LVll
2.5 2.5
8OKo25 8OKo25 66Ma5 1 67T106 Z 68GolZZ 70Ra14 Z 67TrO6 Z 68Go12 Z 70Ra14 Z 67TrO6 Z 74Ho27 Z 75Ba.B Z 67Va.A 71HoOl 87HelO 93Wa.3 67Va17 Z 71HoOl Z 87HelO 93Wa.3 8OEwO3 63Go06 79DoOV NDS
324
G. Audi et al. / The 1993 atomic mass evaluation (IVJ
Item
Input
202Rn(,)‘98P0
-5.7
B
-.3
1
11
1
38 20 *OOHg
0.7
.2
2. 3.
5701.0
1.7
.o 3 .o 3
6aGo12 70Ra14
Z 2
3.
6353.4
1.5
.5 4 .l 4 4 4
Z Z Z
LV0
67TrO6 74Ho27 75Ba.B 92Hu04
7
LV0
92Hu04
* Z
*
I
*5. ‘.
-.3 -.I
5
aOKo25
.a 4 .I II -.6 4
LV0
67Va17 87HelO 93Wa.3
7397.7 7382.5
15. II.
7389
9
-.6 7 .5 7
LV0
aoBw03 92Hu04
7382.5
II.
7
LV0
92Hu04
15
2
LAI
alno
E(a)
=
7251 (IO)
0.23
7754.31
.3 .4
7754.33
6277(5)
0.24 170
50
20
15
6070(10), and
5929(10)
6135(S)
to ground-state,
combined
has a doublet
with
1.4 5
*03At(,)lP9Bi
6210.6 6208.6 6209.6
6210.2
0.9
:: 2.
6628.9 6630.2
5. 2.5
6629.8
2.3
6679.8 6681.9 6680.9
3. 10. 2.5
6680.4
7280 7280
50 50
7280
489.2 493.2 493.2
-.4 .o
-5625
391.7,
92Hu04
248.5
1
13
I
100
7 *03Tl
H36
88 199Pb
2.5
l*
92Hu04
**
85De40 6aGo12
l
63Ho18 67Tro6 68Go12
Z z Z
.2 a a
67Va17 93Wa.3
Z
LVII
.2 9 u 9
LV0
67Va17 87HelO 93Wa.3
Z
-.2 -.2 -.I
.o 7 7
67Va.20 aOEw03
Z Z
Yal
71KiOl
4
.o
1
53 48 *05Hg
Pit
72Mo12
15
.3
I
56
Yal
56 *‘*Tl
71KiOl 54Thl7 55Ma40 58Ni2a
491.9
1.2
1.3 -.7 -.4 -
1
92
a7 *03Hg
-.2
1
10
10203Pb
-.I
1
17
16 *03Bi
58No30
I
26
18 *03At
a7se04
.2
1.3 975
6
3260
50
3253
21
5060
200
5060
100
level
**
92Hu04
-.I
50
20
t0 4(4)
92Hu04
LVll
-.3 2 .6 2 .3 2
2.0
980
5383.8(3,2)
54Hu61
56 44 *‘*Tl
2 325
2. 2. 3.
491.6
67Wa23 72Bu05
164, 303 levels
E(y)%
I5 5
average
structwe
4993.1
20
96 68 *“Hg
a
5496
-5630
I
-.3
.2
1.49
325
I
l
75BrQ2 75Loo3
-1.8 2 1.2 2
5
-6240
1.4 -2.0 -.l
2950
300 200
5496
=
2.5
2.0
=
E(~)
aOKo25
H33
6773.6
E(a)
ave.
aoK
2.5
3. 10. 2.5
6228(S),
-204Hg()205Hg
2.5
H33
6771.3 6772.3 6775.3
=
(a)‘99Pom
H34
5.
4995.23
203Rnm
6 ‘98Hg
6403.2
E(a)
203Rn(a)‘99Po
Reference
5267.0
55
37~1
CF
.43
125957
203Po(a)‘99Pb
203~1 35C1_201Hg
Lab
5266.76
391.7
l l202Fr(cr)‘98At
3
flux
0.9
202Pb(e)202T1 r202At(,)‘98Bi 202Atm (a)198Bim
Main
9774.1
3500 2700 (IT)202Atn
Sig
1.06
7753.9 7755.1
*‘*Atm
Dg
1.32
11567
ave.
v/s
9774.87
6352. 6353.1 6354.1 6354 (a)198Bim
value
125976.01
5701.1 5701.1
20ZAtm
Adjusted
value
.o
average 65LeO7
NDS
l*
325
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Item
2@4F?(a)200Atm ‘04Ff (o)200At” 204Pb(p,t)202Pb 204Hg(t,rr)203A” 204Hg(d,t)203Hg 203Tl(n yj2”Tl 2”Pb(;d)203Pb 2”Pb(d’t)203Pb ’ 203Pb 204Pb(p,d) 2MA”(fl- 1204Hg ‘04T1(fl- )‘04Pb
‘“A&9+ Jzo4Po 204F? (ITjzo4Fr
l204~p_c
l 2o’+Po(o)2’Pb *204Fr(a)2wAt *204Ff (aJZwAtn l2o4Ao(p- )‘04Hg l2o4F? (IT)‘“Fr 205Tl 35Cl--203Tl 37~1
Inputvalue
Adjusted value
3 131776.05 1.25 131757 740 700 -1900 2000 1.0 11067.1 11066.85 .55 1.0 5800.1 5800.67 .53 -28043 13 1.4 5484.9 5484.6 1.5 5486.8 3. 50 6070 6070 50 6070 50 6070 50 6546.2 2.0 6544.6 3. 6547.5 2.5 7170.1 2.9 7170.4 5. 7169.4 5. 7170.6 5. 7153.5 5. 7110.3 5. -6836 9 -6835 10 10962 15 - 1237.7 1.9 -1242 5 6655.82 0.29 6655.8 .3 -6170 6 -6165 10 -2137 6 -2160 20 -6170 6 ave. -6171 9 4500 300 763.70 0.18 764.24 .31 763.47 .22 ave. 763.73 0.18 6480 70 6220 160 100 70 Corrected to cure deviations in systematics. Printing error in ref.: 204Po not 206Po. ,Z corrected E(a) = 7031(5), 6916(8) to ground-state, 113 level E(a) = 7077(8), 6969(5) to ground-state, ‘O”At” Systematical trends suggest ‘04Au 700 more bound Assuming a 30 % isomeric mixture 5031.43 1.07 5033.2 5033.58 .74 ave. 5033.3 1.0 5324.1 10. 6016.6 4. 6019.7 6020.7 2. 6018.7 5. 6390 6390 50 6390 50 6390 50 7060 50 7050 50 7060 50 7510 50 3443 3443 5 -7546.4 -7548 3 -1289.1 - 1288.7 .6 6731.53 .15 6731.50 51.2 41.4 1.1 2708 2701.4 10. 2715.4 10. we. 7 2708 Possibly mixture with 205~~ caj202Rom
0.5
1.7
50
50
4 0.5 0.5 0.15 0.5 7
v/s
Dg
-6.0 1.3 .2 -.4
B 1
.3 -.6 .o .l -.l .6 -.5 -.I .l -.I
-.I .9 .I -.5 1.1 .l -1.8 1.0 -.2 1.6
.7 -.3 .o .8 -.5 .2 .o .o .o .o .l .o .o .5 -.7 -.2 8.9 .7 -.7 .o
I I 2 3 3 3 3 3 4 4 3 3 3 7 6 1 2 1 1 1 2 1 C 2
1 4 3 3 3 4 4 4 2 2 2 5 1 u 1 1 B 1
Sig
Main flux Lab
CF
Reference
14 53 56
H34 14 204FrX 1.0 45 204Hg H33 49 204Hg H33 INS
2.5 1.0 2.5 2.5
8OKo25 85WaO4 l 8OKo25 8OKo25 9OKalO 69Go23 Z 70Ra14 l 63Hol8 Z 671106 Z 8lVa27 Z 67Val7 Z 93Wa.3 67Va20 Z 74Ho27 Z 92Hu04 l 92Hu04 92Hu04 ’ 7lKiOl 81FlO5 7oAn14 74Co2 1 7x01 67BjOl
LM
89
Lvo LM LM 89 202Pb Yal LAI
14 92
50
8 203Hg Ald 76 203n MM~ Y.¶l Ald 50 203Pb average
67Wa23 ’ 67Pa08 68WoO2 97
68 ‘04Tl
average 86Ve.B AHW ’ 85WaO4 l * AHW ** 92Hu04 ** 92Hu04 ** GAu l* AHW ‘0
28
H36 2.5 H42 1.5 16 205Tl average
LVn
53 59 98
52 ‘05Hg Ald McM 44 ‘05Tl Mun 61 ‘04Pb ILn
98
98 “‘Bi
85De40 92Hy.A 67Ti04 63Hol8 68Gol2 74Ho27 67Val7 7lHoOl 93Wa.3 67Va20 74Ho27 8lRi04 87HelO 7oAn14 79Ba06 9OLi40 83Hul3 78PeO8 62Bo25 62PeO8
Z Z Z Z Z Z Z Z l
Z
average 87HelO
l
*
326
G. Audi et al. / The 1993 atomic mass evaluation (IV)
Item
Input value
*06Pb 35C12-202Hg 37C12 *06pb 3sCl-204pb 3’Cl ave.
ave.
*06Bi(c )*06Pb 206At(~+)206Po 206Fp(IT)206Ff’ 206F? (IT)206Fr •206P~(a)202Pb *206At(a)202Bi r206At(o)20213i r206Fr(a)202At l206Fr(o)202At l206Fr(a)202At *206Fp (a)*02Atm r2wF? (IT)*06Fr
9722.09 4370.72 4371.81 4371.5 5327.6 5326.6 5325.6 5326.5 5888.4 5888.6 6382.2 6384.2 6384.8 6928 6921 6926 6926.7 7068.5 7067. I 7416.3 7414.3 - 15798. 6503.4 1761.7 -8087 -1831.2 1534 1527 3753 5687 531 100
Adjusted value .57 1.17 1.12
9723.6 4370.5
1.3 0.5
5326.5
1.3
1.5
4. 1.5 3. 1.3 2. 5. 3. 3. 2.5 10 10 10 7. 5. 5. 5. 10. 11.5 .4 1.4 3 .5 5 4 10 150 2
5888.4
1.9
6383.8
1.6
6926
4
7068
4
7416
5
-15791 6503.7 1761.0 -8088.1 - 1830.8 1533.2 3758 5720
8 0.4 0.6 0.4 0.4 0.7 8 50
v/s
Dg
1.1 -.I -.8 -.7 -.3 -.l .3 .o .o .o .6 -.I -.4 -.2 .5 .o -.l -.l .l -.l .2 .6 .7 -.5 -.4 .8 -.2 1.5 .5 .2
1 1 1 2 2 4 4 4 3 3 3 3 8 8 5 5 R 1 1 u 1 u u 2 1 9 2
100
Sig
Main flux
78
42 *‘*Hg
I1
9 204Pb
Lab
H36 2.5 H36 2.5 H42 1.5 average
*“6pb H_207pb
ave.
we.
4415.60 4418.21 6394.2 930 5216.0 5872.7 6256.2 6247.0 6250.4 6251.0 6910 6900 6900 6900 7270 7270
2.40 1.72 1.1 90 I. 3. 3. 3. 2.5 1.6 :: 50 50 50 50
4418.7
0.6
6393.42 770 5215.9 5873 6251.0
0.12 70 1.0 3 1.6
6900
50
.5 .2 -.3 -1.2 .o .o -1.7 1.3 .3 .o
u I u I 1 I 1
-.I
-
.I
.o .o 1 7270
50
.o .l
9 9
Reference 85De40 85De40 92Hy.A yiM3
z *
7ORa14 Z 100
100 206Po
average
LVtl
LVlt LVII
93 17
75 *06Tl 15 *“Tl
73
64 *“Pb
12
11 *06At
6
5 ‘OSTl
29 99 100
15 ‘05Fr 61 “‘PO 84 *03Bi
100
79 203Po
95
82 *03At
Pit MMn Mull McM MUI
Printing error in ref.:206Po not *“PO. ,Z corrected E(a) = 5702.8(2,2) to 72.4 level E(a) = 5777.3(5,2), 5702.8(5,2) to ground-state, 72.4 level E(o) = 6793.1(5,2) line must be a doublet E(a) = 6786.3(5,2) line must be a doublet E(a) = 6791.3(5,2) line must be a doublet E(u) = 6930(S) and 6792(7) combined with E(y)‘s 531, 391.7 Assuming a .15(.20)% isomeric mixture
*o’pb 35Cl_*05Tl 3’Cl
CF
H36 H42 c4 P24
68Go12’ 8lVa27 * 67Val7 Z 7lGo35Z 93Wa.3 67Va20 ’ 74Ho27 * 81Ri04 * 92Hu04 81Ri04 Z 92Hu04 l 67Va22 Z 87HelO 76Da20 740~21 9OLi40 79Ba06 9OLi40 7lPe23 72Wi18 74Go20 77Lil6 8 IRi04 AHW l AHW ‘* NDS l* NDS l* 92Hu04 l * 92Hu04’* 92Hu04 l * 92Hu04 ** AHW *’
2.5 85De40 1.5 92Hy.A 2.5 71Ke02 1.5 82AuOl 70Af.A 69Go23 Z 67Va20 Z 7lGo35Z LVII 93Wa.3 average 67Va20 Z 74Ho27 Z 81Ri04 Z average 67Va22 Z 87HelO
321
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input value
Item
Adjusted value
v/s
7460 50 4870 5 -.7 4880 15 6737.79 0.11 -.4 6737.85 .I5 .4 6737.72 .18 -.I ave. 6737.80 0.12 4775 150 1423 5 -1.0 1431 8 2398.8 2.1 .7 2392 10 2909 6 .2 2907 10 4610 60 -.I 4617 70 Average pL = .61(.05) to 2339.95 level pL = .663(.014) to 2339.95 level. pL = .56(.04; orig .08 is 95% error) to 2339.95 level
aye.
*209Po(a)205Pb l209Po(a)205Pb lz”YPo(a)Zo5Pb *209Bi(p,t)207Bi *208Pb(d,p)209Pb
5 136.23 5 137.05 -890 5216.5 5214.5 5215.1 5750.6 5751.8 6268.8 6259.6 6257.5 6258.7 6780 6770 6770 7273.1 7367.83 7367.82 7367.82 4989.7 4997.7
1.08 .44 60 2. :: 3. 3. 4. 3. ::5 50 50 50 5. .15 .ll 0.09 7. 10.
5136.97
0.16
-940 5215.5
50 1.3
5751.1
2.2
6260.5
1.7
6770
50
7367.82
0.09
5000.9
1.7
.3 -.I -.6 -.5 .4 .2 .2 -.2 -2.0 .3 .6 .7 -.2 .I .l
Dg Sig 10 1 1 2 1 u 1 1
Main flux
13 12207Tl
96 54 207Pb
1 2 2 2 3 3 4 4 4 4 2 2 2 5 -.l .o -.l 1 1.6 R .3 R
98 57 208Pb
65 65 209Fr -27584 36 29 .I 1 .2757P 5 4 209Bi 7453.4 0.8 -.2 1 7454.13 1.51 21 13208F, 720 60 690 40 -.3 I 4974 4979.2 1.4 1.0 2 5 -.4 2 4980.0 2. 4979.3 2. .o 2 100 97 209At 5757.4 2. 5757.3 2.0 .o 1 6155.3 2.0 -.6 3 6157.1 3. 6154.2 2.5 .5 3 6777 4 -.l 2 6778.0 5. 6776.9 5. .I 2 7150 50 5 2 7730 50 2821.9 1.3 .7 u 2814 12 98 97 207Bi 2.0 .o I -5864.8 2.0 -5864.9 1711.4 1.3 1.1 1700 10 -1.7 1718 4 13 12209Pb -1.1 1 ave. 1716 4 1.9 .l 2 -7460 2 -7459.8 1.9 -.3 2 -1201 5 - 1202.5 PO 84 209Pb 1.2 644.1 1.1 -.4 1 644.6 3928 40 3929 28 .o 2 E(a) = 4876.8(5,2) 80% to 2.3 level E(a) = 4882.8(2,2) 80% to 2.3 level E(a) = 4882.6(2.0), 4622(5) to ground-state(+lO% 2.3), 262.8 level Q - Q(208Pb(p,t))= -241(2,Be), Q(Pb)= -5623.82t.20) Q - Q(209Bi(d,p))= -662(4),Q(Bi)= 2380.01(.14)
87HelO 69Hall 8lKell Z 83Hul3 Z 81Jo.B 67DalO Averag l 58Ar56 75Ze.A AHW l * 64Del6 ** 82Ta18 l *
41 39 207Po 81 79 207Rn
6 4 206Pb 34 27 207Fr
CF Reference
Ald MMIl ILII average
47 43 ?I
u
I
Lab
H36 H42 P24
2.5 85De40 1.5 92Hy.A 1.5 82AuOl 69Go23 z 7oRa14 z 89Ma05 69Go23 Z 8lVa27 Z 55Mo69Z 71Go35 Z 74Ho27 LM 93Wa.3 67Va20 Z 74Ho27 Z 81RiO4 Z 67Va22 Z MMn 8lKe.11 z ILn 83Hu13 Z average 48Ma29 548124 MA3 1.0 92Bo28 H36 2.5 85De40 P24 1.5 82AuOl 66Ha29 6PGo23 89Ma05 69Go23 71Go35 LM P3Wa.3 67Va20 74Ho27 67Va22 68Va04 Ald 68403 MSU 76Be.B 67Mu16 Pit 72KoO3 average McM 79Ba06 ANL 64E106 72Be44 74vyO1 NDS NDS 8PMa05 AHW AHW
l
’ * Z Z Z Z Z
* l
” * * ** ‘9 l l
328
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
Item
Input value 24
-27196
22
-770
50
-790
30
3792.4
20.
5042.6
2.
5038.5
1.0
5308.6
5036.9
0.8
1.
5308.2
0.8
5407.53 5407.7
.07 2.
5407.46
0.07
5631.3 5631.6
1.5 1.3
5631.4
1.0
6161.6 6155.5
3. 3.
6158.5
7’56.6 7610
50
6700
628
12 .3 .I4
4604.58
0.13
63.5
.5
271.31
.ll
1161.0
E(a)
= 4946(l),
50
0.9
4604.58
0.13
63.5
1.5 1.5
0.5
30 4648(2,Z) 4909(l)
to 265.7,
36 *“Bi
average 76Tu.A
100
2 2
55Mo69Z 71Go35 Z
.l
1
90
67Va22
3
68Va04
u
Ald
68BjO3
.3 -.2
-
MMn
71Mo03 83TsOl Z
.o
1
100
89 *09Bi
.o
1
100
92 *“Pb
67Ha03
2
NDS
-
62Da03 67HsOl
1.6
1
8
3.7
B
51
45 *loBi
average 638~15
304.8 levels
304.8 levels
50
-240
50
6750.5
0.5
I
I .3 I .7 1 1.0 -
-.9
69
69 *“Fr
MA3
1.0
92Bo28
38
27 *“Fr
P24
1.5
82AuOl
38
27 *06F?
P24
1.5
82AuOl
II
6*‘OFr
P24
1.5
82AuOl 61RyO2 Z 7lGrl7 Z
100
56*“Bi
average
.o
1 2 u u
62Wa18Z 69Go23 Z 85Lal7 Z
2
82BoO4
5982.4
1.3
1.4 .3 -1.6
2 2 2
69Go23 Z 82Bo04 l 85La17 z
-1.0 1.0
2 2
55Mo69 Z 71Go35 Z
5.
::
5967.3 5963.2
2. 2.
5965.2
1.4
2”Fr(a)207At
6660.5
5.
6660
5
2”Ra(,)207Rn
7045.8
5.
2”Ac(a)207Fr
7620
50
1378
8
1373
6
.o
-.7
I
67Va20
Z
2
67Va22
Z
2
68Va04
I
99
49
83 *“At
44*“Bi
65CoO6 91RyOl
like in ref.
-27631
28
-1270
70
- 1260
60
130
250
110
-1250 .04 .08
6207.14
23
60 0.04
-.5 .l
.8 .31 .6 .I2
0.11
0.11 20 15
11865
12
67
67 *‘*Fr
MA3
1.0
92Bo28
1
36
34*05Fr
P24
1.5
82AuOl
30
24 *OJFr
P24
1.5
82AuOl
31
17*06Ffl
P24
1.5
82AuOl
I -1.0 1 -.I 2 .2
8954.13
1
-.5
30.
8953.6 8953.85 8953.3 8954.25 8954.12
-27644
70
6207.22 6207.20
11874.6 11859.3
l*
.I -3.0
2.
6458.1
l*
AHW
0.5
5979.6 5981.6 5985.7
-1150
NDS
7594.5
9056.8
340
Z
.9
398 I
25
Z Z
67Va20
89 206At
5
1.5 .8
632
l
73Go39 Z 89MaOS
94 2’OPo
-1.0 1.0
-260
With correction
62
69Go23 81Va27
.l
2”Pb(~-)2”Bi
82AuOl
3 3
1.3
.5 3. 2.
92Bo28
1.5
.I
90
0.5
1.0
P24
-.I
21
7594.7 7594.3 7600.4
MA3
7209Fr
1 u
-730
6750.5
81 *“Fr
.I
-28196
ave.
aw.
I
25
.7 .6
Reference
62Ka27
R
100
6749.9 6751.1
16
CF
60Wa14*
-.4
-930
50
81
Main flux Lab
-
0.8
to 265.7,
Sig
2 -1.7
-28200
580
l2”At(a)207Bi
-2.8
I I
1162.7
1.1
3870 = 4685(2,Z),
2.2
639.3
4604.5 4604.60
E(a)
.l -.3
5.
1160.5 1161.5 *“At(e)*“Po
Dg
v/s
-.I
50
6700
l
value
-27198
ave.
*2’0Bi(a)206TI 2lOBim (a~206T1
Adjusted
.7 I.1 1.4 -.4
2
61Ry02 69Gr28
3
78Ba44
u u -
61Ry02 71De52 71Gr17 74Hu15
.I
1
-.5 .4
2 2
100
59 *t*po
average 62Pe15 75Fr.B
l*
Z Z Z Z Z Z
329
G. Audi et al. I The 1993 atomic mass ~al~t~on (Iv) Input value
Item
207F,...2’3Fr,324 204F,-..
208,+.2’3F~,2,9 20’ 2@9F93Fr ,327 *’
-_-ill1
2’3Po(~)20pPb
2r3Bi(/?-)2’3Po 2’3Ram(lT)2’3Ra l2’3Ra(a)209Rn
v/s
7829.0 2. 7 .2 8049.3 8051 10. -.I 8052.3 9. 6391.9 2.6 -1.3 6385.0 6382.7 :: .8 6531.5 1.8 -.8 6529.1 6528.4 :: .2 6527.5 .5 3. 7029.9 1.8 .4 7031.9 -.4 7034.0 :: 7031.9 .o 2. 7520 50 7952.3 10. 573.7 569.3 2.0 1.8 2.5 -.6 5. 576.6 570.8 1.3 2.2 ave. 2256 1.7 -.7 3 2254.0 1.4 2250.5 2.5 2252.0 1.1 1.8 ave. E(a) = 6341(3) (after correction like in ref.) to 63.70
r2’2Fr(a)‘08At
2ogFr-2’3Fr,lg6 2”&.*i3F~,jM 2’+,_2’+,.,, 2’3&$209~
AUjusted value
M 21’ 21’ Frsoz
Dg Sig 3 3 3 3 3 2 2 2 5 5 5 2 6 1 1 level
Main flux
3. .06 4. 8. 5. 20. IO.
7833.46
0.06
9
8588
4
8711
4
7273
4
50
7350
50
50 10. 10.
7826
7
5. 10. 20. 8. 5. 5. 5.
2 1 2
* ; 9208
8.
.o
-.2 .I .I -.2 .4 -.2 -.2 .l .4 -.4 .o .I -.3 .2
2 2 4 4 4 u 4 4 3 3 2 2 6 6
Reference 7OReO2 68Va18 70Re02 55Mo69 Z 71Go35 Z 66Va.A 2 8IVa27 828004 l 67Va22 Z 74Ho27 Z 82BoO4 Z 68VaO4 8OVr.01 48Ma30 58Se71
81
52*‘*Bi
average 48FeOQ 48Ma30
88 472’2Bi
average 9lRyOl ‘*
460 87 86 ‘04FrX -2470 -2220 .5 1 330 -700 50 35 32 =OsFrX 60 -730 --.4 1 32 29 *07Fr -670 50 .o 1 60 -670 -980 40 19 15 zoaFr 60 .3 1 -960 6 42”Fr -830 23 1.0 1 60 -744 9 g212Fr 309 23 .5 1 270 SO 2 5982.6 6. 2.6 -.2 8537.6 8536.6 :: .o 8536.6 --.l 1 97 932’3Po 8536.8 ave. 2.6 9254.2 5 12. .o 2 9254 9254.2 .o 2 5. 8245. I 6 -.2 3 8. 8243 8240.0 .3 3 10. .2 1.8 6903.9 6905.1 -.6 6908.0 :: .l 6904.9 2. 100 97 2’3Fr .o 1 6905.1 ave. 1.8 -.l 3 4 6860.1 6859 6859.0 .I 3 :: 2 7500 50 7840 50 .O 6 50 7840 .O 6 7840 50 7 -.4 1 54 48 *13Bi 1430 10 1426 1773 4 3 E(u) = 6731.9{5,21 from ground-state and 8467(f,Z) fmm 2’3Ram $621.3 7833.54 8987.3 9046.4 9220.8 9212.6 9207.5 8586.8 8588.8 8583.8 8590.8 8712.0 8710.0 7271.2 7275.2 7350 7350 7828.6 7823.5
Lab CF
100 922’4Po
P24 P24 P24 P24 P24 P24
1.5 1.5 1.5 1.5 1.5 1.5
82AuOl 82AuOl 82AuOl 82AuOl 82AuOl 82AuOi 64Grll 64Va20 2 828004 2
average LVn
7OBol3 87De.A 67Va20 70Val3 67Va20 2 74Ho27 2 82BoO4 2
average 67Va22 Z 76Ra37 * 68VaO4 68Val8 8OVeOl 68Va17 76Ra37 76Ra37 ** 6OWa142 71Grl7 2 82BoO4 2 82EwOl 82EwIll + 7OToO7 70Val3 68Val8 Z 7OTo18 2 89An.A 90Ni05 68VaO4 Z 7OTo18 Z 67Va22 Z 74Ho27 Z 68VaO4 Z 89An13 68Va18 8OVeOl
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
330
Input value
Item
IO24 3260 3275 3272 ave. E(a) = 8782(S) to 271.2 E- = 670(20) to 351.92
we.
E(a)
20 1023 I1 30 3272 II 15 13 level level, and another branch
7526.5 8178.5 8834.7 8839.8 9543.0 9532.7 9547. I 8862.2 8865.3 7750 7664.9 7667.0 8170
.8 4. 20. 8. ‘5. 10. 10. 5. 5. 50 8. 10. 50
6906.44 7949.5 8199.2 8201.2 9175.3 9525.8 9243.3 9280.0 8070.7 10099.4 8010
.5 3. 10. 10. 12. 8. 8. 5. 8. 20. 50
6660.0 7200.0 7204.0 7201.9 7887.6 7889.7 8471.5 8468.4 9159.1 9163.2 9831.6 ‘1843.8 9424. I 9424.1 8490 8490
4. 2. 2. 1.4 4. 4. 8. 5. 8. 10. 10. 17. 10. 20. 50 50
6114.76 6874 7262.5 8014.3 8099.9 8549.1 8541.0 9380 9861.5 9846. I 9790 8786.6 = 6696.3(3.0,2) to
Adjusted value
7526.4
0.8
8839
8
9540
7
8864
4
7666
6
6906.5 7949.3 8200
0.5 3.0 7
v/s
.o .4 -.2 .o
1.4
7888.6
2.9
8469
4
9161
6
9424
9
8490
50
6114.68 .09 3 7262.6 2. 2. 5. 8546 8. 10. 50 20. 9849 10. 50 25. 53.20 level
0.09 2.0
1 1
I
-.l .2 -.l -.2 .8 -.6 .3 -.3 .l -.I
Sig
Main flux Lab CF
Reference
32
32 2’4Bi
52Be78 l 56Da06 6OLuO7
69
68 2’4Bi
99
average
96 2”Pb
2 3 3 3 3 3 3 3 2 3 3 3
AHW AHW
** **
71Gr17 82Bo04 69Ha32 70Val3 7OBo13 74No02 84De16 68Va18 70To18 68Va04 68Va18 89He03 79sco9
z Z
z Z
z Z Z
.3 .o
1
.I
2 2 4 4 2 2 6 6 3
71Gr17 82Bo04 61Ru06 70Va I 3 70Bo13 73No09 70To18 70To18 68Va18 83Hi08 79sco9
3 -
77VyO2 Z 62Wa28 Z 82BoO4
-.I
7201.9
Dg
1.0 -1.0 -.I .2 -.3 -.3 .2 .2 -.2
.o .o .o .o .o .I
6
-.4 .5
9
-.6 .3
1
I
99 96
99
71 2’2Pb 95 2’6At
52 “lBi
2 2 3 3 4 4 2 2 4 4 3 3
1 2 I 3 3 3 3 5 4 4 3 7
average
LVn
100
99 2’4Pb
95
88 2’8Rn
Z Z
61Ru06 z 82Bo04 Z 7OBol3 87De.A 7OToO7 70Va I 3 73No09 85De14 68Va18 73Ha32 68Val8 79sco9 71Gr17 58Wa.A 82Bo04 82Bo04 82EwOl 70To07 70Va13 708013 73Ha32 73No09 79sco9 92An04 AHW
Z * Z Z Z
**
331
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Adjusted
Input value
Item
6390.9
211Fr_220Fr’
Dg
vls
50.
6946.21 7448.7 7448.3
value
Sig
Main flux Lab
100
96 *“PO
CF
Reference 53Hy83
3
71Gr17
6946.1
0.3
.o
1
2.0 4.
7448.5
1.8
.o .l
3 3
688~~73 Z 82BoO4 Z
8130
8
-.4 .2 .I
4 4 4
6YHa32 70Va13 89An13 70Bo13
8139.0 8128.7 8128.7
20. 10. 20.
8830
50
4
9510
50
4
73Ha32
10080
50
3
87Fa.A
-2930
60
-2930
50
-4850
70
-4880
40
.o -.3
82AuOl
1
25
21 *‘gFr
P24
1.5
I
15
13208Fr
P24
1.5
82AuOl
1
19
14*08Fr
P24
1.5
82AuOl 82AuO 1
212Fr_220Fr:;;;
2
-5450
60
-5420
40
2’2Fr-220Fr,,~% 2’+-2*0Fr
*
-3730
60
-3766
28
1
9
5 “*Fr
P24
1.5
-5170
50
-5132
19
.5
1
6
5*09Fr
P24
1.5
82AuOl
-3160
60
-3062
26
1.1
1
8
5 *‘*Fr
P24
1.5
82AuOl
100
72 2’6Po
6053.3
we.
6800.8 7593.3 7595.3 7598.3
**‘Fr($“At
.lO
-.4
2. 5.
0.10
6800.7
1.9
7595
7
.I .9 -2.2
1.9 10. 10. 20.
89Bu09
3 6404.67
1
7lGr17
94 **‘Fr
average
.o
1
.l 1121
3 3 3
61RuO6 70Va13 YOAn19
99
50
5
70Bo13
8953.1
20.
5
73Ha32
9830
50
3
87Fa.A
-10590
34
- 10598
-3080
60
-3076
6146.5
3.
6458.2 6458.4
2.0 2.0
6458.2
8
.o
1.4
.o -.l
6458.2
1.4
6885.9
5.
**‘Ac(a)*“Fr
7790 7780
50 50
7780
50
**‘Th(U)*“Ra
8628.5 8626.4 8626.4
5. 10. 10.
8628
4
9250
50
-.I -.I
25
- 7402
22
60
-4935
18
-1940
60
-1917
21
-610
90
-626
13
.3
6679.6
5.
7128.7
20.
7137.2
2.
8127.7 8130.7 8126.7
10. 8. 15.
8700
50
-:1 1 .I
-4810
u 1
.3 -1.4 .3 -.I
10
6*“Fr
MA3
1.0
P24
1.5
92Bo28 82AuOl
4
77VyO2 Z
-
62&28 Z 68LeO7 Z
1
.o
-7410
5590.39
-.2
29
z
68Ba.A Z 74Ho27 Z
-
8350
22’Ra(a)2’7Rn
ave.
.3
6.
6404.69 6799.1 6812.1
Z
.3
99
53 2’7At
average
3
61Ru06
4 4
7oBo13 87De.A
LM
z
5 5 5
7OToO7 Z 7ova13 z 9OAnlY
3
89Mi17
1
79
79 222Fr
u 1
5
5 *‘*Fr
u
MA3
1.0
92Bo28
P24
1.5
82AuOl
P24
1.5
82AuOl
P34
1.5
5590.3
0.3
.o
1
100
99 2’8Po
71Gr17
6681
4
.2
1
71
59 **‘Ra
56As38
Z
4
72Es03
Z
8129
6
.l -.2 .2
5
82BoO4
4 4 4
7OToO7 70Val3 91An.B
7
70Bo13
Z
332
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
Item
Input value
ave.
223U(a)2’9Th •223~(,)2t9~~ *~3Ra(*)2’9Rn l225Th(a)2’9Ra *223Thfo)2’9Ra *223Th(,)219Ra *223Th(a)2’9Ra l223Th(a)2’9Ra 225Fr-224Fr,7q, 222Fr_224F$ ,496 223Fr_22‘+Ffl ,747 223Fr-224Fr,6b, 223F,_224Ffl 224R,1,>220;r
E(o)
=
E(a)
=
E(a)
=
E(a)
=
E(o) =
220Fr,253 220Fr.sos 220Ft253 ‘*‘Frjs6 22’Fr.33a
224Fr(,K )224Ra *225Fr-224Fr,664 **‘FI,~>~ l224Pa(o)22oAc *224Pa(o)220Ac •224Pa(a)220A~
E(a)
=
E(a)
=
Adjusted value
v/s
Dg Sig
Main flux
21 -.2 1 5 5 212Fr -1900 60 -1916 527 21 -1.8 u 790 100 2 5431.6 80. .3 5919.23 .3 5979.31 0.21 -.3 5979.4 .3 .o 1 100 96 *19Ro 5979.31 0.2 1 -.l 4 6783.5 1.0 6783.3 1.0 .4 4 6782 3 -1.5 u 7602 23 7561 4 -1.6 u 7589 14 -.I 5 7568 10 -.l 5 7567.4 10. .l 5 7566.1 5. .o 5 8350 50 8340 50 .o 5 8340 50 5 8940 50 5716.04/.29,2) to 158.62 level, and other E(a) 5716.23(.29,2) to 158.62 level, and other E(a) 7330(203 to mixture of excited states at 138( 10) 7317(10f to mixture of excited states at 138(10) 7324(10) to 113.8, 7285(10) 55% to 140.0, 26% to 152.0 level 7290(10) 55% to 140.0, 26% to 152.0 level 7318(5), 7293(5), 7281(5) to 113.8, 140.0, 152.0 levels
40 -.6 30 .2 40 .5 -360 30 -7.4 -450 -.5 -110 -160 40 .i .15 5788.87 0.15 5788.93 ‘0 0.7 .7 6326.9 6327.0 .o 7304.7 10. 7304 7 .o 7304.7 10. .2 20. 7300.7 -.2 7696.4 10. 7695 4 .2 10. 7692.6 .l 5. 7694.4 -.3 8620 12 8624.3 15. .4 8612.1 20. -.2 50 2820 50 2830 Rejection based on line-shape analysis E(a) = 7490(10) to 70 level C: intensities in contradiction with ref. E(a) = 7488(5) to 70 level -620 10 -410 780
70 70 70 I10 70
-690 30
60 -Ii21 -1110 30 80 50 100 190 80 5936.1 2. 5935.2 5934.5 5935.2 6919 6924.3 50 7390 7380 50 7390 8020 50 8020 8010 50 50 8020 8790 50 1865 10 1866 357 360 :8 360 ave. 360 9 F: average of two branches E- = 1640flO) to 225.1 level
10 60 60 1.4
JO 50
10 7
I 1 l F
11 11 224Fr 10 7 224Fti lb ib224Ffl
1
I
12 12224FF 100 72 220Rn 100 94 224Ac
4 4 4 6 c 6 6 6 1
89 89 224Fr
1
-.l -.2 --.7 -.4 .4 -.l .9 -.9 .3
u 1 1 1 4 4 F 5 -.l 6 .I 6 .O 6 4 .l 1
99 99 225Fr
-.I -.4
59 55 225Ac
22 21 224F~ 21 21 224Fp
99 54 22’F,
-3 -
1
Lab CF
Reference
P24 P34
1.5 82AuOt 1.5 86Au02 55AdlO 62Wal8’ 71Gr17 * average 69Le.A Z 90Shl5 69Ha32 * 70Va13 * 87E102 l 9OAn19 l 92LiO9 l 7OBo13 89An.A 9tAnlO AHW ** AHW ‘* GAu l* GAu l* 92LiO9 l * 92LiO9 l * 92LiO9 ** P34 P24 P24 P34 P24
P24 P24 P24
1.5 1.5 1.5 1.5 1.5
86Au02 82AuOl 82Au01 86Au02 * 82AuOI 71Gr17 Z 69Le.A Z 6lRu06 7OVa13 89~1113 ‘JOB013 l 90An19 * 92Li.A l 91AnlO 921002 75We23 86Au02 l * 92Li.A l * 92Li.A l * 92Li.A l *
I.5 82AuOl 1.5 82AuOl 1.5 82AuOl 67Ba51 Z 67DzO2 Z average blRu06 87Li.A Z 70Bo13 l 87De.A LVlt 89He I 3 92An.A 92To02 92An.A 75We23 l 55Ma.A 55Pe24 average 87De.A ** 89An02 **
333
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Adjusted value
Input value
Item
.._ 226Ra(a)222Rn 226Ac(a)222Fr 226Tb(a)222Ra 226Pa(a)222Ac **kJ(,)***Th
l**%J(,)***Th
226Ra(n,y)227Ra **‘Fr(b- )**‘Ra **‘Ac(p-)**‘Tb
l227U(,)223Th
228Ac(~-)228Th ***Pa(c)***Th l**‘Ffl -228Fr,49,
IzgThm (IT)=+h 229Pam(IT)229Pa l229Th(o)225Ra l229Pa(a)225Ac * .229 Ra(fl- )229Ac l229Ac(b- )22gTh r229Pam (IT)229Pa l229Pam(IT)229Pa
109487 -800 -570 -260
9 80 100 90
4870.70 .25 50 5500 1. 6451.5 10. 6986.9 30. 7564.1 15. 7706.6 8190 50 50 8210 15 -2816 -146 10 330 3800 3704 100 7 1115 1115 6 ave. F: is for E(a) to excited state -410 130 -220 80 5042.27 .14 6146.51 .I5 6581.5 3. 6578.4 3. 30 7230 16 7206 7815.0 20. 7818.0 20. 4561.34 .27 2476 100 45.5 1.0 43.5 1.5 ave. 44.9 0.8 E(a) = 6860(30) to 247(l) level
-
v/s
D8 Sig
4 40 60 50
-.2 -.8 -.l -.9
1 1 1 1
15 11 18 12
4870.63 5536 6451.5
0.25 21 1.0
100 17 99
7707
15
8200
50
.o 1 .8 1 .o I 5 4.7 F 5 .2 8 -.2 8 -.l u .7 u -.5 u -.7 1 .2 .3 I
109489 -890 -580 -390
-2817.1 -139 3630 1116
2.1 3 80 5
Main flux Lab
CF
Reference
13 ts3Cs 11 226Fr 18 226Fr 8 226Fr 99 ***Rn 17 ***Fr 57 22%
1.0 1.5 1.5 1.5
92Bo28 82AuOl 82AuOl 82AuOl 71Gr17 75Va.A 75Va.A 64Mc21 73VilO 9oAn22 9ONiO5 92An.A 74FrQl 83NyiJl 75We23 87Ve.A 68Va17
MA3 P24 P24 P24
ANL
63
63 226Fr
54
43 226Th average
Z Z Z *
92An.A ‘* -500 -140 5042.19 6146.43 6580.0
60 60 0.14 0.15 2.1
7211
14
7816
14
4561.34 2490 44.8
0.27 90 0.8
-540 480 - 540 320 5520.12 0.22 5520.17 .22 6228.3 3.0 6228.5 3. 6803.6 10. 45.9 0.9 46.7 2. 45.7 1. 2127 3 2158 20 2111 5 2109 15 220F~.so9 Systematical trends suggest 228Fr 880 less bound
1 1 1 1 5 5 6 6 6 6 1 1 1
11 lO**‘Fr P24 19 224F? P24 29 100 100 **‘Fr 100 96 **‘Ra
.o 1 .l 1 .o 1 5 -.4 3 .2 3 -1.6 U .2 1
100 lOO***Fr P24 100 72 224Ra 96 90 ***Pa
-.4 .6 .o .o -.5 .5 -.6 .3 .l -.l .o .l -.7 .9 -.l
-.2 5167.9 1.0 5168.1 1.2 .3 5166.0 2. .o ave. 5167.9 1.0 5840.6 5. 6475.3 3. 7010 50 1760 40 -.3 1100 50 1140 150 .l 1090 50 .005 001 10 -141.7 16.59 .05 10 E(a) = 4979.5(1.2), 4967.3(1.2,2) to 100.60, 111.60 levels E(u) = 5675.2, 5635.2, 5620.2, 5585.2, 5541.2 (all 3,Z) to 64.70, 105.06, 120.80, 155.65, 199.85 levels Eto ground-state Eto ground-state If E(eC ) = O.ZZ(O.05) due to L3 transition If M3, Q(IT)= 4.40(.05)
1 2 5 6 3 2 2 2 B
1.5 82AuOl 1.5 82AuOl 86RyO4 Z 71Gr17 Z 63Su.A 9OSb15 69Ha32 l 91HoO5 9ONiO5 92An.A 100 lOO’*‘Ra ILn 81VoO3 Z 75We23 79 79 227Fr 55BeZO 59No41 99 96 **‘Th average NDS l*
11
10 ***Pa
1.5 82AuOl * 71Gr17 Z 58Hi.A 61Ru06 61To10 72He.A 57Bj56 73KuO9 GAu l* 71BaB2 l 87He28 Z
99
96
225Ra average 63Su.A l 61RuO6 z 68Ha14 75We23’ 73Ch24 l 75We23* NDS 82AhO8 ’ 71Gr17 l * 63Su.A ** NDS l* NDS ** NDS l* 91Gr13 ** AHW l *
334
G. Audi et al. / The 1993 atomic mass evaluation (IV) Input value
Item
ave.
11225 4770.1 5439.5 5992.8 6780 7175.0 -3550 -493.5 -541 -533 -525 900 2700 1310.3 561
Adjusted value
35 1.5
50 15. 15 1.0 6 4 6 300 100 3. 15
4770.1 5439.4
-3567.2 -492.9 -536.4
1.5 1.0 2.4
-536.4 990
2.4 110
1309.8 563
5 150.2 1.5 5148.9 5146.9 1.0 5 150.4 1.5 5149.8 1.0 we. 5148.9 0.6 5550 50 6370 50 -4145 3 5118.05 .20 5118.04 2100 100 389.2 2. 389.5 E(a) = 5015.9(1.5,2) to 46.35 level E(a) = 4736.2(1.0,2) IO 330.04 level
ave.
ave.
1.5 0.7
2.8 5 0.6
0.20
Dg
v/s
2 .O 1 .o 1 2 6 6 -1.1 u .6 1 .8 -.8 1 -1.9 R .3 u 2 -.2 I .I R -.8 2.1 -1.0 -.9 -.I
-.I
1.7
.2
87142.4 152393.4 4082.1 5413.62 6716.0 -174 -187 3700 I344 1336
2. 1.8 1.4 .14 10. 6 10 100 20 8
87151.0 152395.7
2.2 2.2
1.7 .5
-180.8
1.2
-1.1 .6
1337
7
4908.4 5628.5 6420 4786.35 1245 568 568 568 568.0
1.2 50. 50 .25 3 4 5 5 2.6
4908.6
1.2
.2
4786.35 1245.2 570.5
0.25 1.4 2.2
.o .l .6 .5 .5 .9
1.0
4858.5
4857.4 4860.4 4857.9 6310.1 6572.6 -4099 -579 192 193 198. 78 1812 1805
0.7
2. 0.9 20. 15 6 :
15
1.1 _ 0 .6 _x
-4122.3 -586.5 195.1
1.9 2.3 1.0
1.5 IO
-.3 .I
1810
8
-1.6 -1.2 1.5 1.0 -1.9 -.2 .3
1 2 6 2 1 2 1
Sip
Main flux Lab
CF
MA3 1.0 98 99
97 226Ra 88 226A2c
96
72 228Th
33
31 229Th average ANL
ANL
90
89 “‘Pa
100
97 “‘AC
67ErO2 80Gi04 80Gi04 7OLoO2 7OLaO2 Z Z ’ *
average
75 23’Th ILn
71
68 23’Pa
1 1 2 2 6 u U 2 3 3
20 24
20 232Th M20 2.5 24 232Th M20 2.5
I 4 6 1 1 I
94
66 229Th
99 23
9423% 17 233Pa
67
58 233U
3 4 2 2
92Bo28 66Ba14 Z 66Ba14 Z 66Ba14 Z 68Ha14 90An22 74FrOl 91Gr13 90Bu17
66Ba14 68Ba25 69Le.A 76Ba99
98
1 3 8 U 1
Reference
ANL MIT
53Cr.A 73Ja06 91Gr13 87WhOl Z 60Ta19 75Ho14 NDS l* NDS l* 73BrO6 73Bi-06 89SaOl 72Go33 Z 73Ja06 67ErO2 72Gr19 90Be.B 63BjOl 71Ka42 68Ba25 Z 50Ma14 57ThlO 74Ke 13 57Fr.A 548137 550n05 63B103
average 55Go.A Z 67Ba43 Z
61
14
41 230Th average
14 233U
ANL ANL
60Ho.A 90Ha02 74FrOl 67ErQ2 55De40 63BjO2 73Go40 NDS 67Ha04 67Wa09
G. Audi et al. / The 1993 atomic mass evaluation {Iv Input value
Item 235U-206Pb C2 H 5 2’5U-C,8 H,* C18 H20-235U 23%J(a)23’Th
235Th(p- )235Pa 235Pa(/r 12% 235Np(e)235U
236P”(U)% 235U(n,y)236U
23’P,(,)2% 237Am(a)233N$ %J(n YwJ 237pa&j237u
237U(fl-
j2”Np
238"_206pb
32s
C,* H22-238U C H -238U 2&4U(;;234Th
35Cl 2
Adjusted value
30341.0 -96932.8 112584.2 4678 4681 4675.5 4677 4677.9 5193.6 5951.5 3668 5297.6 5297.8 5297.75 1470 1410 123.5 123.6 123.6
10. 3.8 4.8 2 3 3.0 3 1.3 3. 20. 10 .5 .3 0.26 80 50 2. 1. 0.9
30348.2 -96928.4 112578.5 4678.7
2.8 2.1 2.1 0.7
5191.9
1.8
3659.7 5297.84
2.3 0.23
4572.2 4569.7 4573.1 5867.15 6545 6545.2 6545.2 3350 2900 50 525 544
3. 3. 1.0 .08 2 1.0 0.9 100 200 50 10 8
4572.0
4958.2 4959.9 4958.5 5753.3 6145.9 5126.0 2250 520 524 523 222 207
1.5 3. 1.3 20. 5. .5 100 5 5 5 8 18
104253.9 121366.0 168010.8 4271.9 4264.8 4272.9 5593.20 6040 6611.5 6632.0 8700 5488.1 -746 3600
10. 2.4 1.4 5. 5, 5. .2 50 50. 50. 50 .2 10 300 60
Reports result from thesis
1930 123.7
70
v/s
Dg
.3 .s -.5 .3 -.a 1.1 .6 .6 -.5
u I 1 1 1 4 u 1 B 2 1
-.8 s .I .4 5.7 .l .I .2
0.9
0.9
-.l .8 -1.1
6544.8
0.5
-.l -.4 -.5 -4.5
2900
200
337
6
1.2 -.9
4959. I
1.2
5749.9
2.6
.6 -.3 .4 -.2
5125.9
0.5
-.2
518.6
0.6
220.3
1.3
-.3 -1.1 -.9 -.2 .7
104264 121367.2 168011.7 4269.8
3 2.2 2.2 2.9
5593.20 6620
5488.09 -743.2 3460
0.19
.4 .2 .3 -.4 1.0 -.6 .4
40
.2 -.2
0.20 1.5 60
.o .3 -.5
Sig
5 3
335 Main flux Lab CF
5 235U 3 235U
c4 2.5 M20 2.5 M20 2.5
31 36
22 23% average 29 23’Pa
82
61 2%
1
1 IJ 6 1 2 I3 u U u u U 1 1 2 2 2
I 3 4 4 2 1 u u 2
71KeO2 738106 73BrO6 60Ba44 bOVoO7 64Sc27 66GaO3 73Br12 2 57ThIO 67Ri.A 72Ri08 77Ko1.5
average 89YuOl 68Tr07 58Gi05 72Mc25
95
93 235Np average
u U 3 1 B 2 5 4 4
Reference
82
57 232Th
38
24 235U
6OKoO4 2 61Kol I 2 78Ba.C 84RyO2 2 7OKa22 75We.A average 63WoO4 68TrO7 NDS 56Grll 69LeOS 68Ba25 69Va06
79
75 233Pa average
86
84 237U
BNn
13 39
13238U 38 238U
c4 2s M20 2.5 M20 2.5
90
72 238P”
97
96 238Np BNn KOP
57ThlO 75Aho5 2 79VoO5 Z 74Kao5 53WaOS 56Ba39 57Ra04 58Ho02 59Gi54 71KeO2 73B106 73BrO6 57Ha08 2 6OVoO7 Z 61Koi 1 z 71Gr17 z 72AhO4 48St.A 52Hi.A 81Wali 791001 73Gr26 68TrO7 85Ba57 * 82Gi.A **
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
336
Input value
Item
23gP”(n,y)*39P” *39~~(8- )239~” l239P”(,)235U l239A’“(,)235Np
5244.60 .25 5244.50 0.23 5923.7 1.8 7760.1 25. 4806.4 4806.26 0.2 I 4806.20 :;5 5647.0 .5 5646.5 0.3 722.5 1.0 721.8 0.9 E(u) = 5156.59(.25,2) to 0.08 level E(u) = 5825’4,Z) to ground-state and 5776(2,Z) to 5255.88 5469.2 6397.3 7718.9 6534. I 6533.9 6534.0 386 20 2199 2210 1395
24’P”(b- )24’Am 24’Cm(e)24’Am *24’P”(a)23’U *24’Am(a)237Np *24’Cm(a)*3’P” l24’Cm(c)24’Am
E(a) E(a) E(a) Q(E)
= = = =
E(a) E(n)
.15 1.0 .6 10. 1.0 1.0 0.7 20 I5 30 20 35
v/s -.4
-.4 .2 -.9 -.7
Dg
1
4982.9 5588.0 5635.9 5638.5 6215.63 7516.5 7982.2 6309.5 5537.57 2700 48.63 = 5206.6(.5,2), = 5208.3(&Z),
Sig 81
Main flux
1 1
Lab
CF
46”‘P”
2 10 2 2
ANL ILn 40 76
28 238P” 71 239Np
49.10 level
5255.78
0.15
-.2
6533.5
0.5
368
22
-.6 -.4 -.7 -.9
2200 2220 1379
15 21 14
.o .5 -.5
1 3 4 8 1 R 3 2 R R
5140.1 1.2 .6 I 5139.4 0.5 .o 1 5637.81 0.12 .12 5637.81 3 .6 6185.0 9 5. 7459.0 10 30. 8064.1 .4 5241.60 0.19 .7 5241.3 .2 .o 5241.6 .l 1 0.19 5241.58 .3 2 -384 15 14 -388 -.6 2 1300 100 70 1360 .5 2 1250 100 .l 1 20.81 20.8 .2 0.20 2 1.2 767.5 4896.3(1.2,2), 4852.9(1.2,2) to 159.96, 204.19 levels 5485.56(.12,2), 5442.80(.13,2) to 59.54, 102.96 levels 5939.0(.6,2) to 145.54 level 5.5f1.2) to 63686 level
ave.
r242Amm (,)238Np
Adjusted value
1.2 4982.7 1.2 -.l 1.2 .3 .5 5636.96 0.25 2.1 .8 -1.9 .08 4. 30. .7 6309.4 0.7 -.l .I 5537.57 0.10 .o 200 .05 5141.4(.5,2) to 342.40, 407.58 levels 5144.3(.9,2) to 342.40, 407.58 levels
1 I R R 2 5 II 1
I 2 2
97
60 236U
57
38 239P”
Reference 79Ry.A 71GoOl 81Mu12 72Bo46 79Br25 75Ma.A 59C063 NDS AHW
l
* Z Z
l l
* *
72Go33 Z 7OGo42 Z 71BaB2 Z 70Si 19 7OCh.A 75We.A
average 53Kn23 81Hs02 5 1Or.A 59Bu20 72AhO7
18 99
68Ba25 * 71Gr17 * 71BaB2 l 70% 19 85Hi.A
16 237U 95 237Np
75Ma.A
IL” 97
55 24’P”
100
96 24’Am
91 5
48 238U 4 238Np
95 99
91Wh.A
56 242P” 99 242Am
76Gr19 59Va32 66Qa02 56Sh31 89Su.A * NDS l’ NDS ‘* NDS ** AHW l * 68Ba25 Z average
IL”
79Ba67 90Ho02 71Gt17 7OSi19 85Hi.A 72Ma.A 88Sa18 79Ha26 NDS 90Ho02 90Ho02
* l
z Z
z
‘* **
337
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Inputvalue
km
l243Cm(a)239P”
v/s
0.9
-.l
Dg
I
Main flux
Sig 76
Lab
CF
48 243Am
Reference 68Ba25
1.0 1.0
2
69Ba57
l
6874.4
4.
3
66Ah.A
z
7290.2
10.
5
67FiO4
8072.1
10.
9
89Ha27
8022.3 8031.4
20. 3.
738~02 89Ha27
8690
50
803 1
3
.5
u 10
3.
5034.5
2.6
.I
1
578 580
10 IO
581.5
2.8
.4 .2
-
579
7
.4
I
= 5275.2(1.0,2), = 5785.7(1.0,2),
5233.3(1.0,2)
to 74.66,
5742.8(1.0,2)
to 285.46,
5901.68
.05
6780
81Mu12
II
2. 4.
7696.4
75 243P”
76Ca25 69~010 77DrO7
16
14243P”
average
330.13 levels
.o
0.05
7329.
I
1.8
.9 -1.8
1
NDS
”
NDS
**
69BeOb Z
2 5901.61
50
7327.3 7336.5
75
117.84 levels
1.0
4665.6
100
97
2%n
71Gr17 66Ah.B
Z
5 5
67Fi04 67SiO8
Z Z
20.
7
738902
10
2
79FlO2
234
5
236 .07
5217.95
4
.4
0.07
.I
85.0
1.0
85.8
0.9
.8
1427.3
1.0
1428.1
0.9
.8
5623.5
1.9
I I I I
69
65 244P”
ANL
76Ca25
100
50 243Am
ILn
84VoO7 Z
76
50 244Amm
84Ho02
76
14 2uAm
62Va08
90
90 245Cm
75Ba65
5624
L
6454.5
1.5
2
75Ba25
l
7255.7
2.0
3
6lFi04
Z
u 4
85He22 89Ha27
5
89Ha27
7880 7909.4
-.3
3
50 3.
.5
1
245Es(a)24’Bkp
7858.5
24’Fm(a)24’CP
8285.5
20.
2”P”(d,p)24’P”
2558
I5
2548
14
-.6
2
245P~(B-)245Am
1257
30
1205
I5
-1.7
R
68Da02
905
5
-2.2
R
55BrO2
245Am(p-
)24b
I1
894.0
1.8
.
E(a) = 5529.0, 5488.5, to ground-state, 41.95,
5436.1, 5361.8, 5303.6(.5,2) 95.69, 174.94, 231.75 levels
*245Bk(a)24’Am *
E(u) = 6347.8, 6307.8, to ground-state, 41.18,
6146.8, 5885.8 corrected 205.88, 471.81 levels
r244P”(d,p)24SP”
Q = 2252(15)
2”P”(t,p)246P” t)245Cm ’ 246 246P”(p-) Am”
246Amm (IT)246~m
5474.8
1.
6861.6
1.
7451.2 7481.9 7492.0
30. 30. 4.
7492
4
8311.4 8376.5
20. 20.
8374
14
2085
20
2011
IS
6
-200.8
314
10
371
30
10
2420
246Amm (,9 - )246Cm
as in ref.
20
5474.8
1.0
E(a)
=
6750.0(1.0,2),
6708.2(1.0,2)
l
l*
91RyOl NDS
” ”
NDS
‘*
**
84Sh31
Z
77Ba69
l
1.4 .3
u u 5
6lMi06 73EsOl 89Ha27
.I -.I
6 6
66AkOl 6lN”Ol
1
96
95 24aCm
-.7
1
57
54 246P”
LAI
79Br19
I
13
10*%n
ANL
67ErO2
9
-.3
1
89
46 246P”
56Ho23
57
57246Amm
56Sm85
-.7
1 2
to ground-state,
I
75Ba65 NDS
-.8
15
l
3
.I
2 2406
75Er.A
2.2
60
246Bk(c)246Cm ‘246Cf(a)2%n
67NuO ANL
to 306 level
-196
246Cm(d
Z
3
12405 5277.95
l245Cm(a)24’P”
’
5438.8
we.
E(a) E(a)
5438.1
value
6168.8
5034.2
*243Am(a)239Np
Adjusted
42.13 level
84SoO3 89Sc.A NDS
l*
338 Item
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Input
5353.9 5889.5 6399.8 7450.7 7430.5 7443.8 8190 8567.0 2931 646 5161.81 6360.6 7165.8 6982.8 6982.8 7020.4 8009.4 7999.3 8002.3 8497.3 -2894 49 870
25’Bk(p-)25’Cf *25’Cf(a)*4’Cm l25’Fm(a)247Cf .~ *Z5’No(a)247Fmp
Adjusted value
value
4. 5. 5. 30. 30. 1. 50 25. 8 6 .25 5. 20. 15. 10. 5. 30. 20. 15. 30. 15 8 20
5526.0 6295.0 6880.8 6886.8 7663.3 7650.1 8161.3 8157.3 4713.46 125 123
:: 20. 23. 20. 20. .3 2 2
6128.44 7540.7 7561.1 7560.1 7556.0 7941.4 1964.7 2064 86.4
.2 30. 30. 15. 35. 30. 20. 10 1.5
Dg
Sig
1 2 4 u u 5 6 11 1 3
71
63 247Cm
25
24 247Cm
100
68 *4*cm
10 35
10 248Cm 23 248Cm
5353
3
-.2
7443.7
1.0
-.2 .4
2932
4
.I
5161.73
0.25
.o
7020
5
2.5 3.8
8002
11
-.2 .2 .O
2887 45
5 5
.5 -.5
1.0 .7 6885.9
1.9
7658
15
8159
14
124.9
1.4
1.0 -.4 -.3 .3 -.l .l -.I .9
7557
12
7959
17
Main flux
v/s
.5 -.1 -.2 .o .4 -.3
1 2 4 II U 5 6 6 6 9 1 1 3 4 2 4 4 5 5 6 6 2 3 3 2 4 4 4 4 7 7 2 6
2 6175.8 1.0 .7 3 6596.9 2.6 6593.2 5. -.4 3 6598.3 3. 4 7425.1 2.0 7 7672.5 20. 12 -.2 8 8735 20. 8739.5 8732.4 15. .2 8 4 1420 20 1093 10 3 E(o) = 5680.1(1.O,Z) to 403.6(1.0) level E(a) = 7305.7(3,2), 6833.7(2,2) to ground-state and 480.4 level Sees no pile-up of E(a) = 8661 branch with e-
Lab
ANL
ANL ANL
ILn
CF
Reference 71FiOl Z 69FrOl Z 84AbO2 Z 67Mi06 73EsOl 89Ha27 89He03 81Mu12 67ErO2 56Cb.A 77Ba69 Z 84Ab02 Z 84Li.A 56Ch67 7OAhOl 89Ha27 66AkOl 67NuOl 85He.A 73EsOl 74FrOl 67ErO2 78GrlO 71BaB2 71BaB2 70AhOl 89Ha27 73EsOl 85He06 73EsOl 85He22 82Ho07 59Va02 74GllO
Z Z Z
Z
86Rv04 Z 66AkOl 73EsOl 77Be36 8 1Mu06 73EsOl 85He22 73Ba72 NDS 71BaB2 70AhOl 79Aho3 73Ah02 73EsOl 67GhOl 89He03 78Lo13 84LiO5 NDS NDS 89He03
l
Z z l
l
l* ** **
G. Audi et al. / The 1993 atomic mass evaluation (Iv) Item
2s2Es(~)252Cf *252Es(e)252Cf l
Input value
Adjusted value
y/s
Dg
Sig
6216.95 .04 2 6739.1 3. 4 7152.7 2. 3 8545.9 20. 8549 5 .2 7 8551.0 6. -.2 7 8542.8 15. .4 7 1260 50 3 pK to 969.83 level, recalculated for non-unique first forbidden or allowed transition; unique first forbidden would give 1440( 100) 3 4 3 7 7 7 8
E(a)
6124.4 5. 6739.24 .05 7197.0 4. 8138.9 20. 8143 13 .2 8138.9 30. .I 8150.1 20. -.3 8941.6 20. = 5920(5,Z), 5978(5,Z) to 110.7, 48.74 levels
254Lr(a)2SoMdp 254Esm (p- )254Fm l2J4Esm (a)250Bk
E(a)
3 5926.5 5. 7 6531.6 1.5 6699.5 2.0 5 7307.3 2. 3 8229.8 8226 13 -.2 5 20. -.5 5 8240.0 30. 8215.6 20. .5 5 9 8595.6 20. 1172 4 2 = 6593(4,Z), 6559(2,Z) to ground-state and 35.59 level
r255Es(a)25’Bk *2s5Fm(a)2s’Cf l255Md(a)2s’Es l25sMd(a)25’Es *2S5Rf(a)251N#
6435.6 1.5 7240.6 1.4 7903.3 5. 7907 7910.4 5. 8444.6 9. 8564.6 20. 8839.5 20. 8848 8853.1 15. E(a) = 6299.3(1.5,2) to 35.7c.3) E(a) = 7127(2,Z) to ground-state E(a) = 7325(5,Z) to 461.40 level E(a) = 7332(5,Z) to 461.40 level Favored, not highest seen E(a)
2S3Lr(a)249Mdp
l%f(a)%m
4
.7 -.7
12
.4 -.3
level and 7022(2,Z) to 106.30 level
7027.0 7896.6
256Rf(a)2s2No 256~$ (IT)Z~~L~ l256No(a)252Fm l256ti (IT)2’6Lr
4 3 4 4 5 9 10 10
5. 16. 8533.9 30. 8581 5 8553.9 20. 8578.3 12. 8582.3 6. 8787.6 20. 8784 16 8779.4 25. 8952.1 23. 100 70 Probably mixture of two branches LX-rays following a rays seen by ref.
.Y 1.4 .3 -.l -.2 .2
3 4 B B 4 4 4 4 8 5
Main flux
339 Lab CF
Reference 86RyO4 2 73FiO6 Z 84AhO2 Z 67GhOl 77BeOY 85He.A 73FiO6 * AHW ” AHW l * 68Be21 * 71Gr17 Z 67AhO2 Z 67GhOl 67Mi03 85He.A 85He22 NDS ” 68Be21 Z 72BaDZZ 73Aho4 l 84AhO2 Z 67GhOl 67Mi03 85He22 85He22 62UnOl NDS l* 71BaB2 l 75AhOl’ 7OFi12 * 71Ho16 l 7 lDi03 75Be.A 69GhOl l 85He06 * NDS l* AHW l * NDS ‘* NDS ** AHW l * 68Ho13 Z 93Mo.l 67R05 * 67GhOl’ 81Be03 90Ho03 71EsOl 75Be.A 85HeO6 AHW l AHW l * 77Be36 l *
G.
340
Audi et al. / The 1993 atomic mass evaluation (Iv)
Input value
Item
Adjusted value
v/s
Dg
Sig
6864.3 2. 6863.8 1.4 -.3 4 6863.3 2. .2 4 7549.3 5. 7557.6 1.0 1.7 v 7557.6 1. 5 8451.8 30. 4 9020 50 9010 50 -.3 3 9000 50 .I 3 8736.2 20. 8747 7 .5 9 8751.4 15. -.3 9 8733.2 20. .7 9 8751.4 10. -.4 9 9305.4 20. 10 6519(2,As,Z) or 6520(2,Ah,Z) to 240.99 level 7066(5,Z) to 371.4 level 7440(2), 7074(l) to ground-state, 371.4 level E(o); highest seen 9156
Main flux
Lab CF
Reference 67As02 82AhOl 7OFi12 93Mo.l 70Es02 71EsOl 77Be36 69GhOl 73Be33 85He06 90Be.A 85He22 AHW 93Mo.l 93Mo.l AHW
l
* *
257Ha(a)253L? *2J7Fm(a)253Cf *257Md(a)253Es l257Md(o)253Es *257Rf(a)253Nti
E(a) = E(a) = E(a) = Favored
258Lr(a)254Md 258Ha(a)254Lfl r258Md(,)254Es l258Md(a)254Es l258Lr(a)254Md *258Lr(,)254Md
5. 1271.2 1.9 1266.8 .9 8 7271.9 2. -.4 8 8900 20 5 9445.7 15. II E(u) = 6713(5) to 447.9 level E(a) = 7159(2), 6718(2) to ground-state, 447.9 level E(a) = 8752 found as sum energies a-rays and conversion electrons Mass assignment confirmed
70Fil2 93Mo.I 88Gr30 85He22 93Mo.l 93Mo.l AHW 92GrO2
7605.4 8582.8 8571.6 8577.7 8999.2 9009.4 9771.2 Favored a; highest
26’Rf(a)257N# 261Ha(o)257Lfl 26’Nh(a)257Rp 26’Ns(o)257Ha
263Ha(u)259LrP 263Nh(a)259Rp 264Hs(a)260Nh
l264Hs(a)260Nh
IO. 20. 8574 10. 29. 20. 9007 10. 30. seen 7685(10)
8155.0 9283.1 9262.8 9923.0
20. 20. 17. 30.
8409.1 9069.2 9709.0 10560
20. 20. 30. 50
8794.5 8815.8 10216.2 10530
20. 20. 25. 50
8484.3 9390
27. 50
9271
8805
10800 300 Q(a) = 11000 + 100 -300
9
9
13
I4
from T(1/2),
l
* l
l
* l l
* * ** ** l l
l
* ** ‘* ** l
-.4 .3 -.I .4 -.2
5 6 6 6 7 7 12
73Si40 l 7lEsOl 92Ha22 92KrOl 69GhOl 8 I Be03 85Mull 73Si40 **
-.6 .5
6 6 6 9
7lEsOl 70Gh02 77Be36 85Mul I
6 5 11 II
7lGhOl 7lGhOl 85Mull 89Mu09
7 7 I3 12
71GhOl 88Gr30 89Mu09 89Mu09
8 9
92KrOl 75Gh.A
.5 -.5
IO one event only
87Mul5’ 87Mu15**
265Hs(a)26’Nhp
10524.2
25.
I3
87Mu15
266Mt(a)262Nsm
11168.1
30.
I3
89Mul6
G. Audi et al. / The 1993 atomic mass evaluation (IV)
References to Table II USED CODEN IDENTIFIERS AAFPA
ADNDA AENGA AFYSA ANPHA APAHA APASA APHSI APOBB APPOA ARISE ATKEA ATKOA AUJPA BAPMA BAPSA CHDBA CJPHA CODBA COREA CPHMA CUSCA CZYPA EULEE FZKAA HPACA IANFA IJARA IJMPA IJOPA IJPYA JCHCA JINCA JMOPE JMSIA JOPQA JOPQS JPAGB JPHGB JPSLB JUPSA KDVSA KERNA KURAA MTRGA NCIAA NCLTA NDSAA NIMAE NIMBE NUCIA NUIMA NUPAB NUPHA PHFFA PHLTA PHMAA PHRVA
1950-70
1970~.. ..-1969
1966-..
..-I965
1986-..
1961-..
-1985
1970~.. ..-1985 1983-.. 1983-.. ..-I969 ..-1983 1967~.. 1957-66 -1967 1930-69
Annalcs Academiae Scientiatum Fennicae, series A VI Atomic Data and Nuclear Data Tables (USA) Atomnaya Energiya (USSR) A&iv for Fysik (Sweden) Annales de Physique (France) Acta Physica Academiae Scientiarium Hungaricae Acta Physica Austriaca Acad Physica. Sinica Acta Physica Polonica Section B Acta Physica Polonica Appl. Radiation Isotopes Atomkemenergie (Germany,FR) Atomki Kozlemenyek (Hungary) Australian Journal Physic8 Bulletin de l’Acad6mie Polonaise des Sciences, S&e des Sciences Ma&matiques, Astronomiques et Physique Bulletin of the American Physical Society Comptes Rendus Hebdomadaires des SCances de I’Acaddmie des Sciences, setie B (France) Canadian Journal of Physics CODATA (Committee on Data for Science and Technology) Bulletin, ICSU, Paris Comptes Rendus Hebdomadaires des Stances de 1’AcadCmie des Sciences (France) Commentationes Physico-Mathematicae (Finland) Cumnt Science India Czechoslovak Journal of Physics Europhysics Letters (replaces JPSLB and NCLTA) Fizika (Zageb) Helvetica Physica Acta Izvestiya Akademii Nauk SSSR, seriya Fizicheskaya International Journal Appl. Radiation and Isotopes (Eng) International Journal of Modem Physics Indian Journal of Pure and Applied Physics Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science Journal of Chemistry Canada Journal of Inorganic and Nuclear Chemistry (USA) Journal of Modem Optics (London) Journal Mass Spectroscopy and Ion Physics (Netherlands) Journal de Physique (France) Journal de Physique (France) Suppl. Colloques Journal of Physics, A (England) Journal of Physics, G Nuclear Physics (England) Journal de Physique Letters (France) Journal of the Physical Society of Japan Kongl. Dansk Videnskabclig Selskab Math. Fys. Meddedelwr Kemenergie (Germany,FR) Kyoto University, Res.Reactor Inst., Annual Report Metrologia (Germany,FRa) Nuovo Cimento A (Italy) Nuovo Cimento Lettere (Italy) Nuclear Data, section A (USA) Nuclear Instruments and Methods A (Netherlands) Nuclear Instruments and Methods B (Netherlands) Nuovo Cimento, 11 (Italy) Nuclear Instruments and Methods (Netherlands) Nuclear Physics, section A (Netherlands) Nuclear Physics (Netherlands) Physica Fennica Physics Letters (Netherlands) Philosophical Magazine (England) Physical Review (USA) (not 1964-1965,see PLRBA)
341
G. Audi et ai. / The 1993 atomic mass evaluation (I
342 PHSTB PHYSA PIACA PLRBA PPSOA PRAMC PRLAA PRLTA PRVCA PRVDA I’RYCA PYLBB PZETA RAACA RMPHA RMXFA RRALA SAPHD SHIBA UFZHA VHDPG YAFIA ZDACE ZENAA ZEPYA ZETFA ZPAAD
1970%
1964-65
1970% 1970% 1968-..
1974% w-1974 1974%
Physica Scripta (Sweden) Physica (Netherlands) Proc. Indian Academy of Science Physical Review, section B (USA) Proceedings of the Physical Society (England) Pramana (India) Proceedings of the Royal Society of London,Series A Physical Review Letters (USA) Physical Review, section C (USA) Physical Review, section D (USA) Proceedings, Royal Society of Canada Physics Letters, section B (Netherlands) Pisma.Zh.Eksp.Teor.Fys. (USSR) Radiochimica Acta (Germany,FR) Reviews of Modem Physics (USA) Revista Mexicana de Fisica ~di~hemi~ and R~ioan~~ical Letters (Sac-Hung) South African Journal of Physics Shitsusyo Buns&i (Mass Spectmmetty, Japan) Ukr. Fiz. Zh. Verhaodlungen der Deutschen Physikalischen Gesellschaft Yademaya Fizika (USSR) Zeitschrift fdr Physik D (Getmany,FR) Zeitschrift mr Nato~o~ho~, part A fGennany,FR) Zeitschrift Wr Physik (Germany,FR) Zhumal Eksperimentalnoi i Teoreticheskoi Fiziki (USSR) Zeitschrift Wr Physik A (Germany,FR)
USED NON-CODEN IDENTIFIERS AAAAA to be pd PwCom AHW Mon PwCom GAu Mon PwCom NDG Man PrvCom Ref Th.- City AnRpt City ANL COODASA FRNCTHGSIIDOIPF-SP JINRP6KFKIBLLeninst YF LNPIORNL UCRL-
To be published in AAAAA Private communication to A.H.Wapstra in given Month Private communication to G.Audi in &en Month Private ~ommunicatioo to Nuclear Data Group in given Mth Quoted by reference in question Dissertation from corresponding University Annual Report from Institute in city Argonne National Laboratory, report Reports on work done with DOE support Defense Atomic Support Agency, Washington, DC, report For 71Gu.A=4SSc(p,g) Gemeinschaft SchwerIoofo~chon~ report Idaho Operations O&e of US Atomic Energy Commission, report University of Ftibourg, dept. of Physics, report Joint Institute for Nuclear Research Dubna, report Kemph. Zentr. Karlsmhe, report Lawrence Radiation Laboratory, report ~~n~~~i Inst. Yademoi Fitiki Leningrad report Oak Ridge National Laboratory report University of California Radiation Laboratory report
P-Alma Ata P-Alma Ata P-Amsterdam P-Amsterdam P-BadHonnef P-Baku P-Berkeley P-Bemkastl
1978 1984 1974 1982 1988 1976 1980 1992
B-Bemkastl P-Bombay P-Brookhaven
1992 1974 1979
Program of 28th USSR Conference on Nuclear Spectroscopy Pmgram of 34th USSR Conference on Nuclesr Spectroscopy Prof. Intern. Conference Nuclear Structure Pmt. Intern. Conference Nuclear Stmctore Proc. lot. Workshop Nucl. Stmct. of the Zr Region Program of 26th USSR Conference on Nuclear Spectroscopy Proc. Intern. Conf. Nuclear Physics Berkeley F?oc. 9th Int. Conf. Atomic Masses and Fund. Constants AMCO-9 and 6th fnt. Cm&Nuclei far from Stability NUFAST-6 Abstracts AMCG-9 and NUFAST-6 Proc. Noel. Phys. and Solid State Phys. Symposium Proc. 3rd Int. Conf. Neutron Capt. Gamma Ray Spectrosc.
G. Audi et al. / The 1993 atomic mass evaluation (Iv) P-Budapest P-Cargese P-Charkov P-Damxstadt P-Debrecce” P-Dubna P-Dubna P-FlOre”Ce P-Gatlinbrg P-Grenoble P-Helsingor P-Jerusalem P-Kiev P-Knoxville P-Kyoto P-Lansing P-Legnaro P-Leningrad P-Leningrad P-Leningrad P-LeUVe” P-Leysin P-Minsk P-Monterey P-Moscow P-Moscow P-Moscow P-Niigata P-PacGrove P-Paris P-Paris P-Petten P-Rosseau P-Samarkand P-Studsvik P-Swansea P-Tashkent P-Tbilis P-Teddingtn P-Vienna P-Winnipeg P-Yerevan P-Yunnala
1972 1976 1986 1984 1968 1968 1989 1983 1967 1981 1981 1990 1982 1984 1969 1979 1971 1975 1985 1990 1987 1970 1991 1990 1955 1971 1983 1991 1991 1958 1975 1974 1987 1981 1969 1985 1977 1964 1971 1963 1967 1969 1987
Proc. 1st Int. Conf. Neutron Capt. Gamma Ray Spectrosc. Proc. 3rd Int. Conf. Nuclei far from Stability NUFAST-3 CERN 76-13 Program of 38th USSR Conference on Nuclear Spectroscopy Proc. 7th Int. Conf. Atomic Masses and Fund. Constants AMCG-7 Proc. Conf. Electron Capture and Higher Order Processes in Nuclear Decays Pmt. International Symposium on Nuclear Structure Int. School-Seminar on Heavy-Ion Physics Proc. Intern. Conf. Nuclear Physics Florence Proc. Intern. Conf. Gatlinburg Proc. 4th Int. Conf. Neutron Capt. Gamma Ray Spectrosc. Proc. 4th Int. Conf. Nuclei far from Stability NUFAST-4 CERN 81-09 Proc. 8th Int. Conf. Atomic Masses and Fund. Constants AMCG-8 Program of 32th USSR Conference on Nuclear Spectroscopy Proc. 5th Int. Symp. Capture Gamma-Ray Spectroscopy and Related Topics Conference on Mass Spectroscopy Proc. 6th Int. Conf. Atomic Masses and Fund. Constants AMCG-6 Proc. Conf. Structure of ll7/2 Nuclei, Legnaro Program of 25th USSR Conference on Nuclear Spectroscopy Program of 35th USSR Conference on Nuclear Spectroscopy Program of 40th USSR Conference on Nuclear Spectroscopy Proc. 6th Conf. Capture Gamma-Ray Spectroscopy Proc. 2nd Int. Conf. Nuclei far from Stability NUFAST-2 CERN 70-30 Program of 41th USSR Conference on Nuclear Spectroscopy Proc. Xth Int. Conf. Neutron Capt. Gamma Ray Spectroscopy Conf. Acad. Sci. USSR Peaceful Use of Atomic Energy Program of Zlst USSR Conference on Nuclear Spectroscopy Program of 33rd USSR Conference on Nuclear Spectroscopy Proc. Int. Symp. on Structure and Reactions of Unstable Nuclei Proc. 7th Int. Symp. Capture Gamma Ray Spectroscopy Compt.Rend.Congr.Intem.Phys.Nucl., Paris, P.Gugenberger, Ed., Dunod, Paris(l9S9) Proc 5th Int. Conf. Atomic Masses and Fund. Constants AMCG-5 Proc. 2nd Int. Conf. Neutron Capt. Gamma Ray Spectroscopy Proc. 5th Int. Conf. Nuclei far from Stability NUFAST-5 AIP Conf.Proc.164 Program of 31st USSR Conference on Nuclear Spectroscopy Proc. Conf, Neutron Capture Gamma Ray Spectroscopy 10th Int. Mass Spectrometry Conf. (in Adv. in Mass Spectr. 1985) Program of 27th USSR Conference on Nuclear Spectroscopy Program of 14th USSR Conference on Nuclear Spectroscopy Proc. 4th Int. Conf. Atomic Masses and Fund. Constants Proc. 2nd Intern. Conf. Nuclidic Masses Proc. 3rd Int. Conf. Atomic Masses and Fund. Constants Program of 19th USSR Conference on Nuclear Spectroscopy Program of 37th USSR Conference on Nuclear Spectroscopy
343
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
344
LIST OF REFERENCES 1948 4aFe09 48Ma29 48Ma30 48Sal8 48St.A
PPSOA PPSOA PRLAA PHRVA PrvCom
61, 466 60, 466 195, 287 74, 1264 58S150
Feather,N., J.Kyles, R.W.Pringle Manin,D.G.E., H.O.W.Richardson, Y.K.Hsu Martin,D.G.E., H.O.W.Richardson Saxon,D. Street,Jr.,K., A.Ghiorso, D.A.Orth, G.T.Seaborg I949
49Be36 49Be53 49Dul5 49Fel8 49Pa.B
PHRVA PHRVA PHRVA PHRVA ORNL336
76, 1624 Beach,L.A., C.L.Peacock, R.G.Wilkinson 76, 574 Bell,P.R., B.H.Ketelle, J.M.Cassidy 76, 1272 Duffield,R.B., L.M.Langer 76, 1888 Feldman,L., L.Lidofsky, P.Macklin, C.S. Wu p.42 G.W.Parker, G.E.Creek, G.M.Heben, P.M.Lantz 1950
SOAgO 50Br52 50Br66 SOFr58 50Ha65 50Hu27 5OKell 5OLaO4 50Mal4 50Me55 50Mo56 SONa 50Ri59
PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA
77, 79, 79, 79, 79, 77, 79, 77, 78, 79, 80, 77, 80,
655 606 902 897 541 726 242 798 363 19 309 398 524
Agnew,H.M. Bnmer,J.A., L.M.Langer Brosi,A.R., H.Zeldes, B.H.Ketelle Freedman,M.S., D.W.Engelkemeir Hayward,R.W. Hugheas,D.J., CEggler, D.E.Alburger Ketelle,B.H., C.M.Nelson, G.E.Boyd Langer,L.M., J.W.Motz, H.C.Price,Jr. Magnusson,L.B., S.G.Thompson, G.T.Seaborg Mei,J.Y., A.C.G.Mitchell, C.M.Huddleston Mobley,R.C., R.A.Laubettstein Naumann,R.A, F.L.Reynolds, LPerlman Richards,H.T., R.V.Smith, C.P.Browtte 1951
5lBr87 5lCa43 5lDu03 5lDul9 51~~24 5lJeOl 5lKol7 SIMcll 5IMc48 510r.A 5lTa05 51VeO5 5lWi26
PHRVA 84, 292 Browt,H.N., W.L.Bendel, F.J.Shore, R.A.Becker PHRVA 83, 483 Cassidy,J.M. PHRVA 81, 203 Duffield,R.B., L.M.Langer PHRVA 84, 1065 R.B.Dufield, L.M.Langer PHRVA 82, 944 Hyde,E.K., G.D.O’Kelley PHRVA 81, 143 Jensen,E.N,, R.T.Nichols, J.Clement AFYSA 3, 47 Kondaiah,E. PHRVA 81, 734 McGinnis,C.L. PHRVA 84, 384 McCue,J.J.G., W.M.Preston ORh,D.A., K.Street,Jr. UCRL-1951 PHRVA 81, 461 Taimuty,S.I. PHYSA 17, 637 Verster,N.F., G.J.Nijgb, R.van Lieshout, C.J.Bakker PHRVA 84. 731 Williamson,R.M., C.P.Browne, D.S.Craig, D.J.Donahue 1952
52AlO6 52Be55 52Be78 52Ch31 52Cr30 52Fal4 52~ei6 52Fu04 52Hi.A 52Ko27 52Mc34 52Me53 52Rol6 52ScO9
PHRVA 85, 734 AFYSA 5, 191 IANFA 16, 314 PHRVA 88, 887 PHRVA 88, 808 PHRVA 87, 252 PHRVA 87, 1091 PHRVA 86, 347 Th.-Berkeley AFYSA 4, 81 PHRVA 87, 202 PHRVA 88, 1360 PHRVA 86, 863 PHRVA 85, 873
Alburger,D.E. Bergstrom,l. Berlovich,E.Y. Cheng,L.S., J.L.Dick, J.D.Kurbatov Craig,D.S., D.J.Donahue, K.W.Jones Fan,C.Y. Feldman,L., C.S.Wu Fultz,S.C., M.L.Pool Higgins,G.H. Kondaiah,E. McGinnis,C.L. (Also PrvCom NDG) Metzger,F.R. Rose,D., G.Hinman, L.G.Lang Schoenfeld,W.A, R.W.Duborg, W.M.Preston, CGoodman
G. Audi et al. / The 1993 52Scll PHRVA 52Sm13 PHRVA 52Sm41 PHRVA
atomic
mass evaluation (Iv)
85, 1046 ScoviUe,C.L., S.C.Fultz, M.L.Pwl 98 Smith,A.B. 86, 87, 454 Smith,A.B., A.C.G.Mitchell, R.S.Caird 1953
5 3Ba8 1 IANFA 17, 437 53B144 PHRVA 90, 464 53CoO2 PRLA4 216, 242 53Cr.A PrvCom 58StSO 53Do04 PHRVA 89, 824 53Du03 PHRVA 89, 854 53Eall PHRVA 91, 653 53Fi.A X-Rochester 55 53Gl.A ANLSOOO 53Hy83 PHRVA 90, 267 53Jo20 CJPHA 31, 1136 53Kn23 PHRVA 91, a89 53Ma64 PHRVA 92, 1511 53Sh48 PHRVA 91, 1203 53St31 PHYSA 19, 279 53WaOS PHRVA 89, 502
Bashilov,A.A., N.M.Antoneva, B.S.Dzelepov, A.LDolgintseva Bleuler,E., J.W.Blue, S.A.Chowdary, ACJohnson, D.J.Tendam CoUins,E.R., C.D.MacKenzie, C.A.Ramm Crane,W.W.T. Donahue,D.J., KW.Jones, M.T.McEllistrem, H.T.Richards Duffteld,R.E., L.M.Langer Easterday,H.T. Fink,R.W. Glendenin,L.E., E.P.Steinberg Hyde,E.K., A.Ghiorso Johnson,F.A. Knight,J.D., M.E.Bunker, B.Warren, J.W.Stanter Marquez,L. Shore,F.J., W.L.Bendel, H.N.Brown, R.A.Becker Stoker,P.H., Ong Ping Hok Wagner,Jr.,F., M.S.Freedman, D.W.Engelkemeir, J.R.Huizenga 1954
54BclO 54Br37 54Del3 54De17 54EllO 54E124 54Ha68 54Hu61 54LeO8 54Lil9 54Li24 54Ma54 54Mi89 54NiO6 54Nu27
PHRVA PPSOA PHRVA PHRVA PRLAA PRYCA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHRVA PHYSA
540103 540105 54Po26 54Pr31 54Ri09 54Sa22 54Thl7 54Th30 54Th36 54Th39 54zao5
PHRVA PHRVA PHRVA PHRVA PHYSA PHRVA AFYSA PHRVA AFYSA AFYSA IANFA
93, 1073 Bemstein,W., SSMarkowitz, SKatcoff 67, 397 Brodie,W.D. 95, 646 Der Mateosian,E. 95, 458 Der Mateosian,E., C.S.Wu 224, 129 EUiott,R.B., D,J.Livesey 12 Elliott,L.G., R.L.Graham, LWalker, J.L.Wolfson 48, 96, 1003 Handley,T.H., E.L.Olsen 96, 548 Huizenga,J.R., C.M.Stevens 93, 155 Lee,M.R., R.Katz 94, 780 Lidofsky,L., R.Gold, C.S.Wu 95, 444 Lindqvist,T., A.C.G.MitcheU 95, 708 H.B.Mathur, E.K.Hyde 96, 996 Mileikowsky,C., KAhnlund 94, 369 Nichols,R.T., ENJensen 20, 571 Nussbaum,R.H., A.H.Wapstra. R.van Lieshout, G.J.Nijgh, L.Th.M.Omstein, (and PrvCom NDG) 93, 1125 Olsen,J.L., G.D.O’KeUey 95, 1539 Olsen,J.L., G.D.O’Kelley 95, 1523 Pohm,A.V., W.E.Lewis, J.H.Talboy,Jr., E.N.Jensen 96, 1390 Pruett,C.H., R.G.Wilkinson 20, 107 Rietjens,L.H.Th., H.J.van den Bold, P.M.Endt 94, 642 Saraf,B. 7, 289 S.Thulin, K.Nybo 96, 850 Thirion,J., R.Cohen, W.Whaling 8, 219 Thulin,S., J.Moreau, H.Atterling 8, 229 Thulin,S., JMoreau, H.Atterling 18, 563 Zarubin,P.P. 1955
240, 1421 Adloff,J.P. 21, 543 Aten,Jr.,A.H.W., G.D.De Feyfer 142, 585 Eeekman,W. 2, 1052 Bisi,A., E.Germagnoli, LZappa 100, 1324 IUue,J.W., E.Bleuler 1, 254 Browne.C.P., D.C.Hoffman, W.T.Crane, J.P.Balagna, G.H.Hlgglns, J.W.Bames, R.W.Hoff, H.L.Smith, J.P.Mize, M.E.Bunker 84 Brugger,R.M., T.W.Bonner, f.B.Marion S5Brl6 PHRVA 100, 55Da37 PHRVA 100, 796 Day,Jr.,M.C., G.W.Eakins, A.F.Voigt 55De18 PHMAA 46, 445 De Waard,H. 55De40 PHYSA 21, go3 De Haan,E.F., G.J.S.Sizw, P.Kramer 55AdlO 55At21 55Be20 SSBi29 55Bl23 55Br02
COREA PHYSA ZEPYA NUCIA PHRVA JINCA
345
346 55Dr43 SSFa33 55Go.A JSGrO8 SSJoO2 55JoO9 5SKi28 55Ko14 55Ma.A 55Ma12 SSMa40 55Mcl-l 55Mi90 55Mo69 55Null 550n05 55Pa50 55Pe24 55ThOl
G. Audi et al. I The 1993 atomic mass e~~luaiion @I(! IANFA 19, PHRVA 99, P-Moscow PHRVA 97, PHRVA 97, PHRVA 99, PHRVA 99, PHRVA 98, ANL5386 PHRVA 97. COREA 240, PHRVA 97, PHRVA 100, JINCA 1, PHYSA 21, PHYSA 21, AFYSA 9, PHRVA 98, AFYSA 9,
324 1440 226 1033 1031 1645 1393 1230 103 291 93 1390 274 77 676 571 262 137
Drabkin,G.M., V.LOrlov, L.t.Rusinov Farrelly,B., L.Koens, N.Benczer, R.van Lieshout, C.S.Wu Goldin,L.L., E.F.Tretyakov, G.I.Novikov Graves,W.E., A.C.G.Mitchell Jones,Jr.,J.T., E.N.Jensen Johns,M.W., B.C.Chidley, I.R.Williams Kington,J,D., J.K.Bair, H.O.Cohn, H.B.Willard Koerts,L., P.Macklin, B.Farrelly, R.van Lieshout, C.S.Wu Magnusscn,L.B., F.Wagner,Jr., D.W.Engeikemeir, M.S.Freedman Marmier,P., F.Boehm Marty,N. McGinnis,C.L. Mize,J.P., M.E.Bunker, J.W.Stamer Momyer,Jr.,F.F., F.Asaro, E.K.Hyde Nussbaum,R.H., A.H.Wapstra, M.J.Sterk, R.E.W.Kmpveld On8 Ping Hok, PKramer Pauli,R.T. Pedman,L, FStephens, F.Awo Thulin,S. 1956
56Ar33 56As38 56Ba39 5bBo18 5bBi30 56Ch67 56Ch.A 56Co13 56DaO6 56Do41 56Grll 56Gr12 56HalO 56Ho23 56Ho66 56JoO5 56Jo20 56Ke23 56Kn20 56La24 56Po28 56SaO6 5bSh31 56Sm85 56Sm96 56Thll 5bWa24
AFYSA 10, PHRVA 104, ZETFA 30, PHRVA 101, NUCIA 4, PHRVA 104, UCRL3322 PHRVA 101, ZENAA 11, PHRVA 104. PHRVA 101, PHRVA 101, PHRVA 101, JINCA 2, PHRVA 104, CJPHA 34. PHRVA 102; PHRVA 103, PHRVA 102, ANPHA 1, PHRVA 103, PHRVA 104, ZETFA 30, JINCA 3, PHRVA 104, PHRVA 102, PHRVA 102,
1 91 225 1027 758 1314 1042 212 1059 1306 1368 93 209 368 69 831 190 1592 152 921 1434 891 93 706 195 816
Arbman,E., N.Svartholm Asaro,F., I.Perlman Baranov,S.A., K.N.Shlyagin Benczer,N., B.Farrelly, L.Koerts, C.S. Wu Bisi,A., STerrani, L.Zappa Chetham-Strode,A., L.W.Holm Chetham-StrodeA. (thesis Berkeley) Cork,J.M., M.K.Brice, D.W.Martin, L.C.Schmid, R.G.Helmer DanieI,H., R.Nierhaus Douglas,R.A, J.W.Bmcr, R.Chiba, D.F.Herring, E.A.Silverstein Gray,P.R. Graves,W.E., S.K.Suri Hayward,R.W., D.D.Hoppes Hoffman,D.C., C.P.Browne Hoppes,D.D., R.W.Hayward Johns,M.W, C.V.McMullen, I.R.Williams, S.V.Nablo Johnson,N.R., R.K.Sheline, R.Wolfgang Ketelle,B,H.. H.Thomas, A.R.Brosi Knight,J.D., J.P.Mize, J.W.Stamer, J.W.Bames Labertigue-Frolow,J. Porter,F.T., M.S.Freedman, TBNovey, F.Wagner,Jr. Sanders,R.M. Sh1yaginK.N. Smith,H.L., C.P.Browne, D.C.Hoffman, J.P.Mize, M.E.Bunker Smith,F.B., N.B.Gove, R.W.Henty, R.A.Becker Thieme,M.T., E.Bleuler Waddell,R.G., E.N.Jensen 1957
11, 379 57Ahl9 AFYSA 12, 520 57BaO8 ZENAA 4, 313 57EjS6 NUPHA 5781.137 PHRVA 106, 1224 57Bu41 PHRVA 105, 227 70, 769 57Co62 PPSOA 57Fr.A PrvCom 58St50 35, 258 57HaO8 CJPHA 57He39 PHRVA 105, 1011 3, 161 57He43 NUPHA 57Je.A PrvCom NDG Jun 57Kn.A PrvCom NDG Apr 2, 116 57Mi63 ANPHA 4, 12s 57NaO3 NUPHA
Ahnlund,K. Baro,G., P.Rey Bjomhohn,S., O.Nathan, O.B.Nielsen, R.K.Sheline Butler,J.W., K.L.Dunning, R.O.Bondelid Bunker,M.E., J.P.Miae, J.W.Stamer R.D.Connor, I.L.Fainueather Freedman,M.S., D.W.Engelkemeir, F.T.Pot-ter, F.Wagner,Jr. Harvey,B.G, H.G.Jackson, T.A.Eastwood, G.C.Hanna Heath,R.L. Herrlander,C.J., T.R.Gerholm Jensen,E.N. Knight,J.D. Michalowica,A. Nathan,O.
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 570k.A 570105 57Ra04 57Sm73 57ThlO 57VaO8 57WaOl
BAF-SA PHRVA PHRVA PHRVA PHRVA PHYSA PHRVA
2, 24 O’Kelley,G.D., Q.V.Larson, G.E.Boyd 106, 985 Olsen,J.L., L.G.Mann, M.Lindner 107, 141 Rasmussen,J.O., F.L.Canavan, J.M.Hollander 107, 1314 Smith,W.G, R.L.Robinson, J.H.Hamilton, L.M.Langer 106, 1228 Thomas,T.D., R.Vandenbosch, R.A.GLass, G.T.Seaborg 23, 753 Van No&jen,B., J.Konijn, A.Heyligers, J.F.van den Bmgge, A.H.Wapstra 105, 639 Warburton,E.K., J.N.McGmer 1958
58Al99 58Ar56 58Bi41 58Br88 58Du78 58GiO5 586156 58Go77
PHRVA AFYSA PHRVA HPACA PHRVA PHRVA IANFA PRLTA
112, 13, 112, 31, 110, 109, 22, I,
1998 501 1089 335 1076 1263 941 251
58GrO7 58Ha32 58Hi.A 58Ho02 SBJoOl 58Ko57 58Na15 58Ni28 58No30 58Ro09 58Sc71 58St50 58Wa.A
22, IANFA PHRVA 112, UCRL8423 PHRVA 109, PHRVA 109, 24, PHYSA 36, CJPHA 9, NUPHA 14, AFYSA PHRVA 109, 22, IANFA RMPHA 30, P-Paris
194 2010 1282 1243 377 1409 528 85 1255 198 585 910
Alburger,D.E., S.Ofer, M.Goldhabcr Arbman,E., J.Bmde, T.R.Gerholm Bichsel,H. Bnmner,J., J.Halter, PScherrer Dunning,K.L., J.W.Butler, R.O.Bondelid Gindler,J.E, J.R.Huizenga, D.W.Engelkemeir Glazunov,M.P., B.F.Fulev Gove,H.E., J.A.Kuehner, A.E.Litherland, E.Almqvist, D.A.Bromley, A.D.Ferguson, P.H.Rose, R.P.Bastide, N.Bro&s, R.D.Connor Grigorev,E.P., A.V.Zolotavin, I.I.Kuzmin, E.D.Pavlitskaia Hamilton,J.H., L.M.Langer, W.G.Smith Hil1,M.W. (thesis Berkeley) Hoffman,D.C., B.J.Dropesky Johnson,C.H., A.Galonsky, J.P.Ulrich Konijn,J., B.van Nooijen, H.L.Hagedoom Nablo,S.V., M.W.Johns, A.Artna, R.H.Goodman Nijglt,G.J., A.H.Wapstra, L.T.M.Omstein, N.Salomons-Grobben Novakov,T., RStockendal, M.Schmomk, B.Johansson Robinson,R.L., L.M.Langer Sergienko,V.A. Strominger,D., J.M.Hollander, G.T.Seaborg Walen,R.J., G.Bastin 1959
59Ac28 59AlO6 59Am16 59An33 59Be72 59Bo61 59Br65 59Bu20 59Co63 59Dr.A 59Fi40 59Gi50 59Gi54 59Go68 59Gr93 59Ha27 59Ho97 59Jo37 59Kn38 59No41 59Po77 59To.A 59Va02 59Va32
PHRVA PHRVA PIACA NUPHA PHRVA NUPHA PHRVA PHRVA PPSOA BAPSA PHRVA NUPHA PHRVA PHRVA IANFA PHRVA AFYSA PHRVA JINCA ZETFA PHRVA BAPSA PHRVA PHRVA
114, 116, 50, 13, 115. 14, 113, 116, 74, 4, 116, 12, 115, 113, 23, 114, 15, 114, 10, 37, 114, 4, 115, 113,
137 939 342 310 108 145 239 143 161 57 744 204 1271 246 191 1133 387 279 183 928 1286 366 I15 259
Achor,W.T., W.E.Phillips, J.LHopkins, S.KHaynes Alburger,D.E., A.Gallmann, D.H.Wilkinson Ambiye,K.S.Y., M.C.Yoshi, B.V.Thosar S.L.Anderson, T.Holteb-ckk, O.Lonsjo, R.Tangen Benczer-Koller,N.. A.Schwarzxhild, C.S.Wu Boskma,P., H.Dc Waard Brosi,A.R., B.H.Ketelle, H.C.Thomas, R.J.Kerr Bunker,M.E., B.J.Dropesky, J.D.Knight, J.W.Stamer, B.Wamn Connor,R.D., LL.Fairweather Dropesky,B.J., D.C.Hoffman, W.R.Daniels Flynn,K.F., L.E.Glendenin Girgis,R.K., R.van Lieshout Gindler,J.E., J.Gray,Jr., J.R.Huizenga Gossett,C.R., J.W.Butler Grigorev,E.P., A.V.Zolotavin, BKratsik Harmer,D.S., M.L.Perlman Holm,G., H.Rydc Johnson,N.R, G.D.O’Kelley Kniit,J.D., D.C.Hoffman, B.J.Dmpesky, D.L.Frasu, Novikova,G.I., E.A.Volkova, L.LGoldin, D.M.Ziv, E.F.Trctyakov Porter,F.T, P.P.Day Tovmley,C.W., J.D.Kurbatov, M.H.Kurbatov Vandeabosch,S.E., H.Diamond, R.K.Sjoblom, P.R.Fields Vandenbosch,S.E. 1960
6OArO5 60Ba17 60Ba44 60Bo21
CJPHA NUPHA IANFA PHRVA
38, 1577 Artna.A.. M.E.Law 15, 566 Backstrom,G., O.Bergman, J.Burde, J.Lindskog 24, 1035 Baranov,S.A., A.G.Zelenkov, V.M.Kulakov 120, 889 Bondelid,R.O., C.A.Kennedy, J.W.Butler
347
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
348 60001 60Dz02 60Fe03 60GiOl 60Ha26 60Ho.A
NUPHA IANFA ANPHA NUPHA PHRVA PrvCom
14, 24, 5, 14, 119, Hyde
60Ja13 PHRVA 120, 60Ja I 7 PPSOA 76, 6OKa14 PHRVA 119, IS, 6OKa20 JUPSA 38, 6OKoO4 ZETFA 6OKo12 PHRVA 120, 6OLaO4 PHRVA 119, 15, 6OLuO7 ZENAA 60Ma.A UCRL-8740 5, 60Mo.A BAPSA 6OP1-07 PHRVA 118, 60Se05 NUPHA 16, 21, 60Ta19 NUPHA 24, 6OVoO7 IANFA 60Wa03 PHRVA I 17, 60WalO PHRVA 118, 16, 60Wa14 NUPHA
578 802 181 589 772
914 914 1953 2140 1436 1348 1308 939 338 I13 138 133 1092 191 181 246
Creager,C.B., C.W.Kocher, A.C.G.Mitchell Dzelepov,B.S., LF.Uchevatkin, S.A.Shestopalova Feuvrais,L. Girgis,R.K., R.A.Ricci, R.van Licshout Hamilton,J.H., L.M.I.anger, W.G.Smith Hoff,R.W., F.Asaro, LPerlman, in E.K.Hyde, LPerlman, G.T.Seaborg, Nuclear Properties Heavy Elements p.799 Jarmie,N., M.G.Silbert Jaffe,A.A., F.De S.Barros, P.D.Fonyth, J.Muto, LJ.Taylor, SRamavataram Kane,W.R., G.T.Emery, G.Scharff-Goldhaber, M.McKeown Katoh,T., M.Nozawa, Y.Yoshizawa, Y.Koh A.P.Komar, G.A.Korolev, G.E.Kocharov Kocher,C.W,, A.C.G.Mitchell, CBCreager, T.D.Nainan Langer,L.M., D.R.Smith Luhrs,G., CMayer-Boricke Marshal1,T.V. Moore,R.B. Pratt,W.W., R.G.Cochran Segaert,O.J., J.Demuynck, A.M.Hoogenboom, H.van den Bold Takahashi,K., H.Morinaga A.A.Vorobiev, A.P.Komar, V.A.Korolev Ware,W.R., E.O.Wiig Wahlgren,M.A., W.W.Meinke Walen,R.J., G.Bastin-Scoffler 1961
22, 341 Arbman,E., I.B.Halier 39, 1817 Artna,A., M.W.Johns 41, 1484 Baskova,K.A, S.S.Vasilev, N.S.Chang, L.Y.Shavtvalov 123, 2100 Beckner,E.H., R.L.Bramblett, G.C.Phillips, T.A.Eastwood 91 Bedesku,A., O.M.Kalinkina, K.P.Mitrofanov, A.A.Sorokin, N.V.Forafontov, 40, V.S.Shpinel 28, 570 Beard,G.B., W.H.Kelly 61Be41 NUPHA 61Bo13 PHRVA 124, 213 Bolotin,H.H., A.C.Li, A.Schwanschild 61Bo24 NUPHA 27, 581 Bench-Osmolovskaya,N.A., B.S.Dzelepov, O.E.Kraft, Y.Y.Yang 61DaOl ZEPYA 164, 303 Daniel,H., P.Panussi 28, 148 Devare,H.G. 61Dc17 NUPHA 22, 656 Depommier,P., M.Chabre 61De25 JOPQA 61Du02 PHRVA 123, 1321 Dunning,K.L., J.W.Butler 20, 209 Erman,P., ZSujkowski 61ErO4 AFYSA 19, 323 Fink,R.W., G.Andersson, JKantele 61Fi05 AFYSA 61Ga05 PHRVA 122, 1590 Gallagher,Jr.,C.J., H.L.Nielsen, O.B.Nielsen 25, 1217 Grigorev,E.P., K.Y.Gromov, BXDzelepov, Z.T.Zhelev, V.Zvolska, LZvolskii 61Gr33 IANFA 18, 443 Gupta,R.K., J.Svedberg, G.Andersson 6 1Gu02 AFYSA 16, 1280 Hisatake,K. 61Hi06 JUPSA M.G.Silben 61Ja07 PHRVA 123, 909 Jan&N., 61JoO8 PHRVA 122, 1546 Johnson,N.R., E.Eichler, G.D.O’Kelley, J.W.Chase, J.T.Wasson 61Jo15 PHRVA 124, 157 Jopson,R.C., H.Mark, C.S.Swift, J.H.Zenger 17, 429 Jung,B., T.Svedberg 61JuO5 AFYSA 25, 237 Kocharov,G.E., G.A.Korolev 61Koll IANFA 16, 2393 Kuroyanagi,T., H.Yuta, K.Takahashi, H.Mofinaga 61KulO JUPSA 61La16 ZEPYA 165, 393 Langhoff,H., P.Kilian, A.Rammersfeld 61Ni02 PHRVA 122, 172 Nichols,R.T., R.E.McAdams, E.N.Jensen 41, 1780 Petnhak,K.A., M.I.Yakunin 61Pe23 ZETFA 13 Rezanka,I., J.Frana, M.Vobecky, A.Mastalka 61Re06 JINCA 18, 24, 494 Rikmenspoel,R., C.M.Van Patter 61Ri02 NUPHA Ruiz,C.P. (thesis Berkeley) 61Ru06 UCRL95II 34, 240 Rytz,A. 61Ry02 HPACA 34, 819 Ryiz,A., H.Winkler, F.Zamboni, W.Zych 6 1Ry04 HPACA 61Scl I PHRVA 123, 893 Schardt,A.W., A.Goodman 25, 848 Selinov,I.P., V.L.Chikhladze, D.E.Khulelidze 6 I Se08 IANFA 61SiO3 PHRVA 123, 221 Silbert,M.G., N.Jannie 77, 399 Towle,J.H., B.E.F.Macetield 61To03 PPSOA 22, 683 Tousset,J., A.Moussa 61TolO JOPQA 61Well PHRVA 124, 527 West,Jr..H.I., L.G.Mann, R.J.Nagle 61ArO5 61Ar15 6 I Ba43 61Be13 61Be20
NUPHA CJPHA ZETFA PHRVA ZETFA
G. Audi et al. / The 1993 atomic mass evaluation (Iv 61ZyO2 APPOA
20,
321
iylicz,J., Z.Prcibisz, SChojnacki,
J.Wolowski, Y.Norseev
1962 62Ba23 PRLTA 62Ba24 CJPHA 62Ba28 NUPHA 62Ba32 AFYSA 62Blll PHYSA 62Bo25 AFYSA 62Br15 PHRVA 62Bu16 PHRVA 62Ch21 ZETFA 62Da03 NUPHA 62Ei02 NUPHA 62802 NUPHA 62EwOl NUPHA 62FrO7 ZEPYA 62FrO9 NUPHA 62Fu16 NUPHA 62Ga07 NUPHA 62Gu03 PHRVA 62InOl NUPHA 62KaO8 NUPHA 62Ka27 AAFPA 62KhO5 IANFA 62LalO NUPHA 62LiO3 NUPHA 62LolO ZETFA 62No06 NUPHA 62PcO8 HPACA 62Pe15 PHRVA 62PiO2 PHRVA 62PuOl NUPHA 62ScO4 PHRVA 62Se03 PHRVA 62Si14 AAFPA 62UnOl NUPHA 62Va08 NUPHA 62ValO NUPHA 62Wa15 PHMAA 62Wa16 NUPHA 62Wa18 NUPHA 62WaZO NUPHA 62Wa28 COREA 62YaOl NUPHA
9, 40, 33, 21, 28, 22, 125, 127, 43, 31, 35, 31, 29, 169, 38, 39, 33, 126, 38, 32, 6, 26, 35, 31, 43, 36, 35, 127, 127, 36, 125, 125, 6, 36, 30, 31, 7, 31, 35, 36, 255, 30,
16 1496 347 65 993 111 1323 844 453 293 625 128 153 456 89 147 285 642 50 25 96 1036 582 584 1579 411 175 917 1708 1 1641 968 109 284 177 406 105 575 232 207 1604 68
Barber,R.C., L.A.Cambey, J.H.Ormrod, R.L.Bishop, H.E.Duckworth Barber,R.C., R.L.Bishop, L.A.Cambey, W.McLatchie, H.E.Duckworth BaqB., A.P.Patro Bashandy,E., M.S.El-Nesr L.Blok, W.Goedblced, E.Mastenhroek, J.Blok Bonacalza,E.C.O., P.Thiebeqer, LBergstrom Brandhorst,Jr.,H.W., J.W.Cobble Bunker,M.E., B.J.Dmpe.sky, J.D.Knigbt, J.W.Stamer Chikhla&e,V.L., D.E.Khuleli&e, R.A.Ryukhin Daniel,H. Eichler,E., G.D.O’Kelley, R.L.Robinson, J.A.Marinsky, N.R.Johnson El-Nesr,M.S., E.Bashandy Ewan,G.T., R.L.Graham, J.S.Geiger Frevert,L. Freeman,J.M., D.West Funk,Jr.,E.G., J.W.Mihelich, C.F.Schwerdtfcger GaIlagher,Jr.,C.J., M.Jorgensen, O.Skilbreid Gunnink,R., A.W.Stoner Inouc,H., J.Ruan, S.Yasokawa, Y.Yoshizawa Katoh,T., M.Norawa, Y.Yoshizawa Kaomnen,P. Khulelidze,D.E., V.L.Chikhladze, N.A.Vartenov, Y.A.Kyukhin Lark,N.L., P.F.A.Goudsmit, J.F.W.Jansen, J.E.J.Oberski, A.H.Wapstra Lingeman,E.W.A., K.E.G.Lobner, G.J.Nijgb, A.H.Wapstm Lobashov,V.M., V.A.Nazarenko, L.F.Saenko Nozawa,M. Perdrisat,C.F., J.H.Bmnner, H.J.Leisi Perlman,L, F.Asaro, A.Ghiono, A.Larsh, R.Latimer Pierson,W.R, H.C.Griffin, C.D.Coryell Pullen,D.J., A.E.Litherland, S.Hinds, R.Middleton Schwerdtfeger,C.F., E.G.Funk,Jr., J.W.Mihelich Seghal,M.L. Siivola,A. Unik,J., P.Day, S.Vandenbosch Vandenbosch,S.E., P.Day Van Nooijen,B., H.van Krugten, W.J.Wiesehahn, A.H.Wapstra Watt,D.E., R.N.Glover Wapstra,A.H., J.F.W.Jansen, P.F.A.Goudsmit, J.Oberski Walen,R.J., V.Nedovesov, G.Bastin-Scoffier Wamer,L.B., RKSheline Walen,R.J. Yamazaki,T., H.Ikegami, M.Sakai 1963
63AbO2 PHLTA
5,
63Ba31 63Ba32 63Ba37 63Ba47 63Bi12
NUPHA NUPHA ZETFA CJPHA CJPHA
43, 43, 44, 41, 41,
63BjOl 63BjO2 63B103 63Bo07 638014 63Bo17 63CaO3 63036 63Da03
NUPHA NUPHA PHLTA PHRVA PHYSA PHYSA PHRVA PHRVA ZEPYA
42, 42, 3, 130, 29, 29, 129, 132, 172,
359 Abdumalikov,A., A.Abdumzakov, KGromov, Z.Zhelev, N.L&edev, B.Drelepov, A.Kudqavtseva 264 Baba,C.V.K., G.T.Ewan, J.F.Suarez 285 Baba,C.V.K., G.T.Ewan, J.F.Suarez 35 Badalov,N.B., S.S.Vasilenko, M.G.Kagamkii, D.L.Kaminskii, M.K.Niitin 1482 Barber,R.C., W.M&tchie, R.L.Bishop, P.Van Rookhuyzen, H.E.Duckwortb 1532 Bisbop,R.L., R.C.Barbcr, W.McLatchie, J.D.Macdougall, P.Van Rookhuyaen, H.E.Duckworth 469 Bjomholm,S., F.Boehm, A.B.Koutsen, O.B.Nielsen 642 Bjomholm,S., O.B.Nielscn 257 Bliedcn,H.R. 1078 Bondelid,R.O., J.W.Butler 277 Bom,P., C.Bobeldijk, W.A.Oost, J.Blok 535 Bom,P., A.Veefkind, W.H.Elscnaar, J.Blok 1782 Camp,D.C., L.M.I_anger 1681 Crasemann,B., G.T.Emery, W.R.Kane, M.L.Pcrlman 202 Daniel,H., O.Mehling, D.Scbotte
349
G. Audi et al. / The 1993 atomic mass evaluation (IV)
350 63DalO 63Do07 63Em02 63FrlO 63Fu17 63Go06 63G1-08 63Gu04 63Ho.A 63Ho18 63IkOl 63Ja06 63LaO6 630kOl 63Pa09 63Pe13 63Pe16 63PlOl 63Pr13 63RhO2 63Ri07 63RyOl 63Sc15 63St06 63Su.A 63Th02 63Th03 63WoOl 63WoO4 63WuOl 63YoO7
Damerow,R.A., R.R.Ries, W.H.Johnson,Jr. Dostrovsky,I., S.Katcoff, R.W.Stoenner Emery,G.T., W.R.Kane, M.McKeown, M.L.Pedman, G.SchatiT-Goldhaber Frick,G., A.Gallmann, D.E.Alburge.r, D.H.Wilkinson, J.P.Cofftn Funke,L., K.Hohmuth, H.Jungclaussen, K.-H&u, G.Muller, H.Sodan, L.Wemer Gopinathatt,K.P., M.C.Joshi, M.Radha Menon Graeffe,G. Gunnink,R. Hoogenboom,A.M. Hoff,R.W., F.Asaro, LPerlmatt Ikegami,H., K.Sugiyama, T.Yamazaki, M.Sakai Jasittski,A., J.Komacki, H.Lancman, J.Ludziejewski, S.Chojnacki, LYutlandov Lattger,L.M., D.E.Wonman Okano,K., K.Nishimira Pastemak,M., T.Sonnino Persson,L., H.Ryde, K.Oelsner-Ryde Persson,L. Plajner,Z., L.Maly, N.Eissa, A.Benadek Preibisz,Z., K.Pawlak, K.Sttyczniewicz Rhode,J.I., O.E.Johnson Ries,R.R., R.A.Damerow, W.H.Johnson,Jr. Ryde,H., L.Persson, K.Oelsner-Ryde Schima,F., E.G.Funk,Jr., J.W.Mihelich Stensland,W.A., A.F.Voigt Subrahmanyam,V.B. (thesis Berkeley) Thosar,B.V., R.P.Shamta, K.G.Prasad Thwaites,T.T. Wortman,D.E., L.M.Langer W&&G., H.Morinaga Wung,P.-K., G.-G.Yan, S.-KChu, S.-PChen, S.Huo, S.-F.Wang, L.-S.Chen Yoshizawa,Y., H.Okamura, S.Iwata, LFugiwara, T.Shigematsu, M.Tabushi, T.Tammoto, K.Sakamoto 330 iylicz,J., Z.Sujkowski, J.Jastrzebski, O.Wolczek, SChojnacki, LYutlandov
PHRVA 132, 1673 PHRVA 132, 2600 PHRVA 129, 2597 PHRVA 132, 2169 KERNA 6, 152 NUCIA 30, 14 AAFPA 6, 128 PHRVA 131, 301 PrvCom AHW JINCA 25, 1303 NUPHA 41, 130 NUPHA 41, 303 PHRVA 132, 324 JUPSA 18, 1563 NUPHA 45, 336 NUPHA 44, 653 PHLTA 6, 347 CZYPA 13, 23 BAPMA 11, 691 PHRVA 131, 1227 PHRVA 132, 1662 AFYSA 23, 171 PHRVA 132, 2650 NUPHA 41, 524 UCRL-11082 NUPHA 41, 380 PHRVA 129, 1778 PHRVA 131, 325 RAACA 1, 225 APHSI 19, 524 NUPHA 46, 78
63ZyOl NUPHA
42,
1964 64Ag.A P-Tbilis 64Ba03 CJPHA 64Ba13 64Ba36 64BelO 64Bo13 64Bo25 64BulO 64Coll 64CtQ8 64Da15 64Da16 64DelO 64De16 64ErO6 64FlO2 64FuO8 64Go08 64Grll 64Ha29 64Ho28 64Joll 64KalO 64Ka16 64Ka23 64LaO3 64LeO9 64Ma30
NUPHA PLRBA NUPHA NUPHA AFYSA PLRBA PLRBA NUPHA NUPHA PLRBA PLRBA PHYSA PLRBA RAACA NUPHA PLRBA AAFPA PHYSA APASA PLRBA PLRBA AAFPA AFYSA PLRBA JOPQA CJPHA
42, 52, 136, 50, 53, 26, 136, 135, 56, 56, 136, 134, 30, 135, 2, 60, 134, 6, 30, 18, 136, 135, 6, 27, 133. 25; 42,
63 Ageev,V.K., K.Y.Gromov, B.S.Dzelepov, Z.Zhelev, VKalinnikov, A.Kudtyavtseva 391 Barber,R.C., W.McLatchie, R.L.Bishop, J.D.Macdougall, P.van Rookhuyzen, H.E.Duckwortb 125 Bakhru,H., S.K.Mukherjee 603 Bahn,Jr.,E.L., B.D.Pate, R.D.Fink, C.D.Coryell 657 Bettelsen,U., G.T.Ewan, H.L.Nielsen 618 Bondelid,R.O., J.W.Butler 141 Bonacalza,E.C.O. 1 Burson,S.B., E.B.Shera, T.Gedayloo, R.G.Helmer, D.Zei 383 Cohen,B.L., R.Patell, A.Prakash, E.J.Schneid 415 Cretzu,T., K.Hohmuth, G.Winter 147 Daniel,H., J.Huefner, T.Lorenz, O.W.B.Schult, U.Gruber 1240 Daniel,H., G.Th.Kaschl, HSchmitt, KSpringer 705 Devare,S.H., H.G.Devare 1938 De Beer,A., H.P.Blok, J.Blok 110 Erskine,J.R. 210 Flegenheimer,J., G.B.Baro 294 Fujioka,M., K.Hisatake, K.Takahashi 297 Gopinathatt,K.P, M.G.Joshi 145 Graeffe,G., KValli, J.Aaltonen 1802 Hamilton,J.H., K.E.G.Lobner, A.R.Sattler, R.van Lieshout 309 Hofman,I. 1719 Johnson,C.H, C.C.Trail, A.Galonsky 9 Kant&J., M.Karras 162 Kant&J., K.M.Broom, D.M.Chittenden 61 Karlsson,S.E., O.Bergman, W.Scheuer 1145 Langer,L.M., E.H.Spejewski, D.E.Wottmatt 326 Lehmann,J. 1700 Mann,K.C., F.A.Payne, R.P.Chaturvedi
G. Audi et al. / The 1993 atomic mass evaluation (IV) 64Ma36 64Mc21 64Pa03 64Pe17 64Sa.32 64Sc27 64Sh21 64Sp12 64Tall
14, 240 CZYPA CPHhIA 30, #4 18, 31s APASA PLRBA 136, 330 5, 54 SHIBA p.11 IDG-17042 19, 245 JUPSA 289 P-Vienna 19, 587 JUPSA
64ThO5 64To04 64Va20 64WiO7
NUPHA PLRBA AAFPA PLRBA
60, 35 136, 1233 6, 165 135, 289
Maly,L., Z.Plajner, J.Jursik, M.Finger McCoy,J.D. Pa&H. Peek,N.F., J.A.Junge.rman, C.G.Patten Sato,K. R.P.Schuman Shida,Y. Sperduto,A., W.W.Buechner Takekoshi,E., Z.-LMatumoto, M.Ishii, K.Sugiyama, S.Hayashibe, H.Sekiguchi, H.Natsume Thome,K.S., E­ Toth,KS., T.H.Handley, E.Newman, I.R.Williams Valli,K. Williams,D.C., R.A.Naumann 1965
65~~24 65Bi12 6SB106 65Br12 65Br28 65Br31 6SBu03 6SBu07 6SCe02 6SCoO6 65004 65DaOl 65De20 65Dc22 6SDu02 65FrO4 6SFr12 6X005 6SGu03 6SHa30 65Ho07 6SHs02 651~01 6SJoO4 65Jo13 65KaO7 65KeO4 65KhO5 65KvOl 65LcO6 65LcO7 65Ma07 65Ma12 65Ma32 65MaSl 6SMe12 65Mo16 65Mo19 65Mu09 65OgOl 6SPa08 65Pe18 65Prc)3 65RaO2 65ReOl 6SRe07 65RyOl 65Sc19 65Va02
NuPI-w IANFA AFYSA PLRBA NUPHA NUPHA JINCA NUPHA PRLTA CJPHA NUPHA NUPHA NUPHA PLRBA COREA NUPHA PLRBA PLRBA NUPHA PHLTA NUPHA NUPHA IANFA NUPHA NUPHA JINCA NUPHA IANFA NUPHA NUPHA NUPHA PHLTA PRLTA NUPHA IANFA PHLTA NUPHA NUPHA NUPHA NUPHA NUPHA AFYSA NUPHA PLRBA NUPHA NUPHA NUPHA PLRBA NUPHA
74, 29, 28, 138, 72, 72, 27, 65, 15, 43, 70, 63, 73, 140, 261, 64, 140, 137, 64, 19, 71, 73, 29, 61, 72, 27, 61, 29, 74, 63, 65, 14, 14, 67, 29, 19, 74, 70, 67, 66, 72, 29, 67, 137, 61, 65, 70, 140, 63,
459 151 415 1368 194 529 907 561 300 383 129 145 49 536 98 303 563 1466 401 304 449 379 157 385 617 1451 513 734 27 263 337 46 114 73 1121 133 403 293 466 119 326 423 302 13 529 609 369 1496 241
Beekhuis,H., H.de Waard Biryukov,E.I., V.T.Novikov, N.S.Shimanskaya Blichert-Toft,P.H. Bmdzinski,R.L., D.C.Conway Browte,C.P., W.E.Dorenbusch, F.H.O’Donnell Broman,L., J.Dubois Butement,F.D.S., S.M.Quaim Burde,J., M.Rakavi, G.Adam Centy,J., C.Dttraz, R.H.Pehl Cothent,C.R, R.D.Connor Cretzu,T., K.Hohmuth, J.Schintlmeister Daniel,H., M.Kuntze, B.Martin, PSchmidlin, H.Schmitt De Wit,S.A., A.H.Wapstra Devare,S.H., R.M.Singm, H.Ci.Devare Dupcnin,J.C., A.Guizon-Juillard Fritze,K. Frc.edman,M.S., F.T.Porter, F.Wagner,Jr. Gorodetsky,S., A.Gallmann, R.Rebmeister Guttman,M., E.G.Funk,Jr., J.W.Mihelich Hansen,P.G., H.L.Nielsen, KWilsky, J.Trcheme Hoot,C.G., M.Kondo, M.E.Rickey Hsue,S.T., L.M.Langer, S.M.Tang, D.A.Zollman Ivanov,Y.F., I.A.Rumer, A.Y.Bukach Johns,M.W, M.Kawamura Johnson,N.R., K.Wilsky, P.G.Hansen, H.L.Nielsen KauranqP., H.Ihochi Keeler,W.J., R.D.Connor Khule1idqD.E.. V.L.Chikhladze, V.G.Onufriev, Y.P.Khuzakevich, VKDyatilov Kvale,E., A.C.Pappas Leutz,H., KSchneckenberger, H.Wennige Lcwin,W.H.G., JLcttinga, B.van Nooijen, A.H.Wapstra Marinov,A., J.R.Erskine Macfarlane,R.D., A.Siivola Mattauch,J.H.E., W.Thiele, A.H.Wapstm Mahunka,L, T.Fenyes Messlinger,R., H.Morinaga, C.Sigoorini Moreh,R., T.Daniels Moreh,R. Mukeji,A., D.N.McNelis, J.W.Kane,Jr. Ogawa,I., T.Doke, M.Miyajima, A.Nakamoto Paul,H. Pettersson,H., O.Berhman, C.Bergman Prestwich,W.V., T.J.Kennett Ramaya,A.V., Y.Yoshizawa Reisin&R., B.D.Pate Reising,R., B.D.Pate A.Rytz Schima,F., T.Katoh Van Nwijen,B., W.Lourens, H.van Krugten, A.H.Wapstra
351
G. Audi et al. / The 1993 aromic mass e~aiualio~ (Iv)
352 65WiOS PHLTA
15.
143
William~E.T.,
P.G.Hansen, J.Lipperts, H.L.Nieisen, K.Wilsky
1966 66Ah.~ UCRL-16580 66Ah.B UCRLl6888 66AkOl AENGA 21,
21 243
66AnlO 66Au04 66Av03 66Bal4 66BelO 66Be12 66BjOl 668115 66Bu16 66CaOY 66CalO 66Ds.04 66Da.06 66Dell 66EiOl 66ErO2 66FuOS 66Fu08 66Ga03 66Ga08 66Ha15
CHDBA NUPHA IANFA CHDBA PHRVA PHLTA NUPHA PHRVA KDVSA NUPHA NUPHA NUPHA PHRVA NUPHA PHRVA PHRVA NUPHA NUPHA NUPHA PHRVA NUPHA
262, 214 81, 441 30, 542 262, 89 141, 1112 21, 205 86, 145 151, 930 35, #2 82, 471 85, 317 76, 97 147, 843 83, 289 146, 899 142, 633 84, 461 84, 424 76, 353 147, 153 16, 257
66Ha29 66HeiO 66HiOl 66HsOl 66KiO6 66LaO4 66LiO4 66Ma49 66MaS 1 66Ma60 66Mo06 66NeOl 66No05 66NyOl 66Pal8 66PelO 66PoO4 66Qa02 66Ra03 66ReO2 66RiOI 66Ri09 66Sc24 66ShO3
NuPHA NUPHA PHLTA NUPHA CJPHA NUPHA PHRVA IANFA iANFA RMPHA PHRVA PRLTA NUPHA NUPHA NUPHA NUPHA PHRVA NUPHA PHRVA PHLTA NUPHA NUPHA PHRVA PHRVA
84, 88, 21. 80, 44, 78, 141, 30, 30, 38, 141, 16, 86, 88, 85, 83, 146, 88. 142, 20, 75, 86, 151, 143,
62 561 328 637 2661 1 1089 1185 1375 660 1166 28 102 63 304 33 714 285 768 40 381 167 950 857
66SiOE 66Sn02 66Va.A 66VoO5 66WhOl 66WiO4 66Wil I 66Wil2
NUPHA 84, PHRVA 147, UCRLl6580 ZEPYA 195, PHRVA 130, ZEPYA 191, PHLTA 22, NUPHA 84,
385 967 85 343 836 137 162 609
Abmad,I., F.Asaro, 1.Perlm.w Ahmad,I. (thesis Berkeley) Akapev,G.N., A.G.Demin, V.A.Dmin, E.G.Imaev, I.V.Kolesov, Y.V.Lobanov, L.P.Pashchenko Andre,.%, P.Depommier Auble,R.L., W.H.Kelly Avotina,M.P., E.P.Grigorev, B.S.Dzelepov, A.V.Zolotavin, V.O.Sergeev Bastin,G., C.F.Leang, R.J.Walen Benson,J.L., W.H.Johnson,Jr. Beekbuis,H. Bjerregaard,J.H., O.Hansen, O.Nathan, S.Hinds Blair,A.G., D.D.Armstrong Burke,D.G., B.Zeidman, BElbek, B.Herskind, M.Olesen Catura,R.C., J.R.Richard~n Canty,M.J., W.F.Davidson, R.D.Conncr Daniel,H., G.f.Kaschl Daniels,W.R., D.C.Hoffman De Aisenberg,E.Y., J.F.Suarez Eichlcr,E., J.W.Chase, N.R.Johnson, G.D.O’Kelley Erskine,J.R., A.Marinov, J.P.Schiffer Funke,L., H.Graber, K.-H.Kaun, R.Ross, H.Sodan, L.Wemer, J.Frana Funke,L., H.Graber, K.-H.Kaun, HSodan, G.Geske, J.Frana Gaeta,R., M.A.Vigon Gallmann,A., P.Fintz, J.B.Nelson, D.E.Alburger Hansen,P.G., H.L.Nielsen, K.Wilsky, Y.K.A&awal, C.V.K.Baba, S.K.Bhattacherjee Hagee,G.R., R.C.Lange. J.T.McCarty Hewka,P.V., C.H.Hdbrow, R.Middleton Hinds,%, J.H.Bjerregaard. O.Hansen, O.Nathan Hsuc,S.T., L.M.Langer, E.H.Spejewski, S.M.Tang Kitching,J.E., M.W.Johns I.auritseen,T., F.Ajzenberg-S&w Li,A.C., I.L.Preiss, P.M.Stmdler, D.A.Bromley Mazets,E.P., Y.V.Sergeenkov Mahunka,L, L.Tron, T.Fenyes, V.A.Khalkin M&Xl,J. Moore,C.F., P.Richard, C.E.Watson, D.Robson, J.D.Fox Newman,E., J.C.Hieben, BZeidman Norris,A.E., G.Friedlander, E.M.Franz Nyman,B., A.Johansson, CBergman, G.Backstrom Parks,P.B., PMBeard, E.G.Bilpuch, H.W.Newwn Pettersson,H., G.Backstrom, CBergman Poner,F.T., M.S.Freedman, F.Wagner,Jr., K.A.Orlandini Qaim,S.N. Rao,P.V., BCrasemann Reichart,W., H.HStaub, H.Stussi, F.Zamboni Riehs,P. Rickards,G., B.E.Bonner, GCPhillips Schima,F.J. Sheline,R.K., C.E.Watson, B.P.M&r, U.Gruber, R.H.Koch, O.W.B.Shult, H.T.Motz, E.T.Jumey, G.L.Stmble, T.von Egidy, T.Elze, E.Bieber Siivola,A. Snyder,R.E., G.B.Beard Valli,K., E.K.Hyde Vonach,H., H.Munzer, P.Hille Wha1ing.W. Wien,K. Williams,D.C., J.D.Knight, W.T.Leland LR.Williams, K.S.Toth, T.H.Handley
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 1967 67AhO2 67AlO8 67AnOl 67As02 67Ba.A 67BaOl 67BalS 67Ba43 67Ba51 67Be46 67BjOl 67BjO5 67BjO6 67Boll 67Ca18 67Ch05 67DalO 67DoO4 67Dz02
PHRVA 164, NUPAB 98, NUPAB 94, PHRVA 158, P-Gatlinbrg NUPAB 91, PHRVA 155, 5, YAFIA CHDBA 265, NUPAB 104, NUPAB 94, PHRVA 160, NUPAB 103, NUPAB 99, NUPAB 104, NUPAB 94, CJPHA 45, NUPAB 102, 31, IANFA
1537 323 289 1073 261 465 1319 518 863 241 457 889 33 213 35 417 2295 383 568
67ErO2 P-Winnipeg 622 67FiO4 PYLBB 24, 340 5, 1186 67FlO5 YAFIA 67FrO2 NUPAB
94,
366
67GhOl 67Go22 67Go25 67Go32 67Gull 67Gu12 67Ha03 67Ha04 67HiOl 67HjO3 67HoOl 67Ho12 67Ho19 67HsOl 67Hs03 67Hu05 67Kall 67KeO2 67KoOl 67Ma07 67McO7 67Mc14 67Mi02 67Mi03
PRLTA NUPAB PHYSA IANFA IJPYA IJPYA NUPAB PYLBB PYLBB AFYSA NUPAB PHRVA AFYSA NUPAB NUPAB ZEPYA PHRVA PHRVA NUPAB NUPAB NUPAB PRLTA NUPAB AENGA
18, 104, 35, 31, 41, 41, 90, 24, 24, 33, 90, 159, 36, 94, 101, 203, 159, 153, 90, 95, 99, 19, 94, 22,
401 497 479 1618 633 667 573 95 89 121 545 1000 211 146 688 435 931 1331 558 632 6 1442 261 90
67Mi06 67MolO 67Mo12 67Mo13 67Mo17 67Mu16 67Na08 67Ni02 67NuOl 670aOl 670dOl 67Pa04 67Pa08 67PiO3
YAFIA 5, 49 CHDBA 264, 330 NUPAB 99, 652 45 NUPAB 100, NUPAB 102, 406 PHRVA 159, 1039 PHRVA 160, 1035 NUPAB 93, 385 PYLBB 26, 78 PYLBB 24, 142 PHRVA 158, 957 JOPQA 28, 388 CJPHA 45, 2621 PHRVA 159, 939
Ahmad,I., A.M.Ftiedman, R.F.Bames, RKSjoblom, J.Milsted, P.R.Fields Aldridge,A.M., H.S.Plendl, J.P.Aldridge,III AntmanS., H.Pettersson, A.Suarez F.Asam, LPerlman Bames,C.A., E.G.Adelsberger, D.C.Hensley, A.B.Macdonald Balalaev,V.A., B.S.Dzelcpov, L.N.Moskvin, SAShetopalova, N.A.Voinova Bames,P.D., J.R.Comfort, C.D.Bockelman Baranov,S.A., M.K.Chadzbiev, V.M.Kulakov, V.M.Shatinskii Bastin-Scoffier,G. Berzins,G., W.H.Kelly, G.Graeffe, W.B.Walters Bjerregaard,J.H.. O.Hansen, O.Nathan, S.Hinds Bjemgaard,J.H., O.Hansen, G.R.Satchler Bjerregaard,J.H., O.Hansen, O.Nathan, R.Chapman, &Hinds, R.Middleton Boyer,P., P.Chedin, J.Oms Canty,M.J., R.D.Connor Charoenkwan,P., J.R.Richardson Davidson,W.F., C.R.Cothem, R.D.Connor Donhowe,J.M., J.A.Ferry, W.G.Mourad, R.G.Herb Dzelepov,B.S., R.B.Ivanov, M.A.Mikhailov, L.N.Moskvin, O.M.Nazarenko, V.F.Radionov Erskine,J.R., A.M.Friedman, T.H.Braid, R.R.Chasman Fields,P.R., R.F.Bames, R.K.Sjoblom, J.Milsted Flerov,G.N., S.M.Polikhanov, V.L.Mikheev, VLIlyushchenko, V.F.Kushnimk, M.B.Miller, A.M.Sukhov, V.A.Schegolov Frana,J., LRezanka, Z.Plajner, A.Spalek, J.Junik, M.Vobecky, A.Mastalka, L.Funke, A.Grabcr, H.Sodan Ghiorso,A., T.Sikkeland, M.J.Nurmia Goudsmit,P.F.A., J.Konijn, F.W.N.De Boer Goudsmit,P.F.A Golovkov,N.A., K.Y.Gromov, N.A.Lebedev, B.Makhmudov, A.S.Rudnev, V.G.t Gujrathi,S.C., S.K.Mukhejee Gujmthi,S.C., S.K.Mukhejee Haynes,S.K., M.Velinsky, L.J.Velinsky Hansen,P.G., H.L.Nielsen, K.Wilsky, J.G.Cuninghame Hinds,%, H.Marchant, R.Middleton Hjorth,S.A., L.H.Allen Honsaker,J.L. Hofstetter,K.J., P.J.Daly Hoffman,D.C., O.B.Michelsen, W.R.Daniels Hsue,S.T., M.U.Kim, S.M.Tang Hsue,S.T., M.U.Kim, L.M.Langer, E.H.Spejewski, J.B.Willet Huster,E., H.Verbeek Katsanos,A.A., J.R.Huizenga Kem,J., G.L.Stmble, RKSheline Konijn,J., E.W.A.Lingeman, S.A.De Wit Marclius,A, P.Spamnan, S.-E.Hagglund McMurray,W.R., M.Peisach, R.Prctorius, P.Van der Merwe, I.J.Van Heerden McGrath,R.L., J.Cemy, E.Norbeck Miller,R.G., R.W.Kavanagh Mikheev,V.L, V.I.Ilyushchenko, M.B.Miller, S.M.Polikanov, G.N.Flerov, Y.P.Kharitonov Mikheev,V.L., V.I.Ilyushchenko, M.B.Miller Monnand,E., J.A.Pinston, R.Henck Moragues,J.A., P.Reyes-Suer, TSuter Motavalledi-Nobar,Y., J.Berthier, J.Blachot, R.Henck Mourad,W.G., K.E.Nielsen, M.Petrilak Muehllehner,G., A.S.Poltomk, W.C.Parkinson, R.H.Bassel R.A.Naumann, P.K.Hopke Nielsen,H.L., KWilsky, J.i!ylicz, G.Sorensen Nurmia,M., T.Sikkeland, R.Silva, A.Ghiorso Oakey,N.S., R.D.McFarlane O’Donnel,F.H., C.P.Browne Par&P. Park,J.J.H., P.Christmas Pierson,W.R., KRengan
353
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
3.54 67Ral3 67Ri.A 67.9~01 67SclO 67Sc15 6lSc26 67SiO2 67SiO8 67SiOV 67SpO3 67SpO6 67SpO8 67SpOV 679130 67Ti04 67TjOl 67T106 67Va.A 67Va17 67Va20 67Va22 67Va23 67VoO5 67VtQ4
NUPAB 99, BAPSA 12, NUPAB 96, ZEPYA 203, NUPAB 101, NUPAB 104, NUPAB 92, PYLBB 24, NUPAB 101, PHRVA 155, NUPAB 99, ZEPYA 204, P-Winnipeg P-Winnipeg NUPAB 100, KDVSA 36, NUPAB 97, P-Winnipeg PHRVA 159, JINCA 29, PHRVA 161, NUPAB 102, PHRVA 164, IANFA 31,
67WaOV NUPAB 67Wa23 PHRVA 67Wi19 NUIMA
547 522 337 289 177 692 475 333 129 1368 625 129 657 495 425 #8 405 296 1013 2503 1284 369 1374 604
Ragaini,R.C., G.E.Gordon, W.B.Walters Rickey,Jr.,F.A., H.C.Britt and PrvCom AHW Schriber,S.O., M.W.Johns Schulz,G. Schulte,G. Schulz,G., K.Ziegler Siivo1a.A. Sikkeland,T., A.Ghiorso, J.Maly, M.J.Numtia Siivo1a.A. Spencer,R.R., K.T.Faler Spejewski,E.H., J.B.Willett Spalek,A., LRezanka, J.Frana, A.Mastalka Sperduto,A. Staub,H.H. Tielsch-Cassel,E. Tjom,P.O., B.Elbek Treytl,W., K.Valli Valli,K. Valli,K., M.J.Nunnia, E.K.Hyde Valli,K., E.K.Hyde, W.Treytl Valli,K., W.Treytl, E.K.Hyde Van Neste,L., R.Coussement, J.P.Deutsch Von Ehrenstein,D., J.P.Schiffer Vrral,J., K.Y.Gromov, J.Liptsk, F.Molnar, V.A.Morozov, J.Urbanets, V.G.Chumitt 97, 641 Wapstra,A.H. 164, 1545 Ward,T.E., H.Ihochi, M.Karras, J.L.Meason 52, 77 Willet,J.B., E.H.Spejewski 1968
68Ab14 IANFA
32,
749
68Ab 17 IANFA
32,
793
68Ab18 YAFIA
8,
633
68Ad03 68Ad08 68An03 68Anll 68Au04 68Ba.A 68Ba2S 68Ba53 68Ba73 68Be.A 68Be02 68Be06 68Be21 68Be35 68BjO3 688~02 68Ch.A 68Ch20 68Co22 68Da02 68Da09 68Da13 68EnOl 68EtOl 68FiOl 68Fi04 68Fu07
JPAGB 1, 549 APPOA 34, 529 NUPAB 110, 289 NUPAB 121, 337 NUPAB 116, 14 PwCom Rytr YAFIA 7, 727 YAFIA 7, 1153 JOPQS lCl-181 BAPSA 13, 1430 NUPAB 106, 296 NUPAB 108, 382 NUPAB 121, 433 ZEPYA 216, 229 NUPAB 113, 484 PHRVA 166, 1096 PrvCom AHW Mav NUPAB 119, 30; NUPAB 117, 449 NUPAB 107, 569 PHRVA 172, 1176 NUPAB 112, 241 NUPAB 107, 305 PHRVA 168, 1249 NUPAB 111, 338 PHRVA 173, 1078 NUPAB 118, 97
68Go.A BAPSA
13, 1452
Abdurazakov,A.A., J.Vrzal, K.Ya.Gromov, Zh.T.Zhelev, V.G.Kalinnikov, J.Lipt&, S.KLi, F.N.Mukhtasimov, U.K.Nazarov, J.Urbanets Abesalashvili,L.N., K.Y.Gromov, Z.T.Zhelev, V.G.Kalinnikov, J.Liptak, U.K.Nazarov, J.Urbanets Abdurazakov,A.A., K.Y.Gromov, Z.T.Zhelev, V.G.Kalinnikov, J.Liptak, U.K.Nazarov, Y.Urbanets Adams,J.M., A.Adams, J.M.Calven Adamowicz,B., Z.Moroz, Z.Preibisz, A.Zglinski Antmatt,S., H.Pettenon, Y.Gmnditz Andre&, P.Liaud Auble,R.L., J.B.Ball, C.B.Fulmer Bastin,G., C.F.Leang, R.J.Walen Baranov,S.A, V.M.Kulakov, V.M.Shatinskii Bacso,I., D.D.Bogdanov, S.Barocsy, V.A.Kamaukhov, L.A.Petrov G.Bastin, C.F.Leang, R.J.Walen Bennet,M.J., R.K.Sheline Benn,J.E., E.B.Dally, H.H.Muller, R.E.Pixley, H.H.Staub, H.Wittkler Beekbuis,H., R.J.Van Duinen Bemis,Jr.,C.E., J.Halpetin Beck,E., H.Daniel Bjerregaard,J.H., O.Hansen, O.Nathan, L.Vistisen, R.Chapman Butler,G.W., J.Cemy, S.W.Cosper, R.L.McGrath Chrien,R.E. Chapman,R., S.Hinds, A.E.Macgregor Conjeaud,M., S.Harar, Y.Cassagnou Daniels,W.R., D.C.Hoffinan, F.O.Lawrence, C.J.Orth D’Auria,J.M., H.Bakhm, J.C.Preiss Danie1s.W.R.. F.O.Lawrence. D.C.Hoffinan Engelbertink,G.A.P., H.Lindeman, M.J.N.Jacobs Ethenon,R.C., L.M.Beyer, W.H.Kelly, D.J.Horen Fincke,E., U.Jahnke Fischbeck,H.J. Funcke,L., W.Andrejtscheff, H.Graber, U.Hagemann, K.-H.Kaun, P.Kemnitz, W.Meiling, H.Sodan, F.Stary, G.Winter Gopinathan,K.P, W.Rubinson
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 68Go.C P-Dubna 68Go12 P-Dubna 68Go34 APPOA 34, 68Ha14 NUPAB 113, 29, 68Ho 10 JOPQA 68Ho13 NUPAB 115, 68HsOl NUPAB 109, 68Hs02 NUPAB 117, 37, 68Jall AFYSA 68La18 PHRVA 175, 68LeO7 CHDBA 266, 68Mc09 PHRVA 172, 68MclO PHRVA 171, 68Mi08 NUPAB 119, 68Mo21 PHRVA 175, 68My.A P-Debreccen 68Pa03 NUPAB 110, 68PeOl NUPAB 108, 29, 68PiO3 JOPQA 30, 68Re12 JINCA 68Ri07 PHRVA 170, 68Sa09 NUPAB 118, 68Sa13 NUPAB 121, 68ScO4 PHRVA 166, 29, 68SclO JOPQA 68Sc14 ZEPYA 217, 68Sh12 PHRVA 170, 68SiOl NUPAB 109, 68SnOl NUPAB 113, 68TrO7 ZENAA 23, 68VaO4 PHRVA 167, 10, 68Va08 ATKOA 40, 68Va17 PHYSA 68Va18 PHRVA 176, 26, 68ViOl PYLBB 32, 68ViO5 IANFA 68We02 NUPAB 109, 13, 68Wi25 ATKEA 68WoOl NUPAB 107, 68WoO2 NUPAB 112, 27, 68ZeO4 APASA 32, 68ZhO4 IANFA
7.7 54 511 206 138 225 423 686 585 1507 629 1253 1254 609 1516 102 674 124 257 2887 1157 409 65 1212 385 282 1108 231 581 2127 1095 27 253 1377 285 1625 561 383 332 156 31 1610
Golovkov,N.A., S.V.Khvan, V.G.Chumin N.A.Golovkov, R.B.Ivanov, Y.V.Norseev, So Ki Kvan, V.A.Khalkin, V.G.Shumin Gonsior,M., G.I.Liiurei, G.Ncvodnichanskii, A.V.Potempa Hahn,R.L., M.F.Roche, K.S.Toth Hocquenghem,J.C., S.Andre, P.Liaud Hoff,R.W., J.E.Evaos, EKHulet, R.J.Dupzyk, B.J.Qualheim Hsue,S.T., M.U.Kim, L.M.Langer, E.H.Spejewski Hsue,S.T., M.U.Kim, L.M.Langer, W.F.Piel, E.H.Spejewski Jasinski,A., C.J.Herrlander Ladenbauer-Bellis,I.M., H.Bakhru L.eang,C.F., G.Bastin-Scofftier McIsaac,L.D. McDonald,W.J., J.T.Sample, D.M.Sheppard, G.M.Stinson, K.W.Jon Michaelis,W., F.Weller, H.Schmidt, G.Markus, U.Fanger Moore,P.A., P.J.Riley, C.M.Jones, M.D.Mancusi, J.L.Foster,Jr. Mysck,B., Z.Sujkowski, B.Kotlinska Parsa,B., G.E.Gordon, W.B.Walters Pettenon,H., S.Antman, Y.Gmnditz Pinston,R.A., E.Monnand, A.Moussa Rengan,K., H.C.Grif?in Rickey,F.A., R.K.Sheline Santo,R., R.Stock, J.H.Bjerrcgaard, O.Hanscn, O.Nathan, R.Chapman, &Hinds Samour,C., H.E.Jackson, J.Julien, A.Bloch, C.Lopata, J.Morgenstem Schroeer,D., P.S.Jastram Schussler,F. Schmidt-Ott,W.D., W.Weirauch, F.Smend, HLanghoff, D.G.Foller Shera,E.B., M.E.Bunker, R.K.Sheline, S.H.Vegors Siivola,A. Snyder,R.E., G.B.Beard Trautmann,N., R.Denig, N.Karf& G.Herrmann Valli,K., W.J.Treytl, E.K.Hyde Vatai,E., K.Hohmuth Van Kmgten,H., E.W.Koopmans Valli,K, E.K.Hyde Vingiani,G.B., G.Chilosi, W.Bmynesteyn Vitman,V.D., B.S.Drelepov, A.I.Mcdvedev Wenniger,H, J.Stiewe, H.Leutz Wille,P. Wolff,A.C., M.A.Meyer, P.M.Endt Wolfson,J.L., A.J.Collier Zemann,H., D.Zemmd Zhelev,Zh., V.G.Kalinnikov, J.Liptak, L.K.Peker 1969
69AjO3 69An18 69Ar.A 69Ar23 69Ba57 69BeO6 69Be17 69Be74 69BjOl 69BlOl 69B103 69Bo48 69Bu.A 69BuO5 69CoO3 69Dal5 69De27 69FrOl 69GhOl 69Go23 69GrO8
PHRVA 188, PYLBB 30, P-Stud&k IANFA 33, 10, YAFIA 31, JINCA NUPAB 129, 76, NUIMA NUPAB 131, 22, PRLTA NUPAB 123, NUIMA 72, P-Yerevan PHRVA 179, NUPAB 129, PHRVA 181, 30, PYLBB NUPAB 127, 22, PRLTA IANFA 33, NUPAB 131,
1813 Ajzenberg-Se1ove.F. 160 Andre& P.Liaud, F.Perales, S.Y.van der Werf Amell,S.E., R.Hardell, O.Skeppstedt, E.Wallander 1218 Arlt,R., Z.Malek, G.Musiol, G.Pfrcpper, H.Stnrsny 1110 Baranov,S.A., V.M.Shatinskii, V.M.Kulakov 599 Bemis,Jr.,C.E., J.Halpcrin, R.Eby 571 Beg,K., R.D.Macfarlane 77 Beck,E. 481 Bjerregaard,J.H., O.Hanscn, O.Nathan, RChapman, S.Hinds 470 Blair,A.G., J.G.Beery, E.R.Rynn 129 Bloch,R., T.Knellwolf, R.E.Pixley 40 Booij,H.M.W, E.A.Van Hock, J.Blok 71 Burmistrov,V.R., B.G.Kiselev 1 I13 Bushnell,D.L., R.P.Chaturvedi, R.K.Smither 10 Conjeaud,M., S.Hamr, E.Thuriere 1618 Dawson,J.W., R.K.Sheline, E.T.Jumey 639 De Wit,P., C.Van der Leon 33 Friedman,A.M., LAhmad, J.Milsted, D.W.Engelkemeir 1317 Ghiorso,A., M.Nurmia, J.Harris, K.Eskola, P.Eskola 1622 Golovkov,N.A., S.Guetch, B.S.Daelepov, Yu.V.Norscev, V.A.Chalkin, V.G.Shumin 180 Gmppclaar,H., A.M.F.Op den Kamp, A.M.J.Spits
355
G. Audi et ai. I The 1993 atomic mass evaluation @‘,I
356 69Gr24 69Gr28 69HalI @Ha32 69Ha44 69Ho10 69KaO6 69Ki16 69KuO3 69Ku07 69La15 69La33 69Le.A 69LeO5 69MilO 69Mo16 69NaO3 69NaO5 69Nall 690hOl 69GvOl 69PhOl 69PhO3 69PiO8 69Ra24 69Re04 698102 69St07 69TjOl 69Va06 69Vatl 69Wa19 69Ya02
NUPAB CHDBA NUPAB PHRVA NUPAB NUPAB JUPSA YAFIA ZEPYA NUPAB PHRVA PHRVA Th.-Paris NUPAB PHRVA NUPAB PHRVA NUPAB NUPAB PHRVA NUIMA NUPAB RRALA NUPAB NUPAB PHYSA PHRVA PHRVA KDVSA NUPAB NUPAB PHRVA NUPAB
136, 269, 127, 182, 136. 131, 26, IO, 222, 133, 180, 187,
513 652 71 1329 414 551 1071 1105 144 554 1015 1739
135, 177, 134, 178, i34, 137, 177, 68, 135, 1, 133, 138, 40, 178, 178, 37, 130, 134, 185, 130,
36 14S5 321 1968 433 467 1695 61 116 351 124 49 561 2024 1789 #7 586 215 1439 436
Grawe,.A., J.R.Lien, S.Royrvik, O.J.Aaroy, W.?I.Moore Grennberg,B., A.Rytz Hansen,O., G.Nathan, R.Cbapman, S.IIinds R.L.Hahn, M.F.Roche. K.S.Totb Haustein,P.E., A.F.Voigt Hoffman,D.C., F.O.Lawrcnce, W.R.Daniels T.Katoh, T.Morii, H.Inoue. Y.Yoshirawa, N.Gotoh, ESakai Kiselev,B.G., V.R.Burmistrov Kuhlmann,E,, K.E.G.Lobncr Kuroyanagi,T., T.Tamura Ladenbauer-BelIis.I.M., H.Bakhnr I.M.Ladenbauer-Bellis, H.Bakhru, A.Lutzati Leang,C.F. Lederer&M, J.M.Jaklevic, S.G.Prussin Minehart,R.C., L.Coulson, W.F.Grobb,III, K.Ziock Monnand,E., J.BIachot, A.Moussa Nagarajan,T., M.~yiodmna~, K.V.Reddy, S.Janammda Nagarajan,T., M.~~~~d~~ath, K.V.Reddy Nagarajan,T., M.Ra~indrana~, K.V.Reddy Ohnuma,H., J.R.Erskine, J.A.Nolen,Jr., J.P.Schiffer, P.G.Roos Overley,J.C., P.D.Parker, D.A,Bromley Phelps,M.E., D.G.Saranres Phillippe,A,, CBalIaux, R.Dams, F.Adams Pinston,J.A., FSchussIer, A.Moussa Ray,%, J.N.Mo, SMurzynski, S.K.Mark Reddingius,E.R., H.Postma Stokes&H., P.G.Young Stokes,R.H., PGYoung Tjom,F.G., B.Elbek J.M.Vara, R.Gaeta Van der Werf,S.Y., H.De Waard, H.Iieekhuis Walinga.?., J.C.ManthuruthiI, C.P.Poirier Yamazaki,T., J.Saro 1970
70Af.A
JINRPd-4972
7OAgOl 7OAgO3 70AhOl 7OAjOl 7OAkO2
IANFA IANFA NUPAB NUPAB IANFA
34, 34, 140, 142, 34,
397 201 141 641 777
70An06 ZEPYA 70An14 NUPAB
234, 153,
455 17
70ArO4 IANFA ?OAsOS NUPAB 70Be.A P-Leysin
34, 158,
409 146 353
PRVCA 2, PRVCA 2, JINCA 32, PRVCA 2, PRVCA 2, PYLBB 33, BAPSA 15, NUPAB 142. NUPAB ISS; JOPQA 31, NUPAB 153, NUPAB 158, Coo-1779-49 NUPAB 141, NUPAB 146,
297 1841 2805 1951 1513 284 87 634 216 737 413 166 47 289 43
70Be24 7OBo13 708019 7OBo29 7OBulP ?OC&t 70ch.A 70Ch02 70Ch28 70Ch29 70004 7ODe39 70Do.A 70Ei02 7OErO3
Afam&v,V.P., M.~&mva, NAGoiavkav, I.Wma~~, R.B.Ivanov, V.I.Kuzmin, Y.V.Norsecv, V.G.Chumin Ageev,V.A., N.F.Mitrokhovich, A.I.Feoktistov Ageev,V.A., N.F.Mitrokhovich, A.I.Feoktislov Ahmad,I., R.K.Sjoblom, R.F.Bames, E.P.Horwitz, P.R.Fields Ajzenber!g-Selove,F., G.Igo ~ma~anov,A.I., R.Broda, V.Valyus, LZvoIski, LMolnar, Y.Stygen, V.I.Fomini~~ AKrynkevich, V.M.Tsupk~Sit~~kov Antilla,A., M.Bister, EArminen Andersen,M.L., S.A.Andersen, O.Nathan, KMBiagard, KGregenen, O.Hansea, S.Hinds, R.Chapman A&R., G.Beyer, G.Musiol, L.K.Peker, G.Pfrepper, H.Stmsny Ashkeaazi,J., E.Friedman, D.Nir, J.Zioni Beck& H.Kogler+ HSchrader, R.Stippler, D.Hnatotich, A.Kjelberg, F.MiiIiltich Bercaw,R.W.. R.E.Wamer Borggreen,J., KVaili, E.K.Hyde Boswell,G.G.J., T.McGee Boliinger,L.M., G.E.Thomas Buu,D.J., R.K.Smither Cemy,J., J.E.Esterl, R.A.Gougb, R.G.Sextru Chrien,R.E., S.Bokiwx, J.B.Garg Chann.J.C!.. GSchuoo. R.R.Hurst Cha&t,A.; R.Duff~~,’ A.Emsallem, R.Chery Charvet,A., R.Duffait, A.Emsallem, R.Chery Cranston,F.P., RE.Birkett, D.H.White, J.A.Hutxhes De Boer,F.W.N., E.W.A.Lingeman, R.van Lieshout, R.A.Ricci RDoebler (Also Thesis Michigan State Universityt Eidens,J., E.Roeckl, P.Armbruster Eriandson,B., A.Marcinkowski
G. Audi et al. / The 1993 atomic mass evaluation (IV) 70Es02 7OFaO6 7OFiO3 7OFi12 7OFlO5 7OFlO8 70Fo09 70Ga32 70Ge03 70Gh02 70Go 11 70Go20 70Go39 70Go42 70Gr46 70Ha18
PRVCA NUPAB NUPAB NUPAB NUPAB NUPAB PYLBB IANFA PRVCA PRLTA PRVCA NUPAB NUIMA PRVCA KDVSA NUPAB
2, 146, 144, 154, 154, 157, 32, 34, 1, 24, 1, 151, 88, 2, 37, 148,
70Ha21 70Ha56 70He14 70He27 70~034 7OJuO4
NUPAB PHSTB CJPHA NUPAB CPHMA PRVCA
158, 625 1, 85 48, 1040 49 159, 40, 77 2, 2323
7OKaO4 NUPAB 7OKa22 PRLTA 70Ke05 P-Kyoto 7OKeO8 PRVCA 7OKiOl NUPAB 7OKlO5 ZEPYA 7OKnO3 PRLTA 7OLeO5 YAFIA 7OLiO4 ANSA 7OLc102 NUPAB 70Mal I CJPHA 70Ma19 NUPAB 70Ma31 NUPAB 70Ma36 NUPAB 70Mc03 NUPAB 70Mel I PRLTA 70MiOl NUPAB 70Mu 15 PRVCA 70Mu17 NUPAB 7OOb02 NUPAB 700h05 JUPSA 7OGr.A DASA 70Pe04 ZEPYA 7OPiOl NUPAB 70Ra14 APAHA 70Re02 PRVCA 7ORoO6 PRVCA 7OScO6 ZEPYA 7OSi19 PRVCA 70Sm.A BAPSA 70Th.A Th.-Paris 70To07 NUPAB 70Tol8 PRVCA 70Val3 PRVCA 70Va31 NUPAB 7OWhOl NUPAB 7OWoO5 NUPAB 7OWoO8 NUPAB
147, 25,
1058 549 67 407 225 1 689 2048 1052 1498 1939 513 192 2406 #12 249
120 953
2, 213 35 142, 11 238, 25, 1210 11, 483 40, 197 152, 463 48, 2056 147, 513 151, 465 153, 183 145, 244 25, 533 143, 225 2, 655 158, 183 153, 593 29, 1435 2570 233, 260 42 144, 28, 263 1, 721 1, 1761 232, 398 2, 1948 15, 549 149, 641 2, 2309 1, 2115 157, 385 151, 146, 152,
377 33 561
Eskola,P., K.Eskola, M.Nurmia, A.Ghiorso Fanger,U., D.Heck, WMichaelis, HOttmar, H.Schmidt, R.Gaeta Fincke,E., U.Jahnke, B.Schreiber, A.Weidinger Fields,P.R., LAhmad, R.F.Bsmes, R.K.Sjoblom, E.P.Horwitz Flynn,E.R., J.G.Beery, A.G.Blair Fleming,D.G., M.Blann, H.W.Fulbright, J.A.Robbins Fodor,L, Lbentpetery, J.Szucz Gabrakov,S., Z.Zhelev, N.G.Zaitseva, LPenev, S.S.Sebirov Gelletly,W., J.A.Moragues, M.A.Mariscotti, W.R.Kane Ghiorso,A., M.Nurmia, K.Eskola, J.Hanis, P&k& Goosman,D.R., R.W.Kavanagh Goudsmit,P.F.A., J.Konijn, F.W.N.De Boer Goedbloed,W., S.C.Govene, C.P.Gemer, A.Brinkman, J.Blok Gorman,D.J., F.Asaro T.Grotdal, K.Nybe, B.Elbek Hansen,P.G., H.L.Nielsen, K.Wilsky, MAlpsten, M.Finger, A.Lindahl, R.A.Naumann Hattula,T., S.Andre, FSchussler, A.Moussa Hardell,R., C.Boer Hemmn,A.W., E.A.Heighway, J.D.McArthur Heck,D., N.M.Ahmed, U.Fanger, W.Michaelis, H.Ottmar, H.Schmidt Holmberg,P., A.Kium Jumey,E.T., RKSbeline, E.B.Shera, H.R.Koch, B.P.K.Maier, U.Gmber, H.Baader, D.Breitig, O.W.B.Schult Karras,M., T.E.Ward, H.Schoche Kane,W.R. Kerr,D.P., K.T.Bainbridge Kemper,K.W, C.M.McKenna, J.W.Nelson Kim,H.J., R.L.Robinson, C.H.Jonnson, S.Raman Klapdor,H.V., KBuchholz, FKaestner Kneff,D.W., H.W.Lefevre, G.U.Din Levkovskii,V.N., LVKazachevskii Linusson,H., R.Hardell, S.Amell Lourens,W., B.O.Ten Brink, A.H.Wapstra Mason,J.F., M.W.Johns Macias,E.S., J.P.Op den Beeck, W.B.Walters Maripuu,S. Maripuu,S. McLatchie,W., S.Whineray, J.D.Macdougall, H.E.Duckwonh Mendelson,R., G.J.Wozniak, A.D.Bacher, J.M.Loiseaux, J.Cemy Michaelis,W., F.Weller, U.Fanger, R.Gaeta, G.Markus, H.Ottmsr, H.Schmidt Mulligsn,T.J., R.K.Sheline, M.E.Bunker, E.T.Jumey Miinnich,F., A.Kjelberg, D.J.Hnatowich O’Brien,B.J., G.E.Coote Ohya,S., T.Tsmura, S.Kageyama Orphan,V.J., N.C.Rasmusscn, T.L.Harper Petterson,H., S.Antman, Y.Grunditz Pinston,J.A., FSchussler Raichev,K., L.Tron Reeder,P.L. Rollefson,A.A., P.F.Jones, R.J.Shea Schmidt-Ott,W.D. Silva.R.1. Smither,R.K., D.J.Bush, D.L.Bushnell Thutiere,F. Torgerson,D.F., R.D.Macfarlane Torgerson,D.F., R.D.Macfarlane Valli,K., E.K.Hyde, JBorggreen Van Klinken,J., L.M.Taff, H.T.Dijkstra, A.H.De Haan, H.Hanson, B.K.S.Koene, J.W.Maring, J.J.Schuumtan, F.B.Yano Whineray,S., J.D.Macdougall, W.McLatchie, H.E.Duckworth Wohn,F.K., W.L.Talbert Wohn,F.K., W.L.Talbwt,Jr., J.K.Halbig
351
358
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 1971
7IAfoS 71AIOl 71Al14 71A122 71Ar12 71Ar23 71Ar39 71BaOl 71Ba08 71Ba18 71Ba43 71BaB2 71BelO 71Be41 7 1Bi.A 71BoOl 71Bo06 71Ca19 7 1Ch26 71Da16 71Da19 71Da28 71De52 7 1Di03 71Do18 7 1Duo2 71Dz08 71EnOl 71EsOl 7 1EvOl 71FiOl 71F1-03 7 lGeO5 71GhOl 71GoOl 71Go18 71Go35 7 1Gr.A 71Gr17 71Gr22 71Gr28 71Gr37 7 1Gr42 7lGo.A 71Gu02 71Gu18 71HelO 71He13 71HoOl 71Ho16 71IbOl 71Ka22 71Ka42 7 1KeO2 7lKe07 71Ke21 71KiOl 71Kil5 71Le21 7lLiO2 71Ma24 71Ma45 71Ma47 71MoOl 71Mo02
IANFA 35, NUPAB 161, PHSTB 3, PHSTB 3, NUPAB 166, NUPAB 169, PHSTB 4, NUPAB 160, PRVCA 3, NUPAB 164, PRVCA 4, YAFIA 14, PRVCA 3, NUPAB 171, UCRLS 1060 NUPAB 160, NUPAB 162, PRVCA 4, JOPQA 32, NUPAB 170, PRVCA 4, NUPAB 178, RMXFA 20, PRLTA 26, PYLBB 37, PRVCA 3, IANFA 35, PRVCA 3, PRVCA 4, CJPHA 49, NUPAB 160, NUPAB 165, PRVCA 3, PRVCA 4, PRVCA 3, PRVCA 4, IANFA 35, P-Moscow MTRGA 7, YAFIA 13, YAFIA 13, YAFIA 14, IANFA 35, FRNCTH-~~~ NUPAB 161, NUPAB 172, NUPAB 165, NUPAB 168, NUPAB 163, NUPAB 169, PHSTB 4, ZEPYA 245, APOBB 2, CJPHA 49, PRVCA 4, NUPAB 176, NUPAB 170, YAFIA 14, NUPAB 170, NUPAB 160, NUPAB 166, NUPAB 172, NUPAB 174, PRVCA 3, NUPAB 161,
1618 209 55 105 241 209 89 225 937 552 196 1101 1294 113 337 407 130 359 253 919 172 17 1037 173 1391 2249 180 632 402 460 625 1678 1850 746 1800 2272 70 65 681 1129 473 1644 410 353 327 449 277 641 161 451 423 1950 1431 449 187 249 115 630 573 298 343 438 228
Afanasiev,V.P., V.S.Buttsev, I.LGromova, V.G.Kalinnikov, N.A.Tikhonov Alenius,G., S.E.Amell, CSchale, E.Wallander Alenius,G., S.E.Amell, C&hale, E.Wallander Alenius,G., S.E.Amell, C.Schale, E.Wallander Amell,S.E., H.Linusson, Z.Sawa Aras,N.K., P.Fettweis, G.Chilosi, G.D.O’KeUey Amell,S.E., R.Hardell, A.Hasselgren, C.G.Mattson, OSkeppstedt Bal1,J.B. Bakhm,H., I.M.Ladenbauer-Bellis, I.Rezanka Bazan,F., R.A.Meyer Ball,J.B., R.L.Auble, P.G.Roos Baranov,S.A, V.M.Shatinskii, V.M.Kulakov Bemthal,F.M., J.O.Rasmussen, J.M.Hollander Bennet,M.J., R.K.Sheline, Y.Shida Birkett,R.E. Booij,H.M.W., E.A.Van Hock, H.Van der Molen, W.F.Slot, J.Blok Borggreen,J., E.K.Hyde Casten,R.F., E.R.Flynn, O.Hansen, T.J.Mulligan Charvet,A., D.H.Phuoc, R.Duffait, A.Emsallem, R.Chery Darcey,W., R.Chapman, S.Hinds Daniels,W.R., D.C.Hoffman D’Auria,J.M., D.Ostrom, S.C.Gujrathi H.Del Castillo, R.Roos, A.Tejera, F.Alba Dittner,P.F., C.E.Bemis,Jr., DCHenley, R.J.Silva, C.D.Goodman Dorenbusch,W.E., J.B.Ball, R.L.Auble, J.Rapaport, T.A.Belote Dubbard,J.L., R.K.Sheline, J.B.Ball Dzelepov,B.S., A.G.Dmitriev, N.N.Zhukovskii Engelbertink,G.A.P., J.W.Olness Eskola,K., P.Eskola, M.Nurmia, A.Ghiorso Everling,F, G.L.Morgan, D.W.Miller, L.W.Seagondollar, P.W.Tillman,Jr. Fields,P.R., LAhmad, A.M.Friedman, J.Lemer, D.N.Metta Frana,A., A.Spalek, M.Fiser, A.Kolec Gelletly,W., W.R.Kane, D.R.MacKenzie Ghiono,A., M.Nurmia, K.Eskola, P.Eskola Gorman,D.J., F.Asaro Goosman,D.R., K.W.Jones, E.K.Warburton, D.E.Alburger Golovkov,N.A., R.B.Ivanov, A.Kolaczkowski, Y.V.Norscev, V.G.Chumin Groshev,L.V, V.N.Dvoretskii, A.M.Demidov Grennberg,B., A.Rytz Groshev,L.V., A.M.Demidov, V.F.Leonov, L.L.Sokolovskii Groshev,L.V., L.I.Govor, A.M.Demidov, A.S.Rachimov Groshev,L.V., A.M.Demidov, V.F.Leonov, L.L.Sokolovskii Groshev,L.V., A.M.Demidov, V.F.Leonov, L.L.Sokolovskii GuillaumqG. Gujrathi,S.C., J.M.D’Auria Gujrathi,S.C., J.M.D’Auria Hcck,D., U.Fanger, W.Michaelis, H.Ottmar, JSchmidt Helmer,R.G., R.C.Greenwood, C.W.Reich Homshoj,P., K.Wilsky, P.G.Hanscn, A.Lindahl, O.B.Nielsen Hoff,R.W., E.K.Hulet, R.J.Dupzyk, R.W.Lougheed, J.E.Evans Ibrahiem,N., H.Pettersson Kaffrell,N. Kaczarowski,R., W.Kurcewicz, A.Ptochocki, J.iylicz Kerr,D.P., K.T.Bainbridge Ketelle,B.H., A.R.Brosi, J.R.van Hise Kemell,R.L., H.J.Kim, R.L.Robinson, C.H.Johnron King,C.H., P.R.Maurenzig, N.Stein, T.P.Cleary Kiselev,B.G., V.N.Levkovskii, O.I.Artemev Leslie,J.R., W.McLatchie, C.F.Monahao, J.K.Thrasher Lingeman,E.W.A., F.W.N.De Boer, P.Koldewijn, P.R.Maurenzig Malmskog,S.G., V.Berg, B.Fogelbcrg, A.Backlin Manfrass,P, H.Prade, M.R.Beitins, W.A.Bondarenko, N.D.Kramer, P.T.Prokofjew Matsuki,S., Y.Yoshida, M.Hyakutake, M.Matoba, S.Nakamura Mosher,J.M., R.W.Kavanagh, T.H.Tombrello MoRon,J.M., W.G.Davies, W.McLatchie, W.Darcey, J.E.Kitching
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 7 lMo03 71MyQl 71NaOl 71Na02 710104 710tOl 71Pe23 7 IPiO4 71PiO8 71PlO8
PRLTA APOBB PRVCA PRVCA PRVCA NUPAB NUPAB PRVCA ZEPYA IANFA
26, 854 2, 441 3, 247 3, 254 3, 2402 69 164, 167, 387 4, 704 247, 400 35, 1569
7 1P0.A P-Legnaro 71PrO3 NUPAB 167, 71RaO8 ZEPYA 243, 71Ra17 NUPAB 170, 71Ra35 NUPAB 177, 71Ro19 JINCA 33, 71SmOl PRVCA 4, 71SwQl PRVCA 3, 7 lTa07 PRVCA 4, 71ToOl PRVCA 3, 71ToO5 NUPAB 171, 71TolO PRVCA 4, 7 lT1-03 PRVCA 3, 7IUm03NUPAB 169, 71VeO3 PRVCA 3, 71WeOl PRVCA 3, 7 1Wi04 PRVCA 3, 71WiO7 NUPAB 166, 71YalO PYLBB
37,
375 667 105 199 307 2684 22 259 517 854 305 2223 2205 109 1570 1668 1199 661 369
Motz,H.T., E.T.Jurney, E.B.Shera, R.K.Sheline Myslek,B., B.Pietrzek, Z.Sujkowski, JSzcepankowski Nagamjan,T., MXavindranath, K.V.Reddy Nagarajan,T., M.Ravindranath, K.V.Reddy Onh,C.J., B.J.Dropesky, N.J.Fneman Ottmar,H., N.M.Ahmed, U.Fange.r, D.Heck, W.Michaelis, HSchmidt Person,B.I., J.L.Plesscr, J.W.Sunier J.Pigeon, Y.Vandlik, N.G.Zaitscva, LMahunka, A.Mete, H.Tyrroff, T.Fenya Piiparinen,M., A.Anttila, M.Viitasalo Plajner,Z., M.Vejs, LProchazka, A.Mashtalka, O.Voitishek, M.Gonusck, A.Kokesh Poirier,C.P, J.C.Manthunrthil Prieels,R., J.P.Deutsch Rauch,F. Rapaport,J., T.A.Belote, D.E.Bainum Rapaport,J., W.E.Dorenbusch, T.A.Belote RossnqG., G.Hemnann Smith,L.G. Swindle,D.L., T.E.Ward, P.K.Kuroda Takehashi,K., D.L.Swindle, P.K.Kuroda Toth,K.S., R.L.Hahn Torti,R., R.Graetzer Toth,ES., R.L.Hahn, M.A.Ijaz Trentelman,G.F., B.M.Preedom, E.Kashy Umbarger,C.J., J.A.Robinson, R.R.Reece, R.C.Bearce Vervier,J., H.H.Bolotin Weiffenbach,C.V., R.Tickle Wi1denthaLB.H.. E.Newman, R.L.Auble Wilkinson,D.H., D.E.Alburger, D.R.Goosman, K.W.Jones, E.K.Warburton, G.T.Garvey, R.L.Williis Yagi,K., K.Sato, Y.Aoki 1972
72AhO4 72AhO7 72Al19 72Ba08 72Ba35 72Ba9 1 72BaD2 72Be12 72Be44 72Bo46 72Br13 72Br3 1 72Bu05 72CaOl 72Ca07 72CalO 72Chll 72Ch44 72Co13 720107 72Da.A 72De47 72De54 72ErO5 72EsO3 72FaO8 72Fi.A 72Fl17 72Fo25
NUPAB JINCA NUPAB CJPHA
186, 620 Ahmad,I., R.K.Sjoblom, R.F.Bames, F.Wagoer,Jr., P.R.Fields 34, 3335 Ahmad,I., R.F.Bames, R.K.Sjoblom, P.R.Fields 186, 209 Alenius,G., S.E.Amcll, C&hale, E.Wallander 34 Barber,R.C., R.L.Bishop, J.O.Meredith, F.C.G.Southon, P.Williams, 50, H.E.Duckworth, P.van Rookhuyzen PRLTA 28, 1069 Ball,G.C., W.G.Davies, J.S.Forster, J.C.Hardy IANFA 36, 782 G.Y.Baier, V.S.Buttsev, K.Y.Gromov, V.G.Kalinnikov, K.O.Mortenscn, G.L.Nilsson, N.A.Tikhonov ZETFA 63, 375 Baranov,S.A., V.M.Shatinskii, V.M.Kulakov, Y.F.Radionov 5, 1426 Benenson,W., J.Driesbach, I.D.Proctor, G.F.Trentelman, B.M.Preedom PRVCA ZEPYA 252, 349 Behrens,H, M.Kobelt, W.G.Thies, H.Appel PRVCA 6, 1322 L.M.Bollinger, G.E.Thomas NUPAB 185, 289 BriqM., J.E.Kitching, J.K.P.Lec, P.F.Hinrichscn APOBB 3, 263 Broda,R., M.Rybicka, J.Styczen, W.Walus, K.Krolas JINCA 34, 1087 Bunus,F.T. KDVSA 38, # 13 Casten,R.F, PKleinheinz, P.J.Daly, B.Elbek NUIMA 98, 432 Campbell,J.L., L.A.McNellen NUPAB 184, 357 Casten,R.F., E.R.Flynn, O.Hansen, T.J.Mulligan NUPAB 186, 603 Chapman,R, W.McLatchie, J.E.Kitching NUPAB 197, 490 Charvet,A., R.Chery, D.H.Phuoc, R.Duffait, A.Emsallem, G.Marguier NUPAB 185, 644 Coetzee,W.F., M.A.Meyer, D.Reitmann NUPAB 196, 593 Cunnane,J.C., R.Hochel, C.W.Yates, P.J.Daly 71 Davids,C.N., D.L.Matthews, D.Whitmire BAPSA 17, NUPAB 195, 385 Debenham,P., N.H.Hintz RAACA 17, 1116 De Boer,F.W.N., P.Koldewijn, J.Konijn, E.W.A.Lingeman NUPAB 194, 449 Erdal,B.R., L.Westgaard, J.iylicz, E.Ro-xkl, ISOLDE PRVCA 5, 942 Eskola,K. NUPAB 186, 545 Fanvell,L.C., J.J.Kraushaar, H.W.Baer R.B.Fircstonc, K.Kosanke, W.C.McHanis, W.H.Kelly AoRpt MSUCL 28 49 Flynn,E.R., J.D.Gamt PYLBB 42, PHSTB 6, 309 Forsblom,L, T.Weckstrom, T.Sundius, G.Bergstrom, S.Forss, G.Wansen
359
360
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
72FulO 72Ga27 72Gi17 72Go33 72Gr19 72Gr23 72Gr34 72Gr39 72Hal4 72He.A 72He36 72Ho18 72Ho40 72HsOl 72Hu06 72Ja.A
NCLTA 4, 430 PRLTA 29, 958 NUIMA 105, 179 CHDBA 275, 291 NUPAB 189, 592 YAFIA 15, 625 IANFA 36, 840 PRVCA 6, 1756 NUPAB 198, 353 Grenoble AnRpt ZEPYA 255, 385 NUPAB 187, 599 NUPAB 194, 481 NUPAB 179, 80 NUPAB 189, 264 P-Teddingtn 236
72Ja28 72Je02 72KiO6 72KoO3 72La20 72Ma.A 72Ma42 72Mc08 72Mc25 72Mi16 72Mi26 72Mo 12 72Mo33
APOBB 3, 643 NUPAB 185, 209 ZEPYA 251, 93 PRVCA 5, 568 ZEPYA 253, 16 P-Budapest 90 PHSTB 5, 58 PRVCA 5, 922 ZEPYA 255, 335 HPACA 45, 93 JUPSA 33, 1505 PRVCA 5, 1678 NUPAB 195, 192
72Mu.A 72Mu02 72Mu09 72Na04 72Ne05 72Pa02 72PiO7 72Ra39 72Ri08 72ScOE 72Sh.A 72Sh08 72Sh13
BAPSA 17, 557 PRVCA 5, 95 PRVCA 6, 1802 NCIAA 8, 305 NUPAB 185, 213 PRVCA 5, 485 ZEPYA 252, 206 NUPAB 197, 129 PRVCA 5, 2072 ZEPYA 249, 286 PrvCom NDG Jan NUPAB 189, 220 PRVCA 6, 537
72Si28 NUPAB 193, 449 72S103 NUPAB 186, 28 72SvO2 PHSTB 5, 23 72SwOl NUPAB 185, 561 72Ta13 ZEPYA 251, 87 72To05 NUPAB 185, 574 72To06 PRVCA 5, 2060 72To07 NUPAB 189, 609 72Vill RAACA 17, 213 72Wa04 JINCA 34, 13 72Wa06 NUPAB 184, 166 72WalO NUPAB 188, 129 72We.A P-Teddingtn 94 72Wh02 PRVCA 5, 513 72WhO5 NUPAB 187, 12 72Wi18 NUPAB 191, 166 72Za04 PRVCA 6, 506 722102 NUPAB 181, 465
Fubini,A. H.Gauvin, Y.Le Beyec, M&fort, N.T.Potile Gils,H.J., R.Lohken, W.Wiesner Gomtan,J., A.Rytz, H.V.Michel T.Grotdal, J.Limstrand, K.Nybe, K.Skar, T.F.Thorsteinsett Groshev,L.V., L.I.Govor, A.M.Demidov Groshev,L.V., L.I.Govor, A.M.Demidov Greenfield,M.B., C.R.Bingham, E.Newman, M.J.Saltmars Hasselgren,A. Hetmen,M., A.Gizon also Thesis Grenoble 1971 Helppi,A., A.Pakkanen Homshoj,P., K. Wilsky, P.G.Hansen, B.Jonson, O.B.Nielsen Hokken,G.A., A.J.G.Hendricx, J.De Kogel Hsu,T.H., R.Foumier, B.Hird, J.Kroon, G.C.Ball, F.Ingebretsen Hudson,F.R., R.N.Glover Jaffe,A.A., G.A.Bissinger, S.M.Shafroth, T.A.White, T.G.Dzubay, F.Everling, D.W.Miller, D.A.Outlaw M.Jaskola, K.Nybe, B.Elbek Jensen,H.B., H.B.Mak, C.A.Bames KiUl.ll,A. Kolata,J.J., W.W.Daehnick Lasijo,R., R.K.Sheline, R.D.Grifftoett, J.L.Dubbard Matusek,P., H.Ottmar, C.Weitkamp, H.Woods Mattsson,C.G., S.E.Amell, L.Jonsson McClure,D.A, J.W.Lewis,III McGeorge,J.C., D.W.Nix, R.W.Fink, J.H.Landmm Michaud,B., J.Kem, L.Ribordy, L.A.Schaller K.Miyano, H.Nakharr, G.Gil Moyer,R.A. Monnand,E., R.Brissot, L.C.Carraz, J.Crancon, R.Ristoti, FSchussler, A.Moussa Mughabghab,S.F., G.W.Cole, R.E.Chrien, O.A.Wasson, M.R.Bhat Mukoyama,T., S.Shimizu Mulligan,T.J., E.R.Flynn, O.Hansen, R.F.Carsten, R.K.Sheline Nagarajan,T., M.Ravindranath, K.V.Reddy Nero,A.V. Paddock,R.A. Piipatinen,M. Rabenstein,D., D.Harrach, H.Vonach, G.G.Dussel, R.P.I.Perazzo Rickey,F.A., E.T.Jumey, H.C.Britt Schmidt-Ott,W.D., R.W.Fink Shera,E.B. Shamu,R.E., E.M.Bemstein, D.Blondin, J.J.Ramirez Shera,E.B., U.Gruber, B.P.K.Maier, H.R.Koch, O.W.B.Schult, R.G.Lanier, N.Onishi, R.K.Sheline Singh,M., J.W.Sunier, R.M.Devries, G.E.Johnson Slot,W.F., G.H.Dulfer, H.Van der Molen, H.Verheul Svahn,B., CBergman, H.Petterson Swindle,D.L., N.A.Morcos, T.E.Ward, J.L.Meason Tannila,O., J.Kantele Torres,J.P., P.Paris Toth,K.S., R.L.Hahn, M.A.Ijaz, R.F.Walker,Jr. Torres,J.P., P.Paris, DLecoutufier, PKilcher Visser,J., L.Lindner Ward,T.E., N.A.Morcos, P.K.Kuroda Wallace,G., G.J.McCallum, N.G.Chapman Wallander,E., E.Selin Westgaard,L., J.iylicz, O.B.Nielsen, ISOLDE White,D.H., R.E.Birkett White,D.H., R.E.Howe Wiesner,W., D.Flothman, H.J.Gils, RLohken, H.Rebel Zaitz,J.I., R.K.Sheline Zioni,J., A.A.Jaff., E.Fiiedman, N.Haik, RSchreckman, D.Nir
G. Audi et al. / The 1993 atomic maw evaluation (Iv) 1973 8, 737 Ahmad,I., J.Milsted, R.K.Sjoblom, J.Lemer, P.R.Fields 208, 287 Ahmad,I., H.Diamond, J.M.lsted, J.Lemer, R.K.Sjoblom 8, 1011 Alburger,D.E., D.R.Goosman, C.N.Davids 37, 1035 Aleksandrov,V.S., B.S.Dzelepov, A.LMedvedev, V.E.Ter-Nersesyants, LF.Uchevatkin, S.A.Shestopalova 31, 395 Ball,G.C., J.G.Costa, W.G.Davies, J.S.Forster, J.C.Hardy, A.B.McDonald 73Ba34 PRLTA 6, 1011 Bames,D.G., J.M.Calvert, T.Toy 73Ba35 JPAGB 8, 1438 Ball,J.B., J.J.Pinajian, J.S.Larsen, A.C.Rester 73Ba56 PRVCA 73Ba72 NUPAB 217, 116 Back,B.B., E.R.Flynn, O.Hansen, R.F.Casten, J.D.Garret 43, 117 Benenson,W., E.Kashy, I.D.Proctor, B.M.Preedom 73Be09 PYLBB 8, 210 Benenson,W., EKashy, I.D.Proctor 73Be23 PRVCA 31, 641 C.E.Bemis,Jr., R.J.Silva, DCHensley, O.L.Keller,Jr., J.R.Tarrant, L.D.Hunt, 73Be33 PRLTA P.F.Dittner, R.L.Hahn, C.D.Goodman 17, 457 Bogdanov,D.D,, V.A.Kamaukhov, L.A.Petrov 73Bo20 YAFIA 7, 1545 Britten,R.A., W.H.Johnson 73BrO6 PRVCA 7, 2545 Browne,E., F.Asaro 73Brl2 PRVCA 73Br32 NUPAB 216, 493 Broda,R., A.Z.Hrynkiewicz, JStyczen, W.Walus 51, 455 Burke,D.G., JCWaddington, D.E.Nelson, J.Buckley 73Bu02 CJPHA 37, 938 Buttsev,V.S., K.Y.Gromov, V.G.Kalinnikov, V.A.Morozov, T.M.Muminov, 73Bul7 IANFA A.B.Khalikulov 37, 953 Buttsev,V.S., Ts.Vylov, K.Y.Gromov, V.G.Kalinnikov, I.LGromova, 73Bul8 IANFA V.A.Morozov, T.M.Muminov, H.Fuia, A.B.Khalikulov 37, 1024 Buttsev,V.S., K.Y.Gromov, V.G.Kalinnikov 73Bu21 IANFA 73CalO NUPAB 205, 121 Cardoso,M.H., P.F.A.Goudsmit, J.Konijn 35, 3061 Chayawattanangkur,K., G.Hemnann, N.Trautmann 73Ch24 JINCA 7, 122 Davids,C.N., D.R.Goosman 73DaOl PRVCA 51, 686 D’Auria,J.M., R.D.Guy, S.C.Gujrathi 73Da05 CJPHA 7, 2131 Degnan,J.H., G.R.Rao 73Del6 PRVCA 75 De Boer,F.W.N., P.F.A.Goudsmit, B.J.Meyer and PrvCom AHW 73De22 ZEPYA 260, 37, 998 Demidov,A.M., M.R.Akhmed, M.A.Khalil, C.Al-Nadzar 73De39 IANFA 73EaOl NUPAB 208, 119 Eastham,D.A., ISGrant 7, 280 Eskola,P. 73EsOl PRVCA 8, 357 Eskola,P., K.Eskola, M.Nurmia, A.Ghiorso 738902 PHFFA 73FiO6 NUPAB 208, 269 Fields,P.R., LAhmad, R.F.Bames, R.K.Sjoblom, W.C.McHarris 73GlO6 ZEPYA 265, 335 G1atz.J. 73Go05 NUPAB 201, 326 Goverse,S.C., J.Van Pelt, J.Vandenberg, J.C.Klein, J.Blok 7, 2409 Goosman,D.R., C.N.Davids, D.E.Alburger 73Go22 PRVCA 73Go29 CHDBA 276, 669 Gorman,D.J., H.V.Michel, F.Asaro, A.Rytr 8, 1324 D.R.Goosman, C.N.Davids, D.E.Alburger 73Go33 PRVCA 29 Gonnan,D.J., A.Rytz 73Go39 CHDBA 277, 73Go40 NUPAB 217, 159 Godart,J., A.Gizon 73Gr26 NUPAB 211, 541 T.Grotdal, L.Loset, K.Nybe, T.F.Thorsteinsen 73Ha02 NUPAB 199, 560 Hayakawa,S.I., S.K.Mark, J.K.P.L.ee, J.E.Kitching, G.C.Ball, W.G.Davies 73Hall NUPAB 203, 532 Halbig,J.K., F.K.Wohn, W.L.Talbert,Jr., J.J.Eitter 31, 323 Hausser,O., W.Witthuhn, T.K.Alexander, A.B.McDonald, J.C.D.MiIton, A.Olin 73Ha32 PRLTA 47, 93 Hinderling,T., H.H.Staub 73Hi.A HPACA 73Ho09 NUPAB 211, 165 Hochel,R., P.J.Daly, K.J.Hofstetter 73Ja06 ZEPYA 258, 337 JagqU., H.Miinzel, G.Pfennig 95 Jansen,J.F.W., A.Faas, W.J.B.Winter 73JalO ZEPYA 261, 8, 99 Johansson,A., B.Nyman 731011 PHSTB 34, 857 Kawade,K., H.Yamamoto, K.Tsuchiya, T.Katoh 73KaO7 JUPSA 8, 414 Kaffrell,N. 73Ka23 PRVCA 61 Kimura,K. 73Kill NUPAB 213, 7, 404 Kozub,R.L., D.H.Youngblood 73KoO3 PRVCA 8, 285 Kolata,J.J., J.V.Maher 73KoO6 PRVCA 34, 159 Kurcewicz,W., K.Stryczniewicz, J.iylicz, R.Bmda, S.Chojnacki, W.Walu.s, 73KuO9 JOPQA LYutlandov 7, 2097 McPherson,J.R., F.Gabbard 73Mc04 PRVCA 73Me09 NUPAB 204, 636 Meyer,B.J., F.W.N.De Boer, P.F.A.Goudsmit 10, 359 Meredith,J.O., F.C.G.Southon, R.C.Barber, P.Williams, H.E.Duckworth 73Me28 JMSIA 73Mo03 NUPAB 202, 473 Moinester,M.A., G.Finke.1, J.Alster, P.Martin 35, 3659 Morcos,N.A., W.D.James, D.E.Adams, P.K.Kurcda 73Mol8 JINCA 8, 1961 Moalem,A., B.H.Wildenthal 73Mo23 PRVCA 73No09 NUPAB 217, 253 Nomura,T., K.Himta, T.Inamura, M.Odera
73AbO2 73AhO4 73All3 73Al20
PRVCA NUPAB PRVCA IANFA
361
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
362 730e02 730k.A 730001 730103 73Ra13 73Re03 73Scl7 73Si40 73St03 73Vall 73Ve08 73VilO 73Wal8 73WiO6 73WoOl 73Ya02 73Za08
ZEPYA 259, 263 O&r&W. PtvCom NDG Aug O’Kelley,G.D., C.F.Goeking, L.L.Collins,Sr. NUPAB 213, 221 Oothoudt,M.A., N.M.Hintz PRVCA 8, 718 Otth,C.J., W.R.Daniels, D.C.Hoffman, F.O.Lawrence PYLBB 44, 255 Raman,%, H.J.Kim, T.A.Wakiewicz, M.J.MaRin PRVCA 7, 1663 Rezanka,I., LMLadenbauer-Bellis, T.Tamura, W.B.Jones, F.M.Bemthal PYLBB 44, 449 Schmeing,H, J.C.Hardy, R.L.Gmhant, J.S.Geiger, K.P.Jackson NUPAB 216, 97 Silva,R.J., P.F.Dittner, M.L.Mallory, O.L.Keller, K.Eskola, P.Eskola, M.Nurmia, A.Ghiomo PRVCA 7, 1418 Strtwe,H., HCThomas, M.J.Bennet, D.D.Armstrong ZEPYA 259, 45 Van der Werf,S.Y. NUPAB 212, 493 Vemotte,J., S.Gales, MLangevin, J.M.Maison NUPAB 217, 372 Viola,Jr.,V.E., M.M.Minor, C.T.Roche PRVCA 8, 340 Ward,T.E., Y.Y.Chu, J.B.Cunning PRLTA 30, 866 Willcox,K.H., N.A.Jelley, G.J.Wozniak, R.B.Weisenmiller, H.L.Hamey, J.Cemy PRVCA 7, 160 Wohn,F.K., J.K.Halbig, W.L.Talbert,Jr., J.R.McConnel NUPAB 204, 33 Yates,S.W., P.J.Daly, N.R.Johnson, N.K.At’ras ZEPYA 264, 227 Zaitz,J.I., R.K.Sheline, R.D.Griffteon 1974
74An05 IANFA
38,
48
74An22 IANFA
38, 1741
74An23 IANFA
38, 1748
74Ba90 CJPHA
52, 2386
74Be20 74Bi08 74Bo26 74Bu2 1 74Bu22 74ByOl 74Ca.A 74Ch17 74Ch21 74Ch5 1 74Co21 74Co27 74Co35 74De09 74De31 74De47 74Di.A 74Di03 74Do09 74EmOl 74Er.A
PRVCA 9, 2130 PRVCA 10, 729 NUIMA 117, 213 38, 1566 IANFA PRVCA 10, 2483 NUPAB 223, 125 Th.-Amsterdam JPSLB 35, 41 ZEPYA 267, 355 JOPQA 35, 1804 CJPHA 52, 1215 PRVCA 10, 1236 NUPAB 233, 185 NUPAB 225, 317 CJPHA 52, 1416 NUPAB 236, 349 P-Amsterdam 114 PRVCA 10, 1172 NUPAB 229, 47 NUPAB 231, 437 AnRpt Julich
74FlOl 74FrOl 74Ge05 74Gi09 74GllO 74Go I7 74Go20 74Grll 74Gr22 74Gr41 74GulO 74Ha02 74Ho27 74HrOl
PRVCA PRVCA PRVCA NUPAB AENGA PRVCA ZEPYA NUPAB PRVCA IANFA YAFIA PRVCA NUPAB NUPAB
9, 210 9, 760 9, 2363 233, 81 78 37, 10, 756 269, I I I 223, 66 10, 624 38, 2499 19, 1167 9, 252 230, 380 219, 381
Antoneva,N.M., A.V.Barkov, A.V.Zolotavin, P.P.Dmittiev, S.V.Kamynov, G.S.Katykhin, E.T.Kondrat, N.I.Krasnov, Y.N.Podkopayen, V.A.Sergienko, V.I.Fominikb Antoneva,N.M., A.V.Barkov, V.M.Vinogradov, A.V.Zolotavin, G.S.Katykhin, V.M.Makarov, A.G.Shablinskii Antoneva,N.M, A.V.Barkov, V.M.Vinogradov, A.V.Zolotavin, G.S.Katykltin, V.M.Makarov, A.G.Shablinskii Barber,R.C, J.W.Bamard, D.A.Bomel, J.O.Meredith, F.C.G.Southon, P.Williams, H.E.Duckworth Benenson,W., E­, D.H.Kong, A.Siou, A.Moalem, H.Nann Bindal,P.K., D.H.Youngblood, L.Kozun Bosch,H.E, J.Davidson, M.A.Fariolli, VSilbergleit Burminskii,V.P., B.G.Kiselev, O.D.Kovtigin Bushnell,D.L., D.J.Buss, R.K.Smither Byrski,T., F.A.Beck, P.Engelstein Cardoso,M.H. Charvet,A., R.Chery, R.Duffait Charvet,A., RChety, D.P.Phuoc, R.Duffait Chat-vet,A., R.Chety, P.H.Do, R.Duffteld, M.Morgue Colenbrander,A.H., T.J.Kennett Comfort,J.R., R.W.Finlay, C.M.McKenna, P.T.Debevec Corvi,F., MStefanon De Boer,F.W.N., P.F.A.Goudsmit, P.Koldewijn, B.J.Meyer P.Debenham, W.R.Falk, M.Canty De Boer,F.W.N., P.F.A.Goudsmit, B.J.Meijer, P.Koldewijn, J.Konijn, R.Beetz Dionisio,J.S., CVieu, V.Berg, C.Bourgeois Diksie,M., L.Yaffe, D.G.Sarantites Doukellis,G., CMcKenna, R.Finlay, J.Rappapott, H.J.Kim Emsallem,A., D.P.Huoc, R.Chery, M.Ashgar Ermer,R., W.Delang, P.Gottel, H.H.Guven, B.Hrastnik, O.W.B.Schult, H.Seyfarth Flynn&R., J.D.Garret Friedman,A.M., KKatori, DAlbroght, J.P.Schiffer Gelletly,W., W.R.Kane, D.R.MacKenzie Gilad,S., S.Cochavi, M.A.Moinester, J.Alster, M.Buenard, P.Nartin Glazov,V.M., R.I.Botisova, A.I.Shaviev Goosman,D.R., D.E.Alburger Goverse,S.C., J.Kuiper, J.Blok Greenwood,R.C., C.W.Reich Griffioen,R.D., R.K.Sheline Gtigorev,E.P., A.V.Zolotavin, S.V.Kaminov Gurach,K., A.P.Kabachenko, I.V.Kuznetsov, N.I.Tarantin Hardy,J.C., HSchmeing, W.Benenson, G.M.Crawley, E.Kashy, H.Nann Homshej,P., P.G.Hansen, B.Jonson Hrastnik,B., HSeyfarth, A.M.Hassan, W.Delang, P.Gottel
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 74Hu15 741aOl 74JeOl 74Jo 14 74KaO5 74KeOl
NUIMA CJPHA PRVCA PRVCA ZEPYA NUPAB
121, 307 96 52, 9, 2067 10, 2449 2I 266, 221, 333
74Ke 13 74Ke14 74KiO2 74KnO2 74KuOl 74LeO2 74Ma09 74Me15 74MulO 74Na07 74No02 74No07 740~03 74Prl5 74Ra.A 74RiO3 74Rol1
PRVCA 10, ZEPYA 270, PRVCA 9, PRVCA 9, NUPAB 218, 9, PRVCA PRVCA 9, 19, YAFIA NUPAB 224, 9, PRVCA PRVCA 9, NUIMA 115, NUPAB 230, 38, IANFA P-Bombay PRVCA 9, ZEPYA 266,
74Ro12 74Rol6 74Ro44 74ScO2 74ScO6 74SclP 74Sc26
ZEPYA 266, 123 PRVCA 9, 1801 PRAMC 3, 186 CJPHA 52, 131 ZEPYA 266, 129 10, 296 PRVCA PRLTA 33, 1343
74SeO5 74ToO4 74ToO7 74ViO2 74VoO8
PRLTA ZEPYA PRVCA ZEPYA IANFA
1554 129 767 1467 201 1091 1633 437 437 1848 1168 189 413 2135 10 1978 65
33, 233 268, 289 10. 2550 269, 173 38, 672
74VyOl IANFA
38,
701
74WaO8 PRVCA 74Wi17 PRVCA 74YaO7 JUPSA
9, 1396 10, 2184 37, IO
E.Hueoges, H.Vonach, J.Labctzki ia@lio,R., SCGujrathi. B.L.Tracy, J.KP.Lee Jclley,N.A., K.H.Wilcon, R.B.Weisenmiller, G.J.Wozniak, J.Cemy Jolivette,P.L., J.D.Goss, G.L.Marolt, A.A.Rollefson, C.P.Bmwoe Kaffrell,N., N.Trautmann, R.Denig Kem,J., G.Maumn, BMichaud, K.Schreckenbach, T.von Egidy, WMampe, H.R.Koch, H.A.Baader, D.Breitig, U.Gruber Kem,J., D.Duc Keinonen.J., A.Anttila, M.Bister KimJ., R.L.Robinson KnightJ.D., C.J.&th, W.T.Lekmd, A.B.Tucker Kumabe.1.. SMatsuki, S.Nakamura, M.Hyakutake, MMatoba, T&to Le Beyec,Y., M.Lefort, J.Livet, N.T.Porile, A.Siivola R.G.Markham, H.W,Fulbright Mctskvarishvili,R.J., Z.N.Miminoshvili, M.A.Eliabarashvili Miinnich,F., D.Lode, H.Schrader, A.Hoglund, W.Pessara Nann,H., W.Benenson, E.Kashy, P.Turek Nomura,T., K.Hiruta, M.Yoshie, O.Hashimoto Nolen,Jr.,J.A., G.Hamilton, E­, D.Proctor Oelen,W., G.Lindstrom, V.Riech Prokofev,P.T., L.I.Simonov Rao,C.N., B.M.Rao, P.M.Rao, K.V.Reddy Rimawi,K., J.B.Garg, R.E.Chrien, G.W.Cole, O.A.Wassou Roe&E., D.Lode, K.Backman, B.Neidhart, G.K.Wolt, W.Lauppe, N.Kaffreli, P.Patzelt Roe&E., D.Lode, W.Pessar Robertson,R.G.H., S.M.Austin Roy,A., K.V.K.Iyengar, M.L.Jhingan, SKBhattachejee Schulte,R.L., J.D.King, W.Taylor Schupferling,H.M., K.-W.Hoffmann Schmidt-Ott,W.D., K.S.Tcth, E.Newman, C.R.Bingham Scott,D.K., B.G.Harwy, D.L.Hendrie, L.Krauss, C.F.Maguire, J.Mahoney, Y.Terricn, K.Yagi Seth,K.K.. A&ha, W.Benenson, W.A.Langford, H.Nann, B.H.Wiiden~~ ToIea,F., K.R.Baker, W.D.Schmidt-Ott, R.W.Fink Toth,K.S., C.R.Bingham, W.D.Schmidt-Gtt Viitasalo,M., LForsblom Votsilka,I., K.U.Zibert, B.Kracik, J.Liptak, A.F.Novgorodov, K.G.Ortlepp, M.Toshev, V.Habenicht Vylov,Ts., N.A.Golovkov, K.Y.Gromov, I.I.Gromova, A.Kolachkovsky, M.Y.Kuznetsova, Y.V.Norseev, V.G.Chumin Wang,C.W., Y.C.Liu, E.K.Lin, C.C.Hsu, G.C.Kiang Wildenthal,B.H., J.A.Rice, B.M.Preedom Y~amoto,H., K&wade, H.Fukaya, T.Katoh 1975
75Ad08 IANFA 75Ad09 75AbOl 75AhO5 75Al.A 7541107
75Ba.B 75Ba25 7SBa65 75Be.A 75Be.B 75BeO9 75Be21 75Be28 7sBc3a
39, 1681 Adam,I., G.Baier, K.Y.Gromov, T.A.Islamov, K.G.Ortlepp, K.Timff, E.Henmann, H.Strusnii NUPAB 254, 63 Adam,I., K.Y.Gromov NUPAB 239, I Ahmad.I., J.Milstcd PRVCA 12, 541 Ahmad,L, F.T.Porter, M.S.Freedman, R.K.Sjoblom, J.Lemer, R.F.Bames, J.Milsted, P.R.Fields P-Leningrad Aleksmdrw,A.A., et af NUPAB 242, 93 Anderson,R.E., R.L.Bunting, J.D.Burch, S.R.Chinn, J.J.Kraushaar, R.J.Petemon, D.E.Pndl, B.W.Ridley, R.A.Ristinen AnRpt CSN Orsay Bastin,G., C.F.Liang YAFIA 21, 230 Baranov,S.A., V.M.Shatinskii, L.V.Chistyakov, V.MShubko YAFIA 22, 670 Baranov,S.A., V.M.Shatinskii AnRpt Oak Rid& Bemis,Jr.,C.E., P.F.Dittner, R.J.Silva, D.C.Hensley, R.L.Hahn, J.R.Tamant, L.D.Hunt, and PrvCom AHW July 1981 P-Paris 54 Bertwhe,U., ERauch, K.Stelzer ZENAA 30, 356 Bechara,M.J., O.Dietsch NUPAB 245, 515 Behrens,H., M.Kobelt, L.Szybisz, W.G.Thies NUPAB 246, 317 Behrens,H., M.Kobelt, L.Saybisz, W.G.Thies PYLBB 58, 46 Beoenson,W., A.Guilchard, E­, D.Mueller, H.Nann, L.W.Robinson
363
75BhOI 7SBo29 ?JBrOZ 75Br16 758129 7JBuOl 75Bu02 75CaO6 7SCh05 7SCh21 75Co.A 7SDe.A 7SEr.A 75FlO7 f5Fr.A 75Fr.B 75Gh.A
PRVCA 12, 1457 ZPAAD 273, 373 PRVCA 11, 546 NUPAB 245, 243 NClAA 30, 483 PRVCA 11, 1401 CJPHA 53, 94x NUPAB 241, 341 NUPAB 238, 333 JPHGB 1, 657 AnRpt CSN Orsay P-P&en 609 PNCom NDG Jul ZPAAD 272, 219 P-Paris 126 AnRpt API 146 LBL-4000
75Gr32 NUFAB 252, 260 75H%43 ZPAAD 274* 335 75He.C KFK-2223 7SHo14 75Ja03 75Ka15 79Ka18 7SKa25 75Ke08 75Ke09 75Ke12 75KlO6 7SKo18 75Ku14 75La02 75Li14 75Li22 7SLoO3 75LuO2
NUPAB PRVCA JUPSA PRVCA PRVCA PRVCA ZPAAD NUPAB NUPAB PRVCA NUPAB JINCA JUPSA NUPAB NUPAB PRVCA
248, 11, 38, II, 12, 12, 214, 255. 245, 12, 247. 37, 39, 253, 243, 11,
75Ma.A P-Petten 75Ma04 NUPAB
237,
75Ma05 75Me13 7SMe20 7SMet3 7SMu09 75Na.A 7SNo.A 75P106 73RaCI7 7SRaO8 75RaO9 7SReO9 75RoO5 75RoI6 lSScO7 7SSe.A 7JSiO3 75Sl.A 75Sm02 75SqOl 7JSt07
11, 587 58, 297 275, 67 12, 2010 12, 51 566 140 26, 379 242, 189 i, 461 Il. 173s 249; 166 240, 221 246, 380 242, 232 20, 73 53, 391 20, 560 11, 1392 242, 62 242, 30
PRVCA PYLBB ZPAAD PRVCA PRVCA P-Petten P-Paris IJARA NUPAB JPHGB PRVCA NUPAE NUPAB NUPAB NUPAB BAPSA CJPHA BAPSA PRVCA NUPAB NUPAB
7SStOS CJPHA 75St12 CZYPA
53, 25,
406 1323 314 1959 1054 353 233 296 133 is11 152 623
I 16s 413 1470 655 285
922 626
Blta:,M.R., R.E.Chrien, G.W.Cole, G.A.Wasson Bosch,H.E., IDavidson, V.Silber~eit, C.A.Heras, S.M.Abecassis Breitig,D., R.ECasten, W.R.Kane, G.W.Cole, J.A.Cizewski Brosi,A.R., B.H.Ketelle Brondi,A.. R.Moro. P.Pelter. F.Terassi Bushneil,D.L., J.Hawkins, R;Goebben, RKSmither DOBurke. J.M.Balogh erratum CJPHA 63(1985)649 Cabot,C., C.Deprun, H.Gauvin, BLagarde, Y.Le Beyec, MLefort Charvet,A., R.Chery, R.Duffait, M.Morgue Chapman,R., G.D.Dtacoulis Collaboration CSNSM-IPN-Marbourg-Stockholm-Va~~ie De Boer,J. Erskine,J.R. Flathman,D., H.J.Gils, W.Wiesner, RLoehken Freeman,J.M., R.J.Petty, SHHoath, J.S.Ryder, W.E.Burcham, G.T.A.Squier KFransson, M.af Ugglas, P.Carle Ghiono,A., E.K.Hulet, J.M.Ni~~hke, J.R.Alonso, R.W.Lougheed C.T.Alonso, M.N~ia, G.T.Seaborg ~r~n~~,R.C., C.W.Reich. S.H.Vegors,Jr. Hansen,H.H., D.Mouchet Heck,D., J.A.Pinston, H.B(imer, F,Braumandl, P.Jeuch, H.R.Ko& W.Mampe, RRousiIle, ~~&r~k~n~ch Homshoj,P., P.Tidemand-Petersson, RKaczamwski, B.Kotlinska Jackson,S.V., W.B.Waiten, R.A.Meyer K.awade,K., H.Yamamoto, Y.Ikeda, TKatoh Kashy,E., W.Benenson, D.Mueller, R.G.H.Robertson, D.R.Goosman Kaiser,D., W.H.Johnson,Jr. Kennedy,G.G., S.C.Gujrathi, SKMark Kennedy,G.G., S.C.Gujrathi, S.K.Mark Kent,J.J., S.L.Blatt Klapdor,H.V., MSchrader, GBergdolt, A.MBergdolt Kouzes,R., W.H.Moore erratum PRVCA 13,890 KubfeId,.A,W., N.M.Hintz Labreque,J.J., I.L.Preisa, HBakhru. R.LMorse Lit&Y., T.H.Hsue, KLin, P.K.Taeng, C.C.Hsu, C.W.Wang Lien,J.R., JSVaagen, A.Graue Lone,M.A., E.D.Earle, G.A.Bartholemew Lueders,D.H., J.M.Daley, S.G.Buccino, F.E.Durham, C.E.HolIandsworth, W.P.Bucher, H.D.Jones Matusek,P. MacPhail,M.R., R.G.Summers-Gill, see also thesis Winnipeg, and PrvCom AHW September 1980 Matthews,G.J., F.M.Bemthal, J.D.Immele Medsker,L.R., H.T.Fortune Meijer,B.J., J.Konijn Meyer&A., R.G.Lanier, J.T.Iarsen Mueller,D., EKashy, W.Benenson, H.Nann Najam,M.R., A.F.M.Ishaq, M.Anwar, A.M.Khan, J.A.Mirza No1en.J. PIch,J., J.Zderadicka. 0,Dragoun ~~nstein,D., D.Harrach Rao,C.N., B.M.Rao, P.M.Rao, K.V,Reddy see 75RaO9 Rao,C.N., B.M.Rao. K.V.Reddy Rei?er,W., W.HBreunlich, PHiBe Rolfs.C., W.S.Rodney, S.Durrance, HWinkler Rcusille,R., J.kPinston, H.B&ner, H.R.Koch, D.Heck Schmeing,H., J.C.Hardy, R.L.Graham, J.S.Geiger Serduke,F.J,D., W.Henning Situ&B., M.W.Johns Slaughter,G.G., SRaman Smith,L.G,, A.H.Wapstra Squier,G.T.A., W.E.Burcham, J.M.Freedman, R.J.Petty, S.D.Hoatb, JSRyder HStrusny, H.Tyrroff, E.Herrmann, G,Musiol, M.I.Baznat, G.Beyer. K.Y.Gromov, M.Honusek, T.A.Islamov, V.V.Kuznetsov, H.-U.Siebeti WRStott, J.C.Waddington, D.G.Burke, G.Ltirvh@iden Strusny,H., I-LTyrroff, E.Hemnann, G.Mw.iol
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 75Ta06 ZPAAD
272.
75Ta12 PRVCA 75ThO4 NUPAB 75ThO8 PRVCA
12, 242, 12,
12, 75To05 PRVCA 75Un.A P-Paris 75Va.A P-Leningrad 75Val2 ZPAAD 75Va24 PHFFA 75VyO2 IANFA 75We.A 75We03 75WelO 75We23 75We24 75WiO6 75WiO8 75Wi26 75Ze.A
274, 10, 39,
P-Petten CJPHA 53, PHSTB 11, ZPAAD 275, PHFFA 10, PRVCA 11, ZPAAD 272, PYLBB 59, JINRP6-8929
301 Tzmg,C.W., A.Pakkanen, Z.C.Mester, C.D.Coryell, G.Chilosi, A.H.Wapstra, K.Bos 108 T&tar&H., H.L.Sharma, N.M.Hintz 1 Thompson,R.C., J.S.Boyno, J.R.Huizenga, D.G.Burke, T.W.Elze 644 Thibault,C., R.Klapisch, CRigaud, A.M.Poskanzer, R.Prieels, L.Lessard, W.Reisdorf 533 Toth,RS., W.D.Schmidt-Gtt, C.R.Bingham, M.A.Ijaz 81 UNISOR consortium 156 Vachte,V.M., N.A.Golovkov, B.S.Dzelepov, R.B.lvanov, A.Lyushenski, M.A.Michailova, A.B.Mozhuchin, B.G.Shumin 383 Van Hise,J.R., D.C.Camp, R.A.Meyer 133 Vaisa1a.S.. T.Raunemaa, A.Fontell, G.Graeffe, A.Siivola 1671 Vylov,Ts., I.I.Gmmova, V.G.Kalinnikov, V.Kuznetsov, T.M.Muminov, V.A.Morozov, V.I.Fomiaikb, R.R.Uzmanov, E.R.Shavguli&e 749 Weitkamp,C., P.Matusek, H.Ottmar 101 Weiffenbach,C., S.C.Gujrathi, J.K.P.Lee 10 Westrom,T., B.Fant, LForsblom, M.Viitasalo 127 L.Westgaard, KAleklett, G.Nyman, E.Roeckl 167 Weckstrom,T., LFonblom, P.Holmberg 1477 Wilson,W.M., G.E.Thomas, H.E.Jackson 291 Wirth,G., NKaffrell, K.Chayawattanan&ur, G.Hemnann, K.E.Seyb 142 K.H.Wilcon, R.B.Weisenmiller, G.J.Wozniak, N.A.Jelley, D.Ashexy, J.Cemy Zelinsky,A., K.Zuber, Y.Zuber, V.V.Kuznetsov, A.Kolachkovsky, A.Lyatushinsky, Y.V.Norseev, H.G.Ortlepp, LPenev, A.V.Potempa 1976
76AjO3 76AlOl 76Al16 76Ba.A 76B899 76Be.B 76Be02 76Be08 76Bell
PRVCA 14, NUPAB 257, NUIMA 136, P-Cargese AENGA 41, AnRpt MSUCL NUPAB 256, PRVCA 13, NUPAB 260,
768109 PRVCA
761 490 323 106 342 11 87 1479 269
14, 1586
76CalO 76Ca24 76Ca25 76Ch02 76Cr.B 76CrO3 76Da.C
NUPAB 261, 445 PRVCA 14, 1439 PRVCA 14, 912 PRVCA 13, 578 JINRP6-9711 PYLBB 64, 143 P-Carge% 100
76Da20 76Dil5 76E112 76FlO2 76Fr13 76Ga.~ 760~02 76Ge06 76Ge08 76Ge14 76Go02
PRVCA NUIMA CJPHA PRVCA NUIMA P-B& PRVCA NUIMA NUPAB PRVCA PRVCA
14, 2011 139, 181 54, 1493 13, 568 134, 153 13, 1434 134, 309 267, 13 14, 1896 13, 1601
76Gr.A P-Cargese 76611)9 NUPAB 270,
428 29
Ajrenberg-Selove,F., E.R.Flynn, O.Hansen, J.D.Sherman, N.Stem, J.W.Sunier Aleonard,M.M, P.Hutwt, L.Sarger, P.Mennrath Alburge1,D.E. Batsch,T., M.Nowicki, J.iylicz S.A.Baranov, et al F.M.Bemthal Berenyi,D., G.Hock, A.Menes, G.Szekely, Cs.Ujhelyi, B.A.Zon Benenson,W., A.Guichard, E­, D.Mueller, H.Nann Beyer,G., A.Jasinski, O.Knotek, H.G.Ortlepp, H.U.Siebert, R.Aelt, E.Herrmann, G.Musiol, H.Tyrmff C.R.Bingham, L.L.Riedinger, F.E.Tumer, B.D.Ke.m, J.L.Weil, K.J.Hofstetter, J.Lin, E.F.Zganjar, A.V.Ramayya, J.H.Hamilton, J.L.Wood, G.M.Gowdy, R.W.Fii, E.H.Spejewski, W.D.Schmidt-Gtt, R.L.Mlekodaj, H.K.Carter, K.S.R.Sastry Casten,R.F., D.Burke, O.Hansen Carlton,R.F., SRaman, J.A.Harvey, G.G.Slaughter Casten,R.F., W.R.Kane, J.R.Erskine, A.M.Friedman, D.S.Gale Chrien,R.E, G.W.Cole, G.C.Slaughter, J.A.Harvey Cretzu,T., V.V.Kuznetsov, G.Luzurej, G.Macarie, M.Finger Crawley,G.M., W.F.Steele, J.N.Bishop, P.A.Smith, S.Maripuu D’Auria,J.M., J.W.Griiter, L.Westgwd, G.Nyman, P.Peuser, E.Roeckl, HOtto, ISOLDE Daehnick,W.W., M.M.Spis&, R.M.Del Vecchio Dionisio,J.S., C.Vieu, C.M.Tmong, G.Leur Elmore,D., W.P.Alford Flyon,E.R., J.D.Shennan, N.Stein, D.K.Olsen, P.J.Riley Freeman,J.M. M.Gasior, B.G.Kalinnikov, T.Kretsu Gelle.tly,W., W.R.Kane, R.F.Casten Genr,H., J.Reisberg, A.Richter, B.M.Schmitz, G.Schrieder, K.Wemer Genz,H., A.Richter, B.M.Schmitz, H.Behrens Gehrke,R.J., R.G.Helmer, C.W.Reich, R.A.Anderl Gowdy,G.M., A.C.Xenoulis, J.L.Wood, K.R.Baker, R.W.Fink, J.L.Weil, B.D.Kem, K.J.Hofstetter, E.H.Spejewski, R.L.Mlekodaj, H.K.Caner, W.D.Schmidt-Gtt, J.Lin, C.B.Ringham, L.L.Riediiger, E.F.Zganjar, K.S.Sastry, A.V.Ramayya, J.H.Hamilton Griiter,J.W., B.Jonson, O.B.Nielsen Greenwood,R.C., R.J.Gehrke, R.G.Helmer, C.W.Reich, J.D.Baker
365
G. Audi et al. i The 1993 atomic mzss evaluation(fv)
366 76Gr19 PHSTB 76Gr20 APOBB
14, 7,
263 507
76Ha29 PYLBB
63,
27
278, 183 14, 645 17, 287 54, 1360 37, 130
76Ha36 76Ha39 76He.B 76Hi08 76HilO
ZPMD PRVCA NDSAA CJPHA PRLTA
76HiI4 76Jo.A 76JoOI 76Ka19 76Ka24 76Ki12 76LuO4 XMa03 76Ma16 76Ma35 76Na23 76NuOl 76PiO4 76Pi13
JPHGB P-Cargese PRVCA NUPAB PRVCA NUPAB NUfMA PRVCA PRVCA FRY&A PRVCA PRVCA NUPAB NUPAB
13, 266, 14, 272, 134, 13, J3, 14, 14, 13, 264, 270,
76Ra33 76Ra37 76Ro04 765~13 76Sb24
CUSCA ZPAAD PRVCA NUPAB NUIMA
45, 606 279, 301 13, 1018 263, 193 135, 583
765106 76Str1 76Su,A 76Su.B 76ToO6
NIJFAB NUPAB BAPSA BAPSA PYLBB
274, 266, 21, 21, 63,
93 424 658 984 150
76TrOI 76Tfl3 76Tu.A 7tiVi.A 76ViOt
PRVCA 13, PYLBB 61, Th.-Berkeley P-Cargese PYLBB 60,
50 353
2.
LL43 217 439 346 1773 381 173 118 If17 If41 2338 2017 1 61
462 261
T.Gmtda$ L.G&dberg, KNybrt, T.F.Thorsteinseu Gromov,K.Y., D.T.Dzelev, K.Zuber, Y.Zuber, T.A.Islamov, V.V.K~~et~ov, H.G.OrtIepp, A.V.Potempa Hardy,J.C., J.A.Macdonald, H.Schmeing, T.Faestermann, H.R.Andrews, J&Geiger, R.L.Graham, K.P.Jaekson Hanl,W., J.W.Hammer Haustein,P.E., E.M.Franz, S.Katco& N.A.Morcos, H.A.Smith,Jr., T.E.Ward Henry,E.A. Biming,C.R., D.G.Burke Rickey,G.T., D.C.Weisser, J.Cemy, G.M.Crawley, A.F.Zelfer, T.R.OpheI, D.F.Hebbard 1sickev.G.T.. G.M.Crawlev. D.C.Weher. N.Shikazono JonsoniB., E%agberg, P.&Hansen, P,H&nshej Jolivette,P.L., J.D.Goss, J.A.Bieszk, R.D.Hichwa, C.P.Browne Kametmans,R., H,W.Jongsma, TJ,Ketel, R.van der Wey, H.Verheul Kashy,E., W.Benenson, D.Mueller, W.Nann, L.Robinson Kimura.K., N.Takagi, M.Tanaka Luad.E., G.Rudstam Mat&,J.F., G.F.Nea& .LD.Gcss, P.R.Cha~a, C.P.Browne Martin,D.J., M.R.M~Pha~~ Mann,L.G., W.B.~~alte~, R.AMeyer Naao,H., D.Mudler. A.Saba, E­ Nuonely,L.L., W.Loveland Pinston,J.A., R.Rousille, H.BBmer, H.R.Koch Pinston,J.A., R.Rousille, H.BGmer, W.F.Davidson, PJeuch, H.R.Koch, K.Schreckonbach Ramania,K.V., G.K.Raju, K.V.Reddy Raich,D.G.. H.R.Bowman, R.E.Epply, J.O.Rasmussen, J.Rezanka Robertson,R.G.H., W.Benenson, E­, D.Mueller Schrader,M.. H.Reiss, G.Rosner, H.V.Kiapdor Sharpey-Schafer,J.F., A.M.Al Naser, A.H.Behbehani, L.L.Green, A.N.James, C.Lister, P.J.NoIan Slater,D.N,, WBooth Steele,W.F., P.A.Smitb, J.E.Fiock, GXCrawley Sugarbaker,E., W.S.Gray S~~aker,E., W.S.Gray Toth,K.S., M.A.Ijaz, J.Lin. E.L.Robinson, B.O.Hannah, E.H.Spejewski, J.D,Cole, J.H.Hamiiton, A.V.Ramayya Tribble,R.E., R.A.Kenefick, R.L.Spross Tribble,R.E., J.D.Cossairt, R.A.Kenefick Tuggle,D.G. Vie&., JSDionisio, V.Berg, C.Bourgeois Vieira,D.J., D.F.Shennan, M.S.Zisman, R.A.Gou@, 3.Cemy 1977
77AlO9 NIJPAB ??A117 NUPAB 77Ba10 CJPHA
281, 285, 55,
77Bat6 77Ba33 ?%a69 77BeOQ 77Be13 77Be36
NUPAB IANFA YAFIA PRVCA PRVCA PRYCA
279, 199 41, to1 26, 461 15, 70s 15, 1187 16, 1146
77Bh03 77Bo.A 77Bo28 77Bo31
ZPAAD 281, 65 PrvCom AHW Qct PYLBB 71, 67 IANFA 41, 1149
778032
1ANFA
77CaO9 PRVCA 77Ca23 ZPAAD
213
1 200
41, 1189 15. 283,
883 221
AleWett,K., E.Lund, G.Nyman, G.Rudstam Aieklett,K., E.Lund, G.Nyman, G.Rudstam Bamard,J.W., P.Williams, R.C.Barbet. S.S.Hague, K.S.Kozier, K.K.Sharma, H.E,Duckwonh Barkor,P.H., R.E.Whire, H.Naylor, N.&Wyatt Earchuk,f.F., G,V.Belykh, V.I.Goiysh~n, A.F.Ogomdnik, M.M.Tu~h~ski Baranov,S.A., V.M.SbatioB~~ C.E.Bemis,Jr., R.L.Ferguso& F.PlasiI, R.J.Silva, FPleasaoton, R.L.Hahn Beoensoo,W., D.Muelier, E.Ka$hy, W.Nann, L.W.Robinson Bemis,Jr.,C.E., P.F.Dittner, R.J.SiIva, R.L.Hahn, J.R.Taraut, L.D.Hunt, D.C.Hensley Bhatia,T.S., H.Hafner, R.Haupt, R.Maschuw, G.J.Wagner Bom,V.R., D.De Bruin Bogdanov,D.D., LVombil, A.V.Demianov, L.A.Petrov Bench-Osmolovskaya,N.A., V.M.Gorodzankin, K.Y.Gromov, T.Kretsu, V.V,Kuznetsov, G.Makarie, A.S.Khamidov, M.Yatiski Bogdan,B., M.Gasior, T.Kfersu, V.V.Kuznetsov, N.A.Lebedev, G.I.Lizurei, G.Makarie, D.G.Popesku, A.S.Khamidov Carlton,R.F., SRaman. G.G.Slaughter Cabot,C., S.DelIa Negra, C.Depntn, H.Gawin, Yk Beyee
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 77CoO8 77cm5 77De06 77De25 77De32 77Dr07 77Em02 77ErO2 77FlO3 77FoO2 77FoO9 77Fr20 77Ga.A 77Gu02 77Ha32 77Ha48 77He26 77Ho02 77Ho09 77Ho18 77IjOl 771~01 77JeO3 77JoO3 77KaO8 77KeO3 77Ko.A 77Ko.B 77KoO4 77Ko I 5 77Kr.A 77Li14 77Li16 77LuO6 77Ma12 77Ma24 77McO5 77Mc09 77Me04 77Mi.A 77Mo13 77Mu03 77Na17 77Na24 77No08 77NuOl 77PaOl 77Pa13 77Pa18 77Pm7 77RaO8 77Ra17 77Ra18 77Re12 77Re.A 77ScO3 77Sc21 77Sh04
15, 1685 Cossaitt,J.D., R.E.Ttibble, R.A.Kenefick 41, 2032 Cretsu,T., G.Makarie, A.V.Potempa, E.Senyavski S.K.Mark 15, 800 Deslauriers,J., SCGujrathi, 33 Deslautiers,J., S.C.Gujrathi, S.K.Mark 283, 38, 393 Della Negra,S., B.Lagarde, Y.Le Beyec 42, 314 Drozhinin,A.A., V.K.Grigorev, A.A.Lbov, S.P.Vesnovskii, N.G.Krylov, V.N.Polynov NUPAB 293, 379 Emigh,R.A., R.E.Andenon 79 Erlattdson,B., J.Lyttkens ZPAAD 280, PRVCA 15, 879 Flyon,E.R., J.W.Sunier, F.Ajzenberg-Selove 89 Fogelberg,B., W.Maup ZPAAD 281, PYLBB 70, 408 Fottune,H.T., R.Middleton, M.E.Cobum, G.E.Moore, S.Mordechai, R.V.Kollarils, H.Nattn, WChuttg, B.H.Wildenthal H.Lorenz-Wirba, B.Cleff, H.P.Trautvetter, CRolfs ZPAAD 281, 211 F&T., Gasser,M., J.Kem IPF-SP-008 PRVCA 15, 894 Guilbault,P., D.Ardouin, R.Tamisier, P.Avignon, M.Vergoes, G.Rotbard, G.Bertier PRVCA 16, 1559 Haustein,P.E., E.M.Franz, R.F.Petry, J.C.HiII NUPAB 293, I Hagberg,E., P.G.Hansen, J.C.Hardy, P.Homsh@j, B.Jonson, S.Mattson, P.Tidemand-Petenson NUIMA 147, 425 Heggie,J.C.P., Z.E.Zwitkowski 1 HoUas,C.L., K.A.Aniol, D.W.Gebbie, M.Bo~Iu, J.Nurzinski, L.O.Barbopoulos NUPAB 276, JUPSA 42, 1098 Hoshi,M., M.Fujiwam, Y.Yoshisama PRLTA 39, 537 Homshej,P., H.L.Nielwt, N.Rud PRVCA 15, 2251 M.A.ljaz, C.R.Bingham, H.K.Carter, E.L.Robinson, K.S.Toth ZPAAD 281, 365 Ishaq,A.F.M., S.Robertson, W.V.Prestwich, T.J.Kenttett PRVCA 15, 1972 Jensen,C.M., W.R.G.Lanier, G.L.Stnrble, L.G.Mann, S.G.Prussin PRVCA 15, 915 Johnson,C.H., J.K.Bair, C.M.Jottes NUPAB 279, 269 Kawade,K., H.Yamamoto, Y.Ikeda, V.N.Bhoraskar, T.Katoh PRVCA 15, 792 Kennedy,G., J.Deslauriers, SCGujrathi, S.K.Mark PrvCom AHW Feb Koene,B.K., R.E.Chrien, M.Yachim 65 Kozlowski,T., T.Komtitski, Y.Lushtshnski, A.Yasinski P-Tashkent PRVCA 15, 1947 Kolata,J.J., M.Oothoudt PRVCA 16, 588 Koene,B.K.S., R.E.Chrien Kretsu,T., V.V.Kuznetsov, G.Luzurej, Chan Chen MO, V.M.Gomdzankin, JINRP6-10748 G.Makarie NUPAB 286, 263 Liptak,J., K.Kristiakova, J.Kristiak PHSTB 15, 205 Lingemao,E. NUPAB 286, 403 Luttd,E., K.Ak!dett, G.Rudstam PRVCA 15, 1708 Mateja,J.F., C.P.Bmwne NUPAB 288, I Macdonald,J.A., J.C.Hardy, H.Schmeing, T.Faestermann, H.R.Andrews, J.S.Geiger, R.L.Graham, K.P.Jackson NUPAB 281, 325 McDonald,A.B., E.D.Earle, M.A.Lone, F.C.Kbanna, H.C.Lee PRVCA 16, 1278 McClure,D.A., S.Raman, G.C.Slaughter PRVCA 15, 649 Medsker,L.R., L.H.Fry,Jr., J.L.Yntema Mirkiditsian,M. KFK-2438 36 MordechaiS, M.E.Cobum, G.E.Moore, H.T.Forttme NUPAB 289, PRVCA 15, 1282 Mueller,D., E.Kashy, W.Benenson PRVCA 16, 1566 Nathan,A.M., D.E.Albwger, J.W.Olttess, E.K.Warbutton NUIMA 144, 331 Naylor,H., R.E.White PYLBB 71, 314 Nolen,J.A., T.S.Bhatia, H.Hafner, P.DolJ, C.A.Wiedner, G.J.Wagoer PRVCA 15, 444 Nunnely,L.L., W.D.Loveland PRVCA 15, 730 L.A.Parks, C.N.Davids, R.C.Pardo IS, 1811 R.C.Pardo, C.N.Davids, M.J.Murphy, E.B.Norman, L.A.Parks PRVCA PRVCA 16, 370 R.C.Pardo, C.N.Davids, M.J.Murphy, E.B.Norman, L.A.Parks PRVCA 16, 1001 Pmssin,S.G., R.G.Lanier, G.L.Sttuble, L.G.Mann, S.M.Schoenung 41 Ramaniah,K.V., G.R.Raju, K.V.Reddy IJOPA 15, JPHGB 3, 637 Venkata Ramaniahah, G.Kusa Raju, K.Venkata Reddy JPHGB 3, 633 Vettkata Ramaniahah, K.Venkata Reddy 95 Reddy,T.S., R.Matthews, K.V.Reddy CUSCA 46, Th.-Montreal Rehfield,D.M. DABBB 38,4874(1978) PYLBB 66, 133 Schmidt,A.G, R.L.Mlekodaj, E.L.Robinson, F.T.Avigoone,III, J.Lin, G.M.Gowdy, J.L.Wocd, R.W.Fink 43 Schussler,F., J.Blachot, E.Monnand, J.A.Pinston, B.Pfeiffer, K.Hawerkamp, ZPAAD 283, RStippler CJPHA 55, 506 Sharma,S.H., K.S.Kozier, J.W.Bamard, R.C.Barber, S.S.Haque, H.E.Duckworth PRVCA IANFA PRVCA ZPAAD JPSLB AENGA
361
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
368 77Sh06 PRVCA 77Sh08 PYLBB 77Shl2 CJPHA 77SoO2 77St I5 77St22 77TrO3 77TrO5 77Tr07 77TuOl 77VoO2
CJPHA PRVCA CJPHA PRVCA PRVCA PRVCA ZPAAD NUPAB
77VyO2 IANFA 77Wh03 AUJPA 77Ya07 JUPSA
15, 903 Shennan,J.D., D.L.Hendrie, M.S.Zisman 67, 275 Sherman,J.D., E.R.Rynn, O.Hansen, N.Slein, J.W.Sunier 55, 1360 Sharma,K.S., J.O.Meredith, R.C.Barber, K.S.Kozier, S.S.Hague, J.W.Bamard, F.C.G.Southon, P.Williams, H.E.Duckworth 55, 383 Southon,F.C.G., J.O.Meredith, R.C.Barber, H.E.Duckworth 16, 574 Stelts,M.L., J.C.Browne 55, 1687 Straume,O., D.G.Burke IS, 2028 Tribble,R.E., J.D.Cossairt, R.A.Kenefick 16, 917 Tribble,R.E., J.D.Cossain, D.P.May, R.A.Kenefick 16, 1835 Tribble,R.E., J.D.Cossairt, D.P.May, R.A.Kenetick 280, 309 TuumaJa,T., KKatajanheimo, E.Hammaren 278, 189 Vonach,H., P.Glass, E.Huenges, P.Maier-Komor, H.Reoser, H.J.Scheerer, H.Paul, D.Semrad 41, 1634 Vylov,Ts., N.A.Golovkov, B.S.Dzelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.Norseev, V.G.Shumin 30, 365 White,R.E., H.Naylor 8 Yamamoto,H., K&wade, K.Ikeda, T.Katoh 43, 1978
78AjOl 78A118 78A129 78AnlO 78An14
PRVCA PRVCA PRVCA NUPAB PHSTB
17, 960 18, 462 18, 2727 303, 154 18, 165
78Ar12 PRVCA
18, 1201
78As06 78AzOl 78Ba.C 78Ba44 78Be09
ZPAAD 288, 45 PRVCA 17, 443 P-Alma Ata 123 PRLTA 41, 738 PRVCA 17, 529
78Be22 ZPAAD 78Be26 PRVCA 78Bh02 PYLBB 78Bo.A 78Bo20 78Bu18 78Call 78Ch22 78Co.A 78002 78Da04 78Da07
285, 405 17, 1939 76, 562
P-Alma Ata 54 NUPAB 303, 145 PRVCA 18, 693 ZPAAD 287, 71 MTRGA 14, 157 AnRpt Texas A&M IANFA 42, 56 PRVCA 17, 1815 NUPAB 301, 397
78Do06 ZPAAD
286,
107
78Elll 78GeOl 78GrlO 78Gr13
PRVCA NUPAB NUPAB YAFIA
18, 2713 295, 221 303, 265 27, 1421
78Gu14 78Hall 78Hu06 78Ik03 78Ja06
ZPAAD NUPAB CJPHA JUPSA JPHGB
287, 296, 56, 45, 4,
271 251 936 725 579
78KalO JUPSA 78Ka12 PRVCA 78KeO6 PRVCA
44, 25 17, 1555 17, 1929
78KelO PRVCA
18, 1938
Ajzenberg-Selove,F., E.R.Flynn, J.W.Sunier, D.L.Hanson AlekIett,K., E.Lund, G.Rudstam Alburger,D.E., SMordechai, H.T.Fortune, R.Middleton Anio/K.A, D.W.Gebbie, C.L.Hollas, J.Nurrinski Andersson,G., M.Ashgar, A.Emsallem, E.Hagberg, B.Jonson, P.Tidemand-Petenson Ardouin,D., C.Lebmn, F.Guilbault, B.Remand, E.R.Flynn, D.L.Hanson, S.D.Orbesen, M.N.Vergnes, G.Rotbard, K.Kumar Ashgar,M., A.Emsallem, E.Hagberg, B.Jonson, P.Tidemand-Petersson Azuelos,G., G.V.Rao, P.Taras Baranov,S.A., V.M.Shatinskii, L.V.Chistyakov, N.I.Aleshin Baisden,P.A., R.E.Leber, M.Nurmia, J.M.Nitschke, M.Michel, A.Ghiorso G.Benier-Ronsin, M.Vergnes, G.Rotbard, J.Vemotte, J.Kalifa, R.Seltz, H.L.Sharma Benson,Jr.,D., P.Kleinheinz, R.K.Sheline, E.B.Shera Benenson,W., EKashy, A.G.Ledebuhr, R.C.Pardo, R.G.H.Robertson, L.W.Robinson Bhatia,T.S., H.Hafner, J.A.Nolea,Jr., WSaathoff, R.Schuhmacher, R.E.Tribble, G.J.Wagner, C.A.Wiedner Bogdanov,D.D., LBobordzil, A.V.Demianov, L.A.Petrov Bogdanov,D.D., A.V.Demyanov, V.A.Kamaukhov, L.A.Petrov, J.Vorobil D.G.Burke, G.LBvheiden, E.R.Flynn, J.W.Sunier Cabot,C., S.Della Negra, C.Depnm, H.Gauvin, Y.Le Beyec Christmas,P., P.Cross J.D.Cossairt, D.P.May Cretzu,T., V.V.Kuznetsov, G.Luzurej, V.M.Gorodzankin, G.Macarie C.N.Davids, D.F.Geesaman, S.L.Tabor, M.J.Murphy, E.B.Nonnan, R.C.Pardo D’Auria,J.M., J.W.Griiter, E.Hagberg, P.G.Hansen, J.C.Hardy, P.Homshoj, B.Jonson, SMattson, H.L.Ravn, P.Tidemand-Peterson Do,P.H., R.Chery, H.G.B(imer, W.F.Davidson, J.A.Pinston, R.Rousille, KSchreckenbach, H.R.Koch, H.Seyfarth, D.Heck Ellis,Y.A., K.S.Toth, H.K.Caner Gemer,C.P., J.Van Pelt, O.W.De Ridder, J.Blok Griffin,H.C., LAbmad, A.M.Friedman, L.E.Glendenin Gromova,I.I., T.Kretsu, V.V.Kuznetsov, G.I.Lizurei, N.A.Lebedev, V.M.Gorozhaokin, G.Macarie GUV~II,H.H,, B.ffirdon, H.Seyfarth Hayakama,S.L, I.R.Hyman, J.K.P.Lee Huang,H., B.P.Pathek, J.K.P.Lee Ikeda,Y., H.Yamamoto, K&wade, T.Katoh, K.Nagabara James,A.N., J.F.Sharpey-Schafer, A.M.Al Naser, A.H.Behbehani, C.J.Lister, P.J.Nolan, P.H.Barker, W.E.Burcham Kanarawa,M., SOhya, T.Tamura, Z.Ishibashi, N.Mutsuro Kamermans,R., J.Van Driel, H.P.Blok, P.J.Blankhorst KeKelis,G.J., M.S.Zisman, D.K.Scott, R.Jabn, D.J.Vieira, J.Cemy, F.Ajzenberg-&love Kem,B.D., F.Gabbard, R.G.Kmzek, M.R.McPherson, K.K.Sekharan, F.D.Snyder
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 78Ko24 78Ko28 78LoO7 78Lo13 78Ma18 78Ma23
NUPAB PRVCA NUPAB JINCA JUPSA NUPAB
78Ma24 78Mo12 78Mu05 78No03 78NoOS 78Pal I 78Pal2 78Pe08 78Pfol 78Ra15 78Ra16 78ReOl 78RoOl 78Ro03 78Ro14
NUPAB NUPAB PRVCA PRVCA PRVCA PRVCA PRVCA NUPAB PRLTA PRVCA PRVCA ZPAAD PRVCA ZPAAD PRVCA
78Sc26 ZPAAD 78Se04 78ShlI 78St25 78SuO3 788204
PRVCA NUPAB NUIMA ZPAAD PRVCA
78SzO9 JPHGB 78TalO 78Tu04 78VaO4 78VelO 78We12 78We14 78WoOl 78Wo15 78Ya07 78Ze04 78Zg.A
PRVCA PHSTB NUPAB JPSLB PHSTB NUPAB PRVCA PRVCA PRVCA PRVCA PrvCom
71 Kouze6,R.T.. D.Mueller 307, 18, 1587 Kouzes,R.T., D.Muellcr, C.Yu 51 G.Lnh~idcn, OStraume, D.G.Burke 302, 40. 1865 Loughced,R.W., J.F.Wild, E.K.Hulet, R.W.Hoff, J.H.I.andrum 44; 1070 Matumoto,Z., T.Tamura 301, 213 Maas,J.W., E.Somojai, H.D.Graber, C.A.Vandenwijngaard, C.Van der Leun, P.M.Endt 301, 237 Maas,J.W., A.J.C.Holvast, A.Baghus, H.J.M.Atis, P.M.Endt 29 Montestraque,L.A., M.C.Cobian Rozak, GSzaloky, J.D.Zumbro, S.E.Darden 305, 17, 1574 Murphy,M.J., C.N.Davids, E.B.Norman, R.C.Pardo 17, 2176 Norman,E.B., C.N.Davids, M.J.Murphy, R.C.Pardo 18, 102 Norman,E.B., C.N.Davids 18, 1249 Pardo,R.C., E.Kashy, W.Benenson, L.W.Robinson 18, 1277 Paschopoulos,I., E.Miiller, H.J.Ko;mer, LCOebich, K.E.Rebm, H.J.Schccrer 302, I J.G.Pengra, H.Genz, R.W.Fink 41, 63 Pfeiffer,L.P., A.P.Mills,Jr., R.S.Raghavan, F.Achandros 18, 1085 Rao,G.R., GAzuelos, J.C.Kim, J.P.Martin, P.Taras 18, 1158 Raman,S., R.F.Carlton, G.G.Slaughter, M.R.Meder 284, 403 Reddy,T.S., R.Matthews, K.V.Reddy 17, 4 Robenson,R.G.H, E­, W.Benenson, A.Ledebuhr 284, 407 RobeRson,A., T.J.Kennett, W.V.Prestwich 18, 86 Rotbard,G,, L.Larana, M.Vergnes, G.Benier, J.Kalifa, F.Guilbault, R.Tamisier 288, 189 U.J.Schrewe, W.D.Schmidt-Gtt, R.D.von Dincklage, E.Georg, P.L.emmeRz, H.Jungclas, D.Hirdes 17, 1919 Sercely,R.R., R.J.Peterson, E.R.Flynn 40 Shastry,S., R.A.Emigh, R.J.Peterson, R.E.Anderson 304, 155, 253 Stelts,H.L., R.E.Chtien 287, 287 Siimmerer,K., N.Kaffrell, H.Otto, P.Peuser, N.Trautmann 17, 2253 Szanto De Toledo,A., H.V.Klapdor, H.Hafner, W.Saathoff, E.M.Szanto, MSchmder L187 Szanto De Toledo,A., H.V.Klapdor, H.Hafner, WSaathoff, E.M.Szanto, 4, M.Schrader, H.Dias 18, 1064 Tarara,R.W., J.P.Zumbro, C.P.Browne 18, 31 Tuumala,T., R.Katajanheimo, O.Heinonen 295, 211 Van Pelt,J., C.P.Gemer, O.W.De Ridder, J.Blok 39, 291 Vergnes,L., G.Rotbard, J.Kalifa, G.Benier, J.Vemotte, YDeschamps, R.Selz 18, 275 Weckstrom,T. 308, 222 Weisser,D.C., A.F.Zeller, T.R.Ophel, D.F.Hebbard 17, 66 Woods,C. 18, 2328 Wohn,F.K., W.L.Talben,Jr. 17, 2061 Yam&x&Y., R.K.Sheline, E.B.Shera corr PRVCA 18,245O 18, 2122 Zeidman,B., J.A.Nolen,Jr. AHW Sep Zganjar,E.F., W.R.Kane, G.J.Smith, J.A.Cizewski 1979
79Ad08 IANFA 79AhO3 79AjO2 79AjO3 79AlO4
PRVCA PRVCA PRVCA JPHGB
79AlO5 ZPAAD 79AlO7 NUPAB 79Al16
ZPAAD
79All9
NUPAB
79An36 IANFA
43, 1089 Adam,I.A., A.V.Budzyak, M.Gonusek, V.M.Gorodzhankin, B.S.Dzelepov, V.G.Kalinnikov, A.V.Kudtyavtscva, V.V.Kuznetsov, V.LStegaylov, A.Shshalek 20, 200 Abmad,L, S.W.Yates, R.K.Sjoblom, A.M.Friedman 19, 1742 Ajrenberg-Selove,F., E.R.Flynn, D.L.Hanson, S.Grbesen 19, 2068 qjzenberg-Selove,F., E.R.Flynn, D.L.Hansen, S.Orbesen 5, 423 Al Naser,A.M., A.H.Behbehani, P.A.Butler, L.L.Green, A.N.James, C.J.Lister, P.J.Nolan, N.R.F.Ramsmo, J.F.Sharpey-Schafer, H.M.Sheppard, L.H.Zybcr, R.Zyber 290, 173 Aleklett,K., E.Lund, G.Rudstam 45 Alford,W.P., R.E.Anderson, P.A.Batay-Csorbs, R.A.Emigh, D.A.Lind, P.A.Smith, 321, C.D.Zaiiratos 291, 397 Alkhazov,G.D., L.K.Batist, E.Y.Berlovich, Y.S.Blinnikov, Y.V.Yelkin, K.A.Mezilcv, Y.N.Novikov, V.N.Pantelejev, A.G.Poljakov, N.D.Schigolev, V.N.Tatasov, V.P.Afanasiev, K.Y.Gromov, M.Jachimm-Janicki, V.G.Kalinnikov, J.Kormicki, A.Potempa, E.Ruraz, F.Tarkanyi, Y.V.Yushkievich 330, 77 W.P.Alford, R.E.Anderson, P.A.Batay-Csorba, R.A.Emigh, D.A.Lind, P.A.Smith, C.D.Zafuatos 43. 1076 Antoneva,N.M., V.M.Vinogmdov, E.P.Grigorev, P.P.Dimitrev, A.V.Zolotavin, G.S.Katichin, N.N.Krasnov, V.M.Makamv
369
370 79Ba06 79Ba31 79Ba67 79Be.A 79Bo37 79Br.B 79BrO5 79Br19 79Br25 79Br26 79Bu05 790x02 79Da.A 79Da04 79De44 79Do09 79Fi07 79FlO2 79Ha09 79HalO 79Ha26 79Ha32 79HolO 79Ik06 791001 79Ja21 79Ka.A 79Ke.D 79Ko.B 79KolO 79Pe17 79PiO8 79P106
79Ry.A 79Sa.A 79ScO9 79Scll 79Sc22 79SwOl 79Ta.B 79To06 79Tol8 79Ve.A 79VoO5 79Wa04 79Wa22 79We02 79We07
G. Audi et al. / The 1993 atomic mass evaluation (Iv) ZPAAD 289, NUPAB 325, AENGA 47, P-Brookhaven
325 Barkman,J.N., J.E.McFee, T.J.Kennett, W.V.Prestwich 305 Ball,G.C., W.G.Davies, J.S.Forster, H.R.Andrews, D.Hom, W.McLatchie 404 Baratt~~,S.~., V.M.Shatinskii, L.V.Chistyakov 561 Berant,Z., Y.Birenbaum, R.Moreb, see NUIMA 166( 1979181, and PrvCom AHW February 1980 ZENAA 34, 1536 Borello-Lewin,T., O.Dietscb NotreDameBrowne,C.P., et al AnRpt ZPAAD 289, 289 Brodeur,P., B.P.Pathek, S.K.Mark PRVCA 20, 1301 Brown,R.E., J.A.Cizewski, E.R.Flynn, J.W.Sunier NUIMA 166, 243 Braumandl,F., KSchreckenbach, T.von Egidy ZPAAD 292, 397 Braumandl,F., T.von Egidy, D.D.Wamer NUPAB 318, 77 D.G.Burke, G.Lnvhniden, E.R.Flynn, J.W.Sunier NUPAB 316, 61 Casten,R.F., M.R.MacPhail, W.R.Kane, D.Breitig, KSchreckenbach, J.A.Cizewski P-Lansing 419 C.N.Davids PRVCA 19, 1463 Davids,C.N., C.A.Gagliardi, M.J.Murphy, E.B.Nomnn NUPAB 332, 382 Devan,K.R.S., C.E.Brient PRVCA 20, 1112 Doebler,R.E., W.M.McHanis, W.H.Kelly PYLBB 89, 36 Firestone,R.B., R.C.Pardo, W.C.McHarris PRVCA 19, 355 Flynn,E.R., D.L.Hansen, R.A.Hardekopf ZPAAD 290, 113 Hansen,H.H., E.Cellen, G.Grosse, D.Mouchel, ALarsen, R.Vaninbroukx NUPAB 318, 29 Hagberg,E., P.G.Hansen, P.Homshnj, B.Jonson, S.Mattsson, P.Tidemand-Petersson, ISOLDE PRVCA 19, 2332 Haustein,P.F., H.C.Hseuh, R.L.Klobuchar, E.M.Franz, S.Katco& L.Peker PRVCA 20, 345 Halvarson,J.E., W.H.Johnson,Jr. ZPAAD 291, 53 Hofmann,S., W.Faust, G.Miinzenberg, W.Reisdorf, P.Armbruster, K.Giittner, H.Ewald JUPSA 47, 1039 Ikeda,Y., H.Yamamoto, K&wade, T.Takeuchi, T.Katoh, T.Nagahara NUPAB 313, 283 Ionescu,V.A., J.Kem, R.F.Casten, W.R.Kane, I.Ahmad, J.Erskine, A.M.Ftiedman, K.Katori NUPAB 325, 337 Janecke,J., F.D.Becchetti, C.E.Tbom P-Lansing 39 E.Kashy, W.Benenson, J.A.Nolen,Jr., R.G.H.Robertson P-Brookhaven 646 Kenny,M.J., M.L.Stelts, R.E.Chrien P-Lansing 45 Kouzes,R.T., RSherr CJPHA 57, 266 Kozier,K.S., K.S.Sharma, R.C.Barber, J.W.Bamard, R.J.Ellis, V.P.Derenchuk NUPAB 332, 95 Peuser,P., H.Otto, NKaffrell, G.Nyman, E.Roeckl NUPAB 321, 25 Pinston,J.A., W.Mampe, R.Rousille, KSchreckenbacb, D.Heck, H.G.BGmer, H.R.Koch, S.Andre, D.Bameoud NUPAB 332, 29 Plochocki,A, G.M.Gowdy, RKirchner, OKlepper, W.Reisdorf, E.Roeckl, P.Tidemand-Petersson, J.iylicz, U.J.Schrewe, RKantus, R.-D.von Din&age, W.D.Schmidt-Ott P-Lansing 249 Rytz,A. AnRpt KVI Saha,A., R.H.Siemsen, J.W.Smits, J.Van Popta and PrvCom AHW NUPAB 318, 253 Schmidt,K.H., W.Faust, G.Miinzenberg, H.-G.Clerc, W.Lang, K.Pielenz, D.Vemteulen, H.Woblfarth, H.Ewald, K.Giittner ZPAAD 290, 359 Schussler,F., J.Blachot, E.Monnand, B.Fogelberg, S.H.Feenstra, J.VanKlinken, G.Jung, K.D.Wiinsch NUPAB 326, 65 Schardt,D., RKircbner, OKlepper, W.Reisdorf, ERoeckl, P.Tidemand-Petenson, G.T.Ewan, E.Hagberg, B.Jonson, S.Mattsson, G.Nyman NUIMA 159, 407 Switkowski,Z.E., R.J.Petty, J.C.P.Heggie, G.J.Clark BAPSA 24, 836 Tarara,R.W., J.D.Zumbro, C.P.Browne PRVCA 19, 2399 Toth,KS., M.Ijaz, C.R.Bingbam, L.L.Reidiger, H.K.Caner, D.C.Sousa PRVCA 20, 1902 Toth,K.S., Y.A.Ellis, DCSousa, H.K.Carter, DSen, E.F.Zganjar P-Lansing 431 Verplancke,J., D.Vandeplassche, M.Huyse, KComelis, G.Lhersonneau PRVCA 20, 944 van Egidy,T., J.A.Cizewski, C.M.McCullagh, S.S.Malik, M.L.Stelts, R.E.Cbrien, D.Breitig, R.F.Casten, W.R.Kane, G.J.Smith NUPAB 316, 13 Wamer,D.D., W.F.Davidson, H.G.Biimer, R.F.Casten, A.I.Namenson JPHGB 5, 1723 Wamer,D.D, W.F.Davidson, W.Gelletly NUPAB 313, 385 Weber,D., G.M.Crawley, W.Benenson, E­, H.Nann PRVCA 20, 115 Weigmann,H., S.Raman, J.A.Harvey, R.L.Macklin, G.G.Slaughter 1980
80Ad04 ZPAAD 8OAjS.e NUPAB
295, 336,
251 Adachi,M., A.Muroi, T.Matsuzaki, H.Taketani 1 Ajzenberg-Selove,F.
G. Audi et al. / The 1993 atomic mass evaluation (IV) 705 Alburger,D.E., P&chards, T.H.Ku 305 Alkhazov,G.D., E.Y.Berlovich, K.A.Merilev, Y.N.Novikov, V.N.Pantelejev, A.G.Poljakov, K.Y.Gromov, V.G.Kalinnikov, A.Potempa, E.Rurarz, F.Tarkanyi 80An.A P-Berkeley 134 Antony,M.S., A.Huck, GKlotz, AKnipper, C.Mieh6, G.Walter Balder,J.R. 80Ba.A Th.-Utrecht 8OBuO4 IANFA 44, 79 Bu&yak,A.V., T.Kretsu, V.V.Kuznetsov, N.A.Lebedev, G.I.Liirei, Y.V.Yushkvich, M.Yanitski 80Bul5 PRvCA 22, 1180 Burleson,G.R., G.S.Blanpied, G.H.Daw, A.J.Viescas, C.L.Morris, H.A.Thiessen, S.J.Greene, W.J.Braithwaite, W.B.Cottingame, D.B.Holtkamp, I.B.Moore, C.F.Moore 8OCaO2 PRVCA 21, 65 Casten,R.F., G.J.Smith, M.R.MacPhail, D.Breitig, W.R.Kane, M.L.Stelts, S.F.Mugbabghab, J.A.Cizewki, H.G.BBmer, W.F.Davidson, LSchreckenbach 80De02 ZPAAD 294, 35 Decker,R., K.D.Wiinsch, H.Wollnik, E.Koglin, G.Siegert, G.Jung 80Di07 PRVCA 21, 2101 Di Rienzo,A.C., H.A.Enge, D.B.Gazes, M.KSalomaa, A.Spelduto, W.Schier, H.E.Wegner 80Du02 ZPAAD 294, 107 Dufour,J.P., A.Fleury, F.Hubert, Y.Llabador, M.B.Mahourat, R.Bimbert, D.Gardes 8OEwO3 ZPAAD 296, 223 Ewan,G.T., E.Hagberg, B.Jonson, S.Mattson, P.Tidemand-Petersson 80Gi04 PRVCA 21, 2041 Gil&J., SK&off, L.K.Peker 80Goll NUPAB 344, 1 Gokturk,H., N.K.Aras, P.Fettweis, P.Del Marmol, J.Vanhorenbeek, K.Coroelis 8OGrl2 NUIMA 175, 515 Greenwoed,R.C., R.E.Chrien 80Ha20 PRVCA 22, 247 Hayakawa,H.I., LHyman, J.KP.L.ee 80Ha36 PHSTB 22, 439 Hanninen,R, G.U.Din 801802 CJPHA 58, 168 Islam,M.A., T.J.Kennett, S.A.Kerr, W.V.Prestwich 80Ja.A AnRpt KVI 31 1. Janecke, E.H.L.Aarts, A.G.Drentje, C.Gaarde, M.H.Hamkeh 8OKal9 PRVCA 22, 997 JKalifa, G.Berrier-Ronsin, M.Vergnes, GXothard, J.Vemotte, YDeschamps, RSeltz 8OKoOl NUPAB 334, 35 Kopecky,J., R.E.Chrien, H.Liou 8OKo25 CJPHA 58, 1311 Kozier,K.S., &S.Sharma, R.C.Barber, J.W.Bamard, R.J.Ellis, V.P.Derenchuk, H.E.Duckworth 8OKrO7 ZPAAD 295, 199 Kratz,K.L., H.Ohm 8OLiO7 NUPAB 337, 401 Liou,H.I., R.E.Chrien, J.Kopecky, J.A.Konter 8OLolO PHSTB 22, 203 G.I&vheiden, D.G.Burke, E.R.Flynn, J.W.Sunier 80Ma40 PRVCA 22, 2449 Mayer,W., K.E.Rehm, H.J.Kijmer, W.Mayer, E.Miiller, LGelrich, H.J.Scheerer, R.E.Segel, P.Spem, W.Wagoer 8OMul2 PRVCA 22, 2204 M.J.Mmphy, C.N.Davids, E.B.Norman 80Nal2 PYLBB 96, 261 Nann,H., K.K.Seth, S.G.Iversen, M.O.Kaletka, D.B.Barlow, D.Smith 800x01 ZPAAD 294, 389 Oxhom,K., B.Singh, S.K.Mark 8OPaO2 PRVCA 21, 462 Pardo,R.C., L.W.Robinson, W.Benenson, E­, R.M.Ronnigen 80Sall JPHGB 6, 525 Sala-Lizzaraga,J., J.Byme 8OScO9 PYLBB 91, 46 Schrewe,U.J., P.Tidemand-Petersson, G.M.Gowdy, R.Kirchner, OKlepper, A.Plochocki, W.Reisdorf, E.Roeckl, J.L.Wocd, J.iylicz, R.Fass, D.Schardt 8OSeOl IANFA 44, 125 Seqienko,V.A., Ts.Vylov, S.M.Sergeev, S.L.Smolskii 80Sh06 PYLBB 91, 211 Sharma,K.S., R.J.Ellis, V.P.Derenchuk, R.C.Barber, H.E.Duckworth 80Shl4 CJPHA 58, 837 Shababuddin,M.A.M., D.G.Burke 80StlO ZPAAD 295, 259 O.Straume, G.L@vheiden, D.G.Burke 80Ta07 PRVCA 21, 1667 Takagui,E.M., O.Dietsch 80To.A PrvCom NDG Nov Toth,K.S. 80TrO4 PRVCA 22, 17 Tribble,R.E., D.M.Tanner, A.F.Zeller 80VeOl ZPAAD 294, 144 VermeulqD., H.-G.Clerc, W.Lang, K.H.Schmidt, G.Milnrenberg 80Ve05 NUPAB 344, 421 Vennink,R, J.Kopecky, P.M.Endt, P.W.W.Glaudemans 80Vi.A PrvCom AHW Vitman,V.D., F.V.Moroz, Yu.Ya.Sergeev, V.K.Tarasov 8OVyOl IANFA 44, 67 Vylov,Ts., S.Omanov, VCsaleksandrov, N.B.Badalov, A.Budqak, V.V.Kuznetsov, A.I.Muminov, Han Ken MO 80Wa24 PRVCA 22, 2330 Warburton,E.K., D.E.Alburger, D.J.Millener 80Ya07 JINCA 42, 1539 Yamamoto,H., Y.Ikeda, K&wade, T.Katoh, T.Nagahara
8OAlO2 PRVCA 8OAll4 ZPAAD
21, 295,
1981 8lAd02
NUPAB
356,
129 Adam,I., M.Honusek, Z.Hons, V.V.Kuznetsov, T.M.Muminov, R.R.Usmtmov, A.Budzyak 8lAjO2 PRVCA 24, 1762 Ajrenberg-Selove,F., R.E.Browo, E.R.Flynn, J.W.Sunier 8lAl20 ZPAAD 302, 241 Aleklett,K., P.Hoff, E.Lund, G.Rudstam 81Ar.A JINRPb-81-524 Artamonova,K.P., A.Budzyak, E.P.Grigorev, A.Dzumamurstov, A.V.Zolotavin, A.I.Ivanov, V.G.Kalinnikov, V.V.Kuznetsov, V.O.Sergeev, R.Usmanov
371
372 glAr13 81Ba40 81Ba53 81BeO3 81Be40 8lBo.B 8 1Bu.A 81CiOl 81Co17 81De22 8IDe25 81De38 81EbOl 81E103 81En07 81FlO2 8lFlO5 8 1Ga36 81GiOl 81Ha08 81Ha44 81Ho.A 8IHo.B 81Ho.C 81HolO 81Ho17 81Ho18 81Hs02 81Hu03 8lJo.B 81KaO7 81Ke02 81Ke03 81Kell 81Ko.A 81Lc23 81Li12 81Lo.A 81Ma30 81Mi12 81Mu06 81Mu12 8 1Na.A 810x01 81Pa17 81Ra07 81Ri04 81Ro02 81Sa09 81Sc17 81Sc21
G. Audi et al. / The 1993 atomic mass evaluation (Iv) PYLBB
104,
186 Arai,Y., M.Fujioka, E.Tanaka, J.Shinozuka, H.Miyatake, M.Yoshii, T.Ishimatsu, see also NUPAB 420(84)193 ZPAAD 302, 329 G.K.Bavaria, J.E.Crawford, S.Calamawy, J.E.Kitching IANFA 45, 727 I.F.Barchuck, V.I.Goyshkin, E.N.Gorban, A.F.Ogorodnik PRVCA 23, 555 Bemis,Jr.,C.E., P.F.Dittner, R.L.Ferguson, D.C.Hensley, F.Placil, F.Plcasonton PRVCA 24, 756 Bemas,M., JCPeng, H.Doubre, M.Langevin, M.J.LeVine, F.Pougheon, P.Roussel Bogdanovic,M., T.D.MacMahon, H.Seyfarth AnRpt Julich 76 P-Sam&and 621 M.Budzinski, K.Ya.Gromov, V.V.Kuanetsov, T.M.Muminov, P.R.Usmanov, T.Chazl ratov PRVCA 23, 1453 Cizewski,J.A., E.R.Flynn, R.E.Brown, D.L.Hanson, S.D.Orbcsen, J.W.Sunier PRVCA 24, 911 T.Cousins, T.J.Kennett, W.V.Prestwich ZPAAD 300, 251 Della Negra,S., CDepnm, D.Jaquet, Y.Le Beyec ZPAAD 301, 165 Decker,R., K.D.Wiinsch, H.Wollnik, G.Jung, J.Miinzel, G.Siegen, E.Koglin S.K.Mark ZPAAD 303, 151 Deslauriers,J., SCGujrathi, ZPAAD 299, 209 Ebong,I.D.U., R.R.Roy PRVCA 23, 480 Ellis-Akovali,Y.A., K.S.Toth, C.R.Bingham, H.K.Carter, D.C.Sousa NUPAB 372, 125 Engler,G., R.E.Chrien, H.I.Liou PRVCA 24, 902 Flynn,E.R., F.Ajzenberg-Selove, R.E.Brown, J.A.Cizewski, J.W.Sunier PYLBB 105, 125 Flynn,E.R., R.E.Brown, J.W.Sunier, J.M.Gurski, J.A.Cizewski, D.G.Burke IANFA 45, 1861 Ganbaatar,N, J.Kormicki, K.A.Mezilev, Y.N.Novikov, Y.P.Prokotiev, A.Potempa, F.Tarkani PYLBB 98, 29 Girshik,F., K.Krien, R.A.Naumann, G.L.Stmble, R.G.Lanier, L.G.Mann, J.A.Cizewski, E.R.Flynn, T.Nail, R.K.Sheline NUPAB 357, 356 J.C.Hardy, G.C.Ball, W.G.Davies, J.S.Forster, H.Schmeing, E.T.H.Clifford NUPAB 371, 349 Hardy,J.C., T.Faestermann, H.Schmeing, J.A.Macdonald, H.R.Andrews, J.S.Geigcr, R.L.Graham, K.P.Jackson P-Helsingor 190 S.Hofmann, G.Miinzenberg, W.Faust, F.Heflberger, W.Reisdorf, J.R.H.Schneider, P.Armbmster, K.Giittner, B.Thuma PrvCom AHW Ott Hofmeyr,C., D.Wamer, H.G.BGmer, G.Barreau, R.F.Casten, M.Stelts, J.S.Dionisio PrvCom AHW Nov Hoff,R.W. ZPAAD 299, 281 S.Hofmann, G.Miinzenberg, F.HeBberger, W.Reisdotf, P.Armbmster, B.Thuma ZPAAD 300, 289 Hoff,P., K.Aleklett, E.Lund, G.Rudstam NUIMA 186, 257 Homshnj,P., H.L.Nielsen, N.Rud, H.L.Ravn PRVCA 23, 1217 Hseuh,H.-C, E.-M.Franz, P.E.Haustein, S.Katcoff, L.K.Peker NUPAB 352, 247 Huyse,M., K.Comelis, G.Lhenonneau, J.Verplancke, W.B.Wolters, K.Heyde, P.Van Isacker, M.Wamquier, G.Wenes, H.Vincx P-Helsingor 640 Jonson,B., O.B.Nielsen, L.Westgaard, J.iylicz PRVCA 23, 1274 Kantus,R., U.J.Schrewe, W.D.Schmidt-Ott, R.Michaelsen CJPHA 59, 93 Kennett,T.J., M.A.Islam, W.V.Prestwich ZPAAD 299, 323 Kennett,T.J., W.V.Prestwich, M.A.Islam CJPHA 59, 1212 Kennett,T.J., W.V.Prestwich, M.A.Islam PrvCom NDG Ott Koene,B.K., R.E.Chrien, M.L.Stets, L.K.Peker PRVCA 24, 2370 Leino,M.E., S.Yashita, A.Ghiorso PRVCA 24, 260 C.J.Lister, P.E.Haustein, D.E.Alburger, J.W.Olness P-Grenoble 383 LoX,M.A. NUPAB 370, 1 Matsuki,S., NSakamoto, K.Ogino, Y&do& T.Tanabe, Y.Okuma ZPAAD 301, 199 Misaelides,P., I.S.Grant, I.C.Malcolm, P.Tidemand-Petersson, RKirchner, OKlepper, E.Roeckl, J.L.Wood, U.J.Schrewe, W.D.Schmidt-Ott, P.J.Nolan ZPAAD 300, 107 G.Miinzenberg, SHofmann, F.P.HeOberger, W.Reisdorf, K.H.Schmidt, J.R.H.Schneider, P.Annbmster, C.C.Sahm, B.Thuma ZPAAD 302, 7 G.Miinzenberg, S.Hofmann, W.Faust, F.P.HeL%erger, B.Thuma, D.Vermeulen, W.Reisdorf, K.H.Schmidt, K.Kitihara, P.Armbmster, K.Giittner P-Helsingor 376 Naulin,F., C.D&az, M.Roy-Stephan, M.Bemas, J.De Boer, D.Guillemaud, M.Langevin, F.Pougheon, P.Roussel ZPAAD 303, 63 Oxhom,K., S.K.Mark ZPAAD 302, 117 Panagiotou,A.D., P.K.Kananis, E.N.Gazis, M.Bemas, C.D6traz, M.Langevin, D.Guillemaud, E.Plagnol PRVCA 23, 1979 Raman,S., O.Shahal, A.Z.Hussein, G.C.Slaughter, J.A.Harvey PRVCA 23, 2342 Ritchie,B.G., K.S.Toth, H.K.Carter, R.L.Mlekodaj, E.H.Speje PRVCA 23, 973 Robertson,R.G.H., J.A.Nolen,Jr., TChapuran, R.Vodhanel PRVCA 23, 1713 Saito,T., T.Toriyama, M.Kanbe, K.Hisatake NUPAB 368, 153 Schardt,D., T.Batsch, R.Kirchner, OKlepper, W.Kurcewicz, E.Roeckl, P.Tidemand-Petersson PRVCA 24, 2695 Schmidt-Ott,W.D., RKantus, E.Runte, U.J.Schrewe, R.Michaelsen
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 8 I Se.A P-Helsingor 81Sell PYLBB 103,
655 409
81Sm02 81SoO6 81SpO3 81St18 81Su.A 81To02 81Va.B 81Va27
PYLBB 102, 114 PRVCA 24, 1615 ZPAAD 299, 112 PRVCA 24, 1785 Laninst YF 644 NUPAB 356, 26 P-Grenoble 548 IANFA 45, 1861
8IVoO3 81Wall 81We12 81WhO3 81Ya06
NUPAB NUPAB NUPAB PYLBB JINCA
365, 362, 368, 105, 43,
26 1 117 116 855
Seth&T. Sennhauser,U., L.Felawka, T.Kozlowski, H.K.Walter, F.W.Schlcpuetz, R.Engfer, E.A.Hermes, P.Heusi, H.P.Isaak, H.S.Pruys, A.ZgJinski, W.H.A.Hesseling Smith,L.G, E.Koets, A.H.Wapstra So!ia,K., B.N.Subba Rae, J.E.Cramfort Spanier,L., S.Z.Gui, H.Hick, E.Nolte Stephans,P., E.Mordechai, H.T.Fortune Sushkov,L.A,, V.L.Alekseev, L.D.Kabina, I.A.Kondurov, D.D.Uorner Toth,K.S., Y.A.Ellis-Akovali, D.M.Moltr, C.R.Bingham, H.K.Carter, D.C.Sooaa Van der Leun,C., P.De Wit, CAlderliesten and PwCom AHW Vakhtel,V.M., N.A.Golovkov, R.B.Ivanov, M.I.Mikhailova, A.F.Novgorodov, Y.V.Norscev, V.G.Chumin, Y.V.Yushkevich van Egidy,T., G.Barreau, H.G.Biimer, W.F.Davidson, et al Wagemans,C., E.Allaen, A.De Clerq, A.De Ruytter, G.Barreau Weigmann,H., CWagemans, A.Emsallem, M.Ashgar White,R.E., H.Naylor, P.H.Barker, D.M.J.Lovelock, RMSmythe Yamamoto,H., Y.Ikeda, K&wade, T.Katoh, T.Nagahara 1982
82AhOl 82AhO8 82Al19 82Al29 82Al.A 82An12 82AuOl 82Ba15 82Ba28
82Ba69 82Be.A 82Be21 82BoO4 82BrlO 82Br23 82001 82De.A 82De03 82DeO6 82De I 1 82De36 82De43 82Di05 82En03 82EwOl 82FilO 82R09 82Gi.A 82Gr.A 82Hi14 82Ho04 82Ho07 82Hu02 821~05 82JoO3 82Ka.A 82KlO3
NUPAB PRLTA NUIMA PRVCA LNPI-820
373, 434 Ahmad,L, E.P.Honvitz 49, 1758 I&mad, J.E.Gindler, R.R.Betts, R.R.Chasman,A.M.Friedman 197, 383 Alkemade,P.F.A, CAlderliesten, P.De Wit, C.Van der Leon 26, 1157 Al&e&K., P.Hoff, E.Lund, G.Rudstam Alkbazov,G.D., N.Ganbaatar, K.Y.Gromov, V.G.ICalinnikov,K.A.MeziJev, Y.N.Novikov, A.M.Nurmukhamedov, A.Potempa, F.Tarkanyi JPHGB 8, 1659 Antony,M.S. NUPAB 378, 443 Audi,G., M.Epherre, CThibault, A.H.Wapstra, K.Bos IANFA 46, 63 Barchuk,I.F., V.I.Golyshkin, E.N.Gorban NUPAB 380, 189 A.Backlin, G.Hedin, B.Fogelberg, M.Saraceno, R.C.Greenwood, C.W.Reich, H.R.Koch, H.A.Baader, H.D.Breitig, O.W.B.Schult, K.Schreckenbach, T.von Egidy, W.Mampe IANFA 46, 2077 Barchuk,I.F., V.I.Golyshkin, E.N.Gorbinj P-Kiev 127 Beg&anov,R.B., K.Sh.Azimov PRVCA 25, 2848 Benier-Ronsin,G., M.Vergoes, G.Rotbard, J.Vemotte, S.Fortier, J.M.Maison, R.Tamisier PRVCA 25, 941 Bowman,J.D., R.E.Epply, E.K.Hyde RAACA 30, I Bruchle,W., G.Hen-mann PRVCA 26, 2166 Brenner,D.S., M.K.Manel, A.Aprahamian, R.E.Chrien, R.L.Gill, H.I.Liou, M.Shmid, M.L.Stelts, A.Wolf, F.K.Wohn, D.M.Reh!ield, H.Dejbakhsh, C.Chung PYLBB 109, 8 Crawley,G.M., W.Benenson, G.Bertsch, S.Gales, D.Wcber, B.Zwieglinsky Th.-Orsay Dessagne,Ph. PRVCA 25, 146 De Gelder,P., D.De Frenne, E.Jacobs, K.Heyde, S.Fortier, J.M.Maison, M.N.Rao, C.P.Massolo PRVCA 25, 504 Deslauriers,J., S.C.Gujrathi, S.K.Mark ANPHA 7, 149 S.Della Negra, C.Depnm, D.Jacquet, Y.Le Beyec ZPAAD 307, 305 S.Della Negra, H.Gauvin, D.Jacquet, Y.Le Beyec ZPAAD 308, 243 S.Della Negra, D.Jacquet, Y.Le Beyec NUPAB 378, 273 Dixon,W.R., R.S.Storey, A.F.Bielajew PRVCA 25, 1830 Enge,H.A., M.Salomaa, A.Sperduto, J.Ball, WSchier NUPAB 380, 423 Ewan,G.T., E.Hagberg, B.Jonson, S.Mattsson, P.Tidemand-Petersson NUPAB 385, 505 Fifield,L.K., J.L.Durall, M.A.C.Hotchkis, J.R.Leigh, T.R.Ophel, D.C.Weisser PRVCA 25, 2851 Flynn,E.R., F.Ajzenberg-&love, R.E.Brown, J.A.Cizewski, J.W.Sunier Th.-Maim Gietz,H. P-Amsterdam Gromov,K.Y., et al ZPAAD 309, 27 Hingmann,R., H.-GClerc, C.C.Sahm, D.Venneulen, KHSchmidt, J.G.Keller ZPAAD 305, Ill S.Hofmann, W.Reisdorf, G.Miinzenberg, F.P.HeBberger, J.R.H.Schneider, P.Armbruster PRVCA 25, 2232 Hoff,R.W., W.F.Davidson, D.D.Wamer, H.G.B&ner, T.von Egidy NUIMA 192, 609 Hungerford,P., H.H.Schmidt PRVCA 25, 3184 M.A.Islam, T.J.Kennett, W.V.Prestwich JPHGB 8, 1405 Johnson,M.G., I.S.Grant, P.Misealides, P.J.Nolan, P.Peuser, RKirchner, O.Klepper, E.Roeckl, P.Tidemand-Petersson PrvCom AHW Jul Kane,W., et al ZPAAD 305, 125 Klepper,O., T.Batsch, S.Hofmann, RXrchner, W.Kurcewicz, W.Reisdorf, E.Roeckl, D.Schardt, G.Nymann
373
314
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
82KoO6 PRVCA 82KrO5 ZPAAD
25, 1076 R.T.Kouzes, M.M.Lowry, C.L.Bennett and PrvCom AHW May 1988 304, 307 H.Kr&inkel, H.W.Becker, L.Buchmann, J.GBrres, K.U.Kettner, W.E.Kieser, R.Stmto, PSchmalbrock, H.P.Trautvetter. A.Vlieks,C.Rolfs, J.W.Hammer, R.E.Azuma, W.S.Rodney 82Kr12 NUPAB 386, 245 Kmsche,B., K.P.Lieb, H.Daniel, T.von Egidy, G.Barreau, H.G.BBmer, R.Brissot, C.Hofmeyr, R.Rascher 82La22 NUIMA 196, 559 Lanier,R.G., L.G.Mann, G.L.Stuble 82Mo04 PRVCA 25, 1276 Mordechai,S., S.Iafrance, H.T.Fottune 82MolOPYLBB 113, 16 D.M.Moltz, K.S.Toth, F.T.Avignone III, H.Noma, B.G.Ritchie, B.D.Ketn 82Mo12 PRVCA 25, 3218 Monis,C.L., H.T.Fortune, L.C.Bland, R.Gilman, S.J.Greene, W.B.Cottingame, D.B.Holtkamp, G.R.Burleson, C.F.Moae 82Mo23 PRVCA 26, 1914 Moltz,D.M., K.S.Toth, R.E.Ttibble, R.E.Neese, J.P.Sullivan 82No08 ZPAAD 306, 223 Nolte,E., S.Z.Gui, G.Colombo, G.Korschinek, K.Eskola 8201104 JUPSA 51, 43 Ohshima,M., Z.Matumoto, T.Tamura 82P105 NIJPAB 388, 93 Ptochocki,A., J.iylicz, R.Kirchner, O.Klepper, ERoeckl, P.Tidemand-Petenson, I.S.Grant, P.Misealides 82Ra.A PrvCom AHW Nov Raemy,A., J.C.Dousse, J.Kem, W.Schwitz 82ScO3 NUPAB 376, 144 Schreckenbach,K., A.I.Namenson, W.F.Davidson, T.von Egidy, H.G.Biimer, J.A.Pinston, R.K.Smitber, D.D.Wamer, R.F.Casten, M.L.White, WStofl 82Sc14 PRVCA 25, 2888 Schmidt,H.H., P.Hungerford, H.Danie.1, T.von Egidy, S.A.Kerr, R.Brissot, G.Barreau, H.G.Bbmer, CHofmeyr, K.P.Lieb 82Scl5 PRVCA 25, 3091 Schrewe,U.J., E.Hagberg, H.Schmeing, J.C.Hardy, V.Koslowsky, K.S.Shamxi, E.T.H.Clifford 82Sc25 ZPAAD 308, 183 Scheerer,H.J., D.Pereira, A.ChaIupka, R.Gyutko 51 Solin,L.M., V.A.Yakovlev, V.N.Kushmin, Yu.A.Nemilov 82So.A P-Kiev 82So.B AnRpt Julich 54 Soramel-Stanco,F., R.Julin, B.Rubio, A.Ercan, PKleinheinz, J.Tain, G.P.A.Berg, W.Huerliman, LKatayama, S.A.Martin, J.Messburger, J.G.M.Roemer, B.Styczen, H.J.Scheerer 82Ta18 NUPAB 388, 498 Tan,M., R.A.Braga, R.W.Fink, P.V.Rao 82ThOl PRVCA 25, 331 Thom,C.E., W.F.Piel,Jr., M.J.LeVine, P.D.Bond, A.Gallmann 82Ti02 NUPAB 376, 421 Tielens,T.A.A., J.Kopecky, FStecher-Rasmussen, W.Ratinsky, K.Abrahams, P.M.Endt 82To14 PYLBB 117, 11 Toth,K.S., Y.A.Ellis-Akovali, D.M.Moltz, R.L.Mlekodaj 82Va13 NUPAB 380, 261 Van der Leun,C., C.Alderliesten 91 Veselov,G.V,, N.Ganbataar, K.A.Mezilev 82Vc.A P-Kiev 82VyO2 IANFA 46, 16 Vylov,Ts., V.M.Gorodzhankin, K.Ya.Gromov, V.G.Kalinnikov, T.Kretsu, V.V.Ku.metsov 82VyO3 IANFA 46, 834 Vylov,Ts., V.M.Gorodzhankin, K.Ya.Gromov, V.V.Kuznetsov 82VyO6 IANFA 46, 2066 Vylov,Ts., V.G.Kalinnikov, V.V.Kuznetsov, Z.N.Li, A.A.Solnyshkin, Y.U.Yuskevich 82VyO7 IANFA 46, 2239 Vylov,Ts., V.M.Gorodzhankin, K.Y.Gromov, V.V.Kuznetsov, TKretsu, N.A.Lebedev, Yu.V.Yushkevich 82VylO YAFIA 36 812 Vylov,Ts., V.M.Gorozhankin, K.Ya.Gromov, A.I.Ivanov, I.F.Uchevatkin, V.G.Chumin 82ZuO2 PRVCA 26, 965 Zumbro,J.D., C.P.Browne, J.F.Mateja, H.T.Fortune, R.Middleton 82ZuO4 PRVCA 26, 2668 Zumbro,J.D., A.A.Rollefson, R.W.Tarara, C.P.Browne 1983 83Ad05 83Aj.A 83Al.A 83Al.B 83A106 83Al18 83A120 83Anl5 83AyOl 83Ba32 83Be.C 83Be18 83Be42 83B116
CZYPA 33, 465 Adam,J., V.Hnatowicz, A.Kugler Ajzenberg-Selove,F, PrvCom AHW JuI PrvCom AHW Jan AlkIwov,G.D. P-Moscow 87 Alkhazov,G.D., LNovikov, L.K.Batist, Y.S.Blinnikov, N.Ganbaatar, et al ZPAAD 310, 247 Alkbazov,G.D., K.A.Merilev, Yu.N.Novikov, N.Ganbaatar, K.Ya.Gromov, V.G.Kalinnikov, A.Potempa, E.Sieniawski, F.Tarkanyi PZETA 38, 144 Alkbazov,G.D., A.A.Bykov, V.D.Vitman, Yu.V.Naukov, S.Yu.Orlov, V.K.Tarasov YAFIA 37, 797 Aleksandrov,D.V., E.A.Ganza, Yu.A.Glukhov, V.I.Dukhanov, I.B.Mazurov JPHGB 9, L245 Atttony,M.S., J.Britz, J.B.Buep, A.Papp NUPAB 404, 1 jiystii,J., J.Honkanen, W.Trraska, K.Eskola, K.Vierinen, S.Messelt PRVCA 28, 337 Baisden,P.A., D.H.Sisson, SNiemeyer, B.Hudson, C.L.Bennet, R.A.Naumann PrvCom GAu Sep Bemas,M., et al NUPAB 399, 131 Behrens,H., PChristmas NUPAB 408, 87 G.J.Beyer, A.De Rtijula, R.-D.von Din&age, H.A.Gustafsson, P.G.Hansen, P.Hoff, B.Jonson, H.L.Ravn, KRiisager ZPAAD 314, 199 Blomqvist,J., A.Kerek, B.Fogelberg
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 83Bo29 83Bu03 83CaO4 83Ch08 83Ch39 83Ch47 83CiOl 83De03 83De04 83De17 83De20 83De28 83De29 83Doll 83FeO6 83ROS 83FlO6 83Fo.B 83GeO8 83GnOl 83Ha06 83Ha35 83Hi08 83H008 83Hull 83Hu12 83Hu13 83Ia02 83JoO4 83Ke.A 83Lill 83Mo09 83NyOl
83Pa.A 83PuOl 83Ra.~ 83Ra04 83Ra25 83R008 83Ro08 83Sc18 83Sc24 83Se17 83Sh31 83Ta.A 83Ti02 83ToOl 83To20 831~01 83Ve.A 83Ve06 83VolO
PYLBB CJPHA PRVCA ZPAAD PRVCA
130, 167 Bond,P.D., R.F.Casten, D.D.Wamer, D.Hom 61, 460 Burke,D.G., LNowikov, Y.K.Peng, J.C.Yanch 27, 1310 Casten,R.F., D.D.Wamer, GMGowdy, N.Rofail, K.P.Lieb 310, 135 Chalupka,A., H.Vonach, E.Hueges, H.J.Scheerer 28, 2099 Chung,C., W.B.Walters, D.S.Brenner, A.Aprahamian, R.L.Gill, M.Shmid, R.E.Chrien, L.-J.Yuan, A.Wolf, Z.Berant NIMAE 215, 397 Christmas,P., S.M.Judge, T.B.Ryves, D.Smith, G.Winkler PRVCA 27, 1040 Cizewski,J.A., D.G.Burke, E.R.Flynn, R.E.Browo, J.W.Sunier PRVCA 27, 892 Dewbeny,R.A., R.T.Kouzes, R.A.Neumann NUPAB 394, 378 D&a&., M.I_angevin, MCGoffri-Kouassi, D.Guillemaud, M.Epherre, G.Audi, C.Thibault, F.Touchard ZPAAD 312, 209 Decman,D.J., R.K.Sheline, Y.Tanaka, E.T.Jumey NUPAB 401, 397 De Gelder,P., D.De Frenne, K.Heyde, N.Kaffrell, A.M.VanDenBerg, N.Blasi, M.N.Harakah, W.Sterrenburg NUPAB 404, 225 De1tini.M.G.. J.Kopecky, J.B.M.de Haas, H.I.Liou, R.E.Chrien, P.M.Endt NUPAB 404, 250 Deltini,M.G., J.Kopecky, R.E.Chrien, H.I.Liou, P.M.Endt ZPAAD 313, 207 Zs.Dombradi, AKrasznahorkay, J.Gulyb ZPAAD 314, 159 Fettweiss,P., J.C.Dehaes 97 Flynn,E.R., J.van der Plicht, J.B.Wilhelmy, L.G.Mann, G.L.Stmble, PRVCA 28, R.G.Lanier PRVCA 28, 575 Flyynn,E.R., R.E.Brown, F.Ajzenberg-Selove, J.A.Cizewski PrvCom AHW Jon FGrster.1. 89 Gelletly,W. NIMAE 211, 29 Gnade,B.E., R.E.Fink, J.L.Wood NUPAB 406, NUPAB 395, 152 Hagberg,E., J.C.Hardy, H.Schmeing, E.T.H.Clifford, V.T.Koslowsky 34, 1241 Hansen,H.H. IJARA 51 Hingmann,R., H.-G.Clerc, C.-C.Sahm, D.Vermeulen, K.-HSchmidt, J.G.Kekeller NUPAB 404, NUPAB 398, 130 Hotchkis,M.A.C., L.K.Fitield, J.R.Leigh, T.R.Ophel, G.D.Putt, D.C.Weisex ZPAAD 313, 325 Hungerford,P., T.von Egidy, H.H.Schmidt, S.A.Keq H.G.Biimer, E.Monnand ZPAAD 313, 337 Hungerford,P., T.von Egidy, H.H.Schmidt, S.A.Kerr, H.G.Bijmer, EMonnand ZPAAD 313, 349 Hungerford,P., T.von Egidy, H.H.Schmidt, S.A.Kerr, H.G.BBmer, EMonnand 61, 694 Iatigliola,R, M.Chattejee, H.Dautet, J.K.P.Lee JCHCA 396, 479C Jonson,B., J.U.Andersen, G.J.Beyer, G.Charpak, A.De Rtijula, B.EIbek, NUPAB H.A.Gustavson, P.G.Hansen, P.Knudsen, E.Laegsgaard, J.Pedersen, H.L.Ravo B118 Kerr,S.A., F.Hoyler, K.Schreckenbach, H.G.BBmer, G.G.Colvin, P-Florence see also PXnowille(1984)416 PRVCA 28, 2127 C.J.Lister, B.J.Varley, D.E.Alburger, P.E.Haustein, SK&ha, J.W.Olness, H.G.Price, A.D.Irving PRVCA 28, 623 Mordechai,S., SLaFrance, H.T.Fortune NUPAB 408, 127 KNybs, T.F.Thorsteinsen, G.I_@vheiden, E.R.Flynn, J.A.Cizewski, RKSheline, D.Decman, D.G.Burke, G.Sletten, P.Hill, NKaffrell, W.Kurcewicz, G.Nymann Parry,R.F. Th.-Berkeley NUPAB 399, 190 Putt,G.P., LKField, M.A.C.Hotchkis, T.R.Ophel, D.C.Weisser Ramaniah,K.V., S.B.Reddy, V.V.Rama Muni, K.L.Narasimham P-Florence I 1 PRVCA 27, 1188 Raman,S., E.T.Jumey, D.A.Outlaw, I.S.Towner 51, 975 R.S.Raghavan PRLTA NUPAB 401, 41 Rotbard,M., M.Vergnes, J.Vemotte, G.Benier-Ronsin, J.Kalifa, R.Tamisier NUPAB 407, 60 Ruyl,J.F.G.A., P.M.Endt ZPAAD 310, 295 Schrewe,U.J., E.Hagberg, HSchmeing, J.C.Hardy, V.T.Koslow&y, K.S.Sharma ZPAAD 312, 21 J.R.H.Schneider, SHofmann, F.P.HeOberger, G.Miinzenberg, W.Reisdorf, P.Armbmster IANFA 47, 885 Sergienko,V.A., A.V.Borontsovskii, M.A.Nain 28, 1712 Shenill,B., K.Beard, W.Benenson, B.A.Brovm, E.Kashy, W.E.Ormand, H.Nann, PRVCA J.J.Kehayias, A.D.Bacher, T.E.Ward 28, 658 Tarara,R.W., C.P.Browne, see BAPSA 28,968 BAPSA NUPAB 403, 13 Tielens,T.A.A., J.Kopecky, KAbrahams, P.M.Endt PRVCA 27, 889 Toth,K.S. NUPAB 411, 209 Tokunaga,Y., HSeyfarth, O.W.B.Schult, H.G.Biirner, Ch.Hofmeyr, G.Barreau, R.Brissot, Ch.Monkemeyer, U&up PRVCA 27, 2397 Tsai,J.S., T.J.Kennett, W.V.Prestwich P-Moscow 99 Veselov,G.V, N.Ganbaatar, K.A.Mezilev, Yu.N.Novikov, A.Potempa, V.A.Sergienko, F.Tarkanyi, A.G.Teteria IANFA 47, 834 Veselov,G.V., N.Ganbaatar, Ya.Kormitski, Yu.N.Novikov, A.Potempa, ESenyavski, V.A.Sergienko, F.Tarkani ZPAAD 313, 167 Voth,E., W.D.Schmidt-Ott, H.Behrens
315
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
376 83Wa27 83We07 83Wi.A 83Wi.B 83WiOl 83Wi14
81 NUPAB 411, ZPAAD 313, 173 PrvCom AHW Jan PrvCom AHW Jun ZPAAD 309, 243 NUPAB 411, 151
83WoOl PRVCA 83WoO4 PRVCA 83ZuOl NUPAB
Waanders,F.B., J.P.L.Reinecke, H.N.Jawbs, J.J.A.Smit, M.A.Meyer, P.M.Endt We&B., C.F.Liang, P.Paris, A.Peghaire, A.Gizon Wiedner,C.A., et al Wiedner,C.-A., et al G.Winter, J.DGring, W.D.Fromm, L.Funke, P.Kemnitz, E.Will Wiedner,C.A., R.Haupt, W.Saathoff, J.Haas, R.Gyufko, K.R.Cordell, S.T.Thomton, R.A.Cecil, R.L.Parks 27 Woodward,C.J., R.E.Tribble, D.M.Tanner 27, 27, 1745 Wouters,J.M., H.M.Thierens, J.iystii, M.D.Cable, P.E.Haustein, R.F.Parry, J.Cemy 15 Zumbro,J.D., R.W.Tarara 393, 1984
84AhO2 NUPAB 84A108 YAFIA
413, 39,
423 513
84A136 IANFA
48,
834
84An03 NCIAA 79, 84An 17NCIAA 81, 84Ba.B P-Darmstadt 84BelO NUPAB 413,
100 414 55 363
84Bh02 NCIAA 79, 84Bl.A P-Darmstsdt
471 134
84Br.A AnRpt IPN 13 84Bu09 NUPAB
415,
93
29, 2339 30, 742
84Bu14 PRVCA 84Bu23 PRVCA
84Ca32 PRVCA 30, 1671 272 84Co.A P-Damtstadt 84Co19 ZPAAD 319, 107 84Da.A P-Darmstadt 84De15 NUPAB 419, 84De16 NUPAB 419,
257 101 165
84De33 NUPAB
399
84E105 84Fa04 84Fi02 84FiO5 84Fo.A
PYLBB 141, 306 23 PYLBB 137, NUPAB 417, 534 PRVCA 29, 2118 426 P-Knoxville
84Fo19 NUPAB 84Gi09 PRVCA 84Gr.A
426,
429, 30,
P-Dannstadt
205 958 170
84Ha20 PYLBB
138,
260
84Ha27 NUPAB 84Ha31 ZPAAD
420, 317,
351 193
84He.A Th.-Montreal 84Ho.A P-Dannstadt 84Ho.B ThXanberra
184
LAhmad, J.L.Lemer D.V.Aleksandrov, E.A.Ganza, Yu.A.Glukhov, B.G.Novatskii, A.A.OgJoblin, D.N.Stepanov G.D.Alkhazov, N.Ganbaatar, K.Ya.Gromov, V.K.Kalinnikov, K.A.Mezilev, Yu.N.Novikov, A.M.Nurmhukhamedov, A.Potempa, F.Tarkani M.S.Antony, J.Britz, J.B.Bueb, A.Pape M.S.Antony, J.Britz, J.Bueb, A.Pape P.H.Barker, R.E.White, D.M.J.Lovelock, R.M.Smythe M.Bemas, Ph.Dessagne, M.Langevin, J.Payet, F.Pougheon, P.Roussel, W.-D.Schmidt-Ott, P.Tidemand-Petersson, M.Girod P.Bhattacharya F.BlGnnigen, G.Bewersdotf, CGeisse, W.Lippen, B.Pfeiffer, U.Stohlker, H.Wollnik F.Braganca Gil, CBourgeois, PKilcher, M.G.Porquet, B.Roussi&re, J.Sauvage, ISOCELE L.Buchmann, M.Hilgemeier, A.Krauss, A.Redder, CRolfs, H.P.Trautvetter, T.R.Donoghue D.G.Burke B.L.Burks, R.E.Anderson, Y.Aoki, B.C.Karp, E.J.Ludwig, W.J.Thompson, R.L.Vamer F.Calaprice, G.T.Ewan, R.-D.von Dincklage, B.Jonson, O.C.Jonson, H.L.Ravn E.Coenen, K.Deneffe, M.Huyse, P.Van Duppen and PrvCom AHW July 1984 M.D.Cohler, D.L.Watson, R.Wadswotth, S.M.Lane, M.J.Smithson, R.E.Brown, J.-CPeng, N.Stein, J.W.Sunier, D.M.Drake H.Dautet, N.Campeau, J.K.P.Lee, C.Bourgeois, B.Roussi&, A.Houdayer J.B.M.De Hass, K.Abrahams, T.A.A.Tielens, H.Postma, W.J.Huiskamp D.J.Decman, H.Grawe, H.Kluge, K.H.Maier, A.Maj, M.Menningen, N.Roy, W.Wiegner Ph.Dessagne, M.Bemas, M.Lange.vin, G.C.Monison, J.Payet, F.Pougheon, P.Roussel R.J.Ellis, K.S.Sharma, R.C.Barber, S.R.Loewen, H.E.Duckworth T.Faestermann, A.Gillitzer, K.Hartel, PXenle, E.Nolte, and AMCG-7,p.177,184 L.K.Fifield, M.A.C.Hotchkis, P.V.Drumm, T.R.Ophel, G.D.Putt, DCWeisser B.W.Filippone, C.N.Davids, R.C.Pardo, J.Aystii LF6rster, H.G.Ba;mer, P.von Brentano, G.G.Colvin, A.M.I.Haque, S.A.Kerr, R.Rascher, R.Richter, K.Schreckenbach B.Fogelberg, J.Blomqvist R.Gilman, H.T.Fortune, L.C.Bland, R.R.Kiziah, C.F.Moore, P.A.Seidl, C.L.Monis. W.B.Cottingame I.S.Grant, RKirchner, OKlepper, V.T.Koslowsky, P.O.Larsson, E.Nolte, G.Nyman, A.Plochocki, G.-E.Rathke, E.Roeckl, V.Rykaczewski, D.Schardt, LSpanier, P.Tidemand-Petersson, E.F.Zganjar, J.iylicz B.J.Hall, R.J.Ellis, G.R.Dyck, C.A.Lander, R.Beach, K.S.Sharma, R.C.Barber, H.E.Duckworth R.Hanninen R.Haupt, C.-A.Wiedner, G.J.Wagner, KWannebo, T.S.Bhatia, H.Hafner, R.Maschuw, W.Saathoff, S.T.Thomton D.W.Hetherington S.Hofmann, Y.K.Agarwal, P.Annbruster, F.P.HeOberger, P.O.Larsson, G.Miinzenberg, K.Poppensieker, W.Reisdorf, J.R.H.Schneider, H.J.Sch6tt M.A.C.Hotchkis
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 84Ho02 PRVCA
29,
618
841a.A P-Damtstadt 841~09 KURAA 17,
141 132
84Ka.A 84Kell 84Ke15 84KolO 84Ko29 84Kr.B
P-Alma-Ata 128 CJPHA 62, 861 PRVCA 30, 1840 PRVCA 29, 2343 NUPAB 427, 413 P-Damutadt 127
84KrO5 NUPAB
417,
231
84LaO6 NUPAB
413,
236
84Li.A 84LiO5 84LuO2 84Ma49
AnRpt Berkeley NUPAB 417, 365 ZPAAD 315, 295 ZPAAD 319, 287
84Mo22 NUPAB
427,
84Nil6 84No05 840x01 84PiO3 84PoO9 84RaO9 84Ro.A
39, 441 423, 197 316, 97 414, 219 35, 23 30, 26 29, 1041
PZETA NUPAB ZPAAD NUPAB RR&4 PRVCA BAFSA
317
84Ru.A P-Damntadt
196
84Ru06 84RyO2 84Sc.A 84ScO6 84Sc18 84Sh28 84Sh31 84SoO3 84Th08 84To09
NUPAB NIMAE GSI-84-3 ZPAAD ZPAAD PRVCA AENGA PRVCA PRVCA PRLTA
419, 223,
439 325
315, 317, 30, 56, 29, 30, 53,
49 305 2111 245 1556 1442 1623
84Toll
NUPAB
430,
269
84VoOl JPHGB
10,
221
84VoO7 PRVCA
29, 1243
84Ya.A Th.-Berkeley
R.W.Hoff, T.von Egidy, R.W.Lougheed, D.H.White, H.G.BBmer, KScbreckenbach, G.Bamau, D.D.Wamer R.Iafigliola, H.Dautet, S.W.Xu, J.K.P.Lee, R.Chricn, R.Gill, M.Shmid T.Ishii, H.Yamamoto, M.Yoshida, K&wade, H.Miyade, Y.Iwata, T.Katoh, J.-Z.Ruan, Y.Fumakoshi, Y.Kawase, K.Okano V.G.Kalinnikov, V.V.Kuznetsov, V.LStegailov, see also P-Yumtala(1987)pll9 T.J.Kennett, W.V.Prestwich, J.S.Tai T.J.Kennett, M.A.lslam, W.V.Pnstwich R.T.Kouzes, M.M.Lowy, C.L.Bennett and PrvCom AHW May 1988 J.Kopecky, M.G.Delfini, R.E.Chrien K.-L.Kratz, A.Schroder, H.Ohm, H.Gabelmann, W.Ziegert, B.SteinmfilIer, B.Pfeiffer B.Kmsche, K.P.Lieb, L.Ziegler, H.Daniel, T.von Egidy, R.Rascher, H.G.B6mer, G.Barreau, D.D.Wamer R.G.Lanier, R.K.Sheline, G.L.Stmble, L.G.Mann, J.A.Cizewski, and Erratum NUPAB 427,650 W.X.Li, K.E.Gngorich, R.B.Welch, W.Kot, D.Lee, G.T.Seaborg Y.-F.Liu, K.J.Moody, D.Lee, Y.Morita, G.T.Seaborg, H.R.von Gunten E.Lund, B.Fogelberg W.A.Mayer, W.Henning, R.Holzwarth, H.J.KBmer, G.Korschinek, W.U.Mayer, G.Rosner, H.J.Scheerer D.M.Moltz, K.S.Toth, F.T.Avignone III, H.Noma, B.D.Kem, R.E.Tribble, J.P.Sullivan E.N.Nikolaev, Yu.LNeronov, M.V.Gorshkov, V.L.Talroze G.J.L.Nooren, C.van der Leun K.Oxhom, S.KMark S.Piskot, P.Franc, JKremenek, W.Schiiferlingov& P.Polak, L.Lindncr S.Raman, W.Ratynski, E.T.Jumey, M.E.Bunker, J.W.Stamer G.Rotbard, M.Vergnes, J.Vemotte, G.Benier Ronsin, SGales, G.M.Crawley B.Rubio, R.Julin, A.Ercan, K.Zuber, P.Kleinheinz, J.L.Tain, G.P.A.Berg, G.Hlawatsch, LKatayama, J.Meissburger, D.Paul, J.G.Roemer, J.Blomqvist J.F.A.G.Ruyl, J.B.M.de Haas, P.M.Endt, L.Zybert A.Rytx, R.A.P.Wiltshire J.Schneider Thesis U.J.Schrewe, E.Hagberg, HSchmeing, J.C.Hardy, V.T.Koslowsky, K.S.Sharma U.J.Schrewe, E.Voth, U.Bosch, W.-D.Schmidt-Ott, H.Behrens T.Shinozuka, M.Fujioka, H.Miyatake, M.Yoshii, H.Hama, T.Kamiya V.M.Shatinsky P.C.Sood C.E.Thom, J.W.Olness, E.K.Warburton, S.Raman KS.Toth, Y.A.EllieAkovali, C.R.Bingham, D.M.Moltz, D.C.Sousa, H.K.Carter, R.L.Mlekodaj, E.H.Spejewski Y.Tokunaga, H.Seyfarth, O.W.B.Schult, S.Brant, V.Paar, D.Vretenar, H.G.BGmer, G.Barre.au, H.Faust, Ch.Hofmeyr, KSchreckenbach, R.A.Meyer T.von Egidy, H.Daniel, P.Hungerford, H.H.Schmidt, KP.Lieb, B.Krusehe, S.A.Kerr, G.Barreau, H.G.BBmer, R.Brissot, C.Hofmeyr, R.Raschcr T.von Egidy, R.W.Hoff, R.W.L.ougheed, D.H.White, H.G.BBmer, KSchreckcnbach, D.D.Wamer, G.Barreau, E.Hungerford S.Yashita Diss.Abstr.45B(1984)872 1985
85Ad.A P-Leningrad 85Af.A P-Leningrad
85AlO2 PRVCA
31,
85AlO8 NUPAB
438,
85Alll
PRLTA
55,
85Al13 PYLBB 85Ao17 NCIAA
157, 88,
93 Dz.Adam, T.Dzelcv, DZakoutski, B.Kratsik, I.Penev 1083 V.P.Afanasiev, Yu.S.Blinnikov, N.Ganbaatar, V.Dzeleznyakov, V.G.Kalinikov, YaKormitski, K.A.Mezilev, Yu.N.Novikov, A.M.Nurmu&amedov, V.N.Paoteleev, A.G.Polyakov, A.Potempa, F.Tarkani 360 T.Altzitzoglou, R.T.Kouzes, F.W.Loeser, M.M.Lowy, R.A.Naumann, R.E.Chrien, Erratum PRVCA 32,665 482 G.D.Alkhazov, A.A.Bykov, V.D.Wittmann, V.E.Stamdubsky, S.Yu.Orlov, V.N.Pantelyev, A.G.Po1yako-r. V.KTanov 799 T.Altzitz@ou, F.Calaprice, MDewey, M.Lowy, L.Piilonen, J.Bmnon, S.Hagen, F.Loeser 350 G.D.Alkbazov, A.A.Bykov, V.D.Wittmann, S.Yu.Grlov, V.K.Tarasov 265 M.S.Antony, J.Britz, J.B.Bueb, V.B.Ndocko-Ndongue
378
G. Audi et al. / The 1993 atomic mass evaluation (IVJ
85ApOl PZETA
42,
233
ZPAAD ZPAAD ZPAAD ZPAAD
321, 322, 320, 321,
533 457 693 435
85Be50 PYLBB
162,
87
85Bo34 PYLBB
159,
217
85Au07 85Ba57 85Be17 85Be24
85Bo58 85BrO3 85Co.B 85CoO6 85Da I5
NIMAE 228, 387 PYLBB 150, 75 PrvCom AHW Dee PRLTA 54, 1783 PRVCA 32, 713
85De14 NUPAB
436,
311
85De40 CJPHA 85DrO6 NUPAB 85Dy04 PYLBB
63, 441, 157,
966 95 139
85ElOl
NUPAB
435,
34
85Fi03 85FiO8 85FrOl 85Ge02
NUPAB NUPAB NUPAB JPHGB
440, 531 437, 141 433, 351 11, 1055
85GyOl PYLBB 150, 85He.A GSI-85-I 1 85He06 ZPAAD 321,
335
85He22 ZPAAD
557
85Hi.A
322,
317
AnRpt GSI 88
85Ho.A PrvCom
NDS876
85Hu03 PRVCA
31, 2226
85KeO8 85Kell 85KbO4 85Ko47 85Kro6
ZPAAD PRVCA PYLBB NIMBE NUPAB
322, 121 32, 2148 156, 155 12, 325 439, 219
85La17 IJARA 85LelO PRVCA
36, 32,
443 277
85LiO2 PRLTA 85Ma54 JPHGB
54, 285 11. 1231
85Mull
ZPAAD
322,
227
850h06
PYLBB
160.
322
A.M.Apalikov, S.D.Boris, A.I.Golutvin, L.P.Laptin, V.A.Lyubimov, N.F.Myasoedov, V.V.Nagotitsyn, E.G.Novikov, V.Z.Nozik, V.A.Soloshchenko, I.N.Tikhomirov, E.F.Tretyakov G.Audi, R.L.Graham, J.S.Geiger A.Baas-May, J.V.Kratz, N.Trautmann F.J.Bergmeister, K.P.Lieb, K.Pampus, M.Uhnnacher M.Bemas, MLangevin, G.Parmt, E.Pougheon, E.Quiniou, P.Roussel, Ph.Dessagne, W.D.Schmidt-Ott W.Benenson, K.Beard, C.Bloch, B.Shenill, B.A.Brown, A.D.Panagiotou, J.van der Plicht, J.S.Winsfield, C.E.Thom SBoris, A.Golutvin, L.Laptin, V.Lubimov, V.Nagovizin, E.Novikov, V.Nozik, V.Soloshenko, LTihomirov, E.Tretjakov V.R.Bom, P.C.Coops M.Brauner, D.Rychel, R.Gyu!ko, C.A.Wiedner, S.T.Thomton G.G.Colvin E.Coenen, K.Deneffe, M.Huyse, P.Van Duppen, J.L.Wood N.J.Davis, J.A.Kuehner, A.A.Pilt, A.J.Tmdel, M.C.Vetterli, C.Bamber, E.K.Warbunon, J.W.Olness, S.Raman D.J.Decman, H.Grawe, HKluge, K.H.Maier, A.Maj, N.Roy, Y.K.Aganval, K.P.Blume, M.Guttormsen, H.Hubel, J.Recht V.P.Derenchuk, R.J.Ellis, K.S.Sharma, R.C.Barber, H.E.Duckworth P.V.Drumm, L.K.Fitield, R.A.Bark, M.A.C.Hotchkis, C.L.Woods, P.Maier-Komor G.R.Dyck, R.J.Ellis, K.S.Shatma, C.A.Lander, M.H.Sidky, R.C.Barber, H.E.Duckworth R.J.Ellis, R.C.Barber, G.R.Dyck, B.J.Hall, K.S.Sharma, C.A.Lander, HEDuckworth and PrvCom AHW October 1991 L.K.Fifield, C.L.Woods, R.A.Bark, P.V.Drumm, M.A.C.Hotchkis L.K.Fitield, P.V.Dmmm, M.A.C.Hotchkis, T.R.Ophel, C.L.Woods R.Franke, H.Kockskamper, BSteinheuer, K.Wingender, W.von Witsch W.Gelletly, J.R.Ixysz, H.G.BBmer, R.F.Casten, W.F.Davidson, W.Mampe, KSchreckenbach, D.D.Wamer R.Gyufko, D.Rychel, MSteck, C.-A.Wiedner, R.L.Parks, S.T.T.Thomton F.P.HeBberger F.P.HeBberger, G.Miinzenberg, S.Hofmann, W.Reisdorf, K.-H.Schmidt, H.J.Schiitt, P.Armbmster, R.Hingmann, B.Thuma, D.Vermeulen F.P.HeBberger, G.Mi&enberg, S.Hofmann, Y.K.Aganual, K.Poppensieker, W.Reisdorf, K.-HSchmidt, J.R.H.Schneider, W.F.W.Schneider, H.J.Schatt, P.Armbruster, B.Thuma, C.-C.Sahm, D.Vemzulen R.Hingmann, W.Kuehn, V.Metag, R.Novotny, A.Ruckelshausen, HStroeher, F.P.HeBberger, S.Hofmann, G.Miinzenberg, W.Reisdorf C.Hofmeyr, C.Franklyn, G.Barreau, H.G.BBmer, R.Brissot, H.Faust, K.Schreckenbach A.Huck, G.Klotz, A.Knipper, C.MieM, C.Richard-Setx, G.Walter, A.Poves, H.L.Ravn, G.Marguier T.J.Kennett, W.V.Prestwich, J.S.Tsai T.J.Kennett, W.V.Prestwich, J.S.Tsai SKban, ThKihm, K.T.Knoepfle, G.Mairle, V.Bechtold, L.Friedtich P.J.J.Kok, K.Abrahams, H.Postma, W.J.Huiskamp B.Kmsche, Ch.Winter, K.P.Lieb, P.Hungerford, H.H.Schmidt, T.von Egidy, H.J.Scheerer, S.A.Kerr, H.G.Bamer R.M.Lambrecht, S.Mirzadeh R.S.Lee, J.H.Hamilton, A.V.Ramayya, A.P.de Lima, D.L.Sastry, K.S.R.Sastry, E.H.Spejewski, R.L.Mlekodaj, H.K.Caner, W.-DSchmidt-Ott, J.Lin, C.R.Bingham, L.L.Riedinger, E.F.Zganjar, J.L.Weil, B.D.Kem, A.C.Xenoulis, R.W.Fink, Sun Xi-jun, Guo Jun-sheng, Cho Chi-cheng, Pan Zong-you, Guo Ying-xian E.Lippmaa, R.Pikver, E.Suurmaa, J.Past, J.Puskar, LKoppel, A.Tammik T.D.MacMahon, G.R.Massoumi, T.Mitsunari, MThein, O.Chalboub, D.Breitig, H.A.Baadcr, U.Heim, H.R.Koch, L.Wimmwer, HSeyfarth, KSchreckenbach, G.B.Orr, G.J.Smith, W.R.Kane, I.A.Kondurov, P.A.Sushkov, Yu.E.Loginov, D.Rabenstein, M.Bogdanovic G.Miinzenberg, S.Hofmann, H.Folger, F.P.HeOberger, J.Keller, K.Poppensieker, B.Quint, W.Reisdorf, K.-H.Schmidt, H.J.SchGtt, P.Armbruster, M.E.Leino, R.Hingmann T.Ohi, M.Nakajima, H.Tamura, T.Matsuzaki, T.Yamazaki, O.Hashimoto, R.S.Hayano
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 31, 1032 A.A.Pilt, J.A.Cameron, R.B.Schubaak, E.E.Habib 435, 333 J.P.L.Reinecke, F.B.Waanders, P.Oberholzer, P.J.C.Janse van Rensburg, J.A.Ciiers, J.J.A.Smit, M.A.Meyer, P.M.Endt 85RyO2 ZPAAD 322, 263 KRykacmwski, I.S.Grant, RXrchner, OKlepper, V.T.Koslowsky, P.O.Larsson, E.Nolte, G.Nyman, E.Roeckl, D.Schardt, L.Spanier, P.Tidemand-Petersson, E.F.Zgattjar, J.iylin 85SalZ ZPAAD 321, 255 MSamri, J.G.Costa, G.Klotz, D.Magnac, R.Selz, J.P.Zitnfeld 85ScO9 ZPAAD 320, 595 U.J.Schrewe, H.Domhoefer, E.Runte, W.D.Schmidt-Ott, T.Tidemand-Petersson 85Sc16 NIMAE 236, 225 H.SchGlemtann, B.R.L.Siebert 85Sh03 PRVCA 31, 875 B.Sherrill, K.Beard, W.Benenson, C.Bloch, B.A.Brown, E­, J.A.Nolen,Jr., A.D.Paoagiotou, J.van der Plicht, J.S.Winfield, see P-Darmstadt p.82 85SiO3 JPHGB 11, 399 RSingh, B.S.Grewal, H.S.Sahota 85SiO7 PRVCA 31, 1891 J.J.Simpson, W.R.Dixon, R.S.Storcy 85Ta.A P-Swansea 343 V.L.Talrose, E.N.Nikolaev 85ThOl PRVCA 31, 577 J.Thomas, J.Le Sccca 85TiOl ZPAAD 320, 405 P.Tidemand-Petersson, E.Runte, W.-DSchmidt-Ott, U.J.Schrewe 85TolO NUPAB 439, 427 Y.Tokunaga, H.Seyfanh, R.A.Meyer, O.W.B.Schult, H.G.Biimer, G.Barreau, H.R.Faust, K.Scbreckenbach, S.Brant, V.Paar, M.Vouk, D.Vntenar 85Toll PRVCA 32, 342 K.S.Toth, Y.A.Ellis-Akovali, F.T.Avigttone,IIl, R.S.Moon, D.M.Moltz, J.M.Nitschke, P.A.Wilmarth, P.K.Lemmertz, D.C.Sousa, A.L.Goodman 85TsOl ZPAAD 322, 295 J.S.Tsai, T.J.Kennett, W.V.Prestwich 85Ts02 ZPAAD 322, 597 J.S.Tsai, W.V.Prestwich, T.J.Kennett 85VoO3 PRVCA 31, 1510 R.-D.von Dincklage, J.Gerl, H.L.Ravo, G.J.Beyer 85VoO9 ZPAAD 321, 375 R.-D.von Dincklage, H.J.Hay 85Vo13 NUPAB 445, 113 R.-D.von Din&age, H.J.Hay, H.L.Ravn 85Vo15 ZPAAD 322, 669 T.von Egidy, H.G.Biimer, F.Hoyler 85Wa04 NUPAB 432, 185 A.H.Wapstra, G.Audi, R.Hockstra 85WhO3 MTRGA 21, 193 R.E.White, P.H.Barker, D.M.J.Lovelock 85Wo.A PrvCom GAo Feb P.J.Wwds 85WoOl PYLBB 150, 79 P.J.Wti, RChapman, J.L.Durell, J.N.Mo, N.E.Sandenon, R.A.Cunningham, B.R.Fulton 85WoO4 NUPAB 437, 454 C.L.Woods, L.K.Fitield, R.A.Bark, P.V.Drumm, M.A.C.Hotchkis
85PiO3 PRVCA 85ReO2 NUPAB
1986 86Ad07 86Ag.A 86AuO2 86Ba72 86Be35 86Be53 86BjOl
86Bo28 86Bo46 86Bu18 86Co12 86Da.A 86De13 86De14 86EkOl 86FiO6 86FrO9 86Ga19 86Gi07 86GrOl
IANFA 50, 855 J.Adam, V.Vagtter, M.Gonusek, B.Kratick P-Charkov 98 V.A.Agee.v, VSBelyavenko, V.A.Dzeltonodzskii, A.A.Klyushnikov NUPAB 449, 491 G.Audi, A.&c, M.Epherre, G.Le Scomet, C.Thibault, F.Touchard, ISOLDE IANFA 50, 1898 K.A.Baskova, G.I.Borisov, A.B.Vovk, T.M.Gems, L.I.Go NUPAB 460, 352 A.V.Belozyorov, CBorcea, Z.Dlouhy, A.M.Kalinin, RKalpakchieva, Nguyen Hoai Chau, Yu.Ts.Oganessian, Yu.E.Penionzhkevich UFZHA 31, 1773 V.S.Belyaveako, G.P.Bomzenets, I.N.Vishnevsky, V.A.Zheltonozhsky NUPAB 453, 463 T.Bjomstad, M.J.G.Borge, J.Blomqvist, R.D.von Dincklage, G.T.Ewan, P.Hoff, B.Jonson, K.Kawade, A.Kenk, O.Kleppcr, G.Levheiden, S.Matt.son, G.Nymao, H.L.Ravn, G.Rudstam, K.Sistemich, O.Tengblad, ISOLDE ZPAAD 325, 149 V.R.Bom, P.C.Cwps, R.W.Hollander, E.&men, KDcneffe, P.Van Duppen, M.Huyse PHSTB 34, 591 M.J.G.Borge, A.Dc Rtijula, P.G.Hanscn, B.Jonson, G.Nyman, H.L.Ravo, KRiisager, ISOLDE PRVCA 34, 2316 B.L.Burks, R.L.Vamer, E.J.Ludwig ZPAAD 324, 485 ECoenen, KDeneffe, M.Huysc, P.Van Duppen, J.L.Wood AnRpt McGill 29 H.Dautet, R.Turcotte, S.K.Mark NUPAB 454, 1 H.P.L.De Esch, C.vao der Leun NUPAB 454, 48 H.P.L.De Esch, J.B.J.M.Lanen, C.van der Leon PHSTB 34, 614 B.Ekstr&o, B.Fogelberg, P.Hoff, E.Lund, A.Sangiyavaoisb NUPAB 453, 497 LKFitield, C.L.Woods, W.N.Catford, R.A.Bark, P.V.Dmmm, K.T.Keogbaa PYLBB 173, 485 M.Fritschi, EHolzschuh, W.Kundig, J.W.Petenen, R.E.Pixley, H.Stussi, and PrvCom to AHW PRVCA 34, 1663 C.A.Gagliardi, D.R.Semon, R.E.Tribble, L.A.Van Ausdeln PRLTA 56, 1874 R.L.Gill, R.F.Casten, D.D.Wamer, A.Piotrowski, H.Mach, J.C.Hill, K.K.Wohn, J.A.Winger, RMoreh PRLTA 56, 819 G.L.Grcenc, E.G.Kessler,Jr., R.D.Deslattes, H.Biimer
379
380
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
86Ha22
NUPAB
455,
231
86Ho24 86Ka38
NUPAB JUPSA
459, 55,
35 3014
86Ka43
NUPAB
460,
437
86KeO3
NUPAB
452,
173
86Ke14 86KolY 86Ma40 86Mi08
NIMAE ZPAAD PRVCA PRVCA
249, 324, 34, 33,
366 271 729 1736
86Mi14 86PrO3
PRVCA NUPAB
33, 455,
2204
86PrO5 86Ru04
ZPAAD ZPAAD
325, 324,
321 27
86Ru05
ZPAAD
324,
119
86Ry04 86Sc16
NIMAE NUPAB
253, 454,
47 267
86Sc25
JPHGB
12,
411
86Se04 86Sm05
PYLBB ZPAAD
173, 324,
397 283
86To12
PYLBB
178,
150
86Ts04 86Va08
CJPHA PRVCA
64, 33,
1569 1141
86Ve.A 86Ve.B
P-Charkov P-Charkov
86ViO9
PRLTA
57,
3253
86Wi16
NUPAB
460,
501
86WoO7 PYLBB
182,
297
86Ya17
181,
169
PYLBB
I
107 138
A.M.I.Hague, R.F.Casten, I.F&ster, A.Gelberg, R.Rascher, R.Richter, P.von Brentsno, G.Barreau, H.G.Biimer, S.A.Kerr, K.Schreckenbach, D.D.Wamer P.Hoff, B.EkstrGm, H.Goektuerk, B.Fogelberg H.Kawakami, SShibita, J.Tanaka, T.Toriyama, SNoguchi, M.Mushano, KHisatake N.Kaffrell, P.Hill, J.Rogowski, H.Tetzlaff, N.Trautmann, E.Jacobs, P.De Gelder, D.De Frenne, K.Heyde, G.Skamemark, JAlstad, N.Blasi, M.N.Hamkeh, W.A.Stenenburg, K.Wolfsberg J.G.Keller, K.-HSchmidt, F.P.HeOberger, G.Miinzenberg, W.Reisdorf, H.-GClerc, C.-C.Sahm and PrvCom K.-H.Schmidt to AHW November 1992 T.J.Kennett, W.V.Prestwich, J.S.Tsai P.J.J.Kok, J.B.M.de Haas, K.Abrahams, H.Postma, W.J.Huiskamp L.G.Mann, R.G.Lanier, G.L.Stmble, R.A.Naumann, R.T.Kouzes CMiehC, Ph.Dessagne, P.Baumann, A.Huck, G.Klotz, AKnipper, G.Walter, C&chard-Serre D.Miljanic, S.Blagus, M.Zadro P.T.Prokofjev, V.A.Bondarenko, T.V.Guseva, N.D.Kramer, L.I.Simonova, J.J.Tambergs, K.Schreckenbach, W.F.Davidson, J.A.Pinston, D.D.Wamer, P.H.M.vsn Assche, A.M.J.Spits W.V.Prestwich, T.J.Kennett, J.S.Tsai B.Rubio, A.Ercan, G.de Angelis, P.Kleinheinr, J.L.Tain, B.Brinkmceller, D.Paul, J.Meissburger, L.G.Mann, D.J.Decman, T.N.Massey, G.L.Stmble, H.J.Scheerer, J.Blomqvist E.Runte, T.Hild, W.-D.Schmidt-Ott, U.J.Schrewe, P.Tidemand-Petersson, R.Michaelsen A.RYtz. R.A.P.Wiltshire, M.Kinn H.H.Schmidt, T.von Egidy, H.J.Scheerer, P.Hungerford, H.G.Biimer, S.A.Kerr, K.Schreckenbach, R.F.Casten, W.R.Kane, D.D.Wamer, AChalupka, M.K.Balodis, T.V.Guseva, P.T.Prokofjev, J.J.Tambergs H.H.Schmidt, W.Sto;iIl, T.von Egidy, P.Hungerford, H.J.Scheerer, K.Schreckenbach, H.G.BBmer, D.D.Wamer, R.E.Chrien, R.C.Greenwood, C.W.Reich K.K.Seth, S.Iversen, MKaletka, D.Barlow, A&ha, R.Soundranayagam R.J.Smith, P.J.Woods, R.Chapman, J.L.Durell, J.N.Mo, B.R.Fulton, R.A.Cunningham KSToth, Y.A.Ellis-Akovali, J.M.Nitschke, P.A.Wilmarth, P.K.Lemmertz, D.M.Moltz, F.T.Avignone III J.S.Tsai, W.V.Prestwich, T.J.Kennett G.Vandenput, P.H.M.van Assche, L.Jacobs, J.M.van den Cnryce, R.K.Smither, K.Schreckenbach. T.von Egidy, D.Breitig, H.A.Baader, H.R.Koch G.V.Veselov, K.A.Merilev, Yu.N.Novikov, A.V.Lopov, V.A.Sergienko G.V.Vexlov, K.A.Mezilev, Yu.N.Novikov, A.V.Lopov, Yu.Ya.Sergeev, V.A.Sergienko, V.LTichonov D.J.Vieira, J.M.Wouters, K.Vaziri, R.H.Krauss,Jr., H.Wollnik, G.W.Butler, FXWohn, A.H.Wapstra Ch.Winter, B.Krwche, K.P.Lieb, H.H.Schmidt, T.von Egidy, P.Hungerford, F.Hoyler, H.G.BBmer P.J.Woods, RChapman, J.L.Durell, J.N.Mo, R.J.Smith, B.R.Fulton, R.A.Cunningham, P.V.Dmmm, L.K.Fitield SYasumi, M.Ando, H.Maezawa, H.Kitamura, T.Ohta, F.Ochiai, A.Mikuni, M.Maruyama, M.Fujioka, K.Ishii, T.Shinozuka, K.Sem, T.Omori, G.Izawa, MYagi, K.Masumoto, K.Shima, T.Mukoyama, Y.lnagaki, LSugai, A.Masuda, O.Kawakami 1987
87Aj.A 87Ba52
PrvCom AHW Jul NUPAB 472, 445
87Bo07
PRLTA
58,
2019
F.Ajzenberg-Selove M.K.Balodis, P.T.Prokofjev, N.D.Kramer, L.I.Simonova, K.Schreckenbach, W.F.Davidson, J.A.Pinston, P.Hungerford, H.H.Schmidt, H.J.Scheerer, T.von Egidy, P.H.M.van Assche, A.M.J.Spits, R.F.Casten, W.R.Kaae, D.D.Wamer, J.Kem S.Boris, A.Golutvin, L.Laptin, V.Lubimov, V.Nagovizin, V.Nozik, ENovikov, VSoloshenko, LTihomirov, E.Tretjakov, N.Myasoedov
G. Audi et al. / The 1993 atomic maw evaluation (Iv) 13 M.Bogdaoovic, R.Brissot, G.Barreau, K.Schreckenbach, S&IT, H.G.Bi%oer, I.A.Kondurov, Yu.E.Loginov, V.V.Martynov, P.A.Sushkov, HSeyfarth, T.von Egidy, P.Hungerford, H.H.Schmidt, H.J.Scheerer, A.Chalupka, W&me, G.Alaga 465, 221 A.Bmce, D.Hicks, D.D.Wagner 87BrO5 NUPAB K.Y.Gromov, A.Marinov, 13, 1565 V.B.Brudanin, T.Vylov, Ch.Brianwn, VMGorojankin, 878133 JPHGB A.P.Novgorodov, V.N.Pokrovski, N.LRukha&e B.Brinkmoeller, H.P.Morsch, R.Sieben, PDecowski, M.Rogge, P.Turck 87Br.B AnRpt Julich 9 465, 240 G.G.Colvin, H.G.BBmer, P.Geltenbort, F.Hoyler, S.A.Kerr, KSchreckenbach, 870~08 NUPAB J.A.Cizewski and PrvCom AHW December 1988 326, 155 J.Deslawien, S.C.Gujrathi, S.RMark 87De04 ZPAAD P.Dendooven, M.Huyse, G.Reusen, J.Wouters, P.Van Duppen 87De.A AnRpt Leuven 47 13, 1283 C.T.A.M.De Last, P.Polak, A.Taal, J.Konijn, W.I.cweas, A.H.Wapstca 87De33 JPHGB 13, 93 A.M.Y.El-Lawindy, J.D.Burrows, P.A.Butler, J.R.Cresswell, V.Holliday, 87El02 JPHGB G.D.Jones, R.Tanner, R.Wadswotth, D.L.Watson, K.A.Connell, J.Simpsom, C.Lauterbach, J.R.Mines 36, 1529 Y.A.Ellis-Akovali, K.S.Toth, H.K.Carter, C.R.Bingham, I.C.Girit, 878109 PRVCA M.O.Konelahti 675 T.Faestennann, A.Gillitzer, K.Hartel, W.Henning, P.Kienle 87Fa.A P-Rosseau 475, 301 B.Fogelberg, A.M.Bmce, D.D.Wamer 87Fo20 NUPAB 86 N.Ganbaatar, G.V.Veselov, K.A.Mezilev, V.G.Kalinnikov 87Ga.A P-Yurmala 13, 69 W.Gelletly, J.R.Larysz, H.G.Biimer, R.F.Casten, W.F.Davidson, W.Mampe, 87GeOl JPHGB KSchreckenbach, D.D.Wamer 192, 39 A.Gillibert, W.Mittig, L.Bianchi, A.Cunsolo, B.Femandez, A.Foti, 87Gi05 PYLBB J.Gaste.bois, CGregoin, YSchutz, CStephan 45, 205 M.G.Gomov, Y.B.Gurov, V.P.Koptev, P.V.Morokbov, K.O.Oganesyan, 87Go25 PZETA B.P.Gsipenko, V.A.Pechkurov, V.LSaveI’ev, FMSergeev, A.A.Khomutov, B.A.Chcmyshev, R.R.Shafigullin, A.V.Shishkov 327, 383 M.Graefenstedt, U.Keyser, F.Miinnich, F.Schreiber, H.R.Faust, H.Weikard 87Grl8 ZPAAD 30 M.Graefenstedt, U.Keyser, F.MQnnich, FSchreiber 87Gr.A P-Rosseau 3, 895 F.P.HeBberger, S.Hofmann, G.Miinzenberg, A.B.Quint, K.Siimmerer, 87HelO EULEE P.Armbmster 36, 1504 D.W.Hetherington, R.L.Graham, M.A.Lone, J.S.Geiger, G.E.Lee-Whiting 87Hel4 PRVCA 474, 484 K.Heiguchi, S.Mitarai, B.J.Min, T.Kuroyanagi 87He21 NUPAB 474, 77 R.G.Helmer, M.A.Lee, C.W.Reich, LAhmad 87He28 NUPAB 38, 839 S.M.Judge, P.Christmas, P.Cross, D.Smith, W.D.Hamilton, 87JuO4 ARISE and PrvCom AHW February 1989 470, 141 N.Kaffrell, P.Hill, J.Rogowski, H.Tetzlaff, N.Trautmann, E.Jacobs, 87Ka29 NUPAB P.De Gelder, D.De Fremte, K.Heyde, S.Borjesson, GSkamemark, JAlstad, N.Blasi, M.N.Harakeh, W.A.Stenenburg, KWolfsberg 65, 1111 T.J.Kennett, W.V.Prestwich, J.S.Tsai 87KeO9 CJPHA 87Kh.A VHDPG C-5.6 S.Khan, ThKihm, K.T.Knoepfle, G.Mairle, H.J.Scholtz, M.Seeger, M.Spabn, Wen Chenlin 517 P.Kilcher, J&wage, C.Bourgeois, F.Le Blanc, J.Oms, B.Roussi&, J.Monsch, 87Ki.A P-Rosseau J.Obert, A.Caroettc, A.Ferro, G.Boissier, J.Foumet-Fayas, M.Ducounieux, G.Landois, R.Sellem, DSmadjderman, ISGCELE, A.Wojtasiewin, M.C.Abreu, A.Bcn B&am, KFransson, M.G.Porquet 472, 419 V.T.Koslowky, J.C.Hardy, E.Ha.gberg, R.E.Azuma, G.C.Ball, E.T.H.Clifford, 87Ko34 NUPAB W.G.Davies, H.Schmeing, U.J.Schrewe, K.S.Sharma 521 C.F.Liang, P.Paris, Ch.Brianpon 87Li.A P-Rosseau, 191, 245 C.F.Liang, P.Paris, P.Kleinheinz, B.Rubio, M.Piiparinen, D.Schardt, 87LiO9 PYLBB A.PIochocki, R.Barden 327, 171 F.Meissner, E.Runte, V.Freystein, T.Hild, W.-D.Schmidt-ott, HSalewski, 87Me08 ZPAAD RMichaelscn 35, 1275 D.M.Moltz, A.C.Betker, J.P.Sullivan, R.H.Burch, C.A.Gagliardi, R.E.Tribhlc, 87Mo06 PRVCA K.S.Toth, F.T.Avignone III 328, 49 GMinzenberg, P.Armbruster, G.Berthes, H.Folger, F.P.HeOberger, 87Mul5 ZPAAD S.Hofmann, J.Keller, KPoppensieker, A.B.Quint, W.Reisdorf, K-H.Schmidt, H.J.SchBtt, K.Siimmerer, I.Zychor, M.E.Leino, R.Hingmann, U.Gollerthan, E.Hanelt 35, 1617 K.I.Pearce, N.M.Clarke, R.J.Griffiths, P.J.Simmonds, A.C.Dodd, D.Barker, 87Pe06 PRVCA J.B.A.England, M.C.Mannion, C.A.Ogilvie 36, 303 M.S.Rapaport, C.F.Liang, P.Paris and PrvCom GAu July 1988 87RaO6 PRVCA 328, 373 E.Runte, F.Mcissner, V.Freystein, T.Hild, H.Salewski, W.-DSchmidt-Ott, 87Ru05 ZPAAD RMichaelsen 56, 3881 H.S.Sahota, T.Iwashita, B.S.Grewal 87Sa53 JUPSA 87Bo24
NUPAB
470,
381
382
G. Audi et al. I The 1993 atomic mars ~aluafi~~ (Iv 477
87Sc.A
P-Rosseau
87Se.A 87Se04 87SeOS
P-Rosseau NUPAB 464, PRLTA 58,
324 381 1930
87Sp.A P-Lettven 87SpOY NUPAB 474, 87St.A P-Rosseau
s559 359 489
87StO4
ZPAAD
326,
139
87Stll
PRVCA
35,
2033
87ToOY 87Va09 87Va20 87Ve.A 87ViOl 87We.A 87WhOl
PRVCA 35, PRVCA 35, NUPAB 469, P-Yurmala NUPAB 463, P-Rosseau PRVCA 35,
2330 1861 531 146 605 415 81
87Wi15 87ZiO2
NUPAB NLJPAB
473, 466,
129 280
D.Schardt, R.Barden, R.Kirchner, O.Klepper, A.Ptochocki, E.RoecM, P.KIeinheinz, M.Piiparinen, B.Rubio, K.Zuber, C.F.Liang, P.Parir, A.Huck, G.WaIter, G.Marguier, H.Gab&nann, JBlomqvist K.K.Seth P.B.Semmes, R.A.Braga, R.W.Eink, J.L.Wood, J.D.Cole K.K.Seth, M.Artuso, D.Barlow, S.Iversen, MKaleth, H.Nann, B.Parker, RSoundranayagam A.M.J.Spits, S.J.Robinson LSpanier, K.AIekIett, B.Ekstriim. B.Fogclbetg J.Styczen, P.~eiobeinz, W.Starzecki, B.Rubio, G.de Angelis, H.J.Hahn, C.F.Liang, P.Paris, R.Reinhardt, P.von Brentano, J.Blomqvist E.Stiliaris, H.G.Boh&n, X.S.Chen, B.Gebauer, A.Miczaika, W.von Oenzen, W.Weller, T.Wilpert G.S.F.Stephans, H.T.Fortune, L.C.Bland, M.Carchidi, R.Gilman, G.P.Gilfoyle, J.W.Sweet K.S.Toth. D.M.Moltz. F.BlGnniaen. F.T.AviPnone.111 P.Van Dippen, E&nen, KD;?n&e, M.Hiyse, j.L.Wood L.Van Elmbt, J.Deutsch, R.Prieels and NUPAB 493(1989)611 G.V.VeseIov, K.A.Mezilev, Yu.N.Novikov, A.V.Lopov, V.A.Sergienko K.Vierinen B.Weiss, A.Gizon, C.F.Liang, P.Paris, ISGCELE D.H.Wbite, H.G.B&ner, R.W.Hoff, K.~hreckenha~h, W.F.Davidson, T.von Egidy, D.D.Wamer, P.Jeuch, GBarreau, W.R.Kane, M.L.Stelts, R.E.Chrien, R.F.Casten, R.G.Lanier, R.W.Lougheed, R.T.Kouzes, R.A.Naumann, R.Dewbeny Ch.Winter, B.Kmsche, K.P.Lieb, T.Weber, G.Hlawatsch, T.von Qidy, F.Hoyler FZijderhand, R.C.Makkus, Cvan der Leon 1988
88AxOl
PVLBB
210,
249
88AyOl
PYLBB
201,
211
88Ay02
NUPAB
480,
104
88BalO
ZPAAD
329,
319
88Bo06
NUPAB
477,
89
88Bo28 8831108 880x21 BBC104
ZPAAD NUPAB NUPAB JPHGB
331, 483, 489, 14,
21 221 347 1399
88Col8 88CoTa 88De03 88Fi04
JPHGB CODBA NUPAB NUPAB
14, 63, 476, 484,
1411
88FoO5 88GiO4 88Gr30
PYLBB PRVCA RAACA
209, 37, 43,
173 2600 223
88Ka20
JUPSA
57,
2873
66, 484,
947 264
88KeO9 CJPHA 88Ku14 NUPAB
I
316 117
88Ma.A
P-BadHonnef
391
88Mi13
PRVCA
895
38,
H&el8SOn, M.Cronqvist, A.De Riijula, P.G.Hansen, L.Joharmsen, B.Jonson, R.A.Naumann, G.Nyman, J.W.Petersen, H.L.Ravn, K.Riisager, J.A.Scircle, ISOLDE J.Aystij, P.Taskinen, M.Yoshii, J.Honkanen, P.Jauho, H.Penttiiii, C.N.Davids J.kystii, C.N.Davids, J.Hattula, J.Honkanen, P.Jauho, R.Julin, Sluutinen, J.Kumpalainen, T.Loenroth, A.Pakkansn, A.Passoja, H.Penttil& P.Taskinen, E.Verho, A.Vinanen, M.Yoshi R.Barden, RKirchner, O.Klepper, A.Ptochocki, G.-E.Rathke, E.Rcmkl, K.Rykaczewski, D.Schardt, J.iylicz U.Bosch, W.-DSchmidt-Ott, E.Runte, P.Tidemand-Petersson, P.Koschel, F.Meissner, R.Kirchner, O.Klepper, E.Roeckl, K.Rykaczewski, D.Schardt V.R.Bom. R.W.Hoilander, E.Coenen, K.Deneffe, P.Van Duppen, M.Huyse D.G.Burke, G.twheiden, T.F.Thorsteinsen W.N.Catford, L.K.Fitield, T.R.Ophel, N.A.On, D.C.Weisser, C.L.Woods N.M.Clarke, P.R.Hayes, M.B.Becha, K.LPearce, R.J.Grifflths, J.B.A.England, L.Zybert, C.N.Pinder, G.M.Field, R.S.Mackintosh G.G.Colvin, S.J.Robinson, F.Hoyler E.R.Cohen, B.N.Taylor H.P.L.De Esch, Cvan der Leun L.K.Fitietd, RChapman, J.L.Durell, J.N.Mo, R.J.Smith, P.J.Woods, B.R.hlton, R.A.Conningham, P.V.Dmmm B.Fogelberg, Ye Zongyuan, L.Spanier M.Girod, Ph.Dessagne, M.Bemas, M.Langevin, F.Pougheoa, P.Roussel K.E.Gregorich. R.A.Henderaon, D.M.Lee, M.J.Murmia, R.M.Chasteler, H.L.Hall, D.A.Bennett, C.M.Ganneti, R.B.Chadwick. J.D.Leyba, D.C.Hotian, G.Herrmarm HKawakami. S.Kato. F.Naito. K.Nisimura. T.Ohshima, SShibata. T.Suzuki, K.Ukai, N.GorikawaI N.Nogaka, T.Nagafuchi, H.Taketani, M.Iw&ashi, K.Hisatake, Y.Fukushima, T.Matsuda, T.Taniguchi T.J.Kennett, W.V.Prestwich, J.S.fsai T.Kuroyanagi, SMitarai, B.J.Min, H.Tomura, Y.Haruta, K.Heiguchi, S.Suematsu, Y.Onizuka H.Mach, E.K.Warburton, R.L.GilI, R.F.Casten, A.Wolf, Z.Berant, J.A.Winger, K.Sistemich, G.Molnti, S.M.Yates L~W.MitcheU, P.H.Fisher
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 88Mol8
PRVCA
38.
737
88NoOZ 880r.A 88OrOl 88PaDG 88Qu.A
PRVCA 37, Th.-Canberra NUPAB 477, PYLBB 204, AnRpt GSI 16
860
88Sa06 88Sal8
ZPAAD PRVCA
329, 37,
169 2371
88Si22 88St.A 88WoO2 88WoO7 88WoO9
JUPSA 57, P-BadHonnef NUPAB 476, NUPAB 484, ZPAAD 331,
3762 239 392 145 229
523
M.F.Mohar, E.Adamides, W.Benenson, C.Bloch, B.A.Brown, J.Clayton, E.Kashy, M&we, J.A.Nolen,Jr., W.E.Ormand, J.van der Plicht, B.Sherrill, J.Stwenson, J.S.Win!ield E.B.Norman, K.T.L.esko, A.E.Champagne N.A.Orr N.A.Orr, W.N.Catford, L.K.Fitield, T.R.Ophel, D.C.Weisser, C.L.Woods Particle Data Group A.B.Quint, W.Morawek, K.-H.Schmidt, P.Armbrwter, F.P.HeBberger, SHoftnann, G.Muenzenberg, W.Reisdotf, H.Stelzer, H.-G.Clerc, C.-C.Sahm H.Salewski, W.-D.Schmidt-Ott J.-LSalicio, SDrissi, M.Gasser, J.Kem, H.G.BGmer, G.G.Colvin, KSchreckenbach, R.W.Hoff, R.W.I_ougheed KSingh, T.S.Gill, K.&h M.L.StolzenwaId, S.Brant, H.Ohm, K.Sistemich, G.Lhersonneau C.L.Woods, W.N.Catford, L.K.Fifield, N.A.Orr, R.J.Sadleir C.L.Woods, W.N.Catford, L.K.Fi!ield, N.A.Orr J.M.Wouters, R.H.Kraus,Jr., D.J.Vieira, G.W.Butler, K.E.G.Lobner 1989
89Al33
IANFA
89An02
NUPAB
89An.A
P-Dubna
89Anl3
YAFIA
89Ay.A
P-Dubna
89Ba28 89Ba42 89Bo.A 89Bu09
PRVCA 40, 940 NUPAB 500, 1 PrvCom GAu Dee ZPAAD 333, 131
89Ca25 89ChOl
NUPAB PRVCA
503, 39,
263 248
89DrO3 89FiOl
NUPAB PRVCA
496, 39,
530 219
89GrO3 89Gr23
NUPAB ZPAAD
491, 334,
373 239
89Ha27
NUPAB
500,
90
89He03
NIMAE
274,
522
89Hell 89Hel3
NUPAB ZPAAD
494, 333,
111
89Hi04
NUPAB
492,
237
89HoOS ZPAAD 89Hol2 ZPAAD
332, 333,
407 107
89Hol5 89Je07 89Jo.A
53,
2089
491.
290
508 50,
619 427
NUPAB 500, NUPAB 503, AnRpt JYFL 81
I
111 77
G.D.Alkhazov, B.N.Belyayev, V.D.Domkin, Yu.G.Korobulin, V.V.Lokashevich, V.S.Mukhin E.Andersen, M.J.G.Borge, D.G.Burke, H.Gietz, P.Hill, NKaffrell, W.Kurcewicz, G.Lfwhaiden, S.Mattsson, R.A.Naumann, K.Nybe, G.Nyman, T.F.Thorsteinsen, ISOLDE A.N.Andreyev, D.D.Bogdanov, V.I.Chepigin, A.P.Kabachenko, O.A.Grlova, S.Sham, G.M.Ter-Akopian, A.V.Yeremin and 89Anl3 A.N.Andreyev, D.D.Bogdanov, A.V.Yetimin, A.P.Kabachenko, O.A.Orlova, G.M.Ter-Akopian, V.I.Chepigin J.;iyst& P.Dendooven, P.Jauho, A.Jokinen, J.Parmonen, H.Penttilii, P.Taskinen, M.Leino, KEskola S.C.Baker, M.J.Brown, P.H.Barker E.L.Bakkum, C.van der Leon H.G.Bohlen D.G.Burke, H.Folger, H.Gabelmann, E.Hagebe, P.Hill, P.Hoff, O.Jonsson, N.Kaffrell, W.Kurcwicz, G.bheiden, K.Nybo, G.Nyman, H.Ravn, K.Riisager, J.Rogowski, K.Steffenscn, T.F.Thorsteinsen, ISOLDE W.N.Catford, L.K.Fi!ield, N.A.Orr, C.L.Woods A.E.Champagne, R.T.Kouzes, A.B.McDonald, M.M.Lowty, D.R.Benton, K.P.Cottlter, Z.Q.Mao P.V.Drumm, L.K.Fifield, R.A.Bark, M.A.C.Hotchkis, C.L.Woods R.B.Firestone, J.M.Nitschke, P.A.Wilmatth, RVierinen, J.Gilat, KS.Toth, Y.A.Akovali M.Graefenstedt, U.Keyser, F.Miinnich, F.Schreiber, ISOLDE M.Graefenstedt, P.Jiirgens, U.Keyser, F.Miinnich, F.Schreiber, K.Balog, T.Winkelmann, H.R.Faust Y.Hatsukawa, T.Ohtsuki, K.Sueki, H.Nakahara, I.Kohno, M.Magam, N.Shinohara, H.L.Hall, R.A.Henderson, C.M.Gannet, J.A.Leyba, R.B.Chadwick, KE.Gregorich, D&e, M.J.Nurmia, D.C.Hoffman F.P.HeBberger, S.Hofmann, G.Miinrenberg, K.-H.Schmidt, P.Armbroster, R.Hingmann D.W.Hetherinaton, AAlousi. R.B.Moore F.P.Hel3berg.z~ H.Giigge1.q P.Armbruster, W.Briichle, H.Folger, S.Hofmann, D.Jost, J.V.Kratz, M.E.Leino, G.Miinzenberg, V.Ninov, M.Sctidel, USchercr, K.Siimmerer, A.Tiirler, D.Ackermann T.Hild, W.-D.Schmidt-Ott, V.Freystein, F.Meissner, E.Runte, H.Salewski, R.Michaelsen P.Hoff, B.Ekstriim, B.Fogelberg Prvcom of L.Spanier et al to ref. S.Hofmann, P.Armbruster, G.Benhcs, T.Faestermann, A.Gillitzer, F.P.HeOberger, W.Kurcewicz, GMiinzenberg, K.Poppensieker, H.J.Sch&t, LZychor C.Hofmeyr C.Jeanperrin, L.H.Rosier, B.Ramstein, E.I.Obiajunwa A.Jokinen, J.iystB, C.N.Davids, KEskola, P.Jauho, M.l.eino, J.M.Parmonen, H.Penttilii. P.Taskinen
383
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
384 89KaO4
PRVCA
3%
818
89Kil I NUPAB 89KoO2 PRVCA
496, 39,
429 636
89Ko22
ZPAAD
333,
339
89Kr12
NUPAB
503,
113
89L.oO7 NUPAB 89Ma05 JPHGB 89Me02 ZPAAD
494, 15, 332,
157 173 153
89Mi03
PRVCA
39,
992
89Mil6 89Mil7
NUPAB NUPAB
501, 501,
437 557
89Mu09
ZPAAD
333,
163
89Mu16 89OrO3
NUPAB NUPAB
502, 491,
571 443
89OrO4 89PoO9
NUPAB NUPAB
491, 499,
457 495
89Re04 89Ri03
PRVCA NUPAB
40, 499,
368 221
89Ry02
ZPAAD
332,
275
89SaOl 89% 11
JPHGB NUPAB
15, 494,
73 36
89Sc24 89Sc31
NUPAB NUPAB
501, 504,
86 1
89Sc.A 89ShlO 89SiO4 89Sm06 89StOS
NDSAA NIMAE PRVDA SAPHD PRVCA
57, 275, 39, 12, 39,
515 123 1825 74 1503
89St06 89Su.A
PRVCA BAPSA
39, 34,
1963 1819
89ToOl 89WiO5
PRVCA NUPAB
39, 491,
1150 395
89YuOl 89Zl.A
PRVCA 256 39, PwCom GAu May
S.Kato, S.Kubono, M.H.Tanaka, M.Yasue, T.Nomura, Y.Fuchi, SOhkawa, TMiyachi, K.Iwata, T.Suehiro, Y.Yoshida S.W.Kikstra, Cvan der Leun, S&man, E.T.Jumey, I.S.Towner M.O.Kortelahti, K.S.Toth, K.S.Vierinen, J.M.Nitschke, P.A.Wilmanh, R.B.Firestone, R.M.Chasteler, A.A.Shihab-Eldin V.Koponen, J.jiyst6, J.Honkanen, P.Jauho, H.Penttilii, JSuhonen, P.Taskinen, K.Rykaczewski, J.iylicr, C.N.Davids A.Krasznahorkay, Zs.Domb&i, J.TimBr, Z.Gbcsi, T.Kib&i, A.Passoja, R.Julin, J.Kumpulainen, S.Brant, V.Paar G.Lwheiden, T.F.Thonteinsen, E.Andersen, M.F.Kiziltan, D.G.Burke A.M.Mandal, S.K.Saha, S.M.Sahakundu, A.P.Patm F.Meissner, W.-D.Schmidt-Ott, V.Freystein, T.Hild, E.Runte, H.Salewski, R.Michaelsen Ch.Mieh& Ph.Dessagne, P.Baumann, A.Huck, G.Klotz, A.Knipper, G.Walter, G.Marguier SMichaelsen, Ch.Winter, K.P.Lieb, B.Kmsche, SRobinson, T.von Egidy H.Miyatake, T.Nomura, S.Kubono, J.Tanaka, M.Oyaizu, H.Okawa, N.Ikeda, K.Sueki, H.Kudo, K.Morita, T.Shinozuka G.Miinzenberg, P.Armbruster, S.Hofmann, F.P.HeOberger, H.Folger, J.G.Keller, V.Ninov, K.Poppensieker, A.B.Quint, W.Reisdorf, K.-H.Schmidt, J.R.H.Schneider, H.J.SchBtt, KSiimmerer, LZychor, M.E.Leino, D.Ackennann, U.Gollerthan, E.Hanelt, W.Morawek, D.Vermeulen, Y.Fujita, TSchwab G.Miinzenberg N.A.OIT, W.N.Catford, L.K.Fitield, M.A.C.Hotchkis, T.R.Ophel, D.C.Weisser, C.L.Woods N.A.Orr, L.K.Fitield, W.N.Catford, C.L.Wwds M.G.Porquet, C.Bourgeois, P.Kilcher, B.Roussi&re, JSauvage, H.Dautet, J.K.P.Lee, ISOCELE A.Redondo, R.G.H.Robenson R.Richter, I.F&ster, A.Gelberg, A.M.I.Haque, P.von Brentano, R.F.Casten, H.G.BBmer,, G.G.Colvin, K.Schreckenbach, G.Barreau, S.A.Kem, H.H.Schmidt, P.Hungerford, H.J.Scheerer, T.von Egidy, R.Rascher K.Rykaczewski, A.Ptochocki, I.S.Grant, H.Gabelmann, R.Barden, D.Schardt, J.iylicz, G.Nyman, ISOLDE S.K.Saha, S.M.Sahakundu S.L.Sakhamv, I.A.Kondurov, Yu.E.Loginov, V.V.Martynov, A.A.Radionov, P.A.Sushkov, Yu.L.Kbazov, A.I.Egorov, V.K.Isupov, H.G.BBmer, F.Hoyter, SKerr, KSchreckenbach, G.Hlawatsch, T.von Egidy, H.Lindner H.Schiilennann, R.Biittger H.H.Schmidt, P.Hunge&rd, T.von Egidy, H.J.Scheerer, H.G.BZimer, S.A.Kerr, K.Schreckenbach, F.Hoyter, G.G.Colvin, A.M.Bmce, R.F.Casten, D.D.Wamer, I.L.Kugava, V.A.Bondarenko, N.D.Kramer, P.T.Pmkofjef, A.Chalupka M.R.Schmorak K.S.Shatma, H.Schmeing, H.C.Evans, E.Hagberg, J.C.Hardy, V.T.Koslowsky J.J.Simpson, A.Hime J.J.A.Smit, Z.H.J.Pretorius, F.B.Waanders, J.P.L.Reinecke, J.Keilonen S.T.Staggs, R.G.H.Robertson, D.L.Wark, P.P.Nguyen, J.F.Wilkerson, T.J.Bow1e.s C.A.Stone, S.H.Falter, W.B.Walters B.Sur, E.B.Nonnan, K.T.Lesko, E.Browne, R.M.Larimer, H.L.Hall, J.D.Leyba, D.C.Hoffman K.S.Toth, D.M.Moltz, J.D.Robertson Ch.Winter, B.Krwche, K.P.Lieb, S.Michaelsen, G.Hlawatsch, H.Linder, T.von Egidy, F.Hoyler, R.F.Casten SYuan, T.Zhang, S.Xu, W.Li, L.Zhang, M.Liu, X.Ou, W.Li I.Zlimen
1990 9OAjSe NUPAB 9OAkO4 PRVCA
506, 42,
90Am04 PZETA
51,
1 F.qjzenberg-Selove and PrvCom AHW 1130 Y.A.Akovali, K.S.Toth, C.R.Bingham, M.B.Kassim, M.Zhang, H.K.Carter, W.D.Hamilton, J.Korrnicki 607 A.I.Amelin, M.G.Gomow, Yu.B.Gurov, A.I.Ilin, V.P.Koplev, P.V.Morokhov, K.O.Ogancsyan, V.A.Pecbkumv, V.I.Saveliev, E.M.Sergeyev, B.A.Chem’yshev, R.R.Shatigulin, A.V.Shishkov
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 1231 A.I.Amelin, M.G.Gomov, Y.B. Gurov, A.L.Il’in, P.V.Morokhov, V.A.Pectirov, V.I.Savelev, FMSergeev, S.A.Smimov, B.A.Chemyshev, R.R.Shafwllin, A.V.Shishkov 229 A.N.Andreyev, D.D.Bogdanov, V.I.Chepigin, A.P.Kabachcnko, SSharo, 337, ZPAAD G.M.Tcr-Akopian, A.V.Yeremin 23 1 A.N.Andreyev, D.D.Bogdanov, V.LChepigin, A.P.Kabachenko, S.Sharo, 337, ZPAAD G.M.Ter-Akopian, A.V.Yeremin, O.N.Malyshev C.E.Bemis PrvCom AHW June 132 E.A.Belomytseva, G.V.Veselov, K.A.Mezilev, Yu.N.Novikov, A.G.Polyakov, P-Leningrad A.V.Popov, Yu.Ya.Sergeev, V.A.Sergienko, V.I.Tichonov L43 C.R.Bingham, M.B.Kassim, M.Zhang, W.D.Hamilton, Y.A.Akovali, K.S.Toth, P-Jerusalem W.D.Hamilton, H.K.Caner, J.Komticki, J.Schwmenberg, M.M.Jarrio 358 D.D.Bogdanov, V.P.Bugmv, S.G.Kadmenskii 52, YAPIA 499 D.G.Burke, P.E.Garrett, Tao Qu, R.A.Naumann 42, PRVCA 42, 1171 R.M.Chasteler, J.M.Nitschke, R.B.Finstone, K.S.Vierinen, P.A.Wilmarth PRVCA 42, 1918 R.M.Chasteler, J.M.Nitschke, R.B.Firestone, K.S.Vierinen, P.A.Wilmarth PRVCA 343 G.R.Dyck, M.H.Sidky, J.G.Hykawy, C.A.Lander, K.S.Shsrma, R.C.Barber, 245, PYLBB H.E.Duckworth 1 P.M.Endt 521, NUPAB 209 P.M.Endt, CAlderliesten, F.Zijderhand, A.A.Wolters, A.G.M.van Hees 510, NUPAB 337, 251 B.Fogelberg, Y.Zongyuan, B.Ekstram, E.Lund, KAleklett, L.Sihver ZPAAD 17, 119 Ch.Gerz, D.Wilsdorf, G.Wetth ZDACE 247 M.Graefenstedt, P.Jiirgens, U.Keyser, FMiinnich, F.Schreiber, K.Balog, 336, ZPAAD T.Winkelmann, H.R.Faust, B.Pfeiffer 41, 618 H.L.Hall, K.E.Gregorich, R.A.Henderson, C.M.Gannett, R.B.Chadwick, J.D.Leyba, PRVCA K.R.Czenuinski, B.Kadkhodayan, S.A.Kreek, D.M.Lee, M.J.Nurmia, D.C.Hoffman, C.E.A.Palmer, P.A.Baisden PRVCA 41, 2325 M.Hellstriim, B.Fogelberg, L.Spanier, H.Mach 484 R.W.Hoff, S.Drissi, J.Kem, W.Strassmann, H.G.BBmer, KSchreckenbach, PRVCA 41, G.Bameau, W.D.Ruhter, L.G.Mann, D.H.White, J.H.L.andrum, R.J.Dupzyk, R.F.Casten, W.R.Kane, D.D.Wamer 189 F.Hoyler, J.Jolie, G.G.Colvin, H.G.Bamer, K.Schreckenbach, P.Van Isacker, NUPAB 512, P.Fettweis, H.Giiktiirk, J.C.Dehaes, R.F.Casten, D.D.Wamer, A.M.Bmce 631 D.C.Hoffman, D.M.Lee, K.E.Gngotich, M.J.Nurmia, R.B.Chadwick, K.B.Chen, PRVCA 41, K.R.Czeminski, C.M.Gannett, H.L.Hall, R.A.Henderson, BKadkhcdayan, SAXreek, J.D.I_eyba 41, 1272 M.A.Islam, T.J.Kennett, W.V.Prestwich PRVCA 335, 173 M.A.Islam, T.J.Kennett, W.V.Prestwich ZPAAD 335, 243 M.C.P.lsaac, V.R.Vanin, O.A.M.Helene ZPAAD 42, 207 M.A.Islam, T.J.Kennett, W.V.Prestwich PRVCA 68, 1237 M.A.Islam, T.J.Kennett, W.V.Prestwich CJPHA 41, 1276 S.Kato, S.Kubono, M.H.Tanaka, M.Yasue, T.Nomura, Y.Fuchi, Y.Funatsu, S.Ohkawa, PRVCA T.Miyachi, K.lwata, T.Suehiro, Y.Yoshida, O.Nitoh 41, 2004 S&to, S.Kubono, T.Nomura, Y.Fuchi, Y.Funatsu, SOhkawa, T.Miyachi, T.Suehiro, PRVCA Y.Yoshida 42. PRVCA 563 S.Kato, S.Kubono, M.H.Tanaka, T.Nomura, Y.Fuchi, Y.Funatsu, SOhkawa, T.Miyschi, T.Suehiro, Y.Yoshida 514, NUPAB 173 A.ICaerts, P.H.M.van Assche, S.A.Kerr, F.Hoyler, H.G.BBmer, R.F.Casten, D.D.Wamer 42, 1918 S&to, S.Kubono, M.H.Tanaka, M.Yasue, Y.Fuchi, Y.Funatsu, S.Ohkawa, T.Miyashi, PRVCA T.Suehiro, Y.Yoshida 512, NUPAB 425 S.W.Kikstra, C.van der Leon, P.M.Endt, J.G.L.Booten, A.G.M.van Hees, A.A.Wolters 103, NUCIA 553 Sr.Little Flower, B.R.S.Babu, P.Venkataramaiah, H.Sanjeeviah 297, NIMAE 217 H.Lindner, H.Trieb, T.von Egidy, H.Hiller, J.Klora, U.Mayerhofer, A.Walter, A.H.Wapstm 41, PRVCA 226 H.Mach, E.K.Warburton, R.L.Gill, R.F.Casten, J.A.Becker, B.A.Brown, J.A.Winger 41, 2921 J.T.Meek, W.G.Millen, G.W.Stwkton, R.T.Kouzes PRVCA P-Monterey Zs.Netmeth, Karlsmhe 336, ZPAAD 473 V.Ninov, F.P.HeBberger, P.Anobrwter, S.Hofmann, G.Miinzenberg, M.Leino, Y.Fujita, D.Ackennann, W.Morawek, A.Liittgen 510, NUPAB 301 S.Piskof, W.Schiiferlingovi
9OAmO5 YAFIA
90An19 9OAn22 90Be.A 90Be.B 90Bi.B 90Bo39 9OBu17 9OCh34 90Ch37 9ODyO4 90Endt 90En02 9OFoO7 90Ge12 90GrlO 90Ha02
90Hell 90Ho02
90HolO 90Ho03
901502 901~03 9OIsO6 9OIsO7 901~09 9OKaOl 9OKalO 9OKa19 9OKa21 9OKa27 9OKiO7 9OLi14 9OLi40 90Ma03 90Me.08 90Nc.A 90Ni05 9OPiO5
52,
385
G. Audi et al. / The 1993 atomic mass evaluation (IV)
386 9OPo13
IANFA
34.
852
9OPrO2 9osa32
CJPHA ZPAAD
68, 337,
261 161
90Sa.A 9OSe17
Th.-Gottingen FZKAA 22,
183
90Sh15 90Sp.A 90St13 9OTuOI 9OWa22
IJMPA 5, 2821 P-Jerusalem L12 ZPAAD 336, 369 ZPAAD 337, 361 NIMAE 292, 671
A.V.Potempa, V.P.Afanas’ev, Ya.Vany&ak, K.Ya.Gromov, V.G.~ianiko~, N.Yu.Kovot&ii, V.V.Kuznetsov, M.Lewandowski, Ya.A.Saidimov, M.Yakhim. Zh.Sereter, V.I.Fominykh, V.Chamadski, Yu.V.Yushkevich, M.Yanistki, A.Yasinski W.V.Prestwich, T.J.Kennett erratum CJPHA 68,1352 H.Salewski, K.Beckm, W.-D.Schmidt-Ott, T.Hild, F.Meissner, E.Runte, R.Michaelsen HSalewski H.Seyfarth, H.H.Guven, B.Kardon, G.Lhersonneau, K.Sistemich, SBrant, NKaffreU, P.Maier-Komor, H.K.Vonach, V.Paar, D.Vorkapic, R.A.Meyer R.K.Sheline, C.F.Liang, P.Paris LSpanier, B.Fogelberg, M.HellstrGm, KAlekIett, L.Sihver U.StBhlker, A.BlBnnigen, W.Lippert, H.Wollnik X.L.Tu, X.G.Zhou, D.J.Vieira, J.M.Wouters, Z.Y.Zhou, H.L.Seifert, V.G.Lind A.H.Wapstra 1991
9lAniO
ZPAAD
338,
9 1An.B
P-Minsk
91Ba06
NUPAB
523.
261
91Bi04
PRVCA
44,
1208
91B105
PRVCA
44,
325
91Bo35
NIJPAB
534.
255
91Bo.B 91Br17 91Bul2 91Do05 91Fi03 91GeOZ
P-Niigata ZPAAD PRLTA ZPAAD PRVCA ZPAAD
339, 67, 339, 43, 338.
83 495 2626 425 1066 405
91Go19
NUPAB
531,
613
91Gr12
NUPAB
330,
401
91Gr13
PRVCA
44,
1728
91Hs31 91He04
EULEE ZPAAD
IS, 338,
491
91He21 ZPAAD 91HoOS JPHGB
340, 17,
22s 145
363 120
91HyOl
PRLTA
67,
1708
91IsOI 9 I Is02 91JolI
PRVCA CJPHA ZP4AD
43, 69, 340,
1086 638 21
91Ka41
PYLBB
256,
105
91KeO6
NIMAE
300,
67
91Ke08
ZPAAD
339,
353
A.N.Andreyev, D.D.B~~ov, V.LChepigin, A.P.~~~cako, O.N.Malyshev, G.M.Ter-Akopian, A.V.Yeremin A.N.Aadreev, D.D.Bogdanov, A.V.Ercmin, A.P.Kabachenko, O.N.Malyshev, G.M.Ter-Akopian. V.I.Chepigin M.K.Balodis, N.D.Kmmer, P.T.Prokofjev, A.V.Afanasjev, T.V.Guseva, J.J.Tambergs, KSchreckenbach, W.F.Davidson, D.D.Wamer, J.A.Pinston, P.H.M.van Assche, A.M.J.Spits C.R.Bingham, M.B.Kassim, M.Zhang, Y.A.Akovali, K.S.Toth, W.D.Hamilton, H.K.Carter, J.Kormicki, J.von Schwanenberg, M.M.Jarrio S.Blagus, D.Miljanic, M.Zadro, G.CaIvi, M.Lattuada, F.Riggi, C.Spitaleri, C.Blyth, OKarban H.G.BGmer. R.F.Casten. LF6rster. D.Licberz, P.von Brentsno, S.J.Robinson, T.von Egidy, G.Hlawatsch, H.Limdner, P.Geltenbort, F.Hoyler. H.Faust, G.Colvin, W.R.Kaoe, M.MacPhail H.G.BohIen T.Bmhm, H.-G.Clerc, U.Goilcrthan, W.Schwab, K.-H.Schmidt, R.S.Simon B.Budick, J.Chen, H.Lio J.D6rin& L.Funke, W.Wa~cr, G.Winter R.B.Firestone, J.Gilat, J.M.Nitschke, P.A.Wilmarth, K.S.Vierinen J.Genevey, A.Gizon, G.Marguier, CRichard-Serve, A.Knipper, P.Paris, C.F.Liang, B.Weiss, ISOLDE, ISOCELE M.G.Gomov, Yu.B.Gurov, P.V.Morokhov, V.A.Pechkurov, V.I.Savelyev, F.M.Sqeev, B.A.Chemyshev, R.R.Shafigullin, A.V.Shishkov, V.P.Koptev, K.O.Oganesyan, B.P.Osipenco J.C.Grifftn, R.A.Braga, R.W.Fink, J.L.Wood, H.K.Carter, R.L.Mlekodaj, C.R.Bingham, ECoenen, M.Huyse, P.Van Duppen V.Grafen, B.Ackemtann, H.Baleer, T.Bihn, CGiinther, J.de Boer, N.Gollwitzer, G.Gmw, R.Hertenberger, HKader, A.Lcvon, A.Liisch D.Hagena, G.Wenh K.Heiguchi, T.Hosoda, T.Komatsubara, T.Nomura, K.Fumno, R.Nakatani, SMitarai, T.Kumyanagi F.Heine, T.Faestexmann, A.Gillitzer, J.Homolka, M.KGpf, W.Wagner T.H.Hoare, PAButler, G.D.Jones, M.L&eiet, O.Na~il~at~uncic, J.Venief, M.D~inger, A.M.Y.El-bandy, R.Wadsworth, D.L.Watson J.G.Hykawy, J.N.Nxamalo, P.P.Unger, C.A.Iander, R.C.Barber, K.S.Sharma, R.D.Peters, H.E.Duckworth M.A.Islam, T.J.Kennett, W.V.Prcstwich M.A.Islam, T.J.Kennett, W.V.Prestwich A.Jokinen, J.;iystG, P.Dendooven, K.Eakola, Z.Janas, P.P.Jauho, M.E.Leino, J.M.Parmonen, H.PenttilP, K.Rykaczewski, P.Taskinen HKawakami, S&to, T.Ohshima, S.Shibata, K.Ukai, N.Morikawa, N.Nogawa, K.Haga, T.Nagafuchi, M.Shigeta, Y.Fukushima, T.Taniguchi H.Keller, R.Kirchner, O.Kiepper, E.RoccM, D.Schardt, R.S.Simon, P.Kleinheinz, C.F.Liang, P.Paris H.Keller, R.Barden, R.Kirchner, O.Klepper, E.Roeckl, D.Schsrdt, I.S.Grant, A.Plochocki, K.Rykaczewski, J.Szerypo, J.iylicz, ISOLDE
G. Audi et al. / The 1993 atomic mass evaluation (Iv) 77 J.Kem, A.Raemy, W.Beer, J.-Cl.Dousse, WSchwitz, M.K.Balcdis, P.T.Prokotjev, N.D.Kmmer, L.I.Simonova, R.W.Hoff, D.G.Gardner, M.A.Gardner, R.F.Casten, R.L.Gii, R.Eder, T.von Egidy, &Hag& P.Hungerford, H.J.Scheerer, H.H.Schmidt, E.Zech, A.Chalupka, A.V.Munin, V.A.Libman, I.V.Kmtoncnko, C.Gxeva, P.Giawbbe, I.A.Kondumv, Yu.E.L@nov, P.A.Sushkov, S.Bram, V.Paar 9lKell ZPAAD 340, 363 H.Keller, RKirchner, OKlepper, ERoeckl, D.Schardt, R.S.Simon, P.Kleinheinz, R.Menegazro, C.F.Liang, P.Paris, K.Rykaczewski, J.iylicz, and Thesis H.Keller THD report GSI-91-6 February 1991 91KiO4 NUPAB 529, 39 S.W.Kikstra, Z.Guo, C.van der Leun, P.M.Endt, S.Raman, T.A.Walkiewicz, J.W.Stamer, E.T.Jumey, LS.Towner 91KlO2 PRVCA 44. 280 1 N.Klay, F.Kaeppeler, H.Beer, G&ha& H.BBmer, F.Hoyler, S.J.Robinson, KSchreckenbach, B.Kmschke, U.Mayerhofer, G.Hlawatsch, H.Lindner, T.von Egidy, WAndrejtscheff, P.Petkov 9lKo.A P-Minsk 117 I.A.Kondurov, Yu.E.Lnginov, P.A.Sushkov 9 I Ko.B P-Niigata 187 T.Kobayashi 9lLelS ZPAAD 340, 107 MIxwandowski, A.W.Potempa, V.I.Fominikh, K.Y.Gromov, MJanicki, J.V.Juschkevich, V.G.Kalinnikov, N.J.Kotovskij, V.V.Kuznetsov, N.Raschkova, J.A.Sajdimov, J.Wawyuczuk 9lLyOl PRVCA 44, 764 J.E.Lymt, E.T.Jumey, S.Raman S.Judge, 91Ma65 ZPAAD 341, 1 LJ.Mayerhofer, T.von Egidy, J.Jolie, H.G.B6mer, CC&in, B.Kmschke, S.J.Robinson, K.Schreckenbach, S.Bmnt, V.Paar 9lMc.A ORNL6660 p.63 J.H.McNeill, Y.A.Akovali, C.R.Bingham, J.Breitenbach, H.K.Carter, J.D.Garrett, J.Kormicki, P.F.Mantica 9 IMe ZPAAD 339, 315 F.Meissner, W.-DSchmidt-Ott, K.Becker, U.Bosch-Wicke, U.Ellmers, H.Salewski, R.Michaelsen 9lMi08 ZPAAD 338, 371 S.Michaelsen, K.P.Lieb, S.J.Robinson 9lMilS NUPAB 530, 211 B.J.Min, S.Suematsu, S.Mitami, T.Kuroyanagi, K.Heiguchi, M.Matsuzaki 9lNo07 JPHGB 17, S291 E.B.Norman, B&r, K.T.Lesko, M.M.Hindi, R.-M.Larimer, T,R.Ho, J.T.Witort, P.N.Luke, W.L.Hansen, E.E.Haller 9lOrOl PYLBB 258. 29 N.A.Orr, W.Mittig, L.K.Fifield, M.Lewitowicz, E.Plagnol, Y.Schutz, W.L.Zhan, L.Bianchi, A.GilIiLwt, A.V.Belozyomv, S.M.Lukyanov, Yu.E.Peniornbkevich, A.C.C.Villari, A.Cunsolo, A.Foti, G.Audi, C.Stephan, L.Tassan-Got, and PwCom GAu December 1990 erratum PYLBB 271(1991)468 9lPa05 ZPAAD 338, 295 R.D.Page, P.J.Woods, S.J.Bennett, M.Freer, B.R.Fulton, R.A.Cunningham, J.Groves, M.A.C.Hotchkis, A.N.James 9 1P0.A P-Minsk 85 A.V.Potempa, E.Beltsa&, Ya.Bavrishtshuk, K.Ya.Gromov, S.V.Ebtisov, V.G.Kalinnikov, V.V.Kuznetsov, MLebandovskii, Ya.A.Saidimov, DzSereeter, V.I.Fominich, M.B.Yuldashev, Yu.V.Yushkevich, M.Yanitski 9lRaOl PRVCA 43, 521 S.Raman, T.A.Walkiewicz, SK&me, E.T.Jumey, J.Sa, Z.Gacsi, J.L.Weil, KAllaart, G.Boasignori, J.F.Shriner,Jr. 91Re.A PrvCom GAu Sep G.Reusen, M.Huyse 67, 9lRoO7 PRLTA 957 R.G.H.Robertson, T.J.Bowles, G.J.Stephenson,Jr., D.L.Wark, J.F.Wilkerson, D.A.Knapp 9 1Ro.A P-PacGmve 440 S.J.Robinson, H.G.BBmer, S.Judge, J.Jolie, PSchillebeeckx ADNDA 47, 9lRyOl 205 A.Rytz PRVCA 9lShl9 44, 2439 KS.Sharma, E.Hagberg, G.R.Dyck, J.C.Hardy, V.T.Koslowsky, HSchmeing, R.C.Barber, S.Yuan, W.Peny, M.Watson 91St.A PrvCom GAu Aug H.Stolzenber& et al 9lSuO9 PRLTA 66. 2444 B.Sur, E.B.Norman, K.T.Lxsko, M.M.Hindi, R.-M.Larimer, P.N.Luke, W.L.Hansen, E.E.Haller 9lTo08 PRVCA 44, 1868 K.S.Toth, K.S.Vierinen, M.O.Konelahti, D.C.Sousa, J.M.Nitschke, P.A.Wilmarth 9lTo09 ZPAAD 340, 343 KSToth, K.S.Vietinen, J.M.Nitschke, P.A.Wilmarth, R.M.Chasteler 9lVa04 NUPAB 529, 268 P.Van Duppen, P.Decrock, P.Dendooven, M.Huyse, G.Reusen, J.Wautem 9lWa21 ZPAAD 339, 533 J.Wauters, P.Decrcck, P.Dendooven, M.Huyse, G.Reusen, P.Van Duppen 91Wa.A PwCom AHW A.H.Wapstra recalibr (p,g) 91Wh.A P-PacGrove 476 D.H.White, R.W.Hoff, H.G.BBmer, G.Colvin, F.Hoyler, RSchreckenbach 91Zh24 PYLBB 260, 285 X.G.Zhou, X.L.Tu, J.M.Wouten, D.J.Vieira, K.E.G.L.obner, H.L.Seifert, Z.Y.Zhou, G.W.Butler 912101 PRLTA 67, 560 Ltlimen, A.LjubiEi&, S.KauEi6, B.A.Logan
91Ke10
NUPAB
534,
381
388
G. Audi et al. / The 1993 atomic mass evaluation (IV)
92Al.A
B-Bemkastl
PC2
92Al.B
B-Bemkastl
PA6
92An.A 92An04
PrvCom ZPAAD
AHW 342, 123
92Ba28
ZPAAD
342,
125
92Be17
ZPAAD
341,
155
92Bo02 92Bo28
NUPAB JMOPE
536, 39,
260 257
92Bo.B 92Bo.D
PrvCom AHW Apr B-Bemkastl PESO
92Br17 NUPAB 92Bu12 NUPAB 92Bu13 PRVCA 92Ch I6 NIMAE 92Ch27 PRLTA 92Co23 PYLBB 92Da14 ZPAAD 92Ga I 5 NUPAB 92Ge08 PRLTA
542, 550, 46, 312, 69, 295, 343, 550, 68,
1 179 1267 378 3151 143 161 1 3412
92GrO2
PRVCA
45,
1058
92GrO6
NIMAE
311,
512
92Gr.A
P-Bemkastl
92Gu03 92Ha03 92HalO 92HalS 92Ha21
NUPAB PRVCA PRVCA NIMAE ZPAAD
540, 45, 45, 313, 343,
117 900 1609 237 7
92Ha22
PRVCA
46,
1873
92Ha.A 92He.A 92Ho09 92Hu04 92Hy.A
B-Bemkastl B-Bemkastl PYLBB 287, PRVCA 46, P-Bemkastl
PA4 Cl4 381 1209 73
921005
NUPAB
549,
420
92JuOl
PRLTA
69,
2164
92Ka29
PYLBB
287,
45
92Ke.A 92Ko.A 92KrOl
P-Bemkastl B-Bemkastl PRVCA 45,
37 F5 1064
77
D.V.Aleksandrov, Yu.A.Glukhov, E.Yu.Nikolskii, B.G.Novatskii, A.A.Ogloblin, D.N.Stepanov G.D.Alkhazov, B.N.Belyaev, V.D.Domkin, Yu.G.Korobulin, V.V.Lukashevich, VSMukbin, Yu.A.Suchilin, V.G.Khlopin A.N.Andreyev A.N.Andreyev, D.D.Bogdanov, V.LChepigin, A.P.Kabachenko, O.N.Malyshev, R.N.Sag&idak, G.M.Ter-Akopian, A.V.Yeremin K.Balog, M.Graefenstedt, M.GroB, P.Jiirgens, U.Keyser, F.Miinnich, T.Otto, F.Schreiber, T.Winkelmann, J.Wulff, ISOLDE M.R.Beitins, S.T.Boneva, V.A.Kbitrov, L.A.Malov, Y.P.Popov, P.T.Prokotjev, G.L.Rezvaya, L.I.Simonova, A.M.Sukhovoj, E.V.Vasilieva R.Bbttger, H.SchGlermann G.Bollen, H.-J.Kluge, Th.Otto, GSavard, L.Schweikhard, H.Stolzenberg, G.Audi, R.B.Moore, G.Rouleau, ISOLDE and PrvCom GAu November 1991 R.Bbttger V.A.Bolshakov, A.G.Demjatin, K.A.Mezilev, Yu.N.Novikov, A.V.Popov, Yu.Ya.Sergeev, V.I.Tikbonov, V.A.Sergienko, G.V.Veselov A.M.Bruce, W.Gelletly, G.G.Colvin, P.Van Isacker, D.D.Wamer D.G.Burke, P.E.Garrett B.Budick, J.Chen, H.Lin V.P.Chechev, A.G.Egorov M.Chen, D.A.Imel, T.J.Radcliffe, H.Hemikson, F.Boehm E.Cosulich, G.Gallinaro, F.Gatti, S.Vitale B.Dasmahapatra, S.Bhattacharya P.E.Garret, and D.G.Burke H.Geissel, K.Beckert, F.Bosch, H.Eickboff, B.Franczak, B.Franzke, M.Jung, O.KleppeI, R.Moshammer, G.Mtinrenberg, F.Nickel, F.Nolden, U.Schaaf, CScheidenberger, P.Spiidtke, M.Steck, K.Siimmerer, A.Magel K.E.Greaorich. H.L.Hall. R.A.Henderson. J.D.Lwba. K.R.Czenvinski. S.A.Kreek. B.A.Kba&dayan, M.J.Nufmia, D.M.Lee, D.C.&ff~an M.Gro& P.Jiirgens, U.Keyser, S.Kluge, M.Mehrtens, S.Milller, F.Miinnich, J.Wulff M.GroO, P.Jiirgens, SKluge, M.Mehrtens, SMiiller, F.Miinnich, J.Wulff, see also 87Gr18 Z.Guo, CAlderliesten, C.van der Leun, P.M.Endt F.X.Hartmann E.Hagberg, X.J.Sun, V.T.Koslowsky, H.Schmeing, J.C.Hardy F.X.Hartmann, R.A.Naumann A.Harder, SMichaelsen, A.Jungclaus, K.P.Lieb, A.P.Williams, H.G.BZimer, M.Trautmannsheimer T.M.Hamilton, K.E.Gregorich, D.M.Lee, K.R.Czenuinski, N.J.Hannink, C.D.Kacher, BKadkhodayan, S.A.Kreek, M.J.Nurmia, M.R.Lane, M.P.Neu, A.Tiirler, D.C.Hoffman A.Harder, SMichaelsen, A.Jungclaus, K.P.Lieb, A.P.Williams, H.G.Biimer F.Heine, T.Faestennann, A.Gillitzer E.Holzschuh, M.Fritschi, W.Kiindig M.Huyse, P.Decrock, P.Dendooven, G.Reusen. P.Van Duppen, J.Wauters J.G.Hykawy, R.C.Barber, K.S.Shanna, J.N.Nxumalo, G.R.Dyck, M.S.Sidky, P.P.Unger, R.Peters, C.A.Lander, H.E.Duckworth A.Jokinen, J.iyst6, P.P.Jauho, M.Leino, J.M.Parmonen, H.Penttilii, K.Eskola, Z.Janas M.Jung, F.Bosch, K.Beckert, H.Eickboff, H.Folger, B.Franzke, A.Gmber, PKienle, O.Klepper, W.Koenig, C.Kozhuharov, R.Mann, R.Moshammer, F.Nolden, U.Schaaf, GSoff, P.Spiidtke, M.Steck, T.Stiihlker, KSiimmerer H.Kawakami, S.Kato, T.Ohshima, C.Rosenfeld, H.Sakamoto, T&to, S.Shibata, J.Shirai, Y.Sugaya, T.Suzuki, K.Takahashi, T.Tsukamoto, K.Ueno, K.Ukai, SWilson. Y.Yonezawa H.Keller, N.Zeldes, P.Kleinheinz, E.Roeckl V.T.Koslowsky, E.Hagberg, J.C.Hardy, H.Schmeing J.V.Kratz, M.K.Gober, H.P.Zimmermann, MSchiidel, W.Briichle, ESchimpf, K.E.Gregorich, A.Tiirler, N.J.Hannink, K.R.Czenvinski, B.Kadkhodayan, D.M.Lee, M.J.Nurmia, D.C.Hoffman, H.G&geler, D.Jost, J.Kovacs, U.W.Scherer, A.Weber
G. Audi et al. / The 1993 atomic maw evaluation (Iv) 92LiO9
ZPAAD
341,
401
92Li.A PrvCom GAu Sep 92MclO ZPAAD 343, 283 92Mu12 ZPAAD 342, 393 920~04
ZPAAD
343,
489
920~07 92PaOS
NIMBE PRLTA
70, 68,
551 1287
92PIOI
ZPAAD
342,
43
92PrO3 92PrO4 92Ra18 92Ra19 92Sa03
ZPAAD ZPAAD PRVCA PRVCA NUPAB
342, 342, 46, 46, 540,
23 27 2241 972 83
92Sc16
NUPAB
545,
646
92Sc.A
P-Bemkastl
627
92Sh.A
P-Bernkastl
31
92St.A 92To02 92Ul.A 92Va.A 92Wa06 92WoO3
92Va.A PwCom PRVCA 45, 856 PrvCom AHW Mar P-Bemkastl 3 PRVCA 45, 1597 ARISE 43, 551
92Wo.A
B-Bemkastl
92WuO9 ZPAAD 92XuO4
PRVCA
Cl3 344,
205
46,
510
C.F.Liang, P.Paris, A.Gizon, V.Barci, D.Bameou, R.Beraud, J.Blachot, Ch,Brian9on, J.Genevey, R.K.Sheline and PrvCom GAu September 1992 C.F.Liang F.Meissner, H.Salewski, W.-DSchmidt-Gtt, U.Bosch-Wicke, R.Michaelsen J.Mukai, A.Gdahara, R.Nakatani, Y.Hamta, H.Tomura, B.J.Min, K.Heiguchi, S.Suematsu, S.Mitarai, T.Kuroyanagi A.N.Ostrowski, H.G.Bohlen, ASDemyanova, B.Gebauer, RKalpaLchieva, Ch.Langoer, HLenske, M.von Locke-Petsch, W.von Oertzen, A.A.Ggloblin, Y.E.Penionzhkevich, M.Wilpert, Th.Wiipert A.Osa, T.Ikuta, A.Taniguchi, H.Yamamoto, K&wade, S.Ichikawa, Y.Kawase R.D.Page, P.J.Woods, R.A.Cunningham, T.Davinson, N.J.Davis, S.Hofmann, A.N.James, KLiviogston, P.J.Sellin, A.C.Shotter A.Plochocki, K.Rykaczewski, T.Batsch, J.Szerypo, J.iylicz, R.Barden, O.Klcpper, E.Roeckl, DSchardt, H.Gabelmann, P.HiU, H.Ravn, T.Thorsteinsen, I.S.Grant, H.Grawe, P.Manakos, L.D.Skouras, ISOLDE M.Pnewloka, A.Pnewloka, P.WBchter, H.Wollnik M.Przewloka, A.Przewloka, P.Wiichter, H.Wollnik S.Raman, J.L.Campbell, A.Prindle, R.Gunnink, J.C.Palathingal S.Raman, E.T.Jumey, J.W.Stamer, J.E.Lynn J.Sauvage, CBourgeois, PKilcher, F.Le Blanc, B.Roussi&re, M.I.Macias-Marques, F.Braganga Gil, M.G.Porquet, H.Dautet, ISOCELE W.-DSchmidt-Ott, H.Salewski, F.Meissner, U.Bosch-Wicke, P.Koschel, V.Kunze, R.Michaelsen W.-D.Schmidt-Ott, K.Becker, U.Bosch-Wicke, T.Hild, F.Meissner, RKirchner, E.Roeckl, RRykacxewski K.S.Sharma, P.Unger, G.R.Dyck, RCBarber, E.Hagberg, J.G.Hykawy, V.T.Koslowsky, J.C.Hardy, HSchmeing, GSavard, W.Perry, M.Watson, and PwCom AHW October 1992 WS6fn K.S.Toth, H.J.Kim, J.W.McConnell, C.R.Bingham, D.C.Sousa S.Ulbig R.S.Van Dyck,Jr., D.L.Famham, P.B.Schwinberg T.A.Walkiewicz, S.Raman, E.T.Jumey, J.W.Stamer, J.E.Lynn D.H.Woods, S.A.Woods, M.J.Woods, J.L.Makepeace, C.W.A.Downey, D.Smith, A.S.Munster, S.E.M.Lucas, H.Sharma P.J.Woods, T.Davinson, N.J.Davis, S.Hofmann, A.N.James, K.Livingston, R.D.Page, P.J.Sellin, A.C.Shotter and PrvCom GAu June 1992 S.Wiistenbecker. H.W.Becker, H.Ebbing, W.H.Schulte, M.Berheide, M.Buschmann, C.Rolfs, G.E.Mitchell, JSSchweitzer Xu Shu-wei, Guo Jon-sheng, Yuan Shuang-gui, Liu Man-qing, E.Hagberg, V.T.Koslowsky, J.C.Hardy, G.Dyck, H.Schmeing 1993
93AlO3
ZPAAD
344,
93Ba.A 93BoOl
PrvCom AHW Mar NUPAB 551, 54
93Bo03
ZPAAD
344,
381
93Bu02 93Ja03
PRVCA NUPAB
47, 552,
131 340
93Jc.A 93Kl.A 93LilO 93Ma.A 93Mi04
PwCom GAu Mar PwCom GAu Mar NUCIA 106, 163 PrvCom GAu Feb NUPAB 552, 232
93MoOl
PRLTA
70,
425
394
G.D.Alkhazov, L.H.Batist, A.A.Bykov, F.V.Moroz, S.Yu.Orlov, V.K.Tarasov, V.D.Wittmann RCBarber V.A.Bondarenko, I.L.Kuvaga, P.T.Prokofjev, V.A.Khitrov, Yu.V.Kholnov, Le Hong Khiem, Yu.P.Popov, A.M.Sukhovoj, S.Brant, V.Paar, V.Lopac H.G.Bohlen, B.Gebauer,M.von Lucke-Petsch, W.von Gertren, A.N.Gstmwski, M.Wilpert, Th.Wilpert, H.Lenske, D.V.Alexandrov, A.S.Demyanova, ENiiolskii, A.A.Korsheninnikov, A.A.Ogloblin, RKalpakchieva, Y.E.Penionzhkevich, S.Piskot D.G.Burke, P.C.Sood, P.E.Gamtt, Tao Qu, R.K.Sheline, R.W.Hoff Z.Janas, J.iystii, ICEskola, P.P.Jauho, A.Jokinen, J.Kovmacki, ML&o, J.M.Parmonen, H.Penttilii, J.Szerypo, J.iylicz R.Jertz P.Kleinheinz Sr.Little Flower, B.R.S.Babu, K.Neelakandan, R.N.Mukhejee, B.B.Baliga A.G.Marshall SMichaclsen, A.Harder, KP.Lieb, G.Graw, R.Hettenbexger, D.Hofer, PSchiemenz, E.Zanotti, H.Lenske, A.Weigel, H.H.Wolter, S.J.Robinson, A.P.Wilhams J.L.Mortara, I&mad, K.P.Coulter, S.J.Freedman, BKFujikawa, J.P.Greene, J.P.Schiffer, W.H.Trzaska, A.R.Zeuli
389
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
390 93Mo.I
NUPAB to be pd
93Na.A
PrvCom GAu Feb 93Nr.01 PYLBB to be pd
9301.1
NUPAB to be pd
93Se.A 93Va.A 93Va.B 93Wa.Z
PrvCom GAu Feb BAPSA . BAPSA ZPAAD to be pd
93wa.3 93We03
PRVCA to be pd 300, 210 PYLBB
KJ.Moody, R.W.Lougheed, J.F.Wild, R.J.Dougan, E.K.Hulet, R.W.Hoff, C.M.Henderson. R.J.Duowk. R.L.Hahn. KSummerer, G.D.O’Kelley, G.R.Betbune V.Natarajan, K..R.Boycei ;.DiFilippq 6E.Pritchard J.N.Nxumalo, J.G.Hykawy, P.P.Unger, C.A.Lander, R.C.Barber, K.S.Shamm, H.E.Duckworth T.Otto, G.Bollen, G.Savard, L.Schweikhard, H.Stolzenbag, G.Audi, R.B.Moore, G.Rouleau, J.Szerypo, Z.Patyk, ISOLDE H.L.Seifert, J.M.Wouters, D.J.Vieira, et al R.S.Van Dyck,Jr., D.L.Farnham, P.B.Schwinberg R.S.Van Dyck,Jr., D.L.Famham, P.B.Schwinberg and PrvCom GAu J.Wauters, P.Dendooven, M.Huyse, G.Reusen, P.Van Duppen, RXirchner, O.Klepper, E.Roeckl J.Wauters, P.Dendooven, M.Huyse, G.Reusen, P.Van Duppen, P.Lievens, ISOLDE Ch.Weinheimer, M.Pnyrembel, H.Backe, H.Batth, J.Bonn, B.Degen, Th.Edling, H.Fischer, L.Fleischmann, J.U.GrooB, R.Haid, A.Hermanni, G.Kube, P.Leiderer, Th.Loeken, A.Moltz, R.B.Moore, A.Osipowicz, E.W.Otten, A.Picard, M.Schrader, M.Steininger
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
391
Table III. Identification of isomers EXPLANATION
OF TABLE
This table gives information on cases where table II mentions more than one nuclear state. Element indications with suffix “m” or “n” indicate assignments to isomeric states. In several cases, the assignments to ground-state and upper isomer need not be correct (error in excitation energy comparable with its value); therefore half-lives, spins and parities (where known) have been added. A suffix “r” indicates a state from a proton resonance occurring in (p,y) reactions. Sufftxes “p” and “q” indicate non-isomeric levels, e.g. those ones for which the energy was derived from Nilsson model extrapolations. Suffixes “x” or “y” apply to mixtures of levels, e.g. occurring in spallation reactions (indicated spmix in last column) or fission (fsmix). With rare exceptions, excitation energies given below with errors of about 1 keV or less have been taken from the Nuclear Data Sheets or Endt [36]; they are labelled ‘IT’ in the origin column. Other indications there allow to see which excitation energies follow from the present calculation.
A Elt. orig.
Excitation energy
J”
Mass number A = N + 2. Element symbol (for Z > 103 see part I, section 2). Origin of values for secondary nuclides. zp nn : mass of AZ derived from mass of A+Z+z(Z + z). Special notations: IT when z = 0, II = 0; when z = +l, n = -1; + when z = -1, n = +l; when z = -2, n = + 1; eP when z = +2, n = +2; +ff X for distant connection. Energy difference between levels adopted as higher level and ground state, and its error. In cases where the furthest-left significant digit in the error was larger than 3, values and errors were rounded off, but not to more than tens of keV. in place of decimal point: values and errors estimated from systematic # trends. Half-life: s = seconds; m = minutes; h = hours; d = days; y = years; ms, ps, ns, ps = 10-3*-6~-p,-12 seconds; ky, My, Gy, Ty, Py = 103,6,p~12~1s years. ?: unknown or uncertain half-life For isomeric mixtures: R = abundance ratio upper/lower levels; contamination = non-isomeric mixture. Reported or adopted values for spin and parity: Hi, Lo = high, low spin; am = same J” as a-decay parent; ? : unknown or uncertain spin and/or parity. For isomeric mixtures: mix (spmix and fsmix if coming from spallation and fission respectively).
G. Audi et al. / The 1993 atomic mass evaluation (Iv)
392 A
Elt.
Ong.
T
Excitation energy
J”
A
Elt.
Ong.
22
7408.9
26
228.304
Mm 28
38
IT
2882.30
6076.31
58
60
corn
P4n -p
Mn
IT
Mn*
+
3194
71.78
Mn
IT
Mnm
IT
271.90
MnX
x
140
5+
s
0+
0.3
74
78
cu
+
cum
+
RV
-
0
Bf'
IT
70
Rb Rbm
IT
924
ms
o+
Rb
IT
0
596
ms
7/2-
Rbm
-
300#
ms
95
96 240
ms
7/2-
247
ms
l9/2-
3.0
I
o+
I.1
m
3+
5
o+
s
3+
0.05
51 0.10
1.8 R =?
81Ge Gem
IT
82
84
47
40
+
0.10
679.14
IT
86.29
s
YP
+
0
17.7 m
o+
Nbm
+
470
5.7 m
4-
Ag Agm
IT
Nb
+
0
Nbm
+
I20
$
?1/2+
4.6
h
3/2-
Rb
0.06
30.6
m
912+
Rhm
IT
140.75
Ag Agm
IT
0
1.3
m
1+
6.5
h
5-
32
17
R =?
~PllllX
18
R =?
fsmn
IT
463.62
RbX Y Yxm 85Y
22.3
m
9/2+
I.2
m
l/2-
7.1
m
9/Z+
0.10
2.9
m
l/2_
32.8
d
2-
0.09
20.3
m
6-
0
Rb Rb”
330
40
-
60
190
Yxm
87Y Yxm 88Nb tw
IT
19.8
-
0
IT
38019
0.4
0.07
-
40
140
102
103
24
0.23
4.9
h
7+
m
2+
m
?3+
25.8
s
?8+
20.0
h
9/2+
61
d
1/2-
s
O-
9.6
I
?8+
3.7
s
l/2_
I.2
s
9/2+
ms
I-
II4 I20 30
96
Ins ?4
640
Ins o-
2.0
104Nb
I05
m
IT
39.756
+
0
+
220
Ag Agm
IT
Ag
6.9
s
?4-
ky
9/2+
25.47 +
0
+
136
Ag Agm
IT
89.66
IT
28.6
Agm
IT
93.130
s
l+
2.7
h
?l/2_
4.9
h
9/2+
3.3
d
l/2-
13.4
h
9/2+
Rb
+
14.4
m
a+
Rhm
+
7.7
m
4-
In
109
9/2+
20
16.1
d
?I/Z_
1.5
s
I+
40
3.0
s
?4+
0.16
50
2.0
m
?5+
2.2
m
2+
1.3
s
I+
4.3
I
Hi
207 0.08 0.4
d
2-
2.9
y
6+
12.9
m
5+
7.7
m
2+
56.1
m
7/2+
4.8
s
?I-
ms
Hi
I.2
h
5+
33.5
m
2+
41.3
d
1/2-
m
7/2+
0.006
I20 0.4
0.03
12 0.07 0.3
920
7.2 29.8
s
I+
2.2
h
?6+
IT
88.030
8.5
m
I+
d
6+
6.2
m
7+
5.2
m
?3+
44.3
s
7/2+
16.8
6
I+
6.0
m
?J+
stable 0.020
110
29.75
I/2-
stable
0 -60
IT
Ag Agm
h
0
Ag
Inm
l/2_
4.7
0
In
108
h
24.0
4.6
107
6.0
0
Rhm
lnm
0.010
0
Agm
5-
9.3
NW
106Rh
14
0
Rh Rhm
fslmx
R =? 38
0.04
3-
52.0 I.2
200#
0 15.52
7.6
41
62.10
IOONb
0.07
RbX
IT
14
Rhm
I-
RV
Yxm
142.680
4-
fsmlx
0
1.9
0
Tc
?9/2+
0.20
contamination
0
m
spllUX
-
400
41
R =?
Y
+
Y
-
R =?
228.50
Co.taL~o”
28
0
Rh
18
IT
370
?4-
22
Sem
+
IT
34
0
667.52
Tcm
21
-n
IT
Rb Rbm
II50
I
0.20
fsmix
27
0
?I+
RW
Se
+
7.6
0
I
6.2
25.3 m
R=2
O3-
mix
RbX
68.30
38.95
rpmix
0
Rb
75.5
.5
12
0
IT
Rbm
83
111.20 74
Rb Rbm
110
IT
Y Yxm
98
m m
R=2
Y YP
97
2.6 4.3
10
0
Tc Tc*
Of
0.08
0
RbX
4s
Tcm
4.5 s
Br
-178
RbX Tc
7/2-
0.03
Rb
3+
0
-240
106.90 83
RbX 94
99 70
IT
m
682
80
0
Rb Rhm
3+
0.05
30
90
o+
stable
0
SC
co
130.4
3+
ky
0.13
0
SC
SC' 53
12541.08
6.4
7.6
SC' 42
740
K Kxm
41
-p
y
I+
0.013
0
Si Sl'
2.6 0.6
0
Al
J"
WA')
0
Na Na'
T
Excitatmn energy
CkeV)
0.05
1/2-
58.0
m
7+
39.6
m
2+
s
7/2+
stable
0
0.010
39.6
1/2-
G. Audi et al. / The 1993 atomic mass evaluation (Iv) A
Elt.
Orig
Excitation
7
cncrgy
J”
A
Elt.
Or&.
Excitauon
Rh
IT
0
Rh”
+
0
AS Asm
IT
117.59
In
IT
1nm
-
62.08
59.82 1134
+ As”
IT
IIS
3.2
s
l+
In
+
0
28.5
I
> 3
In”
+
290
24
s
I+
CS
249.8
d
6+
CS”
x
113
IT
127.0
200 0.05 0.04
0.04
0 43.50
0.10
0
Cd Cd”
fT
263.59
A&
+
0
As”’
IT
41.10
0.12
0.20
Cd Cdm
IT
181.0
IT
336.24
111 II?’
0.5
0
Sb
-
Sb’
IT
860
Te
IT
0
Tern
-
10
Ag
+
Agm If Cs”’
IT
CSX 117
0.20
A$
+
AtP
IT
300
24
19
In In”
IT
315.300
cs
IT
0
CS”
IT
I50
100
50
50
CSX 118
AS
+
0
Agm
IT
127.74
0,010
Sb
-
Sb’”
-
250
w
-
90
cs
IT
0
Cs”
IT
500
300
24
19
CSX 119
+
0
Cd’”
IT
146.54
360
Ins
?5
.05
spmix
CSY
47
12
R x.1
.05
spmix
7.5
d
l/2-
1.2
m
7/2+
s
9/2+
5.4
h
1/z-
1.1
m
7/2+
9.3
pr
1./z+
14.1
Y
11/t-
20.0
m
1/z-
18.0
s
?7/2+
2.2
d
1/z+
44.6
d
11/2-
Ty
9/t+
4.5
h
i/z-
32.1
m
S/2+
5.8
m
l/2+
6.7
m
?1/2+
IT
100
70
33
22
CS 0’”
120
In
+
In”
IT
I
-
IF?
IT
csx 121
Sn Sn”
320
60
300
23
19
ms
?2+
$
> 3
1.2
m
1/z-
5.3
*
7/2+
43.2
m
9/2+
1.9
h
1/2-
8.4
d
6.5
s
?
L
?I’
2.0
S
?S
3.6
m
I’
293.98
IT
0
Csm
IT
68.5
0.3
46
8
0.03
ILP
IT
327.09 24.6
IT
159.0 6
In
+
1nm
+ IT
128
129
462.54
In
+
0
In”’
IT
360.40
In
+
0
1nm
+
100
In
+
0
10
+
460
Sn
+
0
Sn”
IT
4.70
In
+
0
IIP
+
320
Sb
IT
0
Sb’”
+
IO
In
+
0
1nm
+
380
Tern
IT
105so
1T
8.42
d
11/2-
40.1
m
3/2+
5.9
m
l/2+
1.7
E
11/z-
3.2
S
3+
70
2.4
s
8-
30.8
s
I+
6.3
S
7+
0.09 I5
0.10
60
70 0.10
60 7
0.05 0.05
SPllIiX s
9/2+
P
?1/2_
2.1
5
3+
1.6
I
8-
I.2
s
9i2+
3.8
s
l/2_
2.1
h
11/2-
4.1
m
3/2+
900
ms
3+
900
ms
8-
9.1
h
8-
10.4
m
5+
ms
912%
12.2
590 70
spmix
R =? 2.3
0
Ba
1/2-
129.2
R <.I
0
Te
s
4
0 -20
32
Ci
127
1.0
0
CE Csl”
0.4
0
47.8
I.3
S
1/2-
1.2
h
312+
33.6
d
11/t-
2.17
h
t/2+
2.23
h
7/2+
:I
In
+
0
320
ms
1-
?7-
10
+
50
50
520
Ins
?lO_
I4
S
2
la”
+
400
60
520
17
I
?7
Sn
+
0
spmix
Sri”
IT
1946.88
Sb
+
0
Sbm
IT
100
IT
163.25
2.7
m
3/2+
2.2
m
11/2-
43.0
s
9/2+
30.4
S
312+
25
spmix
3.1
I
If
46.2
s
S+
1.4
h
2-
”
?I-
m
2
J
?7
55 154
R=2
IT
CSX 124
0.10
0
CS Co”’
6.0
m
16.8
IT
0
:,
I.1
Tern
+
Sn”’
rpmix
3.8
In Sn
spmix
R <.I
0.08
cs
cs=
?Sf
57
0
Te
S
1.1
500
6.30
10.4
53
150
0 IT
?2-
R c.5
0
CS Cs’”
70
m
R <,I
0
csx
2.7
8.5
0.11
8-
R =.I
1:::
Cd
I+
m
6
Ram
310
S
4.2
14
6
0
21
csx
R =?
0.16
8-
Cs’
123
0.5
1+
s
7+
R =?
0.20
I8
J
2+
3.9
0 28.60
0
1.5 10.8
h
650
500
140
h
125
20
0
Cs
J=
I,1
100
0 81.90
T
4.9
441 0.03
122
126 116
energy
0rc.W
UceVt 110
393
130
CS csm
d
3/2+
Y d
Ilitt/2+
d
1112-
2.6
m
3/2+
2.0
m
912+
I
spmix
40
132
0.11 14
?5+
m
O+
1.7
m
7-
6.3
m
?5+
39.5
m
?8-
29.2
m
I+
3.5
m
s-
R =.2
.1
fsmix
290
ms
9/Z+
In
+
0
IP
+
360
60
350
ms
l/2-
In”
+
1270
170
320
mn
21/2+
m
3/2+
Sn
+
0
Sn”’
IT
241.8
Te
-n
0
Tern IT
spmix
40
0
CSX 131
0.10
N
3.8
182.250
Sb
IT
0
Sbm
+
200
I
+
0
Ixm
+
108
0.020
50 I5
0
Xe XP
1.1 0.3
IT
667.67
39
S
11/2-
25.0
m
3/2+
I.2
d
11/2-
2.8
m
4+
4.2
m
8-
2.3
h
4+
I.4
h
stable 0.06
8o+ 2+
G. Audi et al. / The 1993 atomic mass evaluation (Iv) A
Elt.
orig.
Excitation
energy
r
J’
A
Elt.
orig.
Excitation
(kevt 133
134
Te
+
0
Tern
IT
334.14
Sb
+
0
Sbm
+
SO
cs Ck
0.07
IT
138.70 80
12.4
m
?3,u+
55.4
m
11/2-
ms
o-
10.4
s
?7-
2.1
y
4+
2.9
h
8-
850 I50
0
CSX
0.10 40
R =?
&mix
149
150
I lxm
137
Ba Barn
138
IT -
0
IT
519.6
Pm
IT
0
pmm
-
lOO#
cs IT
142
143
148
33 -
0
P?
-
364
Pm
-
0
Pmm
-
I90
Nd
-
0
Ndm
IT
231.15
Pm
-
0
Pmm
IT
188.7
Sm
-
0
smm
lT
457.8
-
0
-
400
Sm
0
Sm”
175.8
Eu
-
0
Eu”
-
810
Gd
IT
0
Gdm
-
152.6
-
0
146Tb
147
79.9
Tb”’
IT
Tm
-p
0
Tmm
-p
71
l’b
IT
0
Tbm
-
50.6
Dy
IT
0
Dp
-
750.7
Tm
-p
0
Tmm
-p
64
Pr
IT
0
Pr
+
0
Pm
+p
0
Pmm
IT
137.00
I50#
Tb
-
0
Tbm
IT
90. I
He
IT
0
Horn
-
0#
46.9
m
2-
s
?6-
Tbm
IT
36.0
Ho
-
0
Horn
IT
Er
c
0
Erm
IT
741.5
Eu
0.010
2.5 38
0.5
I.6
0.3
22 410
0.05 0.3
80
0.3
100
470
-
0
m
11/z-
Horn
-
800
m
l/2+
s
Il./Z-
m
2.9
m
R =?
lOO#
3bfsmix
I.4
m
1+
2.1
h
7-
3.5
m
> 3
IO
s
I+
29.7
m
3/2+
5.5
h
4.2
I52
0.3 8
0.10 0.3 IMJ#
-
0
Tm”’
IT
I5#
Lu
IT
45# 0 200#
140#
Lum
-*
Pm
+
0
Pmm
+
140
0 158.8
11/2-
Tm
x
0
m
s/2+
Tm”
IT
2O?t#
mr
11/2-
m
?I/2+
Ho
-a
0
Horn
-n
70
10.7
s
11/2-
9.2
I
I+
6.0
m
7-
10.2
m
1/z+
22.6
m
II/Z-
2.4
s
I+
I.2
m
8-
5
I/2+
1.9
m
Iliz-
8
s
I+
23
E
5-
156
?I01
45.600
Tm
-n
Tmm
IT
Pm
+
0
Pm”
+
20
no
-a
0
Ho”
-a
260
Tm
--OL
Tm”
--u
ES0
Lu
--u
0
Lum
--Iz
Lu”
-a
Tm
-a
0
Tm”
-a
390
30# 1800#
Lu
-n
1/z+
Lu”
--a
1.8
m
11/z-
Hi
-a
0
I.3
m
1/z+
HP”
-a
1980
s
11/2-
Ta
-p
0
560
ms
11/2-
Tam
-_P
83
360
ms
1/2+
Lu
IT
0
m
?4
LP
-a
32.0
2.2
m
1-
5.4
d
l-
41.3
d
6-
1.0
h
2-
2.2
m
9+
2.2
s
If
9.6
E
vb-
1%
160
Ho
-
Horn
IT
w
--(I
WFP
-a
Ho
-
Ho”’
If
0.010
T
J”
s
11/2-
54
s
1/2+
4
s
1/2+
s
11/2-
36
8.9
y
5-
12.6
h
O-
3.5
h
5.8
m
I.4
m
;; I+
24
s
9+
35.2
s
?ll/Z_
47.2
3
71/2+
4.1
s
11/2-
5.2
s
l/Z+
Ins
11/z-
85 4.1
m
I+
7.5
m
4-
13.5
y
3-
9.3
h
O-
2.4
9+
8
s
z-
5.2
P
9+
2.0
m
11/z-
1
9.3
m
512
1.7
s
I1/2-
0.20
2.5
s
1/2+
1.8
m
o3
lSO#
160 70 I20
70# 70#
50 170# 50 14
2.0
0.04 40
0 59.98
II/Z_
21.4
2-
0 I900
112+
m
s
0 67.25
h
4.2
m
0 3209
4.1
49.5
2.6
0
h
157
110
0 43.20
I.6
55
0.20
0
-a
1.9 200
Tm
-a
14
0.9
0 41.10
Ho”
?6-
110
-a
Ho
155
50
IT
IT
154
0.5
Ho”’
EU
153
0.3
Ho
Eum
180
0.10
0 -
32.2
39 OS
42.1
Ho
?I 1/z-
2.6 0.4
IT
Tb
151
0.3
0
Tbm
70#
20
49.00
3/2+
stable
0
Pr
Pm141
661.660
Ndm
14oPm
120
0
CSX
139
650
Nd
0”
1.4
0 +
0
Tb
Eum 136
energy
(kev)
0.03
2.7
m
11.8
m
I
3.2
m
8
8.3
s
?2-
3.3
s
?9+
140
Ins
1/z+
70
ins
11/z-
2.6
ms
25/2-
1.6
m
2-
s
9+
730
ms
?2-
I90
ms
?9+
25
mt
o+
444
ps
Hi
lb5
mr
9+
19
283
ms
9.6
s
1/2+
4.8
s
711/2-
11.3
m
5+
27
m
2-
1.4
ms
o+
0.3
ms
a+
25.6
m
5+
5
h
2-
G. Audi et al. I The 1993 atomic mass ~al~~i~~ (IV] A
Eit.
OIlg.
T
Excitation ener&y
J’
A
Elt.
Oti&?.
168
169
171
172
173
I74
175
176
Rc
IT
0
Re”
-(I
150#
Lu
-
0
Lu”
-
220
Re
x
0
RP
IT
i50#
R&’
IT
3W#
Re
-
R@
IT
Ir
-01
II”
-CC
139
Ir
--oL
0
3.4
s
?9/2-
iOO#
6.1
s
?I/2
5.5
m
?6-
130
6.7
m
3+
8.1
5
16.3
I
70# lW#
15.2
10
II”
--a
I OO#
lOO#
I?
IT
175.1
0.5
+a
0
Ir”
--a
193
Ir
-a
ifl
IT
Au
-04
Au”
IT
Lu Lu”
11
0 100
0 IT
122.860
178
179
180
181
182
AU
-a
Aum
+D
0
Hg
-a
0
Hgm
+o
260#
490#
Lu
0
Lu”
123.7
0 230.5
Hg
+u
0
?I12
Hg”
+o
?1/2+
n
I
?5?2+
Tl”
+u
?9/2-
?3+
s
?7+
9.8
s
15/2+
2.2
5
?I 1/z-
184
185
Ta
IT
0
Ts”
-
0
Au
--OL
Au”
+a
370#
Hg
+a
0
0
Hg”
+a
160#
Tl
--o
0
Tl”
--u
510#
Ta
540#
+n
75.2
OS
IT
0
OS”
-
iOO#
Pi
+n
0
pt”
+a
396
Au
+u
0
-0
0
Bi”
--u
250#
Iig
IT
0
3.7
Gy
7-
h
i-
s
?
7 ?
ms 13/2+
28.4
m
1+
23.1
m
?9-
9.3
m
I+
2.4
h
?7-
7.5
s
?5/2+
7 I
?i3/2+ ms
1j2+
1.4
rns
9/Z-
8.1
h
i+
Ty
9-
h
i/2-
28
m
7/2-
51
2.7
6
1/2-
I
?1/2+
rm
?9,2-
60
TI
x
0
TI”
IT
Tl”
IT
loO# 6##
189
190
?13j2+
s
RC
188
?li/Z_
3.4
6O#
?5J2_ ?1 r/2i/2IS/Z+ 191
La
100 iM)# 140#
452.8
Bi
3
0
0
lOO#
80#
90#
x
470#
llO#
IT
71
IT
+a
IT
103.8
IT
Hg”
Pb”
IT
Tl”’
s
RC
Hg”
TI”
3.6 ?
--OI
0
11/2-
200#
Pb
+a
?5/2+
am
440# 0
200#
Hg
0
+o
0
140#
-a
cu
6@3# 0
I OO#
500#
Tl
Hg
-*
lOO#
IT
60#
Au=
IT
IT
Tl’
IT
11.4 ?
Tl
Tl”
Pb”
ms
50
ms
u/2+
2.7
d
7+
12.7
h
2+
2.0
*
3.1 ?
s
7+ II-
192
1.0
1/2-
I
s
1312’
6.9
5
i/2+
60
ms
9i2-
xi3
ms
71/2-
6
Ii
I
7+
1
0
it-
49
s
1/2-
21
s
i312+
19.5
5
?1/2+ 912-
s
Lo
6.5
s
13/z+
27.5
s
2+
50#
?4.5
E
7+
50#
2.9 7
s
10?
40#
250#
332
Pb
x
0
Pb”
IT
4O#
Bi
IT
60# 0
50#
Bim
-0
60#
x
0
n”
IT
100#
SO#
TI”
IT
370#
50#
Bi
--a
0
Bi”
--D
190#
n
+o
0
Ti”
-
Pb
x
Pb”
--u
90
Bi
--u
0
150#
-a
90
+
0
Re”
IT
Ti
-
190
70
170
500
ffi
470
500
Bi
--n
0 2IO#
50%
0 0
Bi Rim
1,”
242
Ti
IT
0
1i2+ ?9/2-
15.2
s
Lo
18.3
s
13/2+
35
ms
9/2-
8
lm
1/z+
i.2
m
?2+
1.2
m
?7+
41
ms
?9-
44
ms
?
210
%m io-
2.3
m
l/2+
1.4
m
?912-
?51
s
Lo
51
s
13/2+
ms
9/2-
5
ms
1/z+
3.1
m
2+
3.2
h
6-
2.9
m
2-
m
7+
3.5 <2so
ps
IO-
5.7
3
3+
5.9
5
IO-
m
9/2-
1.3
m
Lo
2.2
m
13/2+
s
9/2-
5.2
60#
12 1% 9.6
Tl”
+cz
zw
50#
nn
+*
SIO#
50#
w
--G
0
Bi”
--Q
2lO#
13/2+
7
297 90# 0
m 5
40
-
x
1.9 15.6
50
Tim
IT
3j2-
680
TI”
Pb
io-
m s
0
Pbm
ms
2.4 51
6
0
Bim
10
70#
Ii
Re
13/Z+ 2+
s
IT
283
E
1.8
Tl”
-
*
4.1
iMf# 0
n”
11/2-
8.8
2.0
+u
+Q
?5/2-
ps
0
x
-*
s
I
?
HP”
RI”
42.0
40#
Ti
TI
7/2-
0
I
14
TI”
x
IT
1.8 lOO#
Tl
Pb
160
1.3
0 70#
Tim
8O#
0
Tam
IT
?3f
200 ?
50#
x
?7+
186
I/2-
s
40#
Pb
5/z-
m
43
0.5
Pb”
5
1.1
llO#
550#
5
s
6.5 0.08
0
9
80#
100
240#
4.9
124
2.6
0 34.50
+a
s
I,3 360#
+o IT
187 177
IT
Au
2.0
40 0.010
Pt PI” Au”
4.4
20 lOO#
183
?5/2_
8
0 I50#
s
SO
0
If
J”
WV)
0 100
T
Excitation mcqy
(keW 167
395
509
1/2+
Ins
i/2+
m
273+ 110-
37
s
13+
39.6
s
lo-
G. Audi et al. / The 1993 atomic mass evaluation (Iv) A
Elt.
Ong.
7
Excitatmn energy
J”
A
Elt.
ong.
Excitauon energy
(kev) 193
194
195
196
197
198
Hg
-
0
Hgm
IT
140.76
Pb
x
Pbm
IT
I30#
BI
--o
0
0.05
0
B,”
-a
PO
--u
308
PO”
-u
150
Bi
--o
0
BIm
-e
270
A,
-0
0
7
0
At”
-01
Ir
-n
6’J# 0
II”
+
110
Pb
+
0
Pbm
IT
202.9
BI
--L)
0
BI”
--L)
399
PO
-0
0
PO”
-*
I90#
3.8
h
312-
Fr
IT
0
11.8
h
13/2+
Fr”
-n
327
90
500
--a
?3/2
Fr”
m
13/2+
FrJ
1.1
m
?9/2-
3.5
s
?1/2+
360
ms
Lo
260
ms
13/2+
1.6
m
3+
2.0
m
?lo-
180 210#
20 0.7 6
7
IO-
2.5
h
3.8
h
11/2-
II
m
3/2-
16.4
m
13/2+
30
m
9/2-
1.5
m
1/2+
4.5
s
?3/2-
2.0
s
l3/2+
BI
+a
0
5.1
m
73+
+o
270
4
4.0
m
?lO_
Bi”
+a
161
4
.6
s
?7+
Pb
x
0
Pbm
IT
319.3
B,
+a
0
BLm
IT
510#
-0
0
PO”
--ol
At
-e
0
Atm
-e
50
Bi
+o
0
Blm
IT
350#
Bi”
IT
lOO#
230#
At
-o
0
At”
--.
370
50# 90#
ll
In
3/2-
44.6
m
13/Z+
9.3
m
?912-
5.2
m
?1/2+
56
I
?3/2-
26
I
l312+
ms
?9/2-
350 70
3.7
s
1/2+
10.3
m
?3+
60#
7.7
s
?lO_
60#
11.6
m
?7+
4.2
I
?3+
1.0
I
?iO_
500
210
211
212
200
201
202
203
Bi
+a
Bl”
IT
0
PO
--u
0
PO”
--u
311 9
640#
Rn
--o
0
Rn”
.-a
2SO#
50# 2.8 110#
Au
+
0
Aum
+
960
At
+a
0
Atm
IT
344
3
At”
-CI
113
3
BI
+o
0
Bim
IT
846.4
PO
--u
0
Porn
IT
424.2
Rn
--01
Rn”
-0
At
+a
AI”
+
At”
IT
Fr
--(I
Fr”
-a
Rn
-0
Rnm
--D
70
214
216
217
10# 0 360
5
?lO_
s
77+
Ra
-0
0
Ra”
_a
550
Bi”
IT
271.31
PO
--01
0
PO”
--or
1462
BI
BI -e
250
PO”
-a
2911
At
-0
0
Atm
-=
222
Ra
-u
Ra”
IT
At
--LI
0
Atm
--ol
59 234
30
7
At”
-c,
Fr
--LI
0
Frm
--cL
123
AC
--L)
0
Acm
--u
37
Th
--OI
Th”’
-0
AC
--OL
AC”
--n
9?I-
6
IO 22
20
AC
--a
0
A@
IT
I OO#
500
ms
?312-
100
mr
l3/2+
AC
-CL
Acm
-a
0.005
-0
0
ms
?9-
320
3.4
/IS
?I-
330
jLs
?9-
28
Ins
o+
180
/1s
a+
69
nr
9/2-
740
nr
9/Z-
1.0
Ins
22.0
mr Hi
I.1
ps
70# 4.2
s
?I-
ISO#
1.1
m
Hi
70
cooZZtion
l-
7.9
ky
5/2+
1.4
d
?5/2+
ns
3/2-
0
IT
II9
Ins
13l2+
Pa
?I-
ns
m
Th”
Ins
5.0
4.2
9/2-
Is+
314
760
I50#
?7+
0+
s
6
200#
h
ns
45.1
1-
IT
E
9-
ns
F9
110-
m
268
3/2-
I
l-
25.0
9
m
12-
h
l7/2-
5.2
?3+
25/2+
1.0
ns
5
s
9/2+
I
558
0
43
ms
25.2
l/2_
86
h
9-
ms
--01
m
I-
My
2.1
3.0
--CL
18.7
d
?9-
Fr”
48.4
5.0
m
Fr
2lO#
11/2-
ms
0 2012
?3/2-
Ins
2.7
0 2029
I
3.0
299 12
0 1773.0
55
516 5
0
?I224
Fr
0
FI1 229
- 430
Th
0
1/2+
Pa”
+ll”
Pd
IT
2.5
a.9
m
13/2+
7
E
?3/2-
IlO#
3.0
s
13/2+
3.1
m
?3+
Ins
?lo-
m
?7+
340
mr
?3f
340
In6
?lo-
45
s
?3/2-
25
E
13/2+
4
0.11
0
3/2-
500
70
rpmix
R =? 1.3
0
m
0 362
.7 15.9
1/2+
3.0
spmx
6O# 100
9/2-
460
?3+
60#
m
47
s
10# 100
m
3.5
?7+
15.9
27
222
s
540#
m
60# 60#
0
2.6 R =?
--ol
15.3
0 400#
7 70
?3+
?lo-
IT
PO
213
51 100
s
1 s
Fr”
59
0 280#
IT
1.7
7
24.7
1.7 0.5
J”
Ff
Blm
218 199
Fr
F? 207
3/2+
Bim
PO
206
ms
8O#
0.7
204
5.8
7
80#
T
(keV)
230
231
233
10
10
200#
I50#
Np
-e
0
Nf
IT
300#
U
--d
0
Ur=
IT
5O#
Np
--n
0
NpP
IT
I OO#
3/2+
0.001 420
?5/2+ 4.6
m
4.2
d
?5/2-
36.2
m
?5/2+
200#
5/2+
50#
lW#
?5/2-
G. Audi et ai. / The 1993 atomic mass e~a~ua~~on (Iv) A
EIt.
Orig.
Excitatton
energy
T
J”
A
EIt.
Olig.
Excitation
234
235
Pa
IT
0
Pam
-
78.0
Cm
-0
0
Cm*
IT
50#
3.0
6.7
h
4+
1.2
m
o-
249
237
238
239
240
241
242
243
244
IT
0
+
50
50
NPP
+a
230
50
C”
-a
0
Cmp
IT
Bk
-a IT --LI
Skfl
IT
cm
-
0
Cm+’
IT
lOO#
Bk
-a
0
Bkp
+a
41
Np
+
0
Np”
IT
20
Bk
-
Bkp
IT
Bk
-
250#
0
C+’
IT
150#
Bk
-
Bkp
IT
Cm
-0
0
Cmp
+u
127
Bk
-CL
Bkp
IT
Es E&’
48.63
1.5
--a
0
Bkp
+a
145
Es
--u
0
0.9
Cf
-cl
cf”
IT
I SO#
iOO#
iT
Bk
+
Bk”
+a
0
150#
50
IT
50#
Bk
+0
0
Bkm
IT
86.4
Md
--o
a
MdP
IT
lSO#
Md
--(r
0
Md*
IT
50#
N0
--a
0
NOP
IT
Md
x
0
MB
IT
lOQ#
Md
x
0
Md
IT --f2
504 0
50#
NO NoP
IT
Soo#
lSO#
LX
-*
0
Lfl
IT
0#
Es
-e
0
ESm
+
81.5
Lr
-0
0
LIP
IT
lW#
Fm
--a
Fmp
IT --ci IT
m
2-
NO
-a
4-
Nd
IT
Rf
300#
450#
213 52
h
2-
“s
7+
s a”
lSO# 4.0
m
IOo#
am 800
“s
lOO#
?9/2 4.8
m
7
m
I.7
m
1.3
s
273.7
d
?7+
1.6
d
2+
lOO#
am
8” 79/Z?1/2+
70#
2.9
13
s
20.1
h
70#
27
0
70#
--LI
RP
IT
lOO#
lOO#
Md
--u
0
?7/2-
Mdp
IT
lSO#
?3/2_
Lr
-0
0
am
L+’
IT
loo
7j2+ ?9{2+
loo#
1OO# 0
?3/2-
am 3.2
70#
h
s
50#
1.5
7/2+ P/2-
24
0 300#
m
200#
lcw 0
4.5
m
?712_ am
3.1
m
1.5
I
?l/2+ ?7/2+ am
7/2+
s
256
10.1
h
6-
No
--D
26
m
l-
NOP
IT
h
I-
Lr
--d
am
LIP
IT
P.f
-a
0
RIP
IT
IOO#
Md
-cl
0
?7/2-
Mdm
IT
O#
Lr
--o:
0
257
s a” d
3/Z-
258
43.6
m
5i2+ 7/2+
LTP
IT
1.2
m
?3/2-
Ha
--CL
mn 259
H@
IT
Lr
-*
39
m
?7-
25.0
m
2-
L@
IT
7.7
m
?4-
Rf
-0
am
Rp
IT
Nh
--01
NhP
IT
NJ
-01
”
?7/2+
261
am 35
0 20
Map
MC
5/Z+
4.6
50#
0
Md
200#
0
--o
l-
200#
0 350#
Md
5-
200#
IO
IT
h
y
4.9
0
255
2.6
--D
Fmp
y
ISO#
0
7/2-
28.5
37
30#
350#
152
21
50# 0
30
m
1/2+
4.4
IT
300#
3/2-
21
Bkp
200#
254 am
9
0
Fmp
l-
m
I OO#
-a
--c1
m
5.6
IT
F”
7.2 4.8
16.0 0.05
E+’
-0
?5+
lOO#
Bk
IT
h
3.8
0
E$’
1.i
?7/2-
200#
Bk
253
?3/2-
1 OO#
250#
Es
I/2+
11
0
85.8
7/2?7J2+
IT
IT
h
70#
0 250#
252 am
2.9
-a
E#
m
I SO#
30#
-a
am 2.4
50# 0
Es
7/2-
150#
0 IT
IT
3-
3
Amm
Am
l-
0 51
;a
6-
h
lJO#
0
+u
A”%
248
200#
--u
Am
ky
251
0
BkP
ESP
247
200#
Cf
A”
22.5
0
Bkp
ES
246
200#
Bk
Amm
245
154
Np Np”’
0
Fm
am
50#
250 236
J’
7
energy
(kcW
(kW
9.2
s 5
?7/2+
23.7
h
i-
10
y
?6+
262
-*
400#
am s am 51
d
?8-
57
m
?1-
3.9
I
4.4
5
6.3
I
3.1
I
200#
am
l50#
B”
l50# 79/2+
IM)# 230
“s ?9/2+
lOO# loo
0 120#
“i
70#
200#
?fJ2+ am
4.7
0 300#
s
lSO#
0 300#
23
am
646
0 550#
5
lOo#
0 200#
28
?I-
70
0 200#
m
lOO#
0 400#
76
160#
8.0
“S ms