11,231-234
GENOMICS
(1991)
SHORT COMMUNICATION The 5-HT2 Serotonin Receptor Gene Htr-2 Is Tightly Linked to Es-l 0 on Mouse Chromosome 14 JIAN LIU,* YAN CHEN,*
CHRISTINE A. Kozw, t AND LEI Yu*
*Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202; and tLaboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892 Received
February
7, 1991;
The neurotransmitter serotonin (&hydroxytryptamine, 5-HT) is involved in diverse physiological effects in the central and peripheral nervous systems and in smooth muscle (Sanders-Bush, 1988; Fozard, 1989; Richardson and Engel, 1986). Serotonin exerts its effects by interaction with specific membrane receptors classified into pharmacologically distinct subtypes (Bradley et al., 1986; Hoyer, 1988; Peroutka, 1988). A number of receptor subtypes have been cloned at either the cDNA or the genomic DNA level, including the 5-HTiA (Kobilka et al., 1987; Fargin et al., 1988), 5-HT,c (Ltibbert et aZ., 1987; Julius et al., 1988; Yu et aZ., 1991), and 5-HT, (Pritchett et al., 1988; Julius et al., 1990) receptors. The gene for the ~-HT,A receptor has been mapped to human chromosome 5 at q11.2-q13 (Kobilka et al., 1987) and that for the 5-HT,c receptor has been localized to the X chromosome in mouse (Yu et al., 1991). Here we report the chromosomal mapping of the 5-HT, receptor gene to mouse Chr 14. DNA made from the rat brain cDNA libraries (Snutch et aZ., 1990) was used as template in polymerase chain reaction (Saiki et aZ., 1988) with two degenerate oligonucleotide primers designed from data
May
16, 1991
published sequences of serotonin receptor genes (Liibbert et al., 1987; Julius et al, 1988; Pritchett et al., 1988; Julius et al., 1990; Kobilka et aZ., 1987). The PCR products were cloned in Ml3 vectors and sequenced by the method of dideoxy chain termination (Sanger et al., 1977). A subcloned PCR fragment corresponding to part of the 5-HT, receptor gene (Julius et aZ., 1990; Pritchett et al., 1988) was used to isolate several cDNA clones from the libraries. Plasmids were excised from the phage vector XZAPII (Stratagene) by helper phage rescue, and the cDNA inserts were subcloned into Ml3 vector for sequence determination. The cDNA sequence and deduced amino acid sequence are shown in Fig. 1. There have been two previous reports of the molecular cloning of this receptor from the rat brain (Pritchett et aZ., 1988; Julius et aZ., 1990), but they differ in a single nucleotide that alters the reading frame, resulting in different deduced amino acid sequences in the amino terminal region. Our sequencing data agree with those of Julius et al. (1990). The 5-HT, receptor is a G protein-coupled membrane receptor and displays the paradigmatic profile of seven hydrophobic domains, a common feature of most G protein-coupled membrane receptors (Ovchinnikov, 1982; O’Dowd et al., 1989; Hartig, 1989). An interesting aspect of the 5-HT, receptor is that it contains a leucine zipper structure (Struhl, 1989; Vinson et al., 1989; Busch and Sassone-Corsi, 1990) within the hydrophobic domain I (Fig. 1). Leutine zippers have been found in a number of DNAbinding proteins that serve as transcription regulators and are hypothesized to play a crucial role in dimer formation of these proteins for the proteinDNA interaction (Struhl, 1989; Vinson et al., 1989; Busch and Sassone-Corsi, 1990). Since the 5-HT, receptor is a membrane-bound protein and does not
Clones coding for the 5-HT, serotonin receptor were isolated from rat brain cDNA libraries. Using one of the cDNA clones as the probe, mouse genomic DNAs from intersubspecific backcrosses were analyzed by Southern blot hybridization for a restriction fragment length polymorphism. The 5-HT, serotonin receptor gene, Rtr-2, was mapped to mouse Chromosome 14 and is closely linked with the marker Es-l 0. o 1991 Academic POW, IW.
Sequence EMBL/GenBank
revised
from this article have been deposited with the Data Libraries under Accession No. M64667. 231
OSSS-7543/91$3.00 Copyright D 1991 by Academic Press, Inc. All rights of reproduction in any form reserved.
1200
-380
-370
l’-ITCTGhTGG
CTCAACTCTT
-320
-310
-420 CTGCCTTCCC
-410 CTCCTCGTTT
-400 WhTCTChTG
-390 CTGll-TThhC
-360 GGMGCAGCA
-350 ThTTChhCCC
-340 GhGhhTThGc
-330 TGMhGhn-I
TChCCCGhTh
ChMhCl-rTT
-260 hhCTGCl’-TTT
-250 l’7-ICCCCTl-I
-200
-300 ~cc~.uc
-290 CAGGAACACG
-280 ~GTGTCCC
-270 CGAATACTCA
-240 GC~CCGTGA
-230 GM”TAC,,G
-220 CTCAGCCGTG
-210 GGCTCTCCCT
-180
-170
-160
MTCh&MG
CA'R2,CACl-I
-120 AGCC,,C&CAT -60 GCCCAWCTA
-50 TGhcccccTh
I-E
GCC
Al.
TAC Tyr
1260 AAG
I."
-190
CA0
GM
CAT
GCT
GAG
Cl"
Glu hsp Al.
-100 TCAGCACGTC
-90 CTAGCCCCAG
-SO GGCACGhAGh
TGMTGGTG*
-40 GTCTCTCChC
-30 *CTrchTCTG
-20 CTACMCTTC
cGccTT*G*C
((*t
Gl"
11s LmJ cy,
*TG I(st
60 chh Gl”
GGT my
CAT Asp
30 TCT
AAT
ATC
CTG
AGC
TCh
Al-I
GlU **p
*,n w
11s ser La"
s.r
s.r
CTC Lau
90 MT *ml
CCC GlY
75 CCG pro
hGG *rg
TAC Tyr
CAT HIS
GAC **p
-70
-10
45 CCh
GM
m
Gl"
Lys As" Irp N
Tw
GGA
AAT
ATA
CTC
TCT
GCT
IT*
scr
Ala
Leu Iru *
285 GTC
ATC
ATG
Ile
nar
ATG “et
345 TCA Sar
e Leu "01 . ACC Thhr
330 MC han
TAT Tyr
TTC Pha 390 G-E
CTG Leu
TCC
An:
CCT
"al
net
Pro "al
Ser net. hu
435 AGC
AAG
CTC
GCG
ser Lys Lau cy* *I.
GCh
*CA
AGT
GTC
GTG
255 ATT
TTh
I19 PI0 *sn
ser
lau
‘lTC Phe
105 ffih *rg
CAT Asp
ATT
CTC
ATG
ITA
CTT Lau
GCC Ala
ACC
405 ATC
TCC ssr
*cc
ATT
270 GCT
300 TCC
CTA
AAG
3:5 CTG
hhh
Lys l.ys Le" Cl"
CAG
AhT
AmI Ala
ATA
CCT
360 GAT Asp
ATG tit.
CTG Lau
3;5 =ITC pha
110 Ala
TAC
420 CGG
CTG
TAT
GW
CW Lett
‘KG
WT Gly
CC-T
ITG
CTT I&u
CC-I
Al-I
CTG
TW
Trp IL
GCC
ATC
1.590 1.650 TAAGTAACTT
TAC
465 GhT
GTG
CTC
Tyr Lea h‘p
va1 La"
CTG
TAT Tyr
TCT
480 hCG
Pha 9-r
Thr
GCh Ala
TCC SW
GCC Ala
*TC
CM:
MC
540 CCC
Ila
Gln hsn Pro
I-I-T
ATG
110 "at AII
495 CAC
CTC
TGC
His IAU Cys Ala 555 WC
I1e 9~
Leu hsp 570 ACC
CCC hrg
Val
CAC
AGC
TCC
AGA
Ii*=
scr *rg
Ph* ha"
9.r
AZ.9 Thr Ly.
CCC Ala
TTC m*
cn: La”
600 TGG
ACC
ATA
GTA
615 GGT
ATA
TCC
630 ATC
CCA
GTC
TCI
CAT Asp
GAT Asp
TCG Se=
705 GTT
CTC
Val
Leu Ila
ACC
ThC
660 MC Lys
GTC “al
TTT ehe
ATG
Gly I1e Se= "et AAG Lys
GAG Glu
675 GGG Gly
AGC Ser
720 hTh
765 TIC
AM
525 GTC
CAC
Val Trp Thr I1e Ser "al
MC
GhC
110 Hi* GTG
ITC
510 TCC
WA
Pro 110 Pro ".I TGC Cys
CTG La”
CTC
AGC
*CT
hTC
MC
780 TO,
GTT
C&G
AAh
GM
ACT
825 CGA
CCC
AAh
CT*
CCC
CTG
TCA
GM
AAG
CTC
885 TIC
CM
CGG
1.930
1.910 hrrrr#AhT
1.920 GlTChChhGh
1.930 ccGcT&xhT
1.940 TIocluhTT
1.970
1.98G ThhhnrrhT
1.990 2GGhIhhmc
1,950 TcrwrrhhT
1,960 lmchGhm
2,010 CITCTACITC
2.020 lTGGGGlTT*
2,070 CTmhhAG
2.080 ThTChhMGh
2.090 ThhlTCCACT
2.110 CuxTGra
2,130 AATMACAGC
2.140 hTwnxhGG
2.150 TclwGGrhh
2.170
2.050
2.200
2,210
GcccnTGhG
cAGmhcchG
ThGhMGhGT
2.250 TrTcrwcrG
2.260 TWXAGTAG
2.270 CXTClThGGC
2.310 TlUGhGrIh
2.320 Tchwmhhh
2.330 GTGhXlllT
ITT
WA
645 CTA
2.370 MMGhhTGc
2.380 IKiCCTChCG
-T
2,430 AGGCATCATG
2.440 GTGCACGGCT
2,450 GTCTCIhhTC
2,490 ChGGMlTCh
GTCAI-TCTCA
GCC
2.390
GAT
GAC
MC
Asp Asp Am, Phe 750 ATG
GTG
hTC
"et
"al
I1e
TGT
GTG
910 Thr Isu
TTC
CTC
TTG
Ser
CAG
TCT
2,510 GC-ATC
2.730 cMcTThhm
GGTTGTTATG
2,750 AhhhhhGThT
GMThGhlTC
CITMCTGAT
2.810 TCAGAMAGG
GCCTGThTCh
CATTCTTCCT
CCC
Ser ThC
2,aso
GAG
Chh
Gin Lys Ala
GCG
Cys Ly., "al
ATC
TGC
TGC
1020 T-E
*TC
*CC
"et
Trp cys Pro Phe Phe ,le
~t,r
1005 TTC
TGC
1035 1050 1065 ATG WC GTC ATC TGC hhh Ghh TCC TGC AhT GM MT GTC AK net Ala va1 Ile cys Lys GlU scr cys A*" GlU AS” “al Il.2
hhG
GTG
1080 WA CCC Gly
Ala
2.520
2.690 TTCTAGCATA
3.160 3.150 ThChGGGTh.4 MTGCTGAAA
"al
2.470
2,670 2,680 GGATCTCATO hGKGhGChG
3.110 AGGACACTCT
Phe Phe Leu Phe "al
2.460
2,630 hhhhcGcGtI
TIAATCCACC
Val
CCA
*CT
Cl"
CC*
2.410 AmxGGsGh
2,620 *TThllTGTh
2.610 hEThTTTh’C
3,090 CCAGCTGMG
GTA
2.300 GhcnTGhTh
2.a
2,570 MThhhThTh
ACCAGTTACC
CTG
2.290 hhhh2.35G GGhMTMaG
2,550 2,560 TCGTGTCTCC MhCThhhTh
3,030 hhhhGChhhT
990 I-K
cc-
2.240
2.340
lmT*TGhGG
TTCCCTCAAA
TTC
855 CCT
hGT
Cys Val
2.500
2.980 TTCTTCTTCC
GTG
2.200 ThlTrmGrh
2.230
2.420 hmmT&wG
'ITT
2,970 ThhhhChhTh
ATC
2.220
2.1lo GmGGuTcc
Ph. Gly Lau Gln
2.920 ATGCATAGM
CCC
l.mcl
rlmrrwrh
2,910 hTTGChCCch
975 CTG
AAT ATC Am Ile
1.900 CA’CAGA’IZCC
hlnnchrr
2.870 2,860 CATATITGCC AAGCCMCAA
AAT
1.740 hhhmhGGrh
1.170 hcrEshhT
I19 *la CM:
1.690
1.96G TchTrGhhhT
prmmcl
AGC
1.520
1.850 GrhhThTMT
960 MG
Ser h‘"
L-x Gly Ile
1.940 *,,,‘Z’ThTTG
2,790 CGATTTCTTT
Gln Ser Ila
Gly Lys
1,790 MITCACGAC
GAG
ATG Het
GTT
1,730 htTmhThIh
Glu Pro Gly Ser Tyr
ACG Tk
‘ITT
1.680 GGCTGGCUT
AGA
930 AGG AI&
945 ATC
1.670
*rg
CGA *I&
GGG
I."
1.630 AATGAGGGAT
ATACGMCCT
"is
WC Gly
CTG
1,570 ThcGhmxr
1,660 CThrrCTChh
915 'KC
ATC
AC4
Ikr
1,560 crhGG&lm 1.620 GIwMm
Phe Leu Pro Gin ser
XC
CrT
Ul
1.510
1.610 TrGGccrrrT
900 ChC
GCA Ala
XC
1,6OG
Pha 6.x
Pha Gin hrg Sar Ilc
ICC S.r
TCTAMACCA
ser
Ser SeT Glu Lys Lu PKC
CAG
1.540 ATGTGCTCM:
TTC
LU
TGC Cy#
1.490
1.480
840 TCC
hGC
GAC A.p
l
ATI
795 GCC hla
*CC
1290 LAG
1350 AM
Ila
TCT I T T GTG GCh T T T ITC ATC CCC CT* ACC ATC Gly Ser Phs "a, Ala Phe phs IIe Pro ,a" Thr Ile CTG
AM
1335 Al0 kt
ATC
GGC
ASP Leu ser Thr AT6 All, Lys Leu Ala PKC 870 TCA
690 GCC *la
GGA
CAC
AT*
1320 GIT
GAT A.p
cn:
hCT
TM II*
CAG
5.55 AM Ly.
735
Thr Tyr Phe Leu Thr 11s Lys Ser Lcu Gin Lys Glu PKC GAC
CTT Leu
1275 CAG
hhC
A‘"
TCh
V.,
CTC
‘XG Val
9.1 au
ACA
CAG
1230 II*
119 Ia"
AAC
Glu Gln z
AGT
ATT
Gly Gin Lys Lys *.n
1,720
2.190 ATC
IT*
Ser Gln La" Gin Val
GTGhCrrhl7
CCC
Lau Tyyr Gly Tyr Are Trp Pro Leu Pro
450 ATC
1,530 ACCMCTATA
1.890
GM
Gl"
Thr Ila
Ile
va1
GTMTATGAC
GTG
ChG
ThThCCGhTG MC
.
GTC
TGT
240 lm
cys
1,470
150 135 120 ~r.x MC ACT TCG GAA GCh TCO MC TGG ACA ATT GAT GCT GM MC AGA ACC MC *,a *sn Thhr s*r GlU Ah ser Am *rp mr lb Asp *la GlU *ml *rg Thr Am N N N N 210 195 180 165 CTC TCC TGT GM GGG TC CTC 03. CCG AU TGC CTC TCC ATT Cl-T CAT CTC CAG La,J se= cy, GlU Gly Tyr Leu Pm Pt.0 Thr cys Ia" s*r Ile La" His Lsu Gin 225 MC
CTG
Lys Pro L.u Gln L.u
1365 1300 1395 Chh CAG TCG Ghh GAG MT T G T ACA GAC MT AR GM AGC OKi MT Ghh MC GIT Cl" Gin Ser Cl" Glu Am, Cy. Thr ASP Mn Il* Glu ,%w V.1 h‘m Glu Ly. Vd Y cK2 1410 1.426 1,430 1.440 1.45G 1.460 AGC TGT GTG TGA TGM CTGGhTGCTh II XCMTTGC ( :cAccccAtG h GMCAUXT s.r
TCC
MC *ml
TCT
1215 0%
AhG
Lys 8.r
1305
-110
Ghc
hGh
WA
G’I-XTCCGCT
GM
MC
A,,
AGGGAGGCAT
15 TGT
GM
1245 CCA Pro
-130 ChGccAGMjc
CTI
MC
Am hr8
AGCACCGTGA
*IT
TAC
Tyr Lys Cl"
-140 GhGGhGhh~
CA&
CAG
Cy. Cl"
-150 CTGTAACTCT Thmh-
*TG
‘,-IA LmJ
TGT
2.740 2.800
3.040
2.580
2.530 CCACCGTGAA 2.590 IThhIGhGhC 2,650 chThmGGhT
hG2.6M 2.700
2.710 AAGATITIW
2.760
2.66G 2,720 *lThhhAmA
2.770
2.780
2.830 *crcTcGhGh
2,940 ATnrrrcAT
2.000
2.990 hhhThxh6I
2.900
2.930 ThhChChGch
2,940 Ahl-TcGhrTc
2.950 uTcchThM
ThCUhGhTI
2,990
3.000 AACTACATI-I
3.010 ACTcrcAcM
3.020 hTCCchhrIh
2.820
3.050
A-
3.070
2,960
3.080
GTAATGTTTI
CK2 1095 1110 1125 CTG CTC hhT GTG T I T GTC TGG A T T GGT T A T CTC TCC TCh GCT GTC AAT cch CTG Leu As” “al Phe "al Trp Ile Gly Tyr Leu Ser Ser *,a "al AS,, PT., bu
3.100
3.120 GhGChCh,Th
Le”
1155 1140 1170 1185 GTA T A T ACG TTC TTC AhT hhh ACT T A T AGG TCC CCC TTC TCA ACG T*C A T T CAC Val Tyr Thr Leu Phe Asn Lys Thr Tyr Ar6 Ser Ala Phe Ser *rg Tyr ,,e Cln N PKC
3.170
3.176 AATACAAA
FIG. 1. The cDNA sequence and deduced amino acid sequence of the rat 5-HT, serotonin receptor. The numbering refers to the DNA sequence. Positive numbers start at the first base of the initiation codon, and the 5’untranslated region is numbered negatively. The leucine zipper-like region is underlined with the leucine residues marked below the sequence by diamonds. Putative sites for post-translational modifications are marked with corresponding symbols below the sequence: N,N-linked glycosylation (Refs. (1, 18)); PKC, protein kinase C (Ref. (31)); and CK2, casein kinase II (Refs. (15, 17)).
SHORT
233
COMMUNICATION
function by being internalized into the cell, this putative leucine zipper is unlikely to be associated with regulatory functions of transcription factors. It may, however, play a role in other, yet unidentified types of intermolecular interaction. One possibility is the interaction with other membrane-associated proteins, either as a form of homodimers or in association with different factors/proteins to form heterologous complexes. To map the gene for the 5-HT, receptor, we analyzed the progeny of intersubspecific backcrosses (Kozak et aZ., 1990) in which females of the laboratory strains NFS/N, C58/J, or AKR/J were mated with Mus m. musculu..s (Skive) males and the F, females mated with mu.wu1u.s males. Genomic DNAs from parental and backcross mice were digested with restriction enzymes, size-fractionated on agarose gels, and transferred to nylon membranes as described before (Hoggan et al., 1988). A 5.1-kb cDNA clone, which contains the entire coding region for the rat 5-HT, receptor and some 5’ and 3’ untranslated regions, was used as the probe for Southern blot hybridization. The rat 5HT, receptor cDNA is expected to share a high degree of sequence homology with its mouse cognate since the mouse and rat 5-HT,c receptors share a 97% sequence homology (Yu et aZ., 1991). A clear restriction length variant was seen in Southern blot hybridization, as shown in Fig. 2. DNAs from all three inbred mouse parental strains produced the
11.8-kb PstI fragment that was absent from the musculus DNA sample. Forty-six of the 106 backcross progeny contained this fragment, consistent with single gene segregation. Comparison of the segregation pattern for this sequence with that of almost 200 markers typed in all 19 autosomes shows that the gene for the serotonin receptor, Htr-2, cosegregates with the Chr 14 marker Es-10 (Harris and Hopkinson, 1976). In fact, there were no recombinants detected between Htr-2 and Es-10 in the 106 backcross mice, indicating that the two loci are tightly linked (x” = 106, I’ < 0.0001). This region of Chr 14 contains a neuromuscular mutant, agitans (ug) (Hoecker et al., 1954). Homozygous agitans mice are characterized by arrested growth, tremor, and ataxia. These symptoms are associated with degeneration of Purkinje cells of the cerebellum and lesions in the spinal cord (Martinez and Sirlin, 1955). However, since little 5-HT, receptor mRNA is detected in cerebellum (Julius et rd., 1990), it appears unlikely that a defect in Htr-2 sequences could be responsible for this mutant phenotype. ACKNOWLEDGMENTS We thank Weiyin Li and M. Charlene Adamson for technical assistance. This work was supported by NIH Grant NS28190, a Biomedical Research grant from Indiana University School of Medicine, and a grant from Eli Lilly & Co. to L.Y.
REFERENCES abcde
f
9
-11.8
1.
BAUSE, E. (1963). Structural requirements of proteins. Eiochem. J. 209: 331-336.
2.
BRADLEY, P. B., ENGEL, G., FENIUK, W., FOZARD, J. R., HUMPNREY, P. P. A., MIDDLEMISS, D. N., MYLEZHARANE, E. J., RICHARDSON, B. P., AND SAXENA, P. R. (1966). Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmncology 25: 563-576.
3.
BUSCH, S. J., AND SASSONE-CORSI, P. (1990). Dimers, leucine zippers and DNA-binding domains. Trends Genet. 6: 36-40. FARGIN, A., RAYMOND, J. R., LOHSE, M. J., KOBILKA, 8. K., CARON, M. G., AND LEFKOW~IX, R. J. (1966). The genomic clone G-21 which resembles a B-adrenergic receptor sequence encodes the 5-HT,* receptor. Nature 335: 356-360. FOZARD, J. R. (1989). “The peripheral actions of B-hydroxytryptamine,” pp. l-410, Oxford Univ. Press, Oxford. HARRIS, H., AND HOPKINSON, D. A. (1976). “Handbook of Enzyme Electrophoresis in Human Genetics,” North-Holland, Amsterdam. HARTIG, P. R. (1989). Molecular biology of 5-HT receptors. Trends Phnrmacol. Sci. 10: 64-69.
kb
4.
-
4.8 kb
5.
-
3.3 kb
6.
J
2.3 kb
7. 8.
HOECKER, G., MARTINEZ, (1954). Agitans, a new Hered. 45: 10-14.
9.
HOGGAN, M. D., HALDEN, N. F., BUCHLER, C. E., AND KOZAK, C. A. (1966). Genetic mapping of the mouse c-fms proto-oncogene to chromosome 18. J. Viral. 62: 1055-1056. HOYER, D. (1966). Functional correlates of serotonin 5-HT, recognition sites. J. Receptor Res. 8: 59-81.
7 2.1 kb FIG. 2. Southern blot analysis. Genomic DNAs from parental NFS/N (lane a) and backcross mice (lanes h-g) were digested with Pstl, blotted, and hybridized with a 5.1-kb cDNA probe for the 5HT, serotonin receptor.
of N-gIycosyIation
10.
A., MARKOVIC, S., AND PIZZARO, mutation in the house mouse.
0. J.
234
SHORT
COMMUNICATION
11. JULIUS, D., HUANG, K. N., LIVELLI, T. J., AXEL, R., AND JESSELL, T. M. (1990). The 5HT2 receptor defines a family of structurally distinct but functionally conserved serotonin receptors. Proc. Natl. Acad. Sci. USA 87: 928-932. 12. JULIUS, D., MACDERMOTT, A. B., AXEL, R., AND JESSELL, T. M. (1988). Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science 241: 558564. 13. KOBILKA, B. K., FRIELLE, T., COLLINS, S., YANG-FEN& T. L., KOBILKA, T. S., FRANCKE, Il., LEFKOWITZ, R. J., AND CARON, M. G. (1987). An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329: 75-79. 14. KOZAK, C. A., PEYSER, M., KRALL, M., MARIANO, T. M., KuMAR, C. S., PESTKA, S., AND MOCK, B. A. (1990). Molecular genetic markers spanning mouse chromosome 10. Genomics 8: 519-524. 15. KUENZEL, E. A., MULLIGAN, J. A., SOMMERCORN, J., AND KREBS, E. G. (1987). Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides. J. Biol. Chem. 262: 9136-9140. 16. MBBERT, H., HOFFMAN, B. J., SNUTCH, T. P., VAN DYKE, T., LEVINE, A. J., HARTIC, P. R., LESTER, H. A., AND DAVIDSON, N. (1987). cDNA cloning of a serotonin 5-HTrc receptor by electrophysiological assays of mRNA-injected Xenopus oocytes.
Proc.
Natl.
Acad.
Sci. USA
84: 4332-4336.
17. MARIN, O., MEGGIO, F., MARCHIORI, F., BORIN, G., AND PINNA, L. A. (1986). Site specificity of casein kinase-2 (TS) from rat liver cytosol: a study with model peptide substrates. Eur. J. Biochem. 160: 239-244. 18. MARSHALL, R. D. (1972). Glycoproteins. Annu. Rev. Biothem. 41: 673-702. 19. MARTINEZ, A., AND SIRLIN, J. L. (1955). Neurohistology of the agitans mouse. J. Comp. Neurol. 103: 131-137. 20. O’DOWD, B. F., LEFKOWITZ, R. J., AND CARON, M. G. (1989). Structure of the adrenergic and related receptors. Annu. Rev. Neurosci. 12: 67-83. 21. OVCHINNIKOV, Y. A. (1982). Rhodopsin and bacteriorhodop-
22. 23.
24. 25.
26. 27.
sin: Structure-function relationships. FEBS Z.&t. 148: 179191. PEROUTKA, S. J. (1988). 5-Hydroxytryptamine receptor subtypes. Annu. Rev. Neurosci. 11: 45-60. PRITCHE~, D. B., BACH, A. W. J., WOZNY, M., TALEB, O., DAL Toso, R., SHIH, J. C., AND SEEBURG, P. H. (1988). Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J. 7: 41354140. RICHARDSON, B. P., AND ENGEL, G. (1986). The pharmacology and function of 5-HT, receptors. Trends NeuroSci. 9: 424-428. SAIKI, R. K., GELFAND, D. H., STOFFEL, S., SCHARF, S. J., HIGUCHI, R., HORN, G. T., MULLIS, K. B., AND ERLICH, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491. SANDERS-BUSH, E. (1988). “The serotonin receptors,” pp. l-388, Humana Press, Clifton, NJ. SANGER, F., NICKLEN, S., AND COULSON, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad.
Sci. USA
74: 5463-5467.
28.
SNUTCH, T. P., LEONARD, J. P., GILBERT, M. M., LESTER, H. A., AND DAVIDSON, N. (1990). Rat brain expresses a heterogeneous family of calcium channels. Proc. Natl. Acad Sci. USA 87: 3391-3395. 29. STRUHL, K. (1989). Helix-turn-helix, zinc-finger, and leutine-zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biochem. Sci. 14: 137-140. 30. VINSON, C. R., SIGLER, P. B., AND MCKNIGHT, S. L. (1989). Scissors-grip model for DNA recognition by a family of leutine zipper proteins. Science 246: 911-916. 31. WOODGE’IT, J. R., GOULD, K. L., AND HUNTER, T. (1986). Substrate specificity of protein kinase C. Eur. J. Biochem. 161:
32.
177-184.
Yu, L., NGUYEN, H., LE, H., BLOEM, L. J., KOZAK, C. A., HOFFMAN, B. J., SNUTCH, T. P., LESTER, H. A., DAVIDSON, N., AND LOBBERT, H. (1991). The mouse 5-HTlc receptor contains eight hydrophobic domains and is X-linked. Mol. Brain Res., in press.