Copyright © IFAC Identificat ion and S\stem Parameter Estimation, Beijing, PRC 1988
THE ADAPTIVE ROBUST PID CONTROLLER B. Bartlomiej and L. Andrzej ~\'arsml'
Technical l: nil'ersit)', Electrical Engineering, Dept, [SEP , \1'arwwo, Poland
OO~62
Abst.ract. : The paper describes t.he . adapt.i.\Ie PID cont.roller. it.s designing procedure and con~rgenceanalysis . The concept. includes an explicit. identif'ication .... ith recursive paramet.er est.imat.ion and a regulator design f'ormula . A plant is assumed t.o be a SISO second order dead-t.ime lag . The regulator is based on plant poles direct. cancelat.ion. so t.he plant must. be st.able . In order to improve robust.ness of' est.imat.ion the model of' a plant. is chosen t.o have equal degr ees of' numer a tor .M)d denomi na 1.01" pol vnomi al s. Then the est.imat.es are used t.o design t.he regulat.or set.t.ings· t.hrough solving t.he nonlinear equat.ions . The met.hod of t.he regulat.or paramet.ers selection ensures reliabl e st.abili ty i. e required phase and ampli t.ude margins and also trap condit.ions t.o be sat.isfied . This t.echnic combined ....it.h const.rained paramet.ers est.imat.ion ensuring t.hat the est.imates lie inside desired region leads to assympt.ot.ically reliably st.able adapt.ive cont.roller . Keywords :
Adapt.ive cont.rol.
PID cont.rol
I NTRODUCTI ON
and
sa ti sf'i es
ccnd1tic~
a
t.r ap
pr'cpc~~j
by
condi t.i on . Kur' n'~n
(1984)
unf'ort.unat.el y ....e cannot. gi ve any ref'erence in Engli sh ) has some ....hat. heurist.ic formulat.ion : a Nyquist. curve of' t.he op&ned-loop t.ransf'er f'unct.ion af't.er approaching t.he Circle CO.1-10- ACVC:v) should remain in it. The mot.ivat.ion f'or int.roducing such requirement. is t.o prot.ect. t.he syst.em st.abi li t.y in t.he presence of' high f'requency unmodelled dynamics. Not.e t.hat. even small deviat.ion in t.ime delay can produce signif'icant. phase shif't. f'o~ high f'requencies . C
", ........"
One
possible approch to achieve robust. cont.roller is t.o st.art. ....it.h robust. cont.roller and t.hen malee it. adapt.ive as e . g in Song e~ al. (1980) . Thus incorporat.ing described cont.rol law ....i~h explicit.e est.imat.ion of' t.he plant. para~~ers one obt.ains indirect. adap~ive cont.rol syst.em. The conv.,-gence and t.he st.abilit.y problem of' t.he adapt.ive syst.em can be sol ved in analogous ....ay as it. ....as done by Good ....i n and co . (1984.) if' one ensures t.hat. all est.imat.es in every st.ep lie in t.he region of' st.abilit.y. It. can be done by const.rained paramet.ers est.imat.ion e.g using const.rained paramet.&rs recursive least. squares met.hod. Ho ..... ver .also ot.hers t.echnics ensuring convergence of' adapt.ive syst.ems can be applied .
The model of' a stable plant. is described by a discrete transf'er f'unct.ion of' the second order .... ith equal degrees of' polynomials in numerat.or and denominat.or and a t.ime delay. As one takes t.he second order model i t means in practice t.hat the reduced order model is used . Ioannou and Kokot.ovic. 1983 sho ....ed that equality of' orders of' polynomials in numerat.or and denominat.or can hav e st.abilizing ef'f'ect on an adapti ve syst.em in the pres&oce of' unmodelled dynamics . BeSides t.hanlcs t.o t.his f'eat.ure partial t.ime delays can be included in t.he model.
adap~ive
The designing of' the non-adapt.ive PID cont.roller is based on direct. cancelat.ion of' t.he plant. poles and t.he procedure ensuring reliable st.abilit.y of' t.he closed- loop system. By reliably s-t.able syst.em we underst.and a system. ....hich has suff'icient. margins of' phase ~ and Cto amplit.ude ACtoC in practice it. is suffi-
The paper is organised as follows . In Sect.ion 2 t.he designing procedure of' t.he · non-adapt.ive PIDcont.roller is present.ed in det.ails. The next. sect.ion present.s t.he algorit.hm of t.he aciapt.1ve cont.roller and · t.he convergence analysis . Finally some · simulat.ion result.s are discussed in
cient. t.o have ~ -30·- 45· and A -0- 12 dB) CIo
al so
A tr-ap
The concept of a simple adapt.ive PID cont.roller based on direct. plant. poles cancelat.ion and margin of' phase I' t't.,t1+ r t't""""'~. w,.~ p,y ",",v" ",,,,k y .. t at . . C19~~) . Beliczvnski and Lukianiuk (1986). obt.ained t.h~ ext.endent. version by adding a margin of' amplit.ude crit.erion and improving t.he method of' solving of' a nonlinear equation. ....hich is a kev in eval uati ng a gai n of' the cont.roll er' . . Thi s paper describes f'urt.her development. of' t.hat. concept on t.he ....ay to ....ards robust. adapt.ive cont.roller.
CIo
997
228
B. Bartlomiej and L Andrzejz
Sect.ion 3 . At. t.he end of' t.he paper in Appendix t.he met.hod of' sol ving t.he Ieey nonlinear equat.ion of' phase is present.ed. ·
So we DlUSt. specify
. { s1gn b 0 sign P ,.
for Cl + y& + Yz)O (7)
0
THE
DESIGNING
OF THE NON-ADAPTIVE CONTROI..J...ER
PlO
The process under cont.rol is assumed t.o be well aproxiJll&t.ed by second order t.ransf-er funct.ion in t.he form
0
for Cl + Y, + y z)(O
.But. our Dl&in goal is t.o det.ermine Po such t.hat. t.he closed-loop syst.em is reliably st.able wit.h proper margins of phase and amplit.ude as it. has been ment.ioned in I NTROCUCTI ON.
8pCz - ') Gp( z - i ) ..
-sign b
Using st.andard subst.it.ut.ion
Z -le
ApCz-') (8)-
b
,
+ b z
0
,
1 + a z
.
-l
Z
0
Z
-z -& + a zz
1 + Y, z
b
+ b z -z
1 + a z &
-, -&
+ Y. Z + a z z
-le
where x e [O,n) and T is a sampling t.ime, t.he opened-loop t.ransf~ funct.ion can be expressed as
-
(9)
-z z
-z
-le
Cl) (10)
where z-& is a backward shif't. operat.or yt"'b,/bo Yz-bz/bo C bo" 0 ) le is a t.ime delay It. is also assumed t.hat. t.he process is assympt.ot.ically st.able i.e. Ap has no root.s inside and on t.he unit. circle .
Cl1)
The PlO cont.roller placed in t.he Jll&in pat.h of' t.he cont.rol loop, which t.ransf'er funct.ion is given by t.he formula
PCx)=-----------------------2sinCx/2)
(12)
QC x) :,-----------------2sinCx/2)
(13)
(14)
GrCz
-l
)
z
1 -
z
-&
1
-
z-& argcpcx) + jQCx)) Cx)-
~
1 -
(2)
z -&
[ argCPCx)+jQCx))-n
p
(HS)
can be det.ermined according t.o t.he f'ollowing met.hod . Polynomial PrCz --, is chosen t.o cancel t.he pl ant. pol es Thus.. one obt.ains PrCz-&). PoApcz-'). p Cl + a,z-' + azZ- z ). o -& -z ) (3) • p Cl + p'z + p'z & z o
,
p'
-, a
p' - a z
P, • a,po
•
Pz .. a.po
C4a)
-
z
-,
First. of all one should not.ice t.hat. t.he necessery cond1t.1on for st.ab1l1t.y of cl osed-l cop syst.em 1 ~ posi t.1 vness of t.he int.egral gain of (3oCz ':i i.e +
Y.)
~
of
~
p
CX)
funct.ion
+arct.g~---------------------
(1~)
Cl+y +y )-Cl-y +y )t.g z (x/2)
,.
'z
where arctgC ' ) is evaluat.ed in t.he range C-n.nl. because of phase cont.inuit.y requirement. . We are gOi ng t.o Jll&xi mi ze gai n KJ wi t.h siDlult.anously ensuring t.he reliable st.abilit.y condit.ions. so t.he crit.erion t.o select. Kz is as t.he following : Cind sup Kz Culf'iling t.hr . . condit.ions :
Such simple syst.em is a base f'or f'urt.her analysis t.ending t.o det.ermine remaining paramet.er Po '
p b o Cl + Y, o
form
2C l-y z) t.gC x/2)
C4b)
Then provided t.hat. ApCz --, is asympt.ot.ically st.able t.he opened-loop t.ransCer Cunct.ion i . reduced t.o
1
specific
The
def i ni t.i on is · a COl'lseqtrene. o£ cornU t.i on (7) . The formula for ~x) can be obt.ained in a . more convenient. form when using z - ' _ - )"=<:1- jt.gCx/2))/(l + jt.gCx/2)) subst.it.iut.ion inst.ead of (8) . The phase ~x) can be also expressed as ~x) - -nr2 - CIe+lr2)x +
0
KJ)O
1 . phase margin condit.ion ¥XL where
I
x,.
n+~xL )~~..
denot.es
a
and L' CX )(0 , (17) l
frequency
for
which
of
phase
LCX )·l L
~..cCO.n/2)
III&rgi 1'1
is
a
chosen
value
The Adaptive Robust PID Controller a. amplitude margin condition
229
-cosC x/2) [ Cl +y +y ) z -4y Cl -COSx)· 1 •
CUD x_n denotes a
where
frequency
ftCx_n) "-Cai+l)n. X >0 is a Cl
3.
for
I
I
L'CX)~------------------------------~
2sinl(x/2)
which
i-o.l •.. .
1
x
chosen value of amplitude margin
trap condition C1Q)
V xe Cx c .nl where
x
is
the
smallest
x
cond1~1o~ L(X).10-~~O
is a strict.ly decreasing f'unct.ion or f'irst.ly decreasing and then increasing funct.ion
satisf"ying
The problem of evaluating Kx for a simpler model i.e. when yz-O has been presented in
Cpe) LCX) is a decreasing funct.ion in t.he range CO. v). where 1 arccoscl_1 +,.,,+r·1 )
Beliczynslei and i:.uIcianiulc Cl98tD. In similiar way as there above problem can be solved although it is much more complicat.ed . F'or further analysis i t is very useful to present. the properties of' the phase and the amplitude functions . Properties Q[
~ ~ ~
for "'z>O and
a~
1
+"'.+"'.1 12~
functions. 1
CPl)
boundar y val ues of ftC x) ar e
for
C"'z >O and
I/JC 0) a-n/2
"'z:SO
f'or Cl+y.+yz»O and
-len
Cl-y. +y.)l!;O and
l"'zl:S 1 -(le+1)rr
for
C~
ly.l
C1+r.+,.,.)Cl-,.,.+1".»0
CPG) first. derivative of' I/JCx) has the form
~
2)or
LCX) is an increasing funct.ion in t.he range (v.n). where v is as above
let.·s introduce some auxiliary Now notat.i.;m . Let
•
of' equation
,
fCX) ,p'(x)---l' CX) z where
ftC x) --n+,p Cl
(20)
•
where,1 is a number of' sol ut.i ons . Let. x_nbe the smalest. solution of equation
f' CX)"1-2lc+2y Cl +2le)-,.,·C3+2le)-,.,zCl +ale) + I • • z
ftC x) a-n
-4y Cy Cl+le)+lelcosx-4,.. C1+2Ic)cos·x •
+""+"'ZI
1 a~
Proofs of' these propert.ies are i_diate af't.er some calculations .
for (l+1".""'z)(O
-Cle+2)n
< a
I
Z
i. e
x·
-n
is
t.he
C21 ) smallest.
1"requency.
f'or
which the phase intersect.s -n .
l' CX)-2CC1-y )z+y·+2y Cl+y )cosx+4,., cos·xl Z
and
Z.. fzCx)~
"Ix
Z
and
•
equation f,CX)-o
50_ at.t.ention has t.o be paid t.o problem of solving equat.ion of a type
has no more than two solutions
ftC x) .
•
l' (X)-C1-y ) ( y (l~y +yl_,.,I)+
•
z,.
I
,
-8y (l+y )cosx+4,.,,.. cos·xlsinx Z.
,
I
f .(x) as above
f.c
and f!tqllat.1on solutions
in
x.1 -0 has no more tha.n
the
C22)
This is a nonlinear equation and its solutions can be found only it.erat.ivel y. Fort.unately if ,ps- C-n.-rr/2l then t.he
CP3) second derivative of ftCx) has l' .CX) the form ,p' 'Cx)---flCx) where
the
solut.ion always exist.s and the number of solutions is not great.er than thr... This is because ftCx) has no more than two exlremal points Cs . . CPG)) so • 1:S 1:S 3 . The ~hod ot solving eq. (22) is proposed in Appendix • ..mere the ex1st:ancl! of solutions and the convergence of it.erative process are also proved.
two Let
i-l • . .. • 1
•
range CO.n)
denotes
the set
of
gains sat.1s1'ying CP4) if -n:S,p :S-n/2 then s
,.
,.
V O
I
"'"
where x.p. is the smallest solution I/JC x) a,p (Pe)
i.
i.
(23)
LCKx •• x,p.) - 1
ftCx)~,p••
By
or
Kx..
Kx.
satisying as
•
let' s
denote
the
gains
approp~iate
Ca4) f'irst
derivative
of'
LCX) C2!5)
B. Bartlomiej and L Andrzejz
230
Defined above gains have simple i nt.er pr et.at.i ons. Assuming t.hat. L<1,x) is a decreasing funct.ion t.hen every KI~ is t.he gain sat.isying t.he margin of phase requirement. . Sim1lary. if L(X) is a decreasing funct.ion t.hen KI. is t.he gain ensuring t.hat. t.he closed-loop amplit.ude margin equal t.o >" .. ' int.erpret.ed as t.rap condit.ion.
t.he
gain
syst.em has KIs can be
sat.isfying
t.he
Theorem 1 says how t.o choose maximum sat.isfying all t.he condit.ions (17-19). Theorem 1 If t.he r equi r ed
mar gi n
of
ampli t. ude
KI
>.. ..>0
tf
tI>C ''L ) +1l ~tI> co (2tla.>
2
SUP
{ KI •
=
sup
{KI'
1
\. =:i •. . . • I
,z.l <0'
.KI » IKIL
*
~ where L(KI ,x )=l A l is t.he great.est. gain ensuring reliable st.abilit.y i. e t.he closed-loop syst.em fulfiles condit.ions (17-19) c
bot.h (18) and (19). Finally if one t.aJc:es KI =inf{KI .KI > t.hen equat.ion LeKI .X)=1 A :r!l • • lA has unique solut.ion Xl and Xl
addit.ionally
sat.isfied t.hen fulfiled and KI
SUP
If
for
KI
A
t.he
all =KI
•
tl>Cxl)+IT~tI>
condit.ions
is are
A
margin
of
phase
is
not.
reached. t.hen because Lex) is ,t.rict.ly decreasing funct.ion in range [0, Xl ]. it. is always possible t.o obt.ain t.he required phase margin t.hrough lowering .t.he ga.in. In such case one select. s'rP KI: but. lower t.han KI
c
A
Thus having calculat.e t.he
~h.
value of KI one paraJnet.ers PO.P1' P Z of
can t.he
cont.roll er (2) from eq. (11) • (7) • (4.b). And t.his compl.~.s ~he regula~or design problem.
Al cor i t.hm 1
tI>
. . >..
, e(O)
OF'
THE
The Cert.aint.y Equivalence Principle al·lows t.o const.ruct. t.he indirect. adapt.ive cont.roller ensuring reliable st.abilit.y of t.he closed loop. The est.imat.es of pla.nt. parAJllet.ers can be used as if t.hey were
0'
1
•
0
1
•
using RLS met.hod i. e P( t.-2) vC t.-1)
A
eet.)= e<:t.-l)+
x
1 +vC t.-l) "r P ( t.-2) vC t.-l) ry
Sc t..-1)]
(28)
PC t. -2) vC t. -1) "r vC t. -1) P( t. -2) PC t.-1) = PC t.-2)1 +vC t.-l) T P( t.-2) vC t.-1) (29)
where
v(
t.-l) = [-yC t.-l) • -yc t.-2) • u( t.-Jc:). u(t.-Jc:-l). u(t.-Jc: -2)] T
If t.he est.imat.es lie in t.he specified convex region of st.abilit.y i.e c~ndit.ion 2 0'
A
A
-Ia/t.)
10'
~ a:ret.) ~ 0'
2 (30)
is sat.isfied t.hen QO t.o st.ep 2 . otherwise Aevaluat.e t.he new vect.or of est.imat.es e'(t.). for which condit.ion (30) holds. Simult.anously. t.he new vect.or must. sat.~sfy t.he condi~ion : A A llV-e' (t.) Tpc t.-l) -le' (t.) -ee t.) Tp( t.-l) -lee t.)~0 This can be solved by using Const.rained Least. Squar es Al gor i t.hm ( see GoodWi n and Sin .1984. p . 92), which ret.ains all propert.ies of t.he RLS met.hod . In our case due t.o simplicit.y of condit.ion \:,30). comput.at.ional effort. in evaluat.ion e' (t.) is not. increased t.oo much. St.ep 2 : Using t.he est.imat.es evaluat.e - Xl solving eq. tl>Cx)"-n
-n
Choose
KI
-
{xt/>a> sol ving eq.
-
{KI >
.up
1
,KI
KI
z
according
par~t.ers
of
po(t.).p.Ct.)'P:r(t.) ALGORI TIlM AND CONVERGENCE ADAPT! VE CONTROLLER
, P(-l) •
St.ep 1 : ~t.imat.e t.h~ model para~t.ersA e(D= [a (D.a (D.b (D.b (D.;; (D]T
~omput..
TIlE
1
The last. assumpt.at.ion means t.hat. t.he plant. does not. include derivat.ives . The algorit.hm of t.he adapt.ive regulat.or is present.ed below.
x
The,t.rap c~~~on (19) requires t.ha~ if L(x )~ 10 t.hen for any xe[ x • IT] -IT ->.....reO -IT also L(X)~ 10 L(X) is a st.rict.ly deer _ s i og 1'unct.i on or it. posseses onl y one minimum point. (P5)-(P7). If it. is t.he decreasing funct.ion. t.hen t.he t.rap condit.ion is fulfiled aut.omat.icaly. If L( x) posseses a mi ni mum poi nt. i . e. it. increases before reaching n. t.hen t.he point. X 2 IT must. be t.est.ed. The smallest. value of KI. and KI!I ensures fulfiling
•
<
0< 0'
•
b +b +b .,. 0 where b . b . b are o 1 • 0 1 • coefficient.s of t.he numerat.or of t.he plant. . t.ransfer funct.ion.
Given :
ot.herwise (20b)
L • (Xl)
i =1 • 2
•
(A2)
gain K1sup such t.hat. i f
The plant. is asympt.ot.icaly st.able. linear. st.at.ionary syst.em of second order wi t.h Jc:nown t.i me del ay descr i bed by t.ransfer funct.ion expressed by (1) . Addit.ionaly let.·s assume t.~ t.he poles of t.he plant. %1 ' %. sat.isfy
(A!)
KI
and required margin of phase O..
KI A =i nt'{KI ~ • KI.>
t.rue t.o design t.he PlO regulat.or described in previous sect.ion . t.he begi ni ng 1 et. • s consi der t.he At. simplest. case i .e pure det.erminist.ic system under t.he following assumpt.at.ions .
(11). (7). (4.). cont.rol signal
z
is
1
and
cQnt.roller equat.ions
comput.e
+p (t.)e{ t.-2)
e{t.)-r(t.)-yCt.)
Theor_
PlO from
UC t.) -u( t.-1) + Po (t.) eC D
where
•
to
Finally,
tl>Cx)=-n+t/>.. from (23-2e)
act.ual
+ PlC t.) eC t.-l) + ,
(31) t.he
act.uat.ing
231
The Ad aptive Robust PlO Controller signal. rC~) is ~he reference signal. y<~) is ~he ou~pu~ signal . S\ep 3; go ~o s~ep 1
Remark Some
GpCz-~"
1.
modifica~ions
Algori~hm
~Q..
adap~ive
(33)
1
GpCZ-~2 Cl+3s)Cl+!'5s)Cl+O. !5s) e-i. and
l!&llrCt.)-yCt.) 1"0 c Proof i Part. Ci) of t.he t.heorem can be est.ablished immediat.ely aft.er using t.he result.s ot' Goodwin and Sin. lQS4 pp . 212-213 . •He!::t . i nat.ead o!' t.he desi gned pol ynomi al A Cz ) h~;--e ~ -, -, ~ ~ -, - le ] A Cz ) -AC t.. z ) [l-z +p 0 (t.) BC ~. z ) z
wa
(32)
where ....
ACt..z )-l+a,Ct.)z
_,
....
+azCt.)z
-2
cases were si mulat.ed. The of ~he plan~ were es~ima~ed by usi ng ei t.her model Cl) Ccase a / ) or simpler model Ccase b/) having t.he !'orm b +b z-' o ,
t.wo
in~egrat.ion.
0
, One can concl ude ~hat. proposed adapt.1 Ye con~roller leads t.o Ci) s~able syst.em wit.h all signals bounded (ii) ~he st.eady st.a~e error equals t.o zero Ciii) due ~o Const.rained Least. Squares Algorit.hm every st.ep of t.he es~ima~ion procedure does not. make worse t.he es~ima~es and if t.he input. signal is sufficent.ly rich. ~hanks t.he designing procedure t.he syst.em become asympt.ot.ically reliably st.able . SI truLATI ON RESULTS
A few simulat.ion resul~s.as ..,. believe t.he most. in~erest.ing ..,. are present.ing in ~his sec~ion . In each experimen~ discussed here. t.he margins >.. ...8dB and (/>... 4.0· were
wa,
up. and t.he covariance mat.rix chosen as a diagonal mat.rix wit.h 10 val UH on t.he di agonal. The sampli ng t.1 me was al ways 1 sec .
se~
For t.he first. experiment. cont.inous having t.rans!'er funct.ion
plant.
s--------, -z l+a , z
Z
-le
(35)
+a z z
Not.e t.hat. out.put. signals shown in Fig . 2 are different. very lit.t.le . But. t.he est.imat.es in case b / drif~ed Cwi~hout. dist.urbances) in observed numbers of samples and t.hey s~eaded 1n case a / . Fig. 3&. b present.s an example o!' behaviour of a,Ct.) . This experiment. shows ~he need for t.aking model Cl) rat.her t.han (35). Finally we invest.iga~ed t.he performance of t.he cont.roller in rat.her d1!'ficult. condit.ions . Cont.rolled plan~ wit.h s~ep dist.urbances was modelled as Cl +s)C 1 +3s)C 1 +!5s)yC s)· =( 1 +1 . ls)e - i . 75"U(S) +d(s) (30) The reference signal (also s~ep) was equal ~o ~he d1s~urbance signal r(t.)-dCt.)-o . l for ~~ O. Resul~s of ~hat. simula~ion are shown in Fig. 4 . The mos~ in~el'_~ing was ~ha~
act.. z-')-(b Ct.)+b Ct.)z-'+b Ct.)z-z 0' z The cons~rai~ param&~eps es~imat.ion ensures ~hat. AC t.. z -~ is al ways st.able. The pol ynomi al in squar e br ack I~s _ ;. s designed t.o be st.able. so A Cz ) is st.able.Part. (ii) follows ,from ~he fact. t.hat. ~he cont.roller includes
C34.)
parame~ers
cont.roller
Theorem 2 The syst.em wit.h indirect. adap~ive con~roller CAlgorit.hm 1) applied ~o t.he plant. Cl) sat.isfying assumpt.at.ions CAl) .CA2.) is asympt.ot.ically convergent. in t.he sense ~hat. Ci) all signals remain bounded Cii) if lim rC~)=const. t.hen l-Q)
_~
75.
was select.ed . Fig . 1 shows t.he ou~put. and t.he I' et'erence Signal . The es~i_t.es st.ar~ing from 9(0)-(1.0.0.-1.0] converged t.o ~he ~rue values. Then ~he model of t.he plant. was changed t.o a have parasit.ic ~ime const.an~ as in t.he following
GmCz -i)
Now convergence of ~he can be est.ablished .
A
e-"
A
should be in~roduced ~o axoi;;1 a si~WI.~ion. when ~he ' es~ima~es bo.b,.b z do no~ sa~isfy assump~a~ion CA20. I~ is qui~e easy ~o do. so _ will no~ describe ~he de~ails. The only problem is ~ha~ ~he s~ar~ing vec~or of es~ima~es can no~ be one of t.he t'orm [a .a .O.O.O]T . But. t.his seems ~o be not , z ' very rest.rict.ive in pract.ice . Moreover. similar modificat.ions as presen~ed in 8elicz~ski and Lukianiuk. C1Q8e) can also be made t.o ext.end t.he class of cont.rolled plant.s of such wit.h int.egral act.ion .
~he
1
Cl +3s) C1 +!5s)
~he
es~imat.es
projec~ion
in~o
~he
assumed region Cp-O . Q) had been performed in every s~ep. wha~ had allowed ~he es~imat.es
~o
be
s~eaded .
CONCLUSI ONS In t.he paper we have present.ed ~he indirect. adap~ive PlO con~roller. I~ is based on direc~ plan~ poles cancela~ion and a design formula ensuring ~ha~ ~he closed-loop sat.isfies margin of phase and ampli~ude and t.rap condi~lons. I~ is shown how ~o choose ~he gain of ~he con~roller (Theorem 1) and how ~o solve ~he key nonlinear phase equat.lon . The convergence of ~he adap~ive con~roller ln ~he de~erm1nis~lc case 1s proved . As ..,. observed ~he proposed con~roll~ has some fea~ures of robus~nes. t.hanks lo (i) applied cont.rol law ;PIO s~ruc~ure and fulfiled condl~lons for asympt.o~ic reliable st.abill~y (11) chosen model s~ruc~ure ; equal degrees of pol ynomi al s 1n n UJDer a t.or and denominat.or (lii) or~hogonal proJect.lon of ~he es~imat.es ln~o ~he desired region ln paramet.ers space ~his allows ~o es~ablish convergence of t.he adapt.ive con~r 011 et' Acknowledgemen~si This work was suppor~ed by ~h. Inst.i~u~ of Sys~ell\S a.asearch. Polish Aca~y of Sciences (PAN IBS:> under CP8P 02 . 115/2. 1.7/87 .
B. Bartlomiej and L Andrzejz
232 References
~
G. , Bjorck A.(1974). Nymerical Methods. Pren~ince Hall . loannou P.A. , Koko~ovic P.V. (1983): A Reduced Order Nodel AdapUve Sys~ems. Lec~yre ~ 2D. Intormat.ion &DQ. Con~rol sciences . Springer Verlag. Gooc\win G.C, Sin K. S (1984): Adaptive Fll~ering Predic!,1on ADSl Con~rol. Pren~ince Hall, New Jersey. Banyasz C. , He~~hesy J . , Keviczlcy L. (1 Q8l5) . An AdapU Ye PlO Regul a ~or Dedica~ed For Microprocessor Based Compac~ Con~rollers . Preprint,. 2!:. nh IFAC/1FORS~· QD. Iden!,1fica!,.1on ~ ~ Parame~er Es~imat,.ion. Pergamon Press, York . Beliczyt\ski B, I:.ukianiuk A. (198e) : The Adap~ive PlO Regula~or wi~h Phase and Ampli~ude Margins . Preprin~ 2t ~ ~ QD. Microcompyt,.er Applicat,.ions ~ Aut,.omat,.ic Cont,.rol . Pergamon Press, Dalquis~
From
~he
~ha~
~here
[Xj'X
j
+, ]
cons~ruc~ion
a
ex1s~
J
f '
solu~ion
i~
in
follows range
~ha~
and also [x .,x . ]
V x. sign
way of
I
J+i
sign
r'(X)"cons~
and
These condi~ions are ob~a1n unique solu~ion
'CX)zcons~.
surficien~
~o
o No~e
which
~hat
solu~ion
....
Is~anbul
Song H. K., Shah S . L . , Fisher O. G. (1980). A Self-~uning Robus~ Con~roller. Au~omatica , vol . 23,no . 3 Kurman K. (1984.). Technical Universit.y of Warsaw. priva~e communica~ion
Fig
ir one holds of (37) .
~akes ~hen
(4.0)
1.Simula~ion con~inuous
~he
smalles~
ob~ains
~he
j ror
smalles~
~he second wit.h delay t.ime
resul~s :
plan~
APPENDIX To solve nonlinear equat.ion t/IC X) =<1>. ' where <1>._ (-n/2, n) (37) it. illl more convinient. ~o int.roduce func~ion feX) defined as follows f( X) - - t/IC X) e 38) :z
and sol Ye
~he equa~i
<1>.+
{'(X) ..
n/2
on
+ (k+l/2)x +
2Cl-y 2)~gCx/2) +arc~g
2 -0 (39) (1 +Y, +y 2) -(l-y, +y z)t.g Cx/2)
•.*.....,.-r--.,.......,.......,.......,.-,......,......,......,..--.,-r-.,.......,...-+
L..emma 1 .
. ...
If ,. e (-n/2,-n]
~hen
one solu~ion in more t.han ~hr.. .
~he
eq . (39) has range
[O,n] ,
a~
Sill\ula~ion
con~inuous
no
bu~
• . to
2 .57
I.))
Fig 2 .
leas~
resul~s :
~he
~hird
10 :
or-der
plan~
c
~ Func~ion fCX) is a con~inuos func~ion . Moreover, f(O)(O and f(n)~ 0 (s. . proper~y CP1)) and fCX) has no more ~han ~wo e~remas Csee (P2)). c Now define : - a se~ of frequencies for which f'(X)-O <~ > - a se~ of frequencies for which f"(X)-O Alaor1t.hm 2; Eval uat.e and <~ > usi ng for mu! as given in CP2-P3). TakinQ ~he ele..nt,s of ~he se~s ,<~ >, crea~e s~rictly increasing serie Xi' .. . 'X ' mSO. While
'
.1.7.~:-"-.,.....-r--:'r::-...,....-,.-.,.........,...-r--...,....-,.-.,.........,..._r---+ ' .•0
d
c:ompu~ing
fCx,)
for
every x, find such
Xj
~ha~
t"Cx.)t"Cx . J
Then
J
~he
apply
+,
)$
. <0..1 quis~, 1 Gr74) (37) in
~he
~o t"ind ~he range [x ., x . l.
Thegr.m 3; The i~era.~ive
(~)
O.
seca.n~-~angen~
J
_~hod
sol uU on
ot"
J+i
process ~he of method used to solve ] eq. (3Q) in ~he range [Xj'Xj+, converges ~o ~he unique solu~ion of eq.(37) in ~ha.~ range . o ta.ngent-secan~
I."
t .C7
Fig ~. Si mul at.i on resul~lII : continuous plan~
t.S7
• . to
10 t
~h. ~hird order