Vol.
20,
No.
AND BlOf’HYSlCAL
BIOCHEMICAL
4, 1965
BASIC TRYPSININHIBITOROFBOVINEPANCREAS V. THE DISLILFIDELINKAGES* Beatrice Kaeeell and H. Laekoreki, Sr.+
THE
Leboratory for Cancer School of Medicine, Milwaukee,
Biochemicel
ReceivedJuly2, Recently penczuatic
ua
Chuvet
present
experiments
ture of
the
presented
the
inhibitor et
al.
University
Marquette
Uieconein 53233
which loaete protein. 3
4
5
sequenceof
linear
(Keeee~l nd
acida
meino
in
the
Laekowki, 1964; Kaeeell
basic et
al.,
a slightly different l equenca. original maulte (Fig. 1) end eumazizee
(1964)
confirm
p-8’:
12
Reeearch,
1965
trypein
1965). The
RESEARCH COMMUNlCAllONS
published our
tha
5-5
6
linkages
7
8
to
9
coaplate
lo
the
priory
etruc-
11 12 13 14 15 16
ARG-PRO-ASP-PHE-CYS-LEU-GKl-PRO-PRO-TYR-Tt#?-GLY-PRO-CYS-LYS-ALA17 16 19 20 21 22 23 24 25 ARt-ILEU-ILEU-ARG-TYR4IEE-TYR-~-A~-LYS~~~LY-~U~Y~~-T~-
26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 PHE-VAL-TYR-GLY-GLY-CYS-ARG-ALA-LYS-AR6-A!jN-ASN-PHE-LY!%!XR-ALA-
49 50 51 52 53 54 55 56 57 58 GLU-ASP-CYS-MET-ARS-THR-CYS-GLY-GLY-ALA
Figure
Linear
1.
Becauseof conditions (Ryle
the
of
Sequence
the
Pancreatic
Trypein
l enaitivity
and
of S-S linkegea to axchmge Senger, 1955; Ryle rt. 1955; Speck-
Inhibitor
under et
alkalino ml. 1960)
end the undesirability of using *my enzyme containing -SH groupe, we were unable to digeet the native inhibitor. It is raeietant to ell the comon (Kaeeell end Laekweki, 1956, 1965). Two methods were used obtain S-S peptideet enzymic digaetion of the euccinyleted inhibitor l cid hydrolysis. Methods of l nalyeie were derribed previously.
enzyme
: ated
by
the
procadwam
This work from tha Nationel Science l
AM 00535 +
Amarican
of
Hebeab
The
Society
and
inhibitor (BB micraolee) wae euccinyl(1956) at pH 8.0. The pzoduct use
=Q&.
wee supported by Public Health National Inetitutae of Health Foundetion. Center
to
Research
463
Professor.
Sazvice end Crant
Reeaerch G-7501
tint
from
the
Vol. 20, No. 4,1965
BIOCHEMICAL
AND BIOPHYSICAL RESEARCH COMMUNlCATlONS
TABLE
I
Ratioa of Amino Acida in 2 Paira of Oxidized Peptidaa Tram the Enzymic Diguata ot the Succinyl Inhibitor (Impuritiaa era shown in parentheses)
Molar
-
?
.r 2
A
B
Alanina
(0.11)
1.00
Aapartic Acid Cyataic Acid
mot) 1.00 1.04 (0.11)
1.02 1.06 1.12
tlutamic
Acid
Glycine Laucine Lyaina
(O.OT) (0.02)
(0.05) (0.01) 0.90
hthionina Sultana Phanylalanine Serina
(0.04)
0.93
Ol.32)
(0.02)
(0.04)
Thraonina Valina
0.89
0.84 (0.12)
B 0.94
(0.04)
(0.21) 1.20
1.00 1.07 (0.19) (0.09)
1.24 1.00 0.91 0.73
(0.03) 0.92
0.57
(0.07)
(0.19) 1.05
(0.06)
(0.15) --
(0.21)
I 9 8 71 6a 5 4
100 200 300 400 530 600 TUBE
NUMBER
TUBE
NUMBER
Fig. 3 digest of the auccinyl Figure 2. Chromatographyof the peptic-tayptic inhibitor on phoaphocelluloaa. Column2.5 x 24 CII. fractiona 8.5 ml. Rate 60 ml./hr. Starting b&tar 0.02 H Pnanium ecetete, pH 3.95. (i-radiant started at once* Elution curve. - - - - pH. Arreua above peaks indicate positive teat for S-S. Figure 3. Chromatographyof tha partial acid hydrolyaate on phomphocelluloaa. Colum 1.9 x 45 cm. Fractions 4 ml. Rata 35 rl/hr. Starting buffer, 0.02 H amaenium acetate, pH 3.85. Gradient started et arrow on baaaline,. Elution curve. - - - - ptl. Arrows above pa&a indicate positive teat for S-S. Fig.
2
464
BIOCH~ICAL
Vol. 20, No. 4, 1965
It
inactive. at pH 1.5 et pH 3.5
vae
et
a concentration
of
10 mg/ml
with
and
chronatographed on phosphocalluloas (Fig. 2). were those used by Canfiald end Anfinsen (1963).
pH 3.4
and
buffers
individuel
The
diagonal
paper
(1963).
Two
both
derived
They
8ccounted
0.0s
pepain
and then digested with trypain SP for 40 hours, lyophilized, 370 for 96 hour8 (inhibitor concentration 17 mg/ml, tryp8in to 115 ml, adjusted to 0.15 mg/mlI. The digest was diluted
and
concentration
Their
dig8eted
AND BIOPHYSICAL RESEARCH COMMUNICATIONS
which conteinad cyetina and oxidation method
peak8
8lBCtrOphOr8t3is
pairs
of peptides, the last part
from
togethar
on
derived
&ructurss
a
from
both
of
containing
th8
for 1.7$ in Teble
smaly~es
procedure
subjected
of
Brawn
same
break-through
the
molar basis the
w8re
The
to md
S-!?
and
the
Hartley
linkage,
and
peak, were identified. of
the
protein
digastcd.
I wre:
30 C:5-GLN-THR
IA I.!3
LYESER-ALA-GUI-ASP-CYS-MET 51
30 LYS-AU-GLY-LEU-CiS-W-THR4nE
2A
ASP-CY!sET
28
51 The
other
peaks
contained
very
which was obtained feirly ing the othar 2 %g linkagea,
0n8
51,
confirmsd
linkage
the
large psptidas pure
yielded
and
which,
satablishsd
with
more
than
one
S-S
on oxidation three piecea containby the absence of cyatinee 30 Md
above.
5 14 CYS03H-LElJ-GLU-l+0-F’RO-TYR-TtWLY-PRO-CYSO3H-LYS-ALA-ARG-ILUJ 38 VAL-TYR-GLY-GLY-CYSO3H-ARC-ALA-LYS-AREASN-ASN 55 AR&THR-CYS03H-GLY-GLY-ALA
ski, with
partial
Partial acid hvdrolvqt 1964) on digestion of 0.03 H MC1 under the
Our previous the
N-terminal
conditions
linkage.
3A 3B 3c
crxperimmta
(K8~~aell and
pentadecapaptide of
Schultz
et
al.
of (1962)
th8
Laakov-
inhibitor
showed
that
cy8tint 5 and cy8tina 14. 'ye therefOr0 usad the some&at more drutic conditions of McDowell and Smith (1965): q icnmmlas of inhibitor, cont. 5 mg/ti, 0.03 M MC1aaturatad with N2 end containing 1.1 x lOA t4 thioglycolic acid, logo, 46 hours, Dealed evacuated tubea
8plitting
The
(Fig. 3). reason&ly
occurred
digsmt From pur8,
uaa
between
lyophilired
and
chromatographed
on pho8phocslluloes
fine1 peak, which umm elutad betwaen pH vary basic peptide wee ieolated in a yield,
the
465
6 and ~a a
a molar
6.5,
50
BIOCHEMICAL
Vol. 20, No. 4,1965
AND B0PHYSlCAL
RESEARCH COMMUNICATIONS
TABLE II
Molar
Ratio Hydrolysat~
of
Asia0
Acide
of en 5-S Paptide from the Pieces Sspustsd sftsr Oxidation are shown in psrsnthseer)
Acid
and ot It8 (Impurities S-S
Oxidized
Psptids
piace
Oxidixed
4A
piece
Alanins
2.57
1.15
Arginina
3.90
2.02
2.33
(0.291
(0.08)
(0.11)
Aspartic
Acid
4B
0.88
1.78
Cyrtin8
Cyatmic
1.00
Acid
6lutamic
Acid
Glycin8
(0.37) 2.00
(0.05 1 0.85
l.Of
1.01
Iaolwcinm Leucins
(0.39)
Lysine
2.17 (0.17)
Mathionina Me%hionine
1.00 0.88
(0.03)
1.06
1.21
SW
Sulfom
0.80
1.19 1.21
Phenylalsnine
Proline Thrsonine
1.03
(0.87)+, 1.39
Tyrosim V8lin8
1.01"8 (0.M)
(0.41)
* Attar 24
(0.08)
(0.38)
--
hydrolyaia, the usual value for tha 2 ioolwcina (#la end 19) ia 1.0-1.3. The threonine appeared as 8 whole ro@lue here, but not in the Yhilo,it sight be mhl~~s #ll, it ia mre likely to pieces. For 2 r88idu88 in the psptids prsaant M irpurity. Plus somaoxidized tyrosine.
rsoidues
of
* repsrated recount
-* basis,
of
l tructum
this
hours protein
Analymia (Table II)
12$ of tha starting 88tsrial.
indicatad the
1 4A
6LY-PRO-CYS-LYS-ALA-AR&ILW-ILEU-AR6-NR-PHE-NR
4B
GLY:MiZUYS-AR.
38 The
peptide
ths
pieces
warn oxidized
tha
expoctad aaino
sspsrstsd
with by
r&d
porforaic
acid
according
ela8tropborsaia.
pqer colpositim
(Tsbls
The
II).
to
Fo-ly,
alkalinm conditima during elutio~ could nctth8vaewaad bwsuso
this The
was
ths
only
linkage8 split
psptide by
0.03
remaining
on the
Hirs
individual
(1956)
md
pin88
h8d
oxpow
S-5
intorehangs
COW.
t4 HCl to fom this psptida won of tba
466
to
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Vol. 20, No. 4,1965
type
(1950) and
and
10~.
ARG-ASN The
of
fra
expected
the
structure,
cit.):
TM-SLY
of
thin
(U-12),
(Partridge and Davis
m&hod
TYR-ASN
(23-241,
GLY-GLY
S-S
linkage ie therefore 5-55 and the
cmrplate
location of the S-S linkages indicates which
is
in
l gramnt
a
compact, interlocked
the properties
with
of
21, reversed GIA-31 end TM-32 and tentatively miaplacad tailsd degradation of the tryptic paptida, 40-42, wee
this
protein,
ARG-42 3 amil
already
(Kaeeell and Laekmaki, 1964). Our aequancause confirmed paptidea 33 and 48 above. Table XII shove the abtrrtiva
blar cM-cys
by
Degradation
Ratio
of
of
Peptide
30-33
Amino Acida Remeining !;
GLU
THR
PHE
NH3 1.02
Free
1.00
0.0s
0.97
0.92
1.ao
-
-
0.13 s-
0.92
1.00 1.00
-
6d -
acid
by
0.16 ftea
the iaoletion dagsada-
Aeino Acid from PTH
0.92
+ 4e recovery as . . . .
De-
(US-GLN-THR-PHE)
a.93
3
groups.
Edmn
o.t4
2
capouncl
Edmen
poaition
III
TABLt
Subtractive
in
praaantad
of
0 1
structure
is;
especially its great raaiatanca to enzymic digestion. saou%nc6confixnationr Chauvet at. (1964) placed
SW
(3637)
(42-43).
rsndning
inhibitor
The
l tudiaa
pruvim~a
glutmic
extzactad.
467
B-s
acid
bdrolyaia
of
the
PTH
Vol. 20, No. 4, 1965
BIOCHEMICAL AND BlOPHYSlCAL RESEARCH COMMJNfCATK)NS
tion of tha chymotryptic paptide, X3-33, the tryptic peptide 18-20, the molar ratio 0.89
to
1.W
a&ter
24 houra
hydrolyaia
and
to
confirm of 1.55
our
ieolaucine to
1.00
31-32 to after
sequence.
was
arginine 72
In
houra
hydrclyaia. Thia indicetaa only 1 arginine in this position pracsded 2 isolaucinaa. Analyaia of the overlapping peptides previously ahoun
by
(Kaasell et al. 1965) for aamvmiagave at lasst 2 and aa manyas 7 separate end unaquivocel determinations of the presence or absence of aide groups for awry aapartic or glutamic acid in the hydrolysates.
REFERENCES Brown, Canfisld, Chauvst,
J.
R. and Hartley, B. S., A. E. and Anfinaan, C. J., Nouvel. t. end &her, (1964). H. Habsab, A. F. S. A., Casaidy,
Biochem. B., J. R.,
J., E (1) 59P (1963). Biol. Chew, 238, 2684 (1963). Biochim. Biophya. Acta 9& 200
6. and Singar, S. J., Biochim. Biophya. Actajj,& 587 (1958). Hbs, C. H. W., J. Biol. them., 219, 611 (1956). Kaaaall, 8. and Laakowaki, PI., Sr., Eiocham. Biophya. Reaaarch Coasnun., & 255 (1965). Kaaaell, B. and Laskouaki, R., J. Mol. Cham., a, 203 (1956). Kaaasll, E. and Laakcuaki, H., Sr., Biochem. Biophya. Raaaarch Conwn., 11,
792
(1964).
Kaaaall, B. and Laskowaki, McDcnaJl, M. A. nd Smith,
H., Sr., Fsd. Pro&&, 593 (1965). E. L., J. Biol. Chem., 240, 281 (1965). S. H. and Dsvia, H. F., Nature &, 62 (1950). P., end Sanger, F., Biccham. J., &, 535 (1955). P., Sangar, F., Smith, L. F. end Kitei, R., Biochaan. J., &,
Partridge,
Ryle, A. Ryle, A. (1955). Schultz, J., Allison, Speckman,
D.
H.,
Stsin,
H.
and H.
U.
Grice, H., Biochemistry and Meore, S., J. Biol.
(1960).
468
A, 694 &am.,
(1962).
235, 648
541