G.M. de La Penha, L.A. Medeiros (eds.) Contemporary Developments i n Continuum Mechanics and P a r t i a l D i f f e r e n t i a l Equations @North-Holland Publishing Company (1978)
THE CAUCHY PROBLEM FOR THE COUPLED
SCHROEDINGE R-KLE IN- GORDON E QUATI0N S
and
J.B. Baillon
John M .
Department of Mathematics
Dept. de Math6matiques &ole
Chadam*f
Pontificia Universidade
Polytechnique
Cat6lica do Rio de Janeiro Paris, France
Rio de Janeiro, Brasil
Introduction. The classical versions of the non-linear equations o f relativistic quantum physics have for a long time been a subject of great interest.
One o f the major unsolved problems
in the area has been the global existence o f the solution t h e Cauchy problem in
R3
to
o f certain important equations
-
having quadratic non-linearities
the coupled Dirac-Klein-
Gordon equations,
P (-iY au + ~ ) =t g $ @ ,
-
( A - a tt
2
m ) @=
6t1
and the coupled Maxwell-Dirac (-i?
)r
+
a,,
+
O n leave from Mathematics Department, Indiana University, Bloomington, Indiana 47401.
Supported in part by NSF grant MPS 73-08567
J.B. BAILLON and J.M. CHADAM
38
Here we consider the Cauchy problem for the closely related coupled Schoredinger-Klein-Gordon ( S K G ) equations which are a semi-relativistic version o f equations (1):
with nucleon field
8 : R 3X R
-b
C
and meson field
@:
R'xR
4
R
I n previous works the Cauchy problem has been solved for equations (1) and (2) i n one space dimension [l] and for special cases in higher dimensions [2,31.
Equations ( 3 ) have
recently been treated i n bounded regions of
R3[
4,5]
.
The Results. We begin by writing equations ( 3 ) i n vector form,
from
R
JI
(g
) are considered as maps t to complex and R2-valued functions respectively. The
where the components
and
conventional solution spaces in which one wishes to solve equations
(4) for the components
"escalated energy" spaces
C m = Hm
( $ y(:t)) @
(HmCBHm'')
are the so-called [l].
Indeed,
following the example of quantum mechanics, it is really the exponentiated o r , in the non-linear case, the integrated form of equation
(k),
-
SC HR O E D IN GE R K LE IPJ - GO R D 0N E QUA T I0 N S
which a r e of
interest.
S(t) = e
Here
i A t
and
a r e t h e f r e e S c h r o e d i n g e r and Klein-Gordon respectively. of
(+ ,(:
Specifically then,
t h e SKG e q u a t i o n s o v e r t h e i n t e r v a l
($,(:
t
)):
(0,T)
4
Cm
i s continuous
t
39
propagators
))
is a
(0,T)
Cm solution
i f t h e map
and s a t i s f i e s e q u a t i o n s
( 5 ) where t h e i n t e g r a l i s i n t e r p r e t e d i n t h e s t r o n g Riemann
zm.
sense i n
-
Theorem
solution i n Proof:
zm
if
problem.
of
+
S ( t ) : tim
a r e continuous, uniformly
( a , (m 0 12 ) )
rn 2 2 .
-+
boundedness,
[ 6 1 c a n be a p p l i e d t o this
and
-+
K( t ):
bounded o n e - p a r a m e t e r
, ( O
IJI
I
2)): Zm + Cm
H
~
~
g r o u p s and
i s l o c a l l y Lipschitz
t h i s f o l l o w s from t h e l o c a l
o f t h e map v i a some t r i v i a l a l g e b r a .
The l o c a l
on t h e o t h e r h a n d , f o l l o w s f r o m t h e f a c t t h a t
i s an a l g e b r a i f
dimension
(@,$
H~
One c a n s h o w t h a t
boundedness
Hm
Segal
The l o c a l e x i s t e n c e f o l l o w s i n t h i s way b e c a u s e t h e
f r e e propagators
if
m)
2.
m 2
The a b s t r a c t r e s u l t
t h e map
T =
The SKG e q u a t i o n s h a v e a u n i q u e g l o b a l ( i . e .
m > d/2
where
d
i s the s p a t i a l
"71.
The main c o n t r i b u t i o n o f t h i s n o t e i s t o show t h a t this s o l u t i o n can b e e x t e n d e d t o
T =
p r e v i o u s l y mentioned r e s u l t
of
+m.
This o b t a i n s f r o m t h e
Segal i f t h e
Zm
-
norm of
s o l u t i o n c a n be s h o w n t o be f i n i t e f o r e a c h f i n i t e t i m e .
the We
H
~
-
J.B.
40
B A I L L O N and J . M .
CHADAM
b e g i n with t h e p h y s i c a l l y r e l e v a n t conserved q u a n t i t i e s o f c h a r g e and e n e r g y and t h e n s y s t e m a t i c a l l y b o o t - s t r a p o u r way
t o the xm-norm.
Specifically
[4,
p.4031
one h a s
3x = c o n s t a n t . I $ ( x , t ) 1 2 @ -b( x , t ) d 4
F r o m t h i s one h a s
t h e second l i n e f o l l o w i n g f r o m H s l d e r ' s
i n e q u a l i t y and t h e
l a s t l i n e from S o b o l e v i n e q u a l i t i e s and t h e f a c t t h a t li$(t)ii 2 i s conserved.
Now
Combining t h e above t w o e s t i m a t e s , one o b t a i n s
Adding e q u a t i o n ( 6 a ) t o i n e q u a l i t y
(7),
one o b t a i n s on t h e
l e f t h a n d s i d e t h e s q u a r e o f a norm which i s e q u i v a l e n t t o t h e
Cl-norm
t h u s p r o v i n g i t i s u n i f o r m l y bounded i n s p i t e o f
non-definiteness
of
t h e i n t e r a c t i o n energy.
the
SCHROEDINGER-K LE I N - GORDON EQUATIONS
and m o s t c r u c i a l ,
The n e x t ,
Proof:
s t e p i s t o show
Here we f o l l o w c l o s e l y t h e t e c h n i q u e of B a i l l o n e t .
C 8 , 9 I by showing t h a t
a1
~ ~ $ ( t ) ~i s~ fl i,n4i t e and t h e n u s i n g
111
t h e Sobolev i n e q u a l i t y
( t ) l l mS
( t ) l ( z / 4 119 (t)ll
C11 vp
to
To b e g i n
establish the desired result.
A l l t h a t r e m a i n s t h e n i s t o e s t a b l i s h t h e f i n i t e n e s s of
IlVh(t)114.
Let
D
d e n o t e a n a r b i t r a r y weak s p a t i a l d e r i v a t i v e .
D i f f e r e n t i a t i n g e q u a t i o n ( 5 a ) , u s i n g t h e L e i b n i t z f o r m u l a and t a k i n g norms
D
since
one o b t a i n s
commutes w i t h
S(t).
U s i n g t h e well-known
e s t i m a t e f o r t h e Schroedinger p r o p a g a t o r [lo, IlS(t)fIlp s
for a l l
f
E Lq(Rd)
where
decay
p.601
1 1 -d(-- -) C't
+
l/p
l/q
= 1
and
1
2;
q S
2,
one o b t a i n s f r o m i n e q u a l i t y ( 8 )
rt IIS(t)$0112,2 +
IID$(t)l14 s
t s
co
+
lglc
S
Co
+
Igl
c
Igl C i ,
( t - s ) - 3 / 4 I I D 0 ' ~ + @ D $ l l ~ / 3d s
c
(t-s)-3/4 c I I D 0 ~ s ~ l 1 2 1 1 ~ ~ s ~ l 1 4 + l l s ~ s ~ l l , I l ~ d s~ ~ s ~ l l , 1 C{C,
(t-s)-3/4 ds
+
C2
( t - ~ ) - ' / I~I D + ( S ) ( ~d~s ] .
The r e s u l t n o w f o l l o w s f r o m a v e r s i o n o f G r o n w a l l ' s sketched i n reference Lemma
3
-
[91.
The C2-norm of
f i n i t e f o r each
t <
lemma as
m.
the solution
($(t),(st(t)
42
J.B.
Proof:
But,
B A I L L O N and J . M .
CHADAM
From e q u a t i o n ( 5 b ) one h a s
o f Lemma 2 ,
f r o m t h e proof
one h a s t h a t
/IIII(S)//~,~ is
a
l o c a l l y i n t e g r a b l e f u n c t i o n g i v i n g t h e f i n i t e n e s s o f t h e meson p a r t of
t h e norm.
The r e s u l t now f o l l o w s from t h e s t a n d a r d v e r s i o n o f Gronwall’s lemma b e c a u s e e v e r y t h i n g e x c e p t
/ID2$
(.)I\
has previously
b e e n shown t o b e l o c a l l y i n t e g r a b l e .
To t h i s p o i n t we h a v e shown t h e e x i s t e n c e of a u n i q u e g l o b a l s o l u t i o n t o t h e Cauchy problem f o r t h e S K G e q u a t i o n i n t h e space
Z2.
A l l t h a t remains i s t o prove t h e r e g u l a r i t y
p a r t of t h e r e s u l t .
-
Lemma
4
than
2,
have
114 ( t ) l l m , 2 11@(t)11m,2 and
Suppose
m
i s an a r b i t r a r y p o s i t i v e i n t e g e r l a r g e r
t h e n t h e a b o v e , g l o b a l s o l u t i o n of e q u a t i o n s
II@,(t)ll
m-l,2
locally
(5))
-
47
S C H R O E D I N G E R - K LE I N GORDON E Q U A T I O N S
f o l l o w s f r o m L e m m a 3 by g i v i n g t h e i n d u c t i v e
Proof:
The p r o o f
step.
Suppose then that
some
But
m 2
H
3,
m- 1
the r e s u l t
is known in
Then
m 2
for
the left-hand
~
m- 1
for
i
3
i s an algebra g i v i n g t h e f i n i t e n e s s of
side f r o m the inductive hypothesis.
and t h e r e s u l t f o l l o w s
from Gronwall's
Similarly
l e m m a b e c a u s e of t h e
11 a ( s)II m , 2 .
l o c a l i n t e g r a b i l i t y of
References
[l] C h a d a m , J . M .
-
G l o b a l Solutions of
the ( C l a s s i c a l )
Coupled Maxwell-Dirac
Space D i m e n s i o n ,
[2]
Chadam,
J.M.
J. Functional A n a l . ,
and G l a s s e y ,
Solutions of
-
R.T.
Equations
3,1 7 3
in One
(1973).
On C e r t a i n G l o b a l
the C a u c h y P r o b l e m for the ( C l a s s i c a l ) E q u a t i o n s i n O n e and T h r e e
Coupled Klein-Gordon-Dirac Space D i m e n s i o n s ,
[ 3 ] C h a d a m , J.M.
the C a u c h y P r o b l e m f o r
Arch.
and G l a s s e y ,
Rat. R.T.
Mech.
-
Anal.,
54
(1974).
O n the M a x w e l l - D i r a c
E q u a t i o n s w i t h Z e r o M a g n e t i c F i e l d and T h e i r S o l u t i o n
i n T w o Space D i m e n s i o n s ,
53,
495 ( 1 9 7 6 ) .
J. M a t h .
Anal.
and A p p l i c .
44
C 41
J.B. BAILLON and J.M. Fukuda, I. and Tsutsumi, M.
-
CHADAM
On the Yukawa-Coupled
Klein-Gordon-Schroedinger Equations i n Three Space
Dimensions, Proc. Japan Acad., 5 1 ,
C 51
Fukuda, I. and Tsutsumi, M.
-
Schr8dinger Equations, 11,
C 61
Segal, I . E .
-
402, (1975).
O n Coupled Klein-Gordonto appear.
Non-linear Semi-groups, Ann. Math. 7 7 ,
339 (1963).
C 73
Grisvard P,
-
Contribution i n Proceedings o f Evolution
Equation Seminar, Nice, France
1974-5.
[ 81 Baillon, J.B., Cazenave, T. and Figueira, M.
-
Equation
de Schr8dinger Non-lingaire I, t o appear C.R. Acad. Sci
[ 91
.
Baillon, J.B., Cazenave, T. and Figueira, M.
-
Equations
de Schradinger Non-lin&aire, 11, to appear CR. Acad. Sci. [lo] Reed, M. and Simon, B.
-
Methods o f Modern Mathematical
Physics 11, Academic Press,
1975.