The Computer Aided Design of Multivariable Non Linear Control Systems using Frequency Domain Techniques

The Computer Aided Design of Multivariable Non Linear Control Systems using Frequency Domain Techniques

THE COMPUTER AIDED DESIGN OF MULTIVARIABLE NON LINEAR CONTROL SYSTEMS USING FREQUENCY DOMAIN TECHNIQUES GRAY, J . O . and TAYLOR, P.M. ABSTRACT A ...

1MB Sizes 1 Downloads 123 Views

THE COMPUTER AIDED DESIGN OF MULTIVARIABLE NON LINEAR CONTROL SYSTEMS USING FREQUENCY DOMAIN TECHNIQUES

GRAY, J . O .

and TAYLOR, P.M.

ABSTRACT

A conputer program has been developed based on s i n u s o i d a l i n p u t d e s c r i b i n g f u n c t i o n techniques f o r t h e p r e d i c t i o n o f l i m i t c y c l e s i n m u l t i v a r i a b l e non l i n e a r feedback systems. I n t e r a c t i v e d i s p l a y s a r e produced i n t h e conplex frequency domain as an a i d t o conpensator design and t h e method is a p p l i e d t o t h e design o f a c o n t r o l l e r f o r an i n d u s t r i a l a i r conpressor system. 1.

INTRODUCTION

A f e a t u r e o f many p r a c t i c a l process c o n t r o l s y s t e m i s a multi-input multi-output i n t e r a c t i v e s t r u c t u r e with one o r more gross non l i n e a r i t i e s and a p r i mary design t a s k i n such c i r c u n s t a n c e s i s t o ensure t h e avoidance o f l i m i t c y c l i n g c o n d i t i o n s . This p a p e r o u t l i n e s how such a system may be investigated using a sinusoidal input describing function philosophy and a computer program has been developed t o p r e d i c t t h e magnitude and freqaency of p o s s i b l e limit c y c l e modes and t o a i d i n t h e t h e design o f s u i t a b l e conpensation t c ensure avoidance o f c r i t i c a l r e g i o n s i n t h e complex frequency domain. T h i s program r e p r e s e n t s an e x t e n s i o n o f a p r e v i o u s l y developed design s u i t e f o r s i n g l e i n p u t s i n g l e o u t p u t non l i n e a r feedback s y s t e m ( 7 ) and can provide t h e c o n t r o l e n g i n e e r wi?h a powerful i n t e r a c t i v e d e s i p s u i t e which is capable o f d e a l i n g with a wide range of non l i n e a r f u n c t i o n s where t h e hypothesis of harmonic l i n e a r i s a t i o n can be assumed v a l i d . The b e h a v i o w o f a l a r g e conpressor f o r s u p p l y i n g a i r t o a chemical p l a n t i s s t u d i e d and a conpensator designed t o achieve c l o s e d loop s t a b i l i t y and s p e c i f i e d performance. 2.

LIMIT CYCLE PREDICTION I N MULTIVARIABLE SYSTLE1S

S i n u s o i d a l d e s c r i b i n g f u n c t i o n techniques have been used widely i n t h e s t u d y of l i m i t c y c l e behaviour i n non l i n e a r , s i n g l e loop feedback s y s t e m where t h e a p p l i c a t i o n o f conplex frequency domain ana: ys i s has represer-ted an i n t u i t i v e extension c f l i n e a r s y s t e m t h e o r y . The l i m i t a t i o n s of t h e cpproach are, o f c o u r s e , w e l l documented(1) and, a l though t h e r e c e n t emergence o f an algorithm due t o Mees(2) has done much t o enhance the v a l i r ? i t y cf t h e method, t h e assunption o f , e s s e n t i a l l y , l o ? p a s s l i n e a r system elements s t i l l remains &r i m p o r t a n t p r e r e q u i s i t e i n any s t u d y i n v o l v i n g t h e use of t h e d e s c r i b i n g f m c t i o n philosophy. Recent

i n t e r e s t h a s been shown i n t h e a p p l i c a t i o n o f s i n u s o i d a l d e s c r i b i n g f u n c t i o n methods t o m u l t i v a r i a b l e non l i n e a r feedback systems where again advantage can be taken o f i n t u i t i v e e x t e n s i o n s t o a l r e a d y developed l i n e a r s y s t e m t h e o r y . Such an e x t e n s i o n i n v o l v i n g t h e i n v e r s e Nyquist a r r a y was proposed by Rosenbrock i n 1969(3) and l a t e r i n a more d e f i n i t i v e form by Mees(4). More r e c e n t l y Ramani( 5) has proposed g r a p h i c a l methods i n v o l v i n g eigenvalue l o c i o f t h e l i n e a r system elements i n t h e s t u d y of l i m i t c y c l e o p e r a t i o n . Although t h e a p p l i c a t i o n o f t h e i n v e r s e Nyquist a r r a y does p r o v i d e a quick, systema t i c method of compensation design i n t h e complex frequency domain f o r t h e a v o i d a n ~ eof a l l regions of p o s s i b l e t h e o r e t i c a l l i m i t c y c l e b e h a v i o w , i t can be shown i n p r a c t i c e t h a t t h e method is q u i t e p e s s i m i s t i c i n its a c t u a l p r e d i c t i o n of l i m i t c y c l e s ( 6 ) . The o b j e c t o f t h i s paper is t o o u t l i n e a method f o r t h e p r e d i c t i o n o f limit c y c l e operat i o n which i s l e s s conservative than t h a t based on the i n v e r s e Nyquist a r r a y approach b u t which s t i l l maintains t h e c m c e p t u a l l y powerful Nyquist d i s p l a y s t o a i d i n compensator design. In u s i n g t h e i n v e r s e Nyquist a r r a y t h e p o s s i b i l i t y of t h e o r e t i c a l limit cycle o p e r a t i o n i n an i n t e r a c t i v e non- l i n e a r diagonally dominant mulcivariable system can be s t u d i e d g r a p h i c a l l y b ; considering t h e behaviour o f l o c i a s s o c i a t e d w i t h t h e diagonal l i n e a r and non l i n e a r elements of t h e system. Each locus has an envelope defined by a s e r i e s of d i s c s c e n t r e d on t h e locus whose r a d i i a r e r e l a t e d t o t h e magnitudes o f corresponding o f f diagonal elements. P o s s i b l e s o l u t i o n s t o t h e s i n p l f h a r ~ o n i cbalance equations can e x i s t i n any regior. of t h e corrplex plane where t h e envelopes of r e l a t e d l i n e a r and non l i n e a r l o c i i n t e r s e c t . Althcyigh :r!e applicat i o n o f s c a l i n g :echriques can be used with advanta g e ( 8 ) ( 6 ) t > a a j u s t t h e envelspt dirrer.sions of i n d i v i d ~ a ll o c i , i t i s though- ti-.: rethod o f system compensation b c e d on r7.e ,:..cl".a;.ca c f envelope o v e r l a p must t e n d t o he cori;-?i.-.t;.:t. Provide.? t h a t a s y s t e m a t i c metlir;i. c : c c . t~= t i o n is employed it i s , however, not r j ; t f i c u l t 'r c a l c u l a t i a t any freq,uency a l l p o s s i b i e s s i . ~ : l m s t t h e simple s t e a d y s t a t e harr.or.ic t;?-an;* rr.atrl. e q ~ i t i o n over the range of physica-ly e l l c i a b i e s i g n s magnitudes a: d freq-encies an< t c ;r,-~l;;ee i:. t h e complex frecuency dcmair. ir:di v i ?ual s c i u: ior. v e c t o r s which r e p r e s e n t t h e con:ribc?ic:. 3f kc::. diagonal and o f f diagcnal systerr e:emer.tz.

.

Theoretical l i m i t cycle operation can then be determined by a study of these individual s o l u t i o n vectors i n t h e v i c i n i t y of t h e (-1, jO) point. AS t h e magnitude and phase o f each p o s s i b l e s o l u t i o n vector is knm.,the a r e a o f uncertainty introduced i n the inverse Nyquist a r r a y approach by t h e a r t i f i c e o f the Gershgorin envelope is removed and a less conservative r e s u l t ensured. Such an approach is, a f course, only v i a b l e i f t h e computational e f f o r t can be constrained within reasonable born&. In t h e method adopted here t h e steady s t a t e harmoni c balance equations o f all loops a r e considered i n d i v i d u a l l y i n a s e q u e n t i a l manner such t h a t t h e number o f s o l u t i o n s e t s t o t h e o v e r a l l system harmonic balance equation diminishes r a p i d l y as t h e conputation proceeds. For convenience, the s o l u t i o n vectors of each loop can be displayed graphically as a Nyquist a r r a y i n t h e conplex frequency domain. 3.

THE PREDICTION OF LIMIT CYCLES USING A SEQUENTIAL COMPUTATIONAL- PROCEDURE

?he method is a p p l i c a b l e t o t h e system configurat i o n s shown i n Figure 1when t h e following condit i o n s a r e met: (a)

all l i n e a r elements a c t , e s s e n t i a l l y , as low pass f i l t e r s t o j u s t i f y t h e a p p l i c a t i o n o f t h e describing function philosophy;

(b)

i f a l i m i t cycle is present all loops w i l l o s c i l l a t e a t t h e same frequency. In general t h i s is a reasonable assunption p a r t i c u l a r l y i f the non l i n e a r elements a n s i m i l a r i n form a d i f the dominant l i n e a r elements have approximately t h e same frequency c h a r a c t e r i s t i c s ( 5 1.

'Ihe equations governing l i m i t cycle "peration i n a multivariable non l i n e a r system can be expressed as follows

where T is the non l i n e a r r e t u r n r a t i o system matrix with elements t i . ( a j , j w ) and I is a colunm vector o f sinusoids a t $he i n p u t t o t h e non l i n e a r e l e m n t s such t h a t a i = A i / B i . The method c o n s i s t s o f findi n g all p o s s i b l e G l u t i o n s t o equation s e t ( 1 ) over physically allowable ranges of s i g n a l magnitudes m d frequencies. I f we consider f i r s t t h e case o f Limit cycle operation where

w f can, f o r t h e range of p h y s i c a l l y allowable, d i s c r e t e values of the reference s i n u s o i d a 1 = A1 and a t a s p e c i f i c -raiue o f f r e q u e n c y n , determine those f i n i t e p s e t s o f sinusoids ( a l k , a 2 ); k = 1,2,. ,p which w i l l s a t i s f y t h e con8ition &or l i m i t cycle operation i n t h e n t h loop as given by t h e equation

..

I f we now examine t h e equation governing l i m i t cycle operation i n t h e (n-11th loop which is given by

where again al

=

A1,

We can t r y f o r s a t i s f a c t i o n o f t h i s equation using only those f i n i t e p s o l u t i o n s e t s derived from equaticm.(3) o v e r t h e range o f d i s c r e t e values o f A1A s i n p r a c t i c e h i s c r e t e values of A1 a r e used i n the determination o f t h e s e t s o f s i n u s o i d s which w i l l s a t i s f y both equations ( 3 ) and (41, t h e r e could t h e o r e t i c a l l y be s o l u t i o n s which e x i s t o w r t h e d a t a i n t e r v a l s and t h i s could give r i s e t o e r r o r s i n l i m i t cycle p r e d i c t i o n . To guard a g a i n s t t h i s and t o add a s p e c i f i e d degree o f robustness t o t h e conputation we pass from one equaticn t o t h e next, n o t cnly those s e t s o f v e c t o r s which s a t i , s f y t h e f i r s t equation e x a c t l y b u t a l s o those s e t s which y i e l d an approximate s o l u t i c n . The degree o f approximation is r e l a t e d d i r e c t l y t o t h e anplitude, frequency and phase i n t e r v a l s chosen and a l s o t o s p e c i f i e d e r r o r bomds on the system parameters. These approximate s o l u t i o n s a r e generated automatically within t h e program once t h e d a t a i n t e r v a l s and parameter e r r o r bounds are s p e c i f i e d by t h e user. I n the f i n a l g r a p h i c a l display cmly those e r r o r c i r c l e s associated with t h e system parameter e r r o r bounds need be displayed. I f q s o l u t i o n s e t s o f s i n u s o i d s a r e found (where q 6 p) which s a t i s f y both equations ( 3 ) and ( 4 ) t h e n t h e (n-21th loop equation is n e x t examined f o r harmcnic balance using these q s e t s and the process repeated u n t i l loop 1 is reached. This has a harmonic balance equation which can be p u t i n the form

which i s p l o t t e d as shown i n Figure 2 f o r a range of values o f n. I f t h e end of m e l e f t hand s i d e s o l u t i o n vectors touches t h e (-1, jO) p o i n t o r i f t h i s p o i n t l i e s within an e r r o r c i r c l e associated with one of t h e s o l u t i o n v e c t o r s , then a conditicn could e x i s t which would s a t i s f y t h e o v e r a l l steady s t a t e harmonic balance requirements o f equation (1).

It should be noted t h a t as soon as any equation is not s a t i s f i e d by a s e t of s o l u t i o n sinusoids passed from t h e previous equation then t h i s s e t is immed i a t e l y discarded. When s o l u t i o n s have been obtained f o r a l l loop equations over t h e allowable range o f A 1 and Q the i n e q u a l i t y

,...a

is n e x t considered and t h e above conputational procedure repeated in a cycLic manner f o r a range of physically r e a l i s a b l e values o f t h e reference sinus o i d a2 = A?. The d e s c r i b i n g function equation f o r loop 2 is f i n a l l y derived a s

where a = A1 1

.

i n a s i m i l a r manner t o t h a t f o r loop 1 and displayed i n the conplex frequency domain. The computatior. p r o c e e d s . u n t i 1 d i s p l a y s a r e produced f o r a l l n loops i n t h e system. Limit cycles could t h e o r e t i c a l l y occur i f any s o l u t i o n v e c t o r o f any o f t h e n loop equations touches t h e (-1, jO) p o i n t o r , f o r a more conservative p r e d i c t i o n , i f t h i s p o i n t l i e s within one of t h e e r r o r c i r c l e s a s s o c i a t e d with any solut i o n vector. A study of such a Nyquist a r r a y can quickly d e t e r

mine t h e magpitude and frequency of a l l t h e o r e t i c a l l y p o s s i b l e modes of l i m i t cycle operation and isol a t e those loops which a r e responsible f o r o v e r a l l system i n s t a b i l i t y . Of equal inportance, i t can a l s o i n d i c a t e t h e form of compensation necessary t o avoid t h e p o s s i b i l i t y of limit cycle operation i n a p a r t i c u l a r loop. I t is o f t e n convenient,when a preconpensator element is envisaged,to use a Nyquist display of t h e e l e -

ments of T. Such a display i s e a s i l y generated have been once all s o l u t i o n s e t s f o r the vector determined using t h e method o u t l i n e d above. ?he corresponding harmonic balance equation f o r loop 1 now has t h e form

. ht.

where

(j

?CZ j d j 4.

=

...n)

1..

l o c i ot ?..c rl-g,:.ae 1 e r n r . t ~ tii. (i=l,.. n ) . For any cndnge ir. loop m the diago::al locus of t h e i t h loop i s m a l t e r e d h c t the magpitude and phase o f t h e superinposed s o l u r i o n v e c t o ~ sw i l l a l t e r . Any r.ew v a i i e I ,sz- :?cme:.r? iie irithin bounds defined by a c i r c l e with r a d i u s

centred on t h e m a l t e r e d diagonal locus. This c i r c l e can e a s i l y be computed and displayed i f necessary. The corresponding l i n e a r preconpenoator

a c t s on t h e colunns of T rendering t h e Nyquist displays of T no longer very u s e f u l f o r compensator design. Such a precompensator has howev$r t h e e f f e c t o f multiplying t h e rnth row o f T by km(j w ) where again t h e value of m is chosen a s t h a t of t h e most troublesame loop. Desigp i n t h e frequency domain gan thus proceed by using displays o f t h e v e c t o r tii ( i = l , . .n) with superimposed s e t s of s o l u t i o n vectors

.

a r e t h e elements of

COMPENSATION TECHNIQUES

In Figure 1 a p o s t conpensator o f t h e form

w i l l have the e f f e c t of multiplying the rnth row o f T by Em(jw) where the value of m is chosen a s t h a t of the most t r o u b l e s o w loop. Every vector e l e m n t i n t h e rnth loop equation w i l l be s i m i l a r l y affected. As we a m dealing with a Nyquist a r r a y t h e r e q u i r e d form of (,L jw) t o s u i t a b l y compensate t h e rnth loop proceeds n a t u r a l l y from a knowledge e f c l a s s i c a l s i n g l e loop feedback theory. N l o t h e r vectors tii; ( i = l , . .n)ifm w i l l remain u n a l t e r e d a s w i l l passed t o t h e rnth equation. t h e s o l u t i o n values of However, t h e s o l u t i o n values of passed out o f t h e rnth equation w i l l be a l t e r e d which i n t u r n w i l l vary t h e vectors

.

The e f f e c t of such a compensator on t h e behaviour of t h e o t h e r loops can most e a s i l y be v i s u a l i s e d i f we consider a l l vectors

t o be superimpmed a t s p e c i f i c frequencies on t h e

5.

COWUTATIONAL ASPECTS

In t h e s e q u e n t i a l conputational procedure up t o twenty magnitude values of t h e reference s i n u s o i d and up t o twenty values o f frequency are used i n t h e determination o f s o l u t i o n s vectors f o r any loop equation. The number o f phase angles is a l s o n o r Although t h i s may maily r e s t r i c t e d t o twenty. i n i t i a l l y r e s u l t i n a l a r g e number o f s o l u t i o n s e t s most of these a r e p r o g r e s s i v e l y discarded a s the conputation proceeds and t h e r e is a r a p i d convergence on t h e f i n a l displayed s o l u t i o n s e t . The frequency and amplitude ranges of p o s s i b l e l i m i t cycle behaviour a r e automatically displayed i n t a b u l a r form along with t h e most probable l i m i t cycle a m p l i t u d e s and frequency. Once c r i t i c a l a n p l i t u d e and frequency ranges have been a s c e r t a i n e d irom t h e t a b l e and an i n i t i a l study of t h e d i s p l a y s , t h e a m p l i t u d e and frequency ranges used i n the calculaticn can be conpressed t o give a d d i t i o n a l s o l u t i o n s e t s i n t h e c r i t i c a l region o f t h e complex f r e q u e n c ~ plane i f required. The robustness of t h e s o l u t i o n i s enhanced by compensating automatically f o r the i n t e r v a l s i n t h e d i s c r e t e data used i n t h e conputation and by allowi n g f o r known e r r o r bounds on any element o r group of elements within t h e feedback system under consideration. Such bounds can be r e l a t e d d i r e c t l y t o bounds on i n d i v i d u a l s o l u t i o n vectors and i t i s thus conputationally easy t o produce corresponding e r r o r c i r c l e s on t h e conplex frequency plane. For c l a r i t y of p r e s e n t a t i o n only t h a t e r r o r c i r c l e

c l o s e s t t o t h e (-1, jO) p o i n t need be s t o r e d and displayed a t a y frequency p o i n t cn t h e c o l p l e t e s o l u t i o n w c t o r . This t e c h n i q r r ca a l s o be used t o obtain a m a s u r e o f t h e s e n s i t i v i t y o f system l i m i t c y c h behaviour t o v a r i a t i o n s i n one o r more o f t h e system's p h y s i c a l parameters. A l l design program a r e w r i t t e n in Fortran I V with a chain f a c i l i t y t o reduce core s t o m requirements t o l e s s than 10K words. Conputer questions and mswers use lrnemonic English format and a command i n t e r c e p t o r r o u t i n e provides c o q l e t e f l e x i b i l i t y i n e n t e r i n g o r l e a v i n g a n y . p r o p m block. This allow8 r a p i d change o f e i t h e r l i n e a r o r non l i n e a r d a t a and innnediate access t o t h e display p r o g r a ~ ~ t o evaluate the e f f e c t uf any d e s i w decision. Linear d a t a can e i t h e r be e n t e r e d i n pole wm o r polynomial form. Non l i n e a r d a t a can be e n t e r e d i n polynomial o r piecewise l i n e a r form o r a s a s e t o f d i s c r e t e measured d a t a points. The v i s u a l display u n i t f a c i l i t i e s include l i n e o r p o i n t format, alphzr numeric e n t r y , a x i s display and automatic s c a l i n g .

6.

THE DESIGN OF A CONTROLLER FOR AN INDUSTRIAL COMPRESSOR

The system which is s h a m diagrammatically i n Figure 3 c o n s i s t s o f a l a r g e conpressor f o r supplyi n g air t o a chemical p l a n t and has been s t u d i e d previously as a purely Linear system(9) (10). The o u t l e t p n s s u r e is c o n t r o l l e d by guide vane p o s i t i c n and t h e o u t l e t flow by means o f a blow o f f valve which' prevents surging a t i n p u t flows below 20% o f f u l l flow r a t e . When t h e blow o f f valve is closed the system c o n s i s t s o f a s i n g l e c c n t r o l loop and good r e g u l a t i o n can be obtained using a standard pneumatic c o n t r o l l e r . When t h e blow o f f valve opens however the system has two i n p u t s and e x h i b i t s l i m i t cycle behaviour when t h e loop gains are increased t o any u s e f u l value. The dynamics o f t h e l i n e a r system kre obtained(l0) with t h e blow o f f valvc open and are shown i n Figure 4, which now includes a s a t u r a t i o n eJement t o represent t h e non l i n e a r c h a r a c t e r i s t i c s o f the blow o f f valve loop. It is d e s i r e d t o design a preconpensator K(s) which w i l l guarantee avoidance of l i m i t cycle behavisur, a f a s t blow o f f valve response, low i n t e r a c t i e n and zero o f f s e t i n t h e pressure loop. Various sources of e r r o r e x i s t i n t h e s i n p l i f i e d system model shown i n Figure 4 due t o t h e following factors. (1)

The l i n e a r system elements given by t h e model only approximate t o t h e a c t u a l p l a n t behaviour.

(2)

A very s i m p l i f i e d model o f t h e blow o f f valve non l i n e a r i t y is used.

(3)

A non l i n e a r c h a r a c t e r i s t i c is known t o e x i s t

i n t h e guide vane linkage. D e t a i l s o f t h i s were n o t a v i l a b l e b u t it was known t h a t l i n e a r operation could be achieved i f required. (4)

Valve dynamics a r e not included.

To ensure a conservative design i n t h e presence o f these modelling e r r o r s and e r r o r band o f 230% was used on a l l elements o f t h e - r e t u r n r a t i o matrix T throu&out s u b s e ~ a e n tc a l c u l a t i o n s . An i n i t i a l comp u t e r i n v e s t i g a t i o n f o r l i m i t cycle operation using

a proposed c o n t r o l l e r i n t h e pressura loop with a gain o f 1 5 pmduced t h e displays shcmn i n f i g u r e 5 which include t h e appropriate e r r o r c i r c l e s . Ihe system h a s obviously a very high degme o f i n t e r a c t i o n a n d ' a l i m i t c y c l e was e d i c t e d with t h e f o l lowing moet l i k e l y paranmter values w = 1.35 Rad/sec, u = 7.04, ly = 2.75. A subsequent simw l a t i o n confirmed lidt cycle operation with pararmter values w = 1.45 Rad/sec, ul = 6.6, u2 = 1.5. To reduce i n t e r a c t i o n e f f e c t s a preconpensator o f constants w a s & s i p a d using s t a n d a r d frequency domain techniques(l0) t o mat c l o s e l y diaponalise t h e system a t a s p e c i f i c frequency and anplitude set. A frequency o f 1 Radian/sec was chosen on t h e b a s i s o f e a r l i e r work with a conpletely l i n e a r i s e d system. The displays o f the system b e h a n o w with only t h i s compensator are shown i n f i g u r e 6. It w i l l be seen t h a t no limit cycle is now predicted. A s we a r e now considering a preconr pensator element t h e inverse displays a r e now used with e r r o r c i r c l e s corresponding t o system parameter e r r o r b o m b o f t30% being determined by u s u a l mapping procedures. I n t e r a c t i o n e f f e c t s i n loop 2 a r e n e g l i g i b l e and a r e a l s o small i n loop 1 f o r low values o f u2. The gain i n loop 1 is now increased by a f a c t o r 5 and it w i l l be seen from Figure 7 t h a t t h e e f f e c t on loop 2 is small. I f t h e gain i n loop 2 is subsequently .increased by a f a c t o r 2 the system s t i l l remains f r e e from l i m i t cycle operation b u t loop i n t e r a c t i o n e f f e c t s now increase i n loop 1 as shown i n Figure 8 s o t h i s loop gain was n o t adopted. The f i n a l conpensator was o f t h e form

The multivariable c i r c l e c r i t e r i o n can now be i n voked t o ensure a s y n p t o t i c system s t a b i l i t y and the absence o f l i m i t cycles f o r a l l bomded s e t s of inp u t s and t h e appropriate displays a r e shown i n Figure 9 where, following t h e arguments o f ;ook(+l), we can use t h e s c a l e d mean Gershgorin bands of GK and the c r i t i c a l d i s c o f nqp. Examination o f t h i s p l o t shows t h a t loop 2 w i l l be s t a b l e and a l s o t h a t loop 1 w i l l be s t a b l e with the blow o f f valve loop f u l l y closed assuming t h a t the l i n e a r p a r t o f the model is s t i l l v a l i d m d e r these conditions. The response of the closed loop syster. t o a s t e p change i n pressure demand is shown i n Figure 10 and the corresponding response t o a s t e p change In a i r fiow demand is shown i n Figure 11. In both czses f a t s e t t l i n g times and low i n t e r a c t i o n e f f e c t s a r e achi$ved. Any o f f s e t i n t h e pressure loop car1 be remedied by long time constant i n t e g r a l zc'icn which should nDt a l t e r the p l o t s s i g n i f i c a n t l y . The o f f diagonal t e r n s of (i are l a r g e r than zne diagc:;ai term thus i n d i c a t i n g t h a t The icops are being e f f e c t i v e l y inter(.hangc.d. Th:s could ~ e s u i t i n i n e f f i c i e n t operation, although t h e s i t c a t i a n could be improved by allowing a g r e a t e r degree of loop i n t e r a c t i o n . I r should be noted t h a t t h e des i g n method could have been s e d t o equal e f f e c t if t h e model of t h e non l i n e a r i t y i n loop 1 had beep available f o r i n c i s i o n .

Control S y s t e m Centre Repost No. 2 6 2 , U.M.1 .S .T., September 1974. Provided t h a t t h e e s s e n t i a l p r e r e q u i s i t e s e x i s t f o r i t s a p p l i c a t i o n t h e s e q u e n t i a l conputational procedure p r e s e n t s an accurate, systematic and e f f i c i e n t method of p r e d i c t i n g l i m i t cycle operation i n a multivariable non l i n e a r feedback system. By studying the behaviour of i n d i v i d u a l s o l u t i o n vect o r s i n the region of t h e (-1, jO) point,accurate p r e d i c t i o n s can be made a s t o t h e m a e i t u d e and f r e quency o f p o s s i b l e l i m i t cycles. A s p e c i f i e d degree of robustness can be introduces i n t o t h e method by considering e r r o r bounds on t h e p h y s i c a l elements within t h e system matrix and t h e r e is a d i r e c t and obvious r e l a t i o n s h i p betweer: such bounds and t h e behaviour of s o l u t i o n vectors i n t h e conplex frequencies domain. This f a c i l i t y can a l s o b e used t o r e l a t e v a r i a t i o n s in l i m i t cycle b h a v i o u r t o variat i o n s i n one o r more system parameters t h u s allowing t h e i d e n t i f i c a t i o n of p a r t i c u l a r l y s e n s i t i v e system e l e m n t s . I f limit cycles a r e p r e d i c t e d by an examination of the s o i u t i o n v e c t o r s i n any one loop then t h e s t r u c t u r e of a s u i t a b l e preconpensator o r p o s t compensator t o a d j u s t t h e s e ve.:tor s o l u t i o n s i n t o l e s s c r i t i c a l regions of t h e complex freqwncy domain i s immediately obvious from an elemenrary knowledge of s i n g l e 1.oop feedback theory. h e influence of such a compensator on t h e o t h e r loops is constrained within e a s i l y determined bounds and, provided t h a t t h e system i s n o t grossly i n t e r a c t i v e , a viable m t h o d of system conpensation may be devised.

(7)

GRAY, J.O., SAWIDES, L.S. and TALOR, P.M., I n t e r a c t i v e graphics design using sinusoiZal describing f u i c t i o n methods, I .S.A. Transact i o n s , '101. 1 4 , No. 1, 1975. pp. 68-77.

(8)

RAMANI, N . and ATHERTON, D.F., Correspondence, Proc. IEE, Vol. 20, No. 7, i973. p . El.&.

(9)

LUNTZ, R., MUNRc3, N. a d MCLEOD, R.S., Computer aided design o f m u l t i v a r i a b i e c o n t r o l systems, IEE 4 t h WAC Convention, Manchester, 1971. pp. 55-59.

(10) ROSENBROCK, H.H., 'Ihe computer aided design of c o n t r o l s y s t e m , Academic P r e s s , 1974. (11) COOK, P. , Modified m u l t i v a r i a b l e c i r c l e t h e o r e m . Recent mathematical developments i r c o n t r o l , Academic P r e s s , 1973. pp. 367-372.

The s e q u e n t i a l computation method is thought t o be t h e only e x i s t i n g method f o r s t u d y i n g multivariahle systems with gross non l i n e a r i t i e s i n o r d e r t o a s c e r t a i n l i m i t c y c l e operation and t o derive both pre- and p o s t compensator elements which ensure closed loop s t a b i l i t y with known i n t e r a c t i o n effects.

FIGURE 1

REW ENCES

(1) ELB, A. and VANDERVELD, W.E., Multiple i n p u t describing functions and non l i n e a r s y s t e m design, McGraw H i l l , New York, 1969.

(2)

MEES , A. I . and BERGEN, A . R. , Describing F ; m c t i ~ n sRevisited, E l e c t r o n i c s Research Laboratory, University o f C a l i f o r n i a , Berkeley, 1974.

(3)

RXENBROCK, H . H . , Design o f m u l t i v a r i a b l e cont r o l s y s t e m using t h e i n v e r s e Nyquist a r r a y , Proc. IEE., Vol. 116, No. 11, 1969. pp. 1929-1536.

(4)

MEES, A. I . , Describing functions c i r c l e c r i t e r i a and multiloop feedlack systems, Proc. IEE., Vol. 120, No. 1, 1973. pp. 126-130.

(5)

(6)

,SAKANI, N. and A'TiAERTON, D.P., Frequency response nethods f o r non i i n e a r multivariable system', Proc. CanadiaCorif. Auto. Ccnt., 1973. 9.2-1 9.2-15. GRAY, J.O. and TAYLOR, P.M., & s c r i b i n g functions and t h e inverse Nyquist a r r a y ,

SOLUTION VECTORS

' I

. I

FIGUFE 2

.,

I

?5:.

: :~~..:. , 'a$~,

PLOT OF

Q

LOOP 2

GAIN X5 LOOP 1 GAIN X1

LOOP 2

+

S

LOOP 2

+

1

+ J

NYQUIST ARRAY

/

LOOP 1 M O P 1 GAIN X5 LOOP 2 GAIN X 2

LOW 2

.

FIGURE 9

;.,

9' ,

STEP CHANGE PESSURE

...

M

,:

,F

, LC

SECS

10 ,,,

VALVE POSITION

. r-o OPEN

FIGURE 10

PRESSURE

STEP CHANGE FLOW

I

> o

VALVE POSITION

OPEN

FIGURE 11