392
Contribution from the Zstituto di Chimica Generale, Universitri di Parma, Z-43100 Parma, Italy
The Crystal and Molecular Structure of Bis(thiocarbohydrazide-N,S)cadmium F. Bigoli,
A. Eraibanti,
and M. Tiripicchio
A.M. Manotti
Dichloride
Lanfredi,
A. Tiripicchio,
Camellini
Received January 2, 1971
The crystals of bis(thiocarbohydrazide-N,S)cadmium dichloride, Cd(S=C(NH-NH&)&, belong to monoclinic space group P21/c. The structure of the compound, determined from three-dimensional data, consists of trans-octahedral complexes where the ligand molecule forms pentatomic chelate rings with NS as donor atoms. The chlorine atoms lie along the normal to the plane containing metal and organic molecules. The distances Cd-N =2.34(3) and Cd-S=2.59(1) ii are slightly shorter than those found in non-chelate cadmium complexes; Cd-Cl = 2.73( 1) A is very close to the sum of ionic radii. The configuration of the ligand, with one -NH2 group turned towards S= C, repeats that of crystallized thiocarbohydrazide. Some differences, however, in distances, planarity, and angles between complexed or free ligand can be detected. The complexes are held together in layers parallel to (102) by weak hydrogen bonds NH . . . Cl.
Introduction Thiocarbohydrazide, S = C(NH-NH&, forms complexes which can be assigned structures with pentatomic chelate rings with S,N as donor atoms. Such structures have been assumed to interpret IR spectra’ and equilibria in solution.2 In order to confirm these assumptions, the crystal structure of bis(thiocarbohydrazide-N,S)cadmium dichloride has now been determined.
Experimental
Crystal Data. Compound: bis(thiocarbohydrazideN,S)cadmium dichloride, Cd(SC(NH-NH2)2)2C12, F.W. 395.62. Crystal class: Monoclinic prigatic. Unit cell (radiation CuKa, X= 1.5418 W, from (2)
Ada,
G. R. Burns. A. Braibanti. 3, 459 (1969).
Inorganica
a=8 64(l),
D,=2.19,
Chit&a
Inorg.
F.
Chem. Dallavalle
7.
277 and
(1968). E. LepOrati,
Inorg.
Chim.
1 5 : 3 1 September,
1971
D,,=2.17
group
around
c=13.78(1) A’,
[ 1001
8;
z=2;
g.cm-‘;
cm-‘;
P21/c
(CZJ, (5), No.
14).
Intensity Data. Intensities 7k1, and h01,. . . , h51 were
of reflections Okl, . . . , recorded on integrating camera and then measured by a micro(934 independent reflections out of 1369
Weissenberg densitometer possible).
Calculations. Usual corrections were applied. Absorption corrections as for cylindrical specimens were (WR[IWI= 1 .Ol, ~R[,~~l=O.67). introduced Atomic form factors according to Cromer and Mann’ were used.
Table
I.
Fractional
atomic
coordinates
X
Cd S $1) N(2) N(3) Z(4)
Table
II.
Cd z1 N(1) N(2) N(3) N(4) C
(with
Anisotropic
z
.oooo --.1555(5) .2939(6) .2649( 17) .2493(22) .1321(16) .3398(26) .1021(24)
thermal
parameters
B,,
B,
BU
BI,
2.825 2.951 3.067 2.561 3.663 3.604 2.445 2.800
3.130 2.898 3.076 3.378 3.046 2.758 3.951 3.166
3.248 3.361 3.153 3.249 3.767 3.919 4.252 2.987
0.131 -0.004 -0.023 0.109 -0.398 -0.100 -0.026 -0.476
y In the last cycle and the maximum =, =
e.s.d’s x 10’).
Y
1.oooo .6777(g) .9028(8) .6763(27) .8578(34) .4141(24) .3324(34) .58 12(23)
IABJ Acfa
v=599.3
p( CuKa) = 224.7 Space
photographs
b=5.78(1),
p= 119.5(3)“,
Section
Preparation. Crystals of the compound, Cd(SC (NH-NH2)z)G have been obtained by evaporation of aqueous solutions of thiocarbohydrazide and cadmium chloride in stoichiometric ratio. Small, colorless crystals were obtained.
(I)
rotation and Weissenberg and [OlO]):
.oooo -.0947(5) -.1755(5) -.0094(18) .0655( 19) -.1499(17) -.1450(26) -.0864( 17)
a (A’).
for all the atclms the average shift, lAB,,( map, were: 0.049
Bl,
Bll
1.197 1.365 1.074 0.657 1.594 1.550 0.977 1.022
0.042 -0.139 0.345 -0.143 -0.788 0.283 0.128 0.126
shift,
lAB,,I aY,
IAB,,~ mair = 0.173
393 Table III.
Observed
and calculated
= after F. values indicates
0
1
0
.
* .
‘ I
0
*
0 0 0 1 5
0
3
I
171
t
:
:
ii:
:
:
I
*m
0
0 :
: 1 *
501 ‘01 x*5
t
t
271 %, X,5 LO%
3x5
a
3 L
1
0
5
1
0
‘ I 1
* * 3 *
0 . :
:
0 0 l b 0
1
: 3 3 1
. . 0
0 5 1 3
‘ . ‘ .
0
‘
‘
0
5 ‘ 7
‘ ‘ ‘
0 0
. 3 ‘
:
:
5
0 0
J ‘
5 5
t
:
0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1
,5 5 ‘ ‘ ‘ ‘ ‘ ‘ ‘
t 0
3 ¶
l 5 ‘ I
2 ,
‘ 5 ‘ 0 *
2 ¶ ‘
5 ‘
1 I 3 ‘ , ‘ 0
0”
0 0
:
t . .
.5 I 2 3
0 0 0 0
.
3
L
1081 3.5 ‘P -1s ‘a
E: ,, 111 ‘S ,,,
lo’
E
b‘s ‘I-
‘0.
Y
17‘ -1‘
I*‘
1 2 3 3 ‘ ‘ 5
-la rn‘
1‘5 “1 35 ., ‘l
5 6 ‘
i ,
I I 1 L 2 2 3 1 ‘ 4 5 5 6 6
I 7 :
2 .I * -1 * -I 1 .I I -2 1 -1 , -3 3 -1 3 -3 1 -1 1 -, 1 -3 1 -3 _‘‘
I 1 1
1,
L
A
2 2 3 1
4 A 4 -4 ‘ A
‘ ‘ 5
5
4
A
6
‘
‘ ,
A
I
. .
L
5
* ‘ ‘
‘ 1
‘
.I
1
5 : L : 1
5-i
6 ‘ I 0
0
5 -5 -5 6 A
I -6
: 1 1
I 2 , ,
‘ -‘ 6 -6
:
L
L
,
‘
1 1 9 b
1 I
4
I
t
0 0 0 I I 1
337 1.7
I
0 0 0
reflections.
1110 -3,’ ‘UJ 111 1.x -1,‘ 1“
5 0
factors
-*lb
:
1 2 ¶
l :
I15
unobserved
.
0
i
7 7 I 7 7 I ‘ ‘ ‘ 1 ‘ 1 1 * *
537
structure
: I 1
:
-1‘
2 I‘ 2 -14 , -14 1 .‘I I .L,
6
‘ .:
‘
:2 1 1 1 0 1 1
Bigoli, Bruibanti, Manotti Lanfredi, Tiripicchio, Tiripicchio Camellini 1 Bis(thiocarbohydraxide-N,S)cadmium
Dichloride
394 Table III.
b
k
1
(cont.)
‘9‘ ‘3
k
.
1
h
L
1 5 1 , , I , 1 1 5 1 1 1 5 , :
0 0 L * , 6 1 . I 1
, 5
: , : : 1 : 1 : 5 ,
1
10
h
‘%‘% ‘C
L
1
.I
‘“h ‘s,
l
L
7
7 7 L
L
‘“h ‘%
UI 5,1‘1‘I‘ u)
-10 -LO -10 -10 -10
.,o
-10 -1, .L‘ 1 .I, ‘ .L‘ 1 -1, 0 -Ll 1 -12 I -‘I 1 -*1 4 -‘I , -‘I 1 .‘I I .‘, I -‘I & -1, ‘-1, 0 .,I 1 -1, I -L‘ 1 -lb L -1‘ , -1% 1 .I, , -1, 0 -lb , _I6
:
lib
:
,
‘I-
:
IW m,
ir
I 7 I
‘ .‘ .&
,
.I
1 1
-1
0 1 1
I ,
I
-6 ‘
-6 4 -6
lo4
iz
7
.i ,I, .‘.‘ I,,
11, 2m -11 lo*
I.
_.~
.*m I.7 ,5 “1 -71 1 ,I 41 ‘I)1 I. 11‘ 9, ,I,
.I, I .,I 1-1, ” -I6 I -1, 1 -16 , -1‘ , -1, I .‘I 0 0 ‘ 0 1
1 i I 7
:
: b
. :
4 b 4 *
i
b b
1 -1‘ 1 -16 4 .,, ‘
_,I
* .I,
, -‘I 0 ‘1
‘cl, IF ‘40 1.1
‘cr ::
71 11 ‘0, ‘,I **I
m 7‘
2% “I .,*, 1,. H ‘I. -11 1.1
7 I
,
1 1 l , I 7
I1 1 1 1 ‘ ‘ , ‘ 0
1 1 I I * * I I 1 , 1
: 1.. 1 I , 4 I * 1 1 t
-a
.
-8 9 -. 9
: 1 I
I1 . I
.. -1 -9 -9
. b L
1 1
I,. 1
Id
:
.:
7 f 1 :
4 0 -I ..
Inorganica Chimica Acta 1 5 : 3 1 September,
-2l7
i
, I :
1 -1
,
-1 1
0
1 , 1
1971
‘6 444 ‘0 -1% D7
.I
‘
7,
i
1 I 1 1
‘
-1 * -1 1
1 : , 1 , 1 :
I
.I>
-12 .‘I .,I .L, -1, .I, L .,I 0 .I. I .I‘ 1 .I. 1 -1. 4 .I. 1
-1,
,Y
L,
ax
1.1 IC
.
1:: ‘0%
:
‘I, 15.
: : L . : lo 70, ., 71
.m Y
iii
: 1 :
. 1
:
1 1 I
1.. 16, I‘6 1. I. 1‘1
.
1:
I
:
I. lo, ‘U I, H .‘ 17
7
I l
. L .
1.1, , .I, 0 -16 1 .,* t -11 1 .,I 0 0 1 0 1
1 7 7 7 .
1, ‘1% ‘I‘ I., -Lb
I -LO 1 -10 L -LO 5 -10 , -1, 1 -1‘ , .‘I & .I‘ 1 .‘I 0 -‘I
1 I 7 :
: I 1 I I I 5 , , :
cl
.I I -7 1 -1 I .I -I -7 8 4
7,
:
,Z .,H 7
1
I‘ I..
,Y ,‘.
.a 1‘1
L . . L 1 . 1 I
. . . :
. :
n 0
1 -1 1 -1 1
. . : l .
.
1 4 -9 0 -lo 1 -‘a I .m , -lo ‘ .‘a 1 -1, 1 .,l I .Ll &.‘I 0
.,,
‘ I 1 . ‘ I , .
.,I -12 .‘I -1, .I, .I, -1, -1, -1. .‘I .‘C -L. .I‘ .L, -1, .I,
0
I 1 , ‘ 1 , 0
1 -1. I .I, 0 0 1 0 1 0 I1 I .I I 1 , .I , -1 0 7 Q -2 1 -I I -1 1 .I 1 -,
Y
.tr
. la‘
.,r
Y
‘70 lb. I,. ‘n
‘1, .P Y I.,
U-J
a*
w” ‘Y .t
‘U
.n ‘I ‘1‘ 17
w* 4).
m.
Dw
4 1n .I
n7
ln
7,. Il. ‘11 Y L,
lb,
*z
,* ‘I. b,.‘-
*u lb-
-44 bl Y
“0
n
,” I” 1*
m 1” 1‘
395 Table
IV.
Atomic
peak heights (e.A-‘),
obs. talc. obs. talc. obs. talc. obs. talc. obs. talc. obs. talc. obs. talc. obs. talc.
Cd S Cl N(1) N(2) N(3) N(4) C e.s.d.‘s
Table
V.
Main
Coordination
A,,
109.1 110.5 31.1 31.3 31.2 31.6 10.7 11.0 9.7 9.8 10.6 10.7 8.2 8.2 9.9 10.1 3
1028 1030 304 305 278 282 79 78 71 73 99 100 70 69 113 115 4
1084 1087 319 317 297 298 98 100 78 79 84 83
1017 1032 280 286 283 286 79 83
:;
:;
distances
t: 6
5
(with
12 9 -3 -2 -1 0 -2 4 -7 -7 -3 4 0 1 -10 -7 3
:t 85 85
::
and angles
Ahk
Ah,
A*,
460 470 134 137 121 125 32 36 37 38 42 43 29 30 45 48 3
-24 -25 -15 -15 11 7 2 t 6 -7 -6 1: d 3
e.s.d.‘s).
metal 2.59(l) A 2.73( 1) 2.34(3)
S-CQN(2) S-Cd-Cl Cl-Cd-N(2)
1.74(2) 1.35(2) 1.28(3) 1.39(4) 1.41(f)
Cd-s-C S-C-N( 1) S-C-N(3) C-N( 1)-N(2) C-N(3)-N(4) N( I)-N(2)-Cd N( 1)-C-N(3)
76.7(6)* 89.1(2) 88.1(5)
molecule 95.8(7) 121.5(17) 119.2(13) 124.3( 17) 120.4(18) 111.5(14) 119.2(17)
bonds
Asymmetric -x+2,
Cd-N(2)-CF N(l)-N(2)Cl’ C-N(3)-Cl” N(4)-N(3)-Cl” N(3)-N(4)-N(1”‘) N(4)-N( l”‘)-N(2’“) N(4)-N(l”‘)-Cl”’
3.23(2) 3.26(2) 3.15(3)
N(2)-Cl’ N(3)-Cl” N(4)-N( 1”‘)
i
e.s.d.‘s.
Akk
E(l) C-N(3) N(l)-N(2) N(3)-N(4)
Hydrogen
and
Ahh
Cd-S Cd-Cl Cd-N(2) Thiocarbohydrazide
(e.A-‘),
P
interatomic
around
curvatures
110.3(11) 121.4(9) 132.8(g) 106.7( 16) 146.0(20) 86.5( 13) 145.9(19)
units -y+l,
-2
ii
-x+
1,
y--‘/2, -z-Y2
The structure was solved by Patterson and Fourier methods and refined by differential syntheses. Anisotropic temperature factors were introduced. (Final R=9.7%). Hydrogen atoms were not identified in the difference Fourier map. The results of the structure determination are summarized in Tables I+V.
Discussion
The structure (Figure 1) consists of octahedral complexes with chelate molecules lying in the same plane and the chlorine atoms in the apical positions. The chelating atoms (Figure 2) are N, of -NH2, and S, thus confirming the assumptions on which were based the interpretations of IR spectra’ and of
iii
-x+
1,
-y+l,
-z
equilibria in solution.2 Atoms N, S are in truns positions and all of them lie by symmetry conditions in the same plane as the metal atom. The chlorine atoms lie very close to the normal to that plane. The distance Cd-Cl=2.73(1) A is comparable with the sum of ionic radii (2.78 A) and shows that the bond The organic ligand should be prevalently ionic. forms pentatomic chelate rings as expected; it is therefore in the same configuration, with one -NH2 group turned toward S=C, as in the neutral molecule in crystals.4 This configuration is different from that found in thiocarbohydrazide dichloride’ where both -NH2 groups are turned toward S=C. (3) D. T. Cramer and 1. B. Mann, Acta Crysf., A24. 321 (1968). (4) A. Braibanti, A. Tiripicchio and M. Tiripicchio Camellini, Cryst., B25, 2286 (1969). (5) A. Braibanti, M. A. Pellinghelli. A. Tiripicchlo and M. Tiripicchio Camellini, Inorg. Chim. Ada (in the press).
Ada
Bigoli, Braibanti, Manotti Lanfredi. Tiripicchio, Tiripicchio Camellini / Bis(thiocarbohydrazide-N,S)cadmium
Dichloride
396
The distance Cd-N=2.34(3) A is only slightly shorter than that found in chelates of hydrazinecarboxylic acid (Cd-N=2.38(3) A,6 2.40(2) A’ and is equal to Cd-O in octahedral complexes (Cd-O= 2.34(3)As). The distance Cd-S=2.59( 1) 8, is significantly shorter than that found in complexes of thiourea (Cd-S = 2.638(4), 2.647(4) A9)9); the shortening is probably due to chelation.
In the chelate ligand some differences with the isolated molecule can be detected. The distance C-S 1.74(2) A is comparable with that in thiocarbohydrazide (C-S = 1.724( 10) A4), in complexed thiourea (C-S== 1.76(l) A,9 1.73( 1) A” and in free thiourea (C-S= 1.71(l) A”). Also the distances N(l)N(2)=1.39(4) A and N(3)-N(4)= 1.41(3) 8, are not different from one another and equal to that found in the free ligand (1.405(8) A4). In any case they are shorter than those found in free (N-N= 1.46 A”) The diand complexed hydrazine (N-N = 1.47(2)“). 1.35(2) and C-N(3)= 1.28(3) A as stances C-N(l)= compared with single bond C-N= 1.47 A indicate that they possess some double bond character, although They can be compared with vain different amounts. lues found in thiocarbohydrazide (C-N = 1.327(7) W4), in thiourea (C-N= 1.33( 1) A”), and in thiosemicarbazide (C-N = 1.323(2) At4). The angle S-C-N(l)= 121.5( 17)” is smaller than the corresponding angle in the free molecule.
Table
VI.
Equation
Planarity of thiocarbohydrazide molecule. of plane 5.2772x+2.4606~--12.1516z-4.3449=0 A
Cd *S *c *N(l) *N(3) *N(2) *N(4) * Atoms
Figure 1. Clinographic projection of the structure (thiocarbohydrazide-N,S)cadmium dichloride.
of bis-
0.9323 8. -0.0004 0.0233 -0.0099 -0.0130 -0.0006 0.0073
u Figure
2.
Trans-octahedral
N(4)
complex.
(6) A. Braibanti, A. Tiripicchio. A. M. Manotti Lanfredi Bigoli, Zeit. Kristallogr., 126, 307 (1968). (7) A. Braibanti, A. M. Manotti Lanfredi, A. Tiripicchio F. Bigoli, Acla Crysl., B25, 100 (1969).
and
F.
Inorganica
Chimica
Acta 1 5 : 3 1 September,
1971
and
X(A/u)‘=
1.3542
lying in the plane.
The whole ligand molecule lies in one plane (Table VI). This aspect is again different from that found in the free ligand where both terminal -NH* groups are out of the plane of the thioureide group, N-CS-N. The complexes are held together in the crystal by hydrogen bonds N(3)-H . . . C1=3.26(2) A and N(2)H... C1=3.23(2) A, thus forming layers parallel to (102). Weak contacts N(1). . . N(4)=3.15(3) 8, join the layers to one another.
Acknowfedgmenf. The Ricerche, Rome, is kindly port.
/\
u 0.0000 A 0.0075 0.0247 0.0264 0.0245 0.0297 0.0369
Consiglio Nazionale thanked for financial
delle sup-
(8) A. Mitschler, 1. Fischer and R. Weiss, Acra Crysr., 22, 236 11967) (9)’ L. Cavalca, P. Domiano, G. Fava Gasparri and P. Boldrini, Acla Crysf., 22, 878 (1967). (10) D. A. Betta, W. A. Spofford 111, P. Boldrini and E. L. Chem., 9, 136 (1970). Amma, Inorg. (II) N. R. Kunchur and M. R. Truer, /. Chem. Sot., 517, 2551 (1958). (12) R. L. Collin and W. N. Lipscomb, Ada Cryst., 4, 10 (1951). (13) A. Ferrari. A. Braibanti, G. Bigliardi and A. M. Lnnfredi. Ada Crysl., 18, 367 (1965). (14) G. D. Andreetti. P. Domiano, G. Fava Gasparri, M. Nardelli. and I’. Sgarabotto, Acfa Crysf., 826. 1005 (1970).