The crystal structure of 1-m-chlorophenoxysilatrane

The crystal structure of 1-m-chlorophenoxysilatrane

315 Journal of Organometallic Chemistry, 232 (1982) 3X-323 Elsevier Sequoia S-A., Lausanne -Printed in The Netherlands THE CRYSTAL STRUCTURE OF l-...

439KB Sizes 6 Downloads 81 Views

315

Journal of Organometallic Chemistry, 232 (1982) 3X-323 Elsevier Sequoia S-A., Lausanne -Printed in The Netherlands

THE CRYSTAL

STRUCTURE

OF l-m-CHLOROPHENOXYSILATRANE

L. PARKANY Central Research Institute of Chemisfry of the Hungarian Academy POB. 17, H-l 525 (Hungary)

of Sciences, Budapest-l 14,

P. HENCSEI and L. BIHATSI Institute of Inorganic Chemistry. Polytechnical

University, Budapest H-l 521 (Hungary)

(Received January lSth, 1982)

The pentavalent silicon in the title compound is coordinated by four oxygen atoms. The N-tSi dative bond is rather short (2.079(2) A). The crystal structure is partially disordered: carbon atoms attached to nitrogen appear on both sides of the Si-O(eq)<, N plane with a population of 0.8 and 0.2, respectively. The change of the configuration around silicon and nitrogen, as a function of the N-tSi dative bond length, is reviewed for several silatrane structures. Structural data suggest that different extents of the distortion of the trigollal bipyramid around silicon for the various compounds may represent stages along the pathway of the E&a-type reaction =Si-X + HN= + si-NE.

Introduction The crystal structure of 1-mchlorophenoxysilatrane is of special interest because the pentavalent silicon is coordinated by four oxygen atoms; three of them in equatorial positions and one in an apical position. Because of the electron-withdrawing nature of the mchlorophenoxy substituent the N+Si dative bond was also expected to be short [l]. Experimental 1-m-Chlorophenoxysilatrane was prepared as described by Voronkov et al. 121. Yield: 57.0%. Anal. Found: C, 47.45; H, 5.44; N, 4.66; Si, 9.30; C12H16ClNQ4Si calcd.: C, 47.76; H, 5.34; N, 4.64; Si, 9.31%. M.p. 243-245°C. ‘HNMR data (ppm/TMS): 3.90 t (OCH,); 2.92 t (NCH,).

0022-328X/82/0000-0000/$02.75

0 1982 Elsevier

SequoiaS-A.

322

L

1

2.0

1

2.2

I

,

2.4

!

1

2.6

I

1

2.8

I

L

3.0

1

N...Sl.g

1

3.2

Fig_ 3. The distance of silicon from the plane of the equatorial atoms (ASi) and the distance of nitrogen from the plane of the neighbotig carbon atoms (AN) plotted against the N---Si approach. The dashed line refers to dioxaazasllacyclooctane data.

sion coefficient R = 0.989, for AN data: AN = -0.385d(Si-N) + 1.200, R = 0.966. The distortion of the tetrahedron around nitrogen is probably induced by the geometric strains of the (usually) ethoxychains. When the three-fold coupling is not achieved (cf. the relevant data for the related bicyclic compounds, dioxa azasilacyclooctanes, in Table 5) no such correlation may be established for AN. Three of the six dioxaazasilacyclooctane molecules have N---Si approaches longer than 3.0 8, and such a separation excludes the existence of any kind of bonding between silicon and nitrogen. The molecular structures indicate, however, that the lone pair of the nitrogen atom still points towards the silicon atom. Thus a correlation, similar to the tricyclic compounds, seems to hold for the stereochemistry of silicon (ASi = 0.331d(Si-N) - 0.542, R = 0.978) showing that such a correlation is not accidental. The changes in the stereochemistry of silicon in silatranes as a function of the N---Si approach may be suggestive of the geometrical changes undergone by a molecule in a chemical reaction (cf. [ 26,271). Silatranes and related compounds may serve as examples of the geometric changes that take place in an Sn2-type ligand-exchange reaction ZSi-X + HN= + GSi-N= with the various crystal structures representing different stages along the reaction coordinate. References L. P5zk5nyi. P. Hencsei and E. Popowaki. J. Organometal. Chem.. 179 (1980) 275. M-G. Voronkov and G-L Zelchan. Khim. Geteroc. Soed.. (1966) 611. P. Main (Principd author), S.E. Hull, L. Lessinger. G. Germain. J.-P. Declercq and M.M. Woolfson, MULTAN 78. A System of Computer Pzo gmmmes for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. J-A. Ibera and W-C. Hamilton (Eda.). International Tables for X-zay Crystallography. Vol. 4. The Kynoch Press. Birmingham. England. 1974. A-A. K-e. YaYa. Bleidelis. V.A. Pestunovich. V.P. Bsryshok and M.G. Voronkov. Dokl. Akad. Nauk SSSR, 243 (1978) 688.

323 6 J-W. Turley and F.P. Boer. J. Amer. Chem. Sot.. 90 (1968) 4026. 7 GA. Dyachenko, L-0. Atovmyan. S.M. AIUdoshin. T.L. Krasnova. V-V. Stepanov. Ye.A. Chemyshev. A-G. Popov and V.V. Antipova. Izv. Akad. Nauk SSSR. Ser. Khim.. (1974) 2648. 8 A. Kemme. J. Bleidelis. I. Solomennikova. G. Zelchan and E. Lukevics. J.C.S. Chem. Comm.. (1976) 1041. 9 L. P&rkdnyi. J. Nagy and K. Simon. J. 0rganomete.i. Chem.. lOl(1975) 11. 10 P. Hencsei and L. P&&&r&. K&n. K&i.. 54 (1980) 252. 11 J-W. Turley and F-P. Boer. J. Amer. Chem. Sot.. 91 (1969) 4129. 12 A.A. Kemme. Ya.Ya. Bleideiis. V-M. Dyakov and M-G. Voronkov. Zh. Strukt. Khim.. 16 (1975) 914. 13 M-G. Voronkov. M.P. Demidov. V.E. Sbklover. V-P. Baryshok. V.M. Dyakov and Yu.L_ Frolov. Zh. Strukt. Khim.. 21 (1980) 100. 14 E.A. Zelbst. V.E. Shkiover. Yu.T. Struchkov. A.A. Kashayev. M.P. Demidov. L-1. Gubanova and M-G. Voronkov. Doki. Akad. Nauk SSSR. 260 (1981) 107. 16 L. Ptik&yi. K. Simon and J. Nagy. Acta Cry&. B30 (1974) 2328. 16 L. P&rkz%nyi. L. Bih&si and P. Hencsei. Cryst. Struct. Commun.. 7 (1978) 436. 17 A.A. Kemme. Ya.Ya. Bleidelis. V.M. Dyakov and M.G. Voronkov. Izv. Akad. Nauk SSSR. Ser. Khim.. (1976) 2400. 18 Ya.Ya. Bleideiis and A.A. Kemme. Proc. IIIrd Intern. Seminar Cryst. Chem. of Coord. and Organometai. Compounds, Trzebieszowice. 1977. p. 116. 19 A.A. Kemme. Ya.Ya. Bleideiis. G-1. Zelchan. 1-P. Urtane and E.Ya. Lukevics. Zh. Strukt. Khim.. 18 (1977) 343. 20 F.P. Boer and J-W. Turley. J. Amer. Chem. Sot.. 91 (1969) 4134. 21 F-P. Boer. J.W. Turley and J.J. Flynn. J. Amer. Chem. Sot.. 90 (1968) 5102. 22 G.R. Scoiiary, Aust. J. Chem.. 30 (1977) 1007. 23 0-A. Dyachenko. L.O. Atovmyan. S.M. Aldoshin. N-G. Komelenkova. A.G. POPOV.V-V. Antipova and Ye-A. Chemyshev. Izv. Akad. Nauk SSSR. Ser. Khhn.. (1975) 1081. 24 J.J. Daly and F. Sam. J. Chem. Sot. Dalton, (1974) 2051. 25 A. Kemme. J. Bleidelis. I. U&me. G. Zelchau and E. Lukevics. J. Organometai. Chem.. 202 (1980: 115. 26 H-B. Biirgi. J.D. Dunitz and E. Shefter. J. Amer. Chem. Sot.. 95 (1973) 5065. 27 H.B. Biirgi, Inorg. Chem.. 12 (1973) 2321.