The dingle factor for quantum oscillations in the thermal magnetoresistance of tin

The dingle factor for quantum oscillations in the thermal magnetoresistance of tin

Volume36A, number 5 PHYSICS DINGLE THE FACTOR THERMAL FOR LETTERS QUANTUM 27 September 1971 OSCILLATIONS MAGNETORESISTANCE OF IN THE TIN...

98KB Sizes 1 Downloads 58 Views

Volume36A, number 5

PHYSICS

DINGLE

THE

FACTOR

THERMAL

FOR

LETTERS

QUANTUM

27 September 1971

OSCILLATIONS

MAGNETORESISTANCE

OF

IN THE

TIN

R. C. YOUNG

Department of Physics, University of Birmingham, Birmingham, UK Received 14 August 1971

The field dependence of amplitude of the oscillatory thermal magnetoresistance of tin exhibits a subsidiary zero at a field proportional to the temperature, in contrast to electrical magnetoresistance. A theory developed to explain this gives m* = 0.120 mo for orbit 36.

A s t r i k i n g f e a t u r e of the m a g n e t o r e s i s t a n c e of tin is the l a r g e amplitude s i n u s o i d a l quantum o s c i l l a t i o n s which o c c u r w h e n / t is a p p r o x i m a t e l y 23 ° f r o m the c - a x i s , due to the c l o s i n g of open o r b i t s by m a g n e t i c breakdown. We have a l r e a d y shown [1] that the field and t e m p e r a t u r e dependence of the a m p l i t u d e of these o s c i l l a t i o n s is d e s c r i b e d by the usual Dingle [2] factor. In this p a p e r we r e p o r t the field and t e m p e r a t u r e d e pendence of the equivalent o s c i l l a t i o n s in the t h e r m a l m a g n e t o r e s i s t a n c e which we find to e x hibit quite a different behaviour to the o s c i l l a tions in e l e c t r i c a l r e s i s t a n c e . We d e r i v e a "Dingle f a c t o r " for o s c i l l a t o r y t h e r m a l r e s i s t a n c e , which we c o m p a r e with the e x p e r i m e n t a l results. Fig. 1 shows graphs of lOgl0(A/-/) v e r s u s I / H ,

2[

T=1.32°K

w h e r e A is the amplitude of the quantum o s c i l lations, for both the e l e c t r i c a l and t h e r m a l r e s i s t a n c e s . The graph for e l e c t r i c a l r e s i s t a n c e is a p p r o x i m a t e l y a s t r a i g h t line, as we have p r e v i o u s l y r e p o r t e d [1]. By c o n t r a s t , the t h e r m a l r e s i s t a n c e exhibits a deep m i n i m u m , at which the amplitude is u n m e a s u r a b l y s m a l l . This m i n i m u m o c c u r s at a field which v a r i e s l i n e a r l y with t e m p e r a t u r e as shown in fig. 2; for e x p e r i m e n t a l r e a s o n s we have a c t u a l l y plotted 1/T v e r s u s the 1/H value at the m i n i m u m . In the i m p u r i t y s c a t t e r i n g r e g i m e , the t h e r m a l conductivity t e n s o r is given by [3]

Kij =--fe2 T a/j(e)(E- eF )2

de,

where aij(e) is the e l e c t r i c a l conductivity of e l e c t r o n s of e n e r g y e. We make the a s s u m p t i o n a l r e a d y s u c c e s s f u l l y used for e l e c t r i c a l r e s i s t ance in ref.[1], that ayy is the only component to exhibit quantum o s c i l l a t i o n s , via a t e r m p r o p o r t i o n a l to -(b cos ~ ) / H 2, where b = exp (-2~2kT/hwc) and ~ = hA (e)/eH. A(e) is the

0.8 [ OK-I

T

4

°

.

.

$

6

7

/I

9 XIO-SG-I

Fig. 1. Experimental values of logl0(AH), plotted v e r sus l / H , for oscillations in the e l e c t r i c a l magnetoresist~nee (circles) and t h e r m a l magnetoresismnce (crosses). The solid lines are the predictions, based on setting the 1 / H v a l u e of the m i n i m u m to experiment and adjusting T ' t o give the best fit to both sets of data.

5

(I/.)MiN

6

7X10-5G'-I

Fig. 2. The inverse temperature plotted versus the

1/H value at which the amplitude of the oscillatory

thermal magnetoresistance passes through zero. 355

Volume 36A, number 5 a r e a in k - s p a c e of the o r b i t p a n d i n g A(e) about e F g i v e s f o / H + 2n(e - eF)/h¢o c. T h u s p e r a t u r e d e p e n d e n c e of Kyy b c o s (fo/H) /o

PHYSICS of e n e r g y ~, E x ~ = the f i e l d and t e m is g i v e n by

cos[F2~(e- 6F)?J

%leo

de

w h i c h is r e a d i l y i n t e g r a t e d to g i v e

LETTERS

27 September 1971

t e m p e r a t u r e , in a g r e e m e n t with fig. 2. T h e s o l i d l i n e s of fig. 1 a r e c a l c u l a t e d l o g l 0 ( A H ) v e r s u s 1 / H p l o t s , the p o s i t i o n of the m i n i m u m in the t h e r m a l a m p l i t u d e b e i n g s e t to the e x p e r i m e n t a l p o s i t i o n and the v a l u e of T* b e i n g c h o s e n to g i v e l i n e s w h i c h b e s t s i m u l a t e both the e l e c t r i c a l and t h e r m a l r e s u l t s . F r o m the s l o p e of the g r a p h in fig. 2 it is p o s s i b l e to d e r i v e the c y c l o t r o n m a s s , and the v a l u e found ( 0 . 1 2 0 + 0 . 0 0 5 ) rn o is in a g r e e m e n t with c y c l o t r o n r e s o n a n c e [4].

- (bk 2 T/H2) c o s (fo/H) d2D/da 2 , w h e r e D (=av/sinh av) is j u s t the u s u a l D i n g l e f a c t o r f o r r e s i s t a n c e o s c i l l a t i o n s and a = 2v2kT/hw c. F o l l o w i n g r e f . [1], and a s s u m i n g the W e i d e r m a n n - F r a n z law f o r n o n - o s c i l l a t o r y t e r m s , the f i e l d and t e m p e r a t u r e d e p e n d e n c e of Pxx i s g i v e n by -(b/T) c o s (fo/H)(d2D/da2). B e s i d e s f a l l i n g to z e r o when a b e c o m e s i n f i n i t e , d2D/da 2 a l s o p a s s e s t h r o u g h z e r o at ~a = 1.62, thus p r e d i c t i n g that the a m p l i t u d e f a l l s to z e r o at a f i e l d w h i c h is p r o p o r t i o n a l to the

356

T h e a s s i s t a n c e of M r . J. K. H u l b e r t in s p e c i m e n p r e p a r a t i o n and an e q u i p m e n t g r a n t f r o m t h e S. R. C. a r e g r a t e f u l l y a c k n o w l e d g e d .

References [1] R.C. Young, J. Phys. C4 (1971) 474. [2] R.B. Ding[e, Proc. Roy. Soe. A211 (1952) 517. [3] J. M. Ziman, Principles of the theory of solids (Cambridge University P r e s s , 1964) p. 196. [4] M. S°Khaikin, Soviet Phys. J E T P 15 (1963) 18.