The effect of light quality on growth of lettuce

The effect of light quality on growth of lettuce

The  effect  of  light  quality  on  growth  of  lettuce     Yuta  SAITO*,  Hiroshi  SHIMIZU**    Hiroshi  NAKASHIMA***,  Juro  MIYASAKA****,  Katsuak...

534KB Sizes 6 Downloads 38 Views

The  effect  of  light  quality  on  growth  of  lettuce     Yuta  SAITO*,  Hiroshi  SHIMIZU**    Hiroshi  NAKASHIMA***,  Juro  MIYASAKA****,  Katsuaki  OHDOI*****   

*  Graduate  student,  Graduate  School  of  Agriculture,  Kyoto  University,  Sakyo-­ku,  Kyoto  606-­8502,  Japan   (  e-­mail:  [email protected]­u.ac.jp,  Tel:81-­075-­753-­6165)     **  Professor,  Graduate  School  of  Agriculture,  Kyoto  University,  Sakyo-­ku,  Kyoto  606-­8502,  Japan   (e-­mail:  [email protected]­u.ac.jp.)     ***  Associate  Professor,  Graduate  School  of  Agriculture,  Kyoto  University,  Sakyo-­ku,  Kyoto  606-­8502,  Japan   (e-­mail:  [email protected]­u.ac.jp)   ****  Assistant  Professor,  Graduate  School  of  Agriculture,  Kyoto  University,  Sakyo-­ku,  Kyoto  606-­8502,  Japan   (e-­mail:  [email protected]­u.ac.jp)   *****  Assistant  Professor,  Graduate  School  of  Agriculture,  Kyoto  University,  Sakyo-­ku,  Kyoto  606-­8502,  Japan    (e-­mail:  [email protected]­u.ac.jp)   Abstract:   Plant   factory   is   a   plant   production   system   with   controlled   temperature,   carbon   dioxide   concentration  and  light  environment  to  enhance  plant  growth  efficiently.   Fluorescent   lamp  is  popularly   used  in  a  plant  factory,  however,  the  spectrum  of  fluorescent  light  is  broad  and  some  portion  of  them  is   not  necessary  for  photosynthesis.  On  the  other   hand,  LED  (light  emitting  diode)  has  narrow  band  width   and  is  getting   easy  to  use  these   days.  The  final  goal  of  this  project  is   to   develop  a  new  light   apparatus   with  LEDs  for  plant  factory.  The  specific  objective  is  to  investigate  the  effective  light  quality  for  growing   plant  more  rapidly.  The  effect  of  light  generated  by  monochromic  and  mixed  radiation  from  LEDs  (blue,   green,  red)  on  the  response  of  lettuce  (Lactuca  sativa  L.)  were  evaluated  and  compared  with  the  effect  of   lettuce  irradiated  by  fluorescent  lamps.  Photosynthesis  rate  of  lettuce  increased  in  monochromic  red  light   and   the   light   mixed   with   red   and   blue   light.   Number   of   leaves   decreased   in   monochromic   blue   light.   Fresh   weight  of  lettuce   was  increased  in   monochromic  red  and   fluorescent  light,  but   monochromic  red   light   significantly   decreased   dry   weight   rate.   In   the   view   of   energy   saving,   LED   is   much   better   than   fluorescent  lamp.  Especially,  red  LED  is  good.     Keywords:  plant  factory,  light  quality,  carbon  dioxide  concentration,  light  intensity,  morphogenesis,  fresh   weight,  LED     

1.  INTRODUCTION   Agriculture   and   food   issues   are   getting   known   widely.   For   example,   residual   agricultural   chemicals,   poor   harvest   by   abnormal   weather   conditions   are   often   heard   all   over   the   world.   Especially  in  Japan,   there   are  other  problems  such  as   the   increase   of   imported   foods   and   the   decrease   of   farmers.   Plant   factory   is   expected   to   be   one   of   the   ways   to   solve   the   issues.   The   plant   factory   is   controlled   inside   environment   such   as   lighting,   temperature,   carbon   dioxide   concentration   and   cleanliness   to   enhance   plant   growth   effectively.   That   is   why  plant  factory  can  produce  a  lot  of  safe  vegetables  in  spite   of  season  or  weather.  However,  the   initial  and  running  costs   for   environmental   control   are   very   expensive.   These   problems   prevent   a   plant   factory   from   spreading   widely.   In   running   cost,   the   cost   of   lighting   for   plant   growth   is   one   of   the  large  portions.   Recently  a  light  emitting  diode  (LED)   is  spreading  as  a  new   light   source.   A   LED   has   good   life   performance,   energy-­ saving   ability   and   various   and   narrow   bandwidth   of   wavelength.   Combining   several   LEDs   with   different   bandwidth  enables  to  produce  many  kind  of  light  quality.  The   effects   of   light   qualities   on   the   growth   and   development   of   plant   have   been   studied   for   a   long   time.   Red   light   promotes  

 

       

germination   and   photosynthesis   (Flint   and   McAllister   1937;;   Balegh   and   Biddulph   1970).   Blue   light   effects   stomatal   opening  and  chloroplast  development  (Takemiya  et  al.  2007;;   Akoyunoglou   and   Anni   1984).   Green   light   slows   down   or   stop   the   plant   development,   but   it   brings   positive   effects   in   special  conditions  (Folta  2004,  2007;;  Terashima  et  al.  2009).   In   many   plants,   it   has   been   studied   that   the   absorbance   of   leaves   and   the   quantum   yield   of   photosynthesis   concerning   various   wavelength.   We   may   produce   an   optimum   light   quality   for   plant   growth   by   combining   the   LED¶s   characteristic  of  light  quality  with  researches  of  plant  growth.   In   fact,   photosynthesis   rate   and   growth   rate   of   plant   grown   under  LED  were  reported  (Mori  and  Takatsuji  2000,  Mori  et   al.  2002).    The  final  goal  of  our  study  is   to  improve  lighting  apparatus   for   plant   factories   to   spread   them   widely.   So   the   specific   objective   of   this   research   is   to   investigate   the   best   light   qualities   for   plant   growth   by   examining   photosynthesis   rate   and   growth   response   of   lettuce   (Lactuca   sativa   L.)   radiated   by  LEDs  and  fluorescent  lamps.  

   

  h/d  light  period  and  25  °C  in  light  period  and  18   °C  in  dark   period.   Table  1.  Light  intensity  rates  of  blue,  green  and  red  LEDs  for   five  light  qualities  using  LED  systems  (%)  

 

 

Blue  LED  

Green  LED  

Red  LED  

R  

0.0  

0.0  

100.0  

RB  

16.7  

0.0  

83.3  

B  

100.0  

0.0  

0.0  

SL-­L  

33.4  

33.9  

32.7  

FL-­L  

29.8  

39.6  

30.7  

Fig.  1.  Developed  LED  system   2.3    Hydroponics   Nutrient   solution   pools   of   hydroponics   were   consisted   of   culture   bed   (730   wide   mm   ×   665   length   mm   ×   170   height   mm)   covered   tarpaulin   and   culture   panel.   The   quantity   of   nutrient   solution  in   the  pools  was   maintained  even  by  pump   and   overflows.   Nutrient   solution   was   kept   pH   5.9±0.2,   EC   2.00±0.10   by   fertilizer   controller   (CEMCO)   with   acidity   regulator  (Otsuka)  and  fertilizers  (Otsuka).     Fig.  2.  Spectrums  of  LEDs:  Blue,  Green  and  Red   were  used   in  this  research.   2.  MATERIALS  and  METHODS   2.1    Light  Source   We   used   two   light   sources.   One   was   a   fluorescent   lamp   (FLR20S・W/M,   TOSHIBA),   the   other   was   a   LED   system.   The  LED  system  was  consisted  of  blue,  green  and  red  LEDs   (LUXEON  Rebel,  Philips  Lumileds)  and  condenser  lenses  as   shown   in   Figure   1.   Each   spectrum   of   LEDs   is   shown   in   Figure   2.     Photosynthetic   photon   flux   density   (PPFD)   from   LEDs  system  can  be  controlled  by   adjusting  currents   from  a   DC  power  supply.   2.2    Plant  Materials  and  Growth  Condition   Lettuce   (Lactuca   sativa   L.   cv´Greenwave´,   Takii   Seed   Co.,   Ltd.)  plants  were  grown  in  urethane  sponge  with  water  under   fluorescent   lamps   for   one   week.   PPF   of   fluorescent   lamps   was   set   at   200   µmolm-­2s-­1.   After   one   week,   lettuce   plants   were   transplanted   to   hydroponic   system.   We   conducted   two   experiments   namely   photosynthesis   rate   measurement   and   growth   experiment.   In   photosynthesis   rate   measurements,   transplanted  plants  were  grown  under  fluorescent  lamps  for  a   month  (11/26-­12/27,  2009).  In  growth  experiment,  they  were   grown   under   six   light   qualities   from   fluorescent   lamps   and   LED  systems  for  four  weeks.  All  of  the  plants  were  grown  in   a  growth  chamber  (KCLP-­1000ⅠCT,  NKsystem)  set  at  a  16  

 

       

2.4    Light  Quality    In   photosynthesis   measurement   and   growth   experiment,   six   light  qualities   were   used.  One   was   fluorescent   light  (FL)  set   by  fluorescent  lamps  and  the  others  were  set  by  LED  systems.   The   light   qualities   set   by   LED   systems   were   monochromic   red   light   (R),   monochromic   blue   light   (B),   the   light   mixed   with  red  and  blue  light  (RB),  the  light  imitating  sunlight  (SL-­ L),  the  light  imitating  fluorescent  lamp  light  (FL-­L).  Table  1   shows  light  intensity  rates  of  blue,  green  and  red  LEDs  about   these  five  light  qualities.  We  referred  to  the  spectrum  data  of   sunlight   (Air   Mass   1.5:   ASTM   G173,   NREL)   and   a   fluorescent   lamp   (FLR20S・W/M,   TOSHIBA)   to   set   SL-­L   and  FL-­L.    This   paragraph   explains   the   reasons   why   we   used   these   six   light  qualities.  Fluorescent  lamps  are  popularly  used  in  plant   factories,  so  FL  was  used  to  reproduce  plant  growth  in  plant   factories.   R   was   used   because   it   was   reported   that   monochromic   red   light   irradiation   showed   the   highest   photosynthesis   rate   in   many   monochromic   light   irradiations   (Balegh   and   Biddulph   1970;;   Björkman   1973).   Previous   research  reported  dry  weight  of  plant  grown  increased  in  blue   light  (Hirai  et  al.  2006).  That  is  why  B  was  used.  For  RB,  it   was   reported   that   the   light   mixed   with   red   and   blue   light   promoted   plant   growth   and   photosynthesis.   To   reproduce   plant   growth   in   sunlight   which   plants   have   adapted,   SL-­L   was   used.   FL-­L   was   used   to   research   the   effect   of   the   light   which  removing  ultraviolet  and  infrared  rays  from  fluorescent   light.      

 

Photosynthesis  rate   (µmol  m-­2  s-­1)

   

treatment   was   lower   than   that   of   RB   treatment   (Mori   and   Takatsuji   2000).   But   our   result   was   opposite   of   previous   result.   It   could   be   due   to   the   difference   plant   specie,   experiment   environment   and   growth   condition.   The   photosynthesis   rates   under   SL-­L,   FL-­L   and   FL   were   not   so   different.   This   could   be   due   to   little   difference   among   their   light  qualities.  In  spite  of  light  intensity  or  CO2  concentration,   the   result   that   the   highest   photosynthesis   rate   was   in   R,   followed   in   RB   and   in   the   others   in   this   order   was   not   changed.  

9 8 7 6 5 4 3 2 1 0 R

RB

B

SL-­L

FL-­L

FL

Fig.   3.   Relation   between   light   qualities   and   photosynthesis   rates:  This  data  was  measured  in  the  case  when  light  intensity   was  set  at  200  ρ‘Žିଶ • ିଵ  and  CO2  concentration  was  set  at   600  ppm.   2.5    Photosynthesis  Rate  Measurement   LI-­6400   (LI-­COR)   was   used   for   photosynthesis   rate   measurement.  Plant  leaf  was  fastened  with  a  leaf  chamber  of   LI-­6400  whose  CO2  concentration  set  at  400  ppm  and  applied   one  light  quality  whose  light  intensity  was  set  at  300  µmolm-­ 2 -­1 s   for   an   hour.   After   confirming   photosynthesis   rate   was   stable,  the   measurement   was   started.  The  light  intensity   was   set  at  300  (250  in  FL)  µmolm-­2s-­1  at  first,  followed  200,  150,   100,   80,   60,   40,   20,   10   µmolm-­2s-­1.   In   each   light   intensity,   CO2   concentration  was  set  from  0  ppm  to  1500  ppm  per  100   ppm   and   photosynthesis   rate   was   measured   and   stored   at   every  condition.   After   measurement   was   completed   to   10   µmolm-­2s-­1,   light   quality   was   changed   to   the   next   and   the   same   measurement   procedure  was  repeated.  In  all  measurement,  the  same  area  of   the  same  leaf  of  the  same  plant  was  used.   2.6    Growth  Experiment  

3.2    Growth  Experiment   3.2.1  Number  of  leaves   Figure  4  shows  the  relation  between  light  quality  and  number   of   leaves.   Large   standard   errors   can   be   seen   in   R   and   FL   treatments.   Plants   grown   under   R   treatment   had   long   leaves   and   petioles,   so   that   overlapping   of   leaves   happened.   The   overlapping  makes  difference  to  the  light  quantity  supplying   plants   and   plant   growth   like   number   of   leaves.   The   light   intensity  of  the  FL  treatment  is  different  among  transplanted   spots   because   the   light   intensity   of   fluorescent   lamp   decreases   near   edge   of   the   lamp   tube.   It   could   cause   the   difference   of   individual   growth   under   FL.   Other   light   qualities  happened  less  overlapping  of  leaves  than  R  and  had   the   same   light   environment   among   individuals   because   light   sources  set  right  above.  So   standard  errors  in  their  treatment   were  significantly  low.   Number   of   leaves   was   increased   in   SL-­L   and   significantly   decreased   in   B.   Plants   grown   in   SL-­L   treatment   had   more   new   and   small   leaves   than   others.   Decreasing   leaves   of   lettuces  grown  under  blue  light  has  been  reported  previously   (Hirai   et   al.   2006).   This   research   reported   that   the   effect   of   blue  light  on  decreasing  leaves  has  the  significant  difference   among   monochromic   blue,   blue-­green,   green   and   red   light   treatment.   And   in   our   research,   this   effect   of   blue   light   has   the   significant   difference   among   B,   R,   RB,   SL-­L,   FL-­L   and   FL   treatment.   From   these   researches,   it   is   considered   that   blue  light  could  decrease  number  of  leaves  and  green  and  red   lights  could  suppress  this  decreased  effect  of  blue  light.  

Number of leaves (leaves/plant)

This   experiment   had   six   treatments   with   six   light   qualities.   One   treatment   with   nine   plants   was   considered   as   a   replication.  But  one  plant  in  R  treatment  and  two  plants  in  FL   treatment   were   not   grown   well,   so   they   were   removed   in   replications.   Growth   responses   were   determined   to   measure     fresh  weight,  dry  weight  and   number  of  leaves  per  plant.  To   compare  the  costs,  we  measured  electric  power  consumptions.   The   number   of   leaves   was   measured   all   leaves   contained   dead  or  very  small  new  leaves.  The  dry  weight  was  measured   after  drying  the  samples  in  a  hot  air  oven  at  70  °C  for  4  days.   3.  RESULTS  and  DISCUSSIONS   3.1    Photosynthesis  Rate  Measurement   Figure   3   shows   the   relation   between   light   quality   and   photosynthesis   rate.   Photosynthesis   rate   increased   in   monochromic   red   light   (R)   and   RB.   These   light   qualities   contained  more  red  light  than  others,  so  it  was  considered  that   red   light   could   promote   photosynthesis.     This   response   has   been   reported   previously   in   many   species   (Emerson   and   Lewis   1943;;   Balegh   and   Biddulph   1970;;   Björkman   1973).   Another   research   reported   that   photosynthesis   rate   of   R  

 

       

25.0 20.0 15.0 10.0 5.0 0.0 R

RB

B

SL-­L

FL-­L

FL

 

Fig.  4.  Relation  between  light  quality  and  number  of  leaves:   Each  value  is  the  mean  ±  standard  errors  of  replications.  

   

 

80 60 40 20

0 R

RB

B

SL-­L FL-­L

FL

 

2.5

140 Production efficiency (g/W)

2

120

Power consumption (W)

100

1.5

80

1

60 40

0.5

20

0

Power consumption (W)

Production efficiency (g/W)

Fresh weight (g)

100

0 R

B

FL

 

Fig.  5.  Relation  between  light  quality  and  fresh  weight:  Each   value  is  the  mean  ±  standard  errors  of  replications.  

Fig.   7.   Relation   among   light   quality,   production   efficiency   and  electric  power  consumption  

3.2.2  Fresh  weight  and  Dry  weight  

It   is   considered   R   treatment   could   suppress   dry   matter   production   for   fresh   weight.   We   think   the   reason   why   dry   weight   rate   decreased   in   R   could   be   a   bad   plant   posture   of   light  absorption  caused  by  overlapping  of  leaves  and  hanging   down  leaves.  Figure  6  also  shows  that  the  higher  rate  of  red   light   a   light   quality   had,   the   less   dry   weight   of   plant   grown   under  the  light  quality  became.  

We   measured   fresh   and   dry   weight   of   plant   parts   above   a   culture   panel.   Figure   5   shows   the   relation   between   light   quality   and   fresh   weight.   Large   standard   errors   of   fresh   weight  can  be  seen  in  R  and  FL  treatments.  It  was  caused  by   the   difference   of   competition   or   light   environment   among   individuals   as   seen   in   number   of   leaves.   Since   plant   photosynthesizes  to  grow  up,  it  is  considered  the  light  quality   which   shows   high   photosynthesis   rate   produces   heavy   fresh   weight  of  plant.  In  fact,  photosynthesis  rate  and  fresh  weight   under   five   light   qualities   set   by   LED   system   were   highly   correlated  (R2  =  0.80ሻ.  Fluorescent  lamps  had  wider  radiation   range  than  LED  systems  had.  It  could  occur  that  plants  under   FL  treatment  had  big  fresh  weight  for  photosynthesis  rate.    

Dry weight rate (%)

Dry   weight   had   big   difference   among   individuals.   Figure   6   shows   the  relation  between  light  quality  and  dry   weight  rate   which   means   dividing   dry   weight   by   fresh   weight.   Dry   weight   rate   had   small   difference   among   individuals.   Small   amount  of  dry  weight  rate  increased  in  FL  and  B  and  reduced   in   R.   It   was   reported   that   lettuce   grown   under   red   light   had   the  smallest  dry  weight  among  that  under  monochromic  blue,   blue-­green,   green   and   red   light   (Hirai   et   al.   2006).   In   our   research,  plant  in  R  treatment  had  as  big  dry  weight  as  that  in   B   treatment   had.   This   result   was   different   from   previous   research,  but  dry  weight  rate  was  much  lower  in  R.    

Figure   7   shows   the   relation   among   light   quality,   production   efficiency   and   electric   power   consumption.   Production   efficiency   means   dividing   average   fresh   weight   by   electric   power   consumption.   R   and   B   treatment   using   LED   systems   had   much   lower   power   consumption   and   higher   production   efficiency  compared  to  FL.  Production  efficiency  of  B,  which   was   the   smallest   in   that   of   other   light   qualities   using   LED   systems,   was  about  1.8  times  higher  than  that  of  FL.   One  of   the   most   important   reasons   of   this   result   could   be   the   difference   of   energy   saving   ability   between   LEDs   and   fluorescent   lamps.   On   the   other   hand,   the   large   difference   among   light   qualities   using   LEDs   was   also   observed.   Production   efficiency   of   R   treatment   was   about   1.7   times   higher  than  that  of  B  treatment.  This  difference  was  because   red   light   has   lower   power   consumption   than   blue   light.   However,   power   consumption   differs   from   light   sources,   so   this  data  is  one  of  examples.  

5

4.  CONCLUSIONS  

4

2

In   conclusion,   monochromic   red   light   might   be   the   most   effective   for   photosynthesis   and   growth.   However,   monochromic  light  also  makes  plant  shape  bad  and  the  plant   is  worthless  as  a  product.  To  improve  plant  shape,  plant  must   be  radiated  mixture  light.    

1

REFERENCES  

0

Akoyunoglou,   G.   and   Anni,   H.   (1984).   Blue   light   effect   on   chloroplast   development   in   higher   plants.   In   Senger   H   (ed.),   Blue   light   effects   in   biological   systems,   397-­406.   Springer-­Verlag,  Berlin.   Balegh   SE.   and   Biddulph   O.   (1970).   The   Photosynthetic   Action  Spectrum  of  the  Bean  Plant.  Plant  Physiol.,  46,  1-­ 5     Björkman  O.  (1973).  Comparative  studies  on  photosynthesis   in  higher  plants.  Photophysiology,  8,  1-­63  

3

R

RB

SL-­L

FL-­L

B

FL

 

Fig.   6.   Relation   between   light   quality   and   dry   weight   rate:   Light  quality  contains  more  red  light  in  order  from  left.  Each   value  is  the  mean  ±  standard  errors  of  replications.    

 

3.2.3  Comparison  of  electric  power  consumption  

       

   

 

Flint  and  McAllister.  (1937).  Wavelengths  of  radiation  in  the   visible   spectrum   promoting   the   germination   of   light-­ sensitive   lettuce   seed.   Smithsonian   Inst.   Publs.,   MIisc.   Collections,  96,  1-­8.   Folta.  (2004).  Green  Light  Stimulates  Early  Stem  Elongation,   Antagonizing   Light-­Mediated   Growth   Inhibition.   Plant   Physiology,  135,  1407-­1416.   Folta.   and   Maruhnich.   (2007)   Green   light:   a   signal   to   slow   down   or   stop.   Journal   of   Experimental   Botany,   58   (12)   3099-­3111.   Hirai   T.,   Amaki   W.,   Watanabe   H.   (2006).   Effects   of   Monochromatic   Light   Irradiation   by   LED   on   the   Internodal   Stem   Elongation   of   Seedlings   in   Eggplant,   Leaf  Lettuce  and  Sun  flower.  J.SHITA,  18  (2),  160-­166.  

 

 

       

Mori  Y.  and  Takatsuji  M.  (2000).  Influence  of  laser  and  LED   Lights   on   the   growth   of   lettuce.   The   Illuminating   Engineering  Institute  of  Japan,  33,  283-­284.   Mori   Y.,   Takatsuji   M.   and   Yasuoka   T.   (2002).   Effects   of   Pulsed   White   LED   Light   on   the   Growth   of   Lettuce.   J.SHITA,  14  (3),  136-­140.   Takemiya   A.,   Takahashi   Y.   and   Shimazaki   K.   (2007).   Leaf   Temperature   Reduction   by   Blue   Light-­dependent   Stomatal  Opening.  Cryobiology  and  Cryotechnology,  53   (1),  1-­5.   Terashima   I.,   Fujita   T.,   Inoue   T.,   Wah   S.C.   and   Oguchi   R.   (2009).   Green   Light   Drives   Leaf   Photosynthesis   More   Efficiently   than   Red   Light   in   Strong   White   Light:   Revisiting   the   Enigmatic   Question   of   Why   Leaves   are   Green.  Plant  Cell  Physiol.,  50  (4),  684-­697