The effect of ribonuclease on rat-liver parenchymal cells in suspension

The effect of ribonuclease on rat-liver parenchymal cells in suspension

BIOCHIMIE, 1973, 55, 661-670. The effect of ribonuclease on rat-liver parenchymal cells in suspension. B. V1JAYA KUMAR and P. M. BHARfiAVA. Regional...

902KB Sizes 2 Downloads 27 Views

BIOCHIMIE, 1973, 55, 661-670.

The effect of ribonuclease on rat-liver parenchymal cells in suspension. B. V1JAYA KUMAR and P. M. BHARfiAVA.

Regional Research Laboratory, Hyderabad-9, A.P., India. (16-5-1972). Summary. - - 1. Rat-liver parenchymal cells in suspension have been shown to take up ~31I-ribonuclease. 2. The nuclease taken up degrades up to 40 p. cent of the cellular RNA to acid-soluble material ; this RNA appears different from the RNA degraded by the endogenous nnclease activated on dispersion of liver tissue to a single cell suspension and incubation at 37°C. 3. The ribonuclease taken up at 28°C, partially depolymerises cellular rRNA in such a way that the overall structural integrity or the biological activity of the ribosomes not affected ; cellular tRNA activity also is not affected.

INTRODUCTION. Although certain m i c r o o r g a n i s m s such as protozoa [1, 2], yeast [3], Bacillus megaterium [4], Micrococcas lysodeikticus [5] and t h e r m o p h i l i c bacteria [6], p l a n t cells such as o n i o n root tip cells [73, a m p h i b i a n egg cells [8], and ascites t u m o u r cells [9, 10], have been r e p o r t e d to take up exogenous RNase ( ' ) , t h e r e has been no e v i d e n c e so far to suggest that n o r m a l m a m m a lians cells also can t r a n s p o r t this u b i q u i t o u s enzyme. In this paper, w e s h o w that the b a r r i e r to RNase in r a t - l i v e r p a r e n c h y m a l cells is r e m o ved w h e n l i v e r tissue is d i s p e r s e d to a single cell suspension. T h e effect of exogenous RNase on the r i b o s o m e s of the p a r e n c h y m a l cells in suspension, at 28°C, is s i m i l a r to that on isolated r i b o s o m e s in vitro [11-17] ; the r i b o s o m e s c o n t i n u e to e x h i b i t the same s e d i m e n t a t i o n c h a r a c t e r i s t i c s as those f r o m u n t r e a t e d cells, although t h e i r RNA is partially d e p o l y m e r i s e d . T h e s e r i b o s o m e s are also f u n c t i o n a l in an in vitro p r o t e i n - s y n t h e s i s i n g system. T h e tRNA of the cells is not affected by the exogenous RNase. At 37°C, at w h i c h a d o r m a n t , i n t r a c e l l u l a r nuclease is a c t i v a t e d in the l i v e r cell suspensions, the exogenous nuclease a p p e a r s to d e g r a d e to acid-soluble m a t e r i a l cellular RNA w h i c h the f o r m e r cannot. A p r e l i m i n a r y r e p o r t of a p a r t of this investigation has a p p e a r e d [18]. (*) Abbreviations : RNase, ribonuclease ; poly U, l)olyuridylic acid ; TCA, trichloroacetic acid ; MAK, methylated albumin-kieselguhr.

MATERIALS AND METHODS.

Animals. T h e s e w e r e s i m i l a r to those used e a r l i e r [19!.

Radioactive chemicals. NalZ1I w a s o b l a i n e d c a r r i e r - f r e e , in alkaline s o d i u m sulphate solution, f r o m Bhabha Atomic R e s e a r c h Centre, Bombay, India. Bovine panc r e a t i c RNase (from C. F. B o e h r i n g e r & Soehne GmbH, Mannheim, Germany, or Koch & Light L a b o r a t o r i e s , Colnbrook, Bucks, England) w a s i o d i n a t e d by the p r o c e d u r e of S e h u m a k e r :r2]. T h e i o d i n a t e d p r o t e i n w a s d i a l y s e d against w a t e r and c h r o m a t o g r a p h e d on a CM-cellulose column (1.0 X 4.0 cm) e q u i l i b r a t e d o v e r n i g h t w i t h 0.04 M acetate buffer (pH 5 . 7 ) ; u n r e a e t e d i o d i n e w a s eluted by the same buffer and the purified p r o t e i n eluted by 0.35 M NaC1 in the above buffer. I*C-Lp h e n y l a l a n i n e ( U ) and 14C-chlorella p r o t e i n h y d r o lysate(U) w e r e p u r c h a s e d f r o m the R a d i o c h e m i e a l Centre, A m e r s h a m , Bucks, England.

Other chemicals. P y r u v a t e kinase w a s a p r o d u c t of C. F. Boehringer & Soehne GmbH, and p h o s p h o e n o l p y r u v a t e of Koch & Light L a b o r a t o r i e s . Poly U w a s a gift f r o m Dr. Maxine Singer, Bethesda, Maryland, U.S.A. Other c h e m i c a l s w e r e of the same specification as e a r l i e r [19].

Preparation of liver slices and liver cell suspensions. T h i s was done as d e s c r i b e d e a r l i e r [19].

B. Vijag a K u m a r and P. M. Bhargava.

662

Incubation. L i v e r cells in s u s p e n s i o n (7-15 × 106 c e l l s / m l ; p r e p a r e d by the m e t h o d of J a c o b and B h a r g a v a E20]) or l i v e r slices (250-500 mg w e t wt.) w e r e i n c u b a t e d in 5-15 ml of Krebs o r i g i n a l R i n g e r p h o s p h a t e buffer as e a r l i e r E19~, unless o t h e r w i s e specified. T h e c o n c e n t r a t i o n in the i n c u b a t i o n m e d i u m , of RNase, w h e n used, is stated in the a p p r o p r i a t e table or figure legend.

Estimation of the uptake of RNase. T h e i n c u b a t i o n m i x t u r e was c e n t r i f u g e d and the s e d i m e n t e d c e l l s / s l i c e s w a s h e d s e v e r a l times in the cold w i t h the buffer used for i n c u b a t i o n , until the r a d i o a c t i v i t y in the last w a s h w a s less than 2 p. cent of that in the w a s h e d tissue p r e p a ration. T h e cells w e r e then suspended, a n d the slices h o m o g e n i s e d , in a k n o w n v o l u m e of water, and r a d i o a c t i v i t y estimated in an aliquot.

Isolation, estimation and fractionation of RNA. RNA w a s isolated f r o m the w a s h e d , i n c u b a t e d tissue p r e p a r a t i o n or f r o m the r i b o s o m e s d e r i v e d f r o m it, by e i t h e r TCA p r e c i p i t a t i o n (Method I) or by e x t r a c t i o n w i t h p h e n o l in the p r e s e n c e of i n h i b i t o r s of RNase (Method II), estimated and f r a c t i o n a t e d by c h r o m a t o g r a p h y on MAK and S e p h a d e x columns, c e n t r i f u g a t i o n on a sucrose d e n s i t y g r a d i e n t a n d s e d i m e n t a t i o n in an analytical u l t r a c e n t r i f u g e , as d e s c r i b e d e a r l i e r [19].

Dissociation of ribosomes. R i b o s o m e s w e r e isolated f r o m in vivo-labelled a n i m a l s f o l l o w i n g the a d d i t i o n of a s o u r c e of unlabelled, c a r r i e r ribosomes, as d e s c r i b e d e a r l i e r Z W t-

o

re

~ 6oo

Ire

/

m Z

w

[19]. T h e y w e r e dissociated by one of the follow i n g two p r o c e d u r e s : (a) they w e r e suspended, using a P o t t e r - E l v e h j e m h o m o g e n i s e r , in 0.01 M iris buffer (pH 7.4) c o n t a i n i n g 0.01 M EDTA and 0.2 M NaC1 ; or (b) they w e r e s u s p e n d e d as above in 0.01 M tris buffer c o n t a i n i n g 0.075 M KC1, dialysed o v e r n i g h t against the same buffer, and centrifuged at 3400 X g ; the s e d i m e n t was d i s c a r d e d (the d i s s o c i a t i o n of r i b o s o m e s by this p r o c e d u r e z ,-n Io a. ,v

~ ~ IOO U

so

=~

Z O U

I

I

I

IO

20

30

CONCENTRATION ( ~.9/ML)

I 4,0 OF RN0Se

F16. 2. - - Effect of concentration of 131I-RNase on its uptake by liver cells in suspension. The cells in suspension were incubated with the specified concentration of RNase (3.7 × 103 counts,; minute/itLg) for 20 minutes, washed, suspended in 2 ml of water and an aliquot plated and counted ; protein was estimated in another aliquot.

was only partial). W h e n r i b o s o m e s w e r e isolated for s t u d y i n g p o l y U - d i r e c t e d p o l y p h e n y l a l a n i n e synthesis, the p r o c e d u r e w a s the same as above e x c e p t i n g that the cell s u s p e n s i o n s w e r e p r e p a r e d f r o m u n l a b e l l e d livers and no c a r r i e r r i b o s o m e s w e r e a d d e d [19]. C a r r i e r r i b o s o m e s w e r e not a d d e d also w h e n r i b o s o m e s w e r e isolated f r o m in vivo-labelled w h o l e l i v e r tissue.

Measurement of aminoacid-acceptor activity of RNA.

U 400

T h i s w a s done a c c o r d i n g to Raj et al. [213.

uJ

= g aoo

Poly U-directed polyphenylatanine synthesis.

Z

Z

5

I0

O U

TIME (MINUTES)

15

20

Fro. 1. - - Kinetics of uptake of 131I-RNase by liver cells in suspension at 28°C. The cells in suspension were incubated with 50 l~xg of 131I-RNase (2.25 X 105 eounts/minute)/ml for various periods, washed, suspended in 2 ml of water and an aliquot plated and eounted; protein was estimated in another aliquot.

BIOCHIMIE, 1973, 55, n ° 6-7.

This w a s s t u d i e d by a slight m o d i f i c a t i o n of the m e t h o d d e s c r i b e d by A r l i n g h a u s et al. [22]. Ribosomes w e r e first i n c u b a t e d at 37°C for 60 m i n u t e s w i t h o u t the labelled a m i n o a c i d and poly U, in a total v o l m n e of 0.9-1.1 ml, c o n t a i n i n g r i b o s o m e s (11-13 A26o units) in 0.01 M tris-HC1 buffer (pH 7.4), tris (50 ~moles), KCi (100 ~moles), MgCl:~ (10 !~moles), ATP (1 ~mole), p h o s p h o e n o l pyruvate (0.5 ~moles), p y r u v a t e k i n a s e (100 .ag), pH 5

E f f e c t of R N a s e on liver cell suspensions. e n z y m e f r a c t i o n (0.1-0.2 A2s e u n i t s i n 0.15 m l ; p r e p a r e d as i n r e f . [ 2 1 ] ) ; G T P (0.2 ~tmoles), t o t a l t R N A (100 !~g ; p r e p a r e d as i n ref. [21]), a n d c o l d c a s a m i n o a c i d m i x t u r e (1 l~mole). T h e i n c u b a t e d r i b o s o m e s w e r e c e n t r i f u g e d at 105000 × g f o r 1 h o u r , w a s h e d o n c e w i t h 0.01 M tris-HC1 b u f f e r ( p H 7.4), a n d r e i n c u b a t e d f o r 40 m i n u t e s at 37°C u n d e r t h e s a m e c o n d i t i o n s as a b o v e b u t w i t h [ l ~ C ] L - p h e n y l a l a n i n e (0.2 ~ m o l e s , 5 ,uc) r e p l a c i n g

data were calculated for ( : 13.5 A26o u n i t s [23]).

663 1

mg

of

ribosomes

RESULTS.

Uptake of lsll-RNase by rat-liver parenchymal cell suspensions at 28°C. Fig. 1 d e s c r i b e s t h e u p t a k e of l a l I - R N a s e (50 ~ g / m l ) b y l i v e r cell s u s p e n s i o n s . T h e u p t a k e

TABLE I ( ' ) .

Percentage degradation of RNA to acid-soluble material on incubation of liver cells in suspension at 28°C without RNase or with varying concentrations of RNase. Concentration of RNase (~g/ml) (")

0 .............. 1 ..............

25 . . . . . . . . . . . . . . 100 . . . . . . . . . . . . . .

RNA degraded (p. cent) t0 minutes

20 minutes

60 minutes

t20 minutes

1.3 ± 2 . 0 15.7 -~- 6.0 30.8

2.2 ~ 2.0 1 7 . 1 --t- 4 . 0 41 .O 36.2

6.7 -~- 3 . 0 22.7 -~- 6.0

9.3 37.0

28.4

42.0 39.8

(*) Acid-insoluble RNA was e s t i m a t e d in the t o t a l i n c u b a t i o n m i x t u r e by Method I. Percentages are on the v a l u e for 0 hour. (**) Values for 0 a n d 1 y,g/mi are averages of 3.6 e x p e r i m e n t s a n d are followed by the s t a n d a r d deviation.

t h e c o l d a m i n o a c i d s , a n d p o l y U (100 ug) a d d e d . The mixture was precipitated with an equal v o l u m e of 10 p. c e n t T C A i n t h e p r e s e n c e of 1 m g of b o v i n e s e r u m a l b u m i n . T h e p r e c i p i t a t e w a s

was rapid in the beginning but then slowed down to r e a c h a n e a r - p l a t e a u v a l u e at 20 m i n u t e s . A s i m i l a r p a t t e r n of u p t a k e w a s o b t a i n e d w h e n l o w e r c o n c e n t r a t i o n s (5-10 ¢~g/ml) of t h e l a b e l l e d e n z y m e

TABLE II ( ' ) .

Aminoacid-acceptor activity of total RNA from liver cells in suspension incubated without RNase or with 1 ~g of RNase/ml for 20 minutes at 28°C. Specific activity of RNA (counts/minute/rag RNA)

Source of RNA

Unincubated cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cells incubated for 20 minutes without R N a s e . . . I Cells incubated for 20 minutes with 1 ~tg of RNase/ml . . . . . . . . . . . . . . . . . . .

Expt. t

Expt. 2

Expt. 3

3598 3020

3081 3793

2774 2565

2670

2672

2119

(*) The accepter a c t i v i t y was d e t e r m i n e d as described in the text. In a n y one experiment, identical a m o u n t s of various RNA to be tested were used.

w a s h e d s e v e r a l t i m e s w i t h c o l d 5 p. c e n t T C A c o n t a i n i n g a n e x c e s s of u n l a b e l l e d L - p h e n y l a l a nine, and finally with ether ; it was dissolved in 2 ml of 2 N NH~OH and an aliquot plated for m e a s u r e m e n t of r a d i o a c t i v i t y . T h e r a d i o a c t i v i t y

BIOCHIMIE, 1973, 55, n ° 6-7.

were used. The uptake increased with the conc e n t r a t i o n of R N a s e l i n e a r l y b e t w e e n 5 a n d 50 ~ g / m l (fig. 2). I n t h e c a s e of l i v e r s l i c e s i n c u bated with lalI-RNase, the radioactivity found a s s o c i a t e d w i t h t h e s l i c e s w a s at most 10 p. c e n t

B. V i j a y a K u m a r a n d P. M. Bhargava.

664

n m c h l a r g e r p r o p o r t i o n of i n t r a e e l l u l a r R N A w a s d e g r a d e d (*) to a c i d - s o l u b l e m a t e r i a l ( t a b l e I). This proportion increased when RNase concent r a t i o n w a s i n c r e a s e d u p t o 25 , ~ g / m l ; b e y o n d this concentration, there was no further increase i n t h e p r o p o r t i o n of R N A d e g r a d e d . T a b l e I also s h o w s t h a t o n l y a b o u t 40 p. c e n t of t h e c e l l u l a r RNA could be degraded by the exogenous RNase. When liver slices were incubated with RNase ( u p t o 100 ~t~g/ml), n o d e g r a d a t i o n of t h e i r R N A to acid-soluble material was observed.

of t h a t i n t h e cell s u s p e n s i o n ; t h i s p e r c e n t a g e d e c r e a s e d as t h e c o n c e n t r a t i o n of R N a s e increased. W h e n a f t e r t h e u p t a k e of 131I-RNase (100 ~ g / m l ) f o r 20 m i n u t e s , t h e c e l l s w e r e w a s h e d a n d p r e c i p i t a t e d w i t h 50 p. c e n t e t h a n o l a n d t h e s u p e r natant obtained following centrifugation for 20 m i n u t e s at 2400 × g, c h r o m a t o g r a p h e d on a S e p h a d e x G-25 c o l u m n , t h e e l u t i o n p a t t e r n of all the radioactivity was identical with that obtained f o r t h e 131I-RNase u s e d f o r t h e u p t a k e . T h i s s h o w s that no acid- soluble radioactivity was released f o l l o w i n g i n c u b a t i o n of t h e cell s u s p e n s i o n w i t h labelled RNase.

Speci[icitg o[ degradation by exogenous RNase and the nature o[ the degradation products at 28°C. As e x o g e n o u s R N a s e c o u l d d e g r a d e , to a c i d s o l u b l e m a t e r i a l , a m a x i m u m of o n l y 40 p. c e n t of t h e t o t a l lqNA of t h e cells, it s e e m e d to b e of i n t e r e s t to d e t e r m i n e t h e p o l y m e r i c s t a t u s of t h e

Intracelhdar e[fects of RNase taken up at 78°C by liver cell suspensions. I n t h e a b s e n c e of R N a s e , i n c u b a t i o n of r a t - l i v e r p a r e n c h y m a l c e l l s i n s u s p e n s i o n at 28°C l e d to d e g r a d a t i o n (to a c i d - s o l u b l e m a t e r i a l ) of o n l y 6.7 p. c e n t of t h e R N A i n 60 m i n u t e s . W h e n t h e c e l l s w e r e i n c u b a t e d w i t h 1 ~g of R N a s e / m l , a

65

(*) The t e r m <> is used for b r e a k d o w n of RNA to acid-soluble m a t e r i a l , a n d the t e r m <

> for its b r e a k d o w n to acid-insolable material.

I

0.8

I

I

D 0-6 0.4

--

0-4

• 0"2

0.2

0 O ~o

/-. U Z

I< t~d U Z

O-B

a: ~ m

4S

!8S

0'8

E

0.6

"~

0.6

0'4

<

0.4

0.2

0"2 t

18S IO

20

FRACTION NUMBER

30

20

40 FRACTION

60

80

NUMBER

FIG. 3. - - F r a c t i o n a t i o n by various methods, of RNA f r o m liver cells in suspension i n c u b a t e d w i t h o u t RNase or w i t h 1 j~g of R N a s e / m l for 1 h o u r at 28°C. After i n c u b a t i o n , the cells were w a s h e d a n d RNA isolated b y Method II. B a n d D : RNA from cells i n c u b a t e d w i t h o u t RNase. C a n d E : RNA f r o m cells i n c u b a t e d w i t h RNase. A : a n a l y t i c a l u l t r a c e n t r i f u g e r u n (the picture was t a k e n a f t e r 20 m i n u t e s at 50740 r e v / m i n u t e ; u p p e r picture, + R N a s e ; lower picture, -RNase). B and C : sucrose density g r a d i e n t r u n s (in a 25.1 rotor for 18 h o u r s at 22500 r e v / m i n u t e ) . D a n d E : MAK runs.

BIOCHIMIE, 1973, 55, n ° 6-7.

Effecl of RNase on liver cell s u s p e n s i o n s . RNA left in acid-insoluble form in the ceils after t r e a t m e n t w i t h RNase. A n a l y t i c a l u l t r a c e n t r i f u g e , MAK and density g r a d i e n t runs of this RNA (fig. 3) s h o w e d that it was e x t e n s i v e l y d e p o l y m e rised, w h e n d e r i v e d from cells treated w i t h 1 Itg of R N a s e / m l for 1 hour. Fig. 4 s h o w s that even 0.1 ~tg of R N a s e / m l for 90 m i n u t e s at 28°C w a s as

0.6

665

It has been r e p o r t e d e a r l i e r (for r e f e r e n c e s , see the i n t r o d u c t i o n ) that c o n t r o l l e d t r e a t m e n t of r i b o s o m e s w i t h RNase in vitro does not affect t h e i r m o r p h o l o g i c a l i n t e g r i t y or t h e i r ability to f u n c t i o n in an in vitro p r o t e i n - s y n t h e s i s i n g system, though t h e i r RNA is largely degraded. It t h e r e f o r e s e e m e d w o r t h w h i l e to investigate if

/c

-l

I

t

/

0.4 0.1

E 0.2 0 ~o ~J U Z

B

D

m o~ 0.~1 0 u~

~

0.6

0.2

0.4

O.I

0.2

I

I

1

IO

20

30

FRACTION NUMBER

IO

20

30

FRACTION NUMBER

FIG. 4. - - Sucrose density gradient runs of RNA from liver cells in suspension incubated with 0.0015 .ug (A), 0.005 !~g (B), 0.025 :~tg (C), and 0.1 Ixg (D) of RNase/ml for 20 minutes at 28°C. After incubation (done, for A, in Krehs-Ringer bicarbonate, and for others, in Krebs-Ringer phosphate buffer), the cells were washed and RNA isolated by Method II. The sucrose density gradient centrifugation was done in a SW 25.1 rotor for 18 hours at 22500 rev/minute.

effective. As the RNase c o n c e n t r a t i o n was l o w e r e d b e l o w 0.1 ~ g / m l , the extent of p a r t i a l d e p o l y m e r i s a t i o n o b s e r v e d d e c r e a s e d ; 0.0015 , g of R N a s e / m l for 20 m i n u t e s h a d a p p a r e n t l y no effect on cellular RNA. E v e n t h o u g h exogenous RNase (1 ~tg/ml) caused e i t h e r d e g r a d a t i o n (to acid-soluble material~ or e x t e n s i v e p a r t i a l d e p o l y m e r i s a t i o n (to acid-insoluble material) of the rRNA of the ceils in 20 minutes, t h e r e w a s a r e d u c t i o n of only about 20 p. cent in the tRNA a c t i v i t y of the cells by RNase u n d e r these c o n d i t i o n s (table II) (tile p o s s i b i l i t y that the exogenous RNase caused cleavage of some of the i n t e r n u c l e o t i d e linkages in tRNA in such a w a y that the r e s u l t i n g fragments could be held t o g e t h e r by h y d r o g e n bonds, c a n n o t be ruled out ; such tRNAs m a y retain t h e i r biological a c t i v i t y ; for r e f e r e n c e s , see Bhargava et al. r24]).

BIOCHIMIE, 1973, 55, n ° 6-7.

exogenGus RNase e n t e r i n g the cells affected t h e i r r i b o s o m e s similarly. F o r this purpose, labelled cells d e r i v e d from liver tissue labelled in vivo with 32p-phosphate w e r e i n c u b a t e d w i t h o u t and w i t h RNase (1-5 ~g/ml), and t h e i r r i b o s o m e s isolated using unlabelled r i b o s o m e s from l i v e r as a c a r r i e r . R i b o s o m e s from RNase-treated cells, dissociated c o m p l e t e l y (as by EDTA t r e a t m e n t : fig. 5) or p a r t i a l l y (as by d i a l y s i s : fig. 6) b e h a v e d e x a c t l y as r i b o s o m e s f r o m the u n t r e a t e d cells or f r o m the slices. On the o t h e r hand, the RNA f r o m ribosomes isolated from RNase-treated cells w a s found to be e x t e n s i v e l y d e p o l y m e r i s e d , unlike tile RNA from u n t r e a t e d cells (fig. 5). Almost all ( 7 96 p. cent) of the r a d i o a c t i v i t y in RNA of the r i b o s o m e s f r o m RNase-treated cells w a s a c i d - p r e c i p i t a b l e , s h o w i n g thai exogenous RNase led to the cleavage of rRNA only to large, a c i d - p r e c i p i t a b l e products.

B. Vijaya Kumar and P. M. Bhargava.

666

In an e x p e r i m e n t in w h i c h RNase w a s a d d e d to t h e cell s u s p e n s i o n after i n c u b a t i o n at 28°C f o r 20 m i n u t e s , a n d j u s t b e f o r e t h e a d d i t i o n o f b e n t o n i t e a n d p o l y v i n y l sulphate, the RNA of the

R N a s e (fig. 5) is, t h e r e f o r e , u n l i k e l y to b e a n a r t i f a c t of t h e p r e p a r a t i o n o f r i b o s o m e s o r o f t h e i r RNA, a n d w o u l d s e e m to b e a c o n s e q u e n c e o f t h e action on r i b o s o m e s of RNase taken up by the

iooo~"

S.O ¸

6os

s.o

I

I

i_ 5 0 0

.J

A I--

800

E~" 4 " 0

o

~

::t E 4.0

-

0

2

fll

-6oo

~0 >-

m

400

2"0

~-

3-o

300

2.0

200

u"Z' ~

I

I

I0

20

0 Cl

<

moo

I'0

I 30

FRACTION

-> IU

O 200

1'0

"W I,Z 0 U >-

o

o <

,o

i..-

<~ 3 ' 0

k-

400

40

NUMBER

t

I

I

I

I0

20

30

4-0

FRACTION

9

a

NUMBER

_1

2 ~8S ,I,

3.2 - C

I

I¢1 520 ~

I. 6

I 28~

D

"2

t IBS

- 2 6 0 . ~i.i ~_ l-

E o,o

ol

z

2-4

~

19s

6.2--

I-Z

I-.. 0 U

l¢1 U 1.6 Z
2 6 0 >i-

a-, e,,

<~

ca

>

[30

< ~ L) z

u

o

o

=

130

O.B

>.

P_ _>

(

I,--

65

0",~

u
<~ ¢¢ 5

I0 FRACTION

15

20

25

NUMBER

I0

20

FRACTION

30

4o

NUMBER

FIG. 5. - - Sucrose density gradient runs of ribosomes (A, B) and of their RNA (C, D), derived f r o m liver cells in suspension incubated for 20 m i n u t e s at 28°C w i t h o u t RNase (A, B) or w i t h 1 j~g of R N a s e / m l (B, D). The cell suspension w a s p r e p a r e d f r o m in vivo 32P-labelled liver. "]'he celts w e r e incubated, washed and h o m o g c n i s e d : a homogenate derived f r o m an unlabelled liver was added (as a source of carrier ribosomes) and ribosomes isolated and dissociated with 0.2 M NaC1 and 0.01 M EDTA in 0.01 M tris-HC1 buffer (pH 7.4), as in the t e x t ; RNA w a s isolated from t h e m by Method II. For A and B, the sucrose density g r a d i e a t c e a t r i f u g a t i o n was done for 12 h o u r s at 18000 r e v / m i n u t e , and for C and D, for 23 hours at 18000 r e v / m i n u t e , in a SW 25.1 rotor. • • : radioactivity (due to ribosomes or RNA from the incubated cells). O O : absorbancy (due to carrier ribosomes or their RNA).

r i b o s o m e s w a s f o u n d n o t to b e a f f e c t e d (fig. 7). Further, the unlabelled rRNA from the carrier h o m o g e n a t e w a s n o t a f f e c t e d w h e n it w a s i s o l a t e d f r o m a m i x t u r e of this h o m o g e n a t e w i t h the h o m o gen,ate o f a c e l l s u s p e n s i o n i n c u b a t e d w i t h R N a s e (fig. 5). T h e o b s e r v e d d e p o l y m e r i s a t i o n of t h e cell s u s p e n s i o n rRNA on i n c u b a t i o n of the cells w i t h

BIOCHIMIE, 1973, 55, n ° 6-7.

cel]s. T h i s v i e w is f u r t h e r s u p p o r t e d b y t h e o b s e r v a t i o n that i n c u b a t i o n of liver slices w i t h RNase h a d no effect w h a t s e v e r on the intrac e l l u l a r r i b o s o m e s o r o n t h e i r R N A (fig. 8). S i n c e r i b o s o m e s i s o l a t e d f r o m cells i n c u b a t e d with RNase, although apparently morphologieally

E f f e c t of R N a s e on liver celt suspensions. intact, contained only partially depolymerised RNA, it s e e m e d l i k e l y t h a t t h e p e r c e n t a g e of ribosomes conlaining undepolymerized native RNA w i t h i n these cells w a s relatively small,

i A 1.2!--

667

if a n y s u c h r i b o s o m e s w e r e p r e s e n t at all. It w a s , t h e r e f o r e , a r g u e d t h a t if t h e s t r u c t u r a l i n t e g r i t y of RNA w a s e s s e n t i a l f o r t h e b i o l o g i c a l a c t i v i t y of t h e r i b o s o m e s , t h e r i b o s o m e s f r o m R N a s e - t r e a t e d cells s h o u l d not w o r k in a p r o t e i n s y n t h e s i s i n g s y s t e m in vitro as e f f i c i e n t l y as r i b o s o m e s f r o m u n t r e a t e d cells. T a b l e III s h o w s t h a t t h e r i b o s o m e s f r o m R N a s e - t r e a t e d cells

800

I

2.S

• 150"~ W ID

2.C

- -

1201

0 IuJ U Z ,( ,n n,

z

=~

~"

~hd~

---

4os

I

u

-90

6O

1,0

ut IZ :D

O

g U


r

J

I

I0

20

FRACTION °°

I0

30

0-5

20

FRACTION

"40

4,0

NUMBER

Fro. 6. Sucrose density gradient r u n s of ribosomes from liver ceils in suspension incubated for 20 m i n u t e s at 28°C w i t h o u t RNase (A) or with 5 ttg of RNase/m! (B). In vivo-labelled liver cells were incubated, and ribo. somes isolated following addition of a source of carrier ribosomes, as in Fig. 6. They were partially dissociated by dialysis against 0.01 M tris-HC1 buffer (pH 7.4). The sucrose density gradient centrifugation was done for 12 h o u r s at 18000 r e v / m i n u t e in a SW 25.1 rotor.

30

NUMBER

FI6. 7. - - Sucrose density gradient centrifugation of RNA f r o m ribosomes of cells incubated for 0 m i n u t e at 0°C w i t h 1 ~ug of RNase/ml. T h e ribosomes were isolated f r o m the in vivolabelled cells immediately after the addition of RNase, using carrier ribosomes, as in Fig. 6. RNA was isolated f r o m the ribosomes by Method II. The sucrose density gradient c e n t r i f u g a t i o n was done for 23 hours at 18000 r e v / m i n u t e in a SW 25.1 rotor.

c a r r i e d out p o l y U - d i r e c t e d p o l y p h e n y l a l a n i n e s y n t h e s i s n e a r l y as e f f i c i e n t l y as r i b o s o m e s f r o m tlle u n t r e a t e d c e l l s d i d . T h i s s h o w s t h a t t h e s t r u c t u r a l i n t e g r i t y of r R N A w i t h i n t h e r i b o s o m e s ill a w h o l e cell is n o t e s s e n t i a l f o r t h e i r b i o l o g i c a l f u n c t i o n in situ.

TABLE III (*).

Doly U-directed polyphenylalanine synlhesising ability of ribosomes from liver cells in suspension incubated withonl RNase or with 1 ~Lg of RNase/ml f o r PO minutes at 28°C.

Source of ribosomes

Unincubated ceils . . . . . . . . . . . . . . . . . . . . . . . . . . . Cells incubated for 20 minutes without R N a s e . . . Cells incubated for 20 minutes with 1 ~tg of RNase/ml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Radioactivity in protein (counts/minute/rng ribosomes) Expt. t

Expt. 2

Expt. 3

1731 1611

2778 3245

1455 1701

1642

2278

1585

(*) The incubation with 14C-phenylalanine was carried out for 40 m i n u l e s ; 0-minute values have been subtracted.

BIOCHIMIE, 1973, 55, n ° 6-7.

0

Q

B. Vijaya K u m a r and P. M. Bhargava.

668

E[fect of exogenous RNase o17 endogenous degradation of RNA at 37°C.

m a t e r i a l i n t h e p r e s e n c e of R N a s e (1 I~g/ml) w a s f o u n d to b e p a r t i a l l y d e p o l y m e r i s e d i n all t h e fractionation systems used ; such RNA from ceils i n c u b a t e d a t 37°C i n t h e a b s e n c e of R N a s e w a s e a r l i e r f o u n d to g i v e n o r m a l f r a c t i o n a t i o n p a t t e r n s o n MAK a n d S e p h a d e x c o l u m n s El91.

It h a s b e e n r e p o r t e d e a r l i e r El9] t h a t i n c u b a t i o n of r a t - l i v e r p a r e n c h y m a l c e i l s at 37°C r e s u l t s i n t h e a c t i v a t i o n of a n i n t r a c e l l u l a r n u c l e a s e . T h e question that we now asked was whether this degradation was already operating at the maximal l e v e l i n t h e a b s e n c e of e x o g e n o u s R N a s e , o r c o u l d it b e a c c e l e r a t e d b y t h e e x o g e n o u s e n z y m e ?

DISCUSSION.

Uptake o[ RNase.

T a b l e IV s h o w s t h a t R N a s e (1 ~ g / m l ) e n h a n c e d the endogen.ous degradation. The total degradat i o n i n c r e a s e d w i t h t h e c o n c e n t r a t i o n of R N a s e u p t o t h e l i m i t of a b o u t 70 p. c e n t of t h e t o t a l c e l l u l a r RNA. R N A left u n d e g r a d e d to a c i d - s o l u b l e

When liver cells in suspension are incubated w i t h R N a s e , a p r o g r e s s i v e l y i n c r e a s i n g a m o u n t of t h e e n z y m e is f o u n d to b e a s s o c i a t e d w i t h t h e cells. T h i s a s s o c i a t i o n c a n n o t r e p r e s e n t a d s o r p -

o.8

I

J

20

30

18S E

0.6

0 ,o N I0.4 U z aB

ID

0,2

IO FRACTION

I

I

NUMBER

I

C 0.8

--

E 0 I-U Z

0.4--

m r,.

o m

40 FRACTION

60 NUMBER

FIG. 8 . F r a e t i o n a t i o n by various m e t h o d s of RNA f r o m liver slices i n c u b a t e d w i t h 1 ug of R N a s e / m l for 1 h o u r at 37°C. After i n c u b a t i o n , the slices were w a s h e d a n d RNA extracted by Method II. The f r a c t i o n a t i o n p a t t e r n s given here were s u p e r i m p o s a b l e on the corresponding p a t t e r n for RNA o b t a i n e d f r o m the slices i n c u b a t e d ill the absence of RNase. A : a n a l y t i c a l u l t r a c e n t r i f u g e r u n (picture was t a k e n a f t e r 21 r~inutes at 50740 r e v / m i n u t e ) . B : sucrose density g r a d i e n t r u n (in a 25.1 r o t o r for 16 h o u r s at 24000 r e v / m i n u t e ) . C : MAK run.

BIOCHIMIE, 1973, 55, u ° 6-7.

E f f e c t of R N a s e on liver cell s u s p e n s i o n s . TABLE

669

IV (*).

Percentage degradation of RNA to acid-sohlble material on incubation of liver cells in suspension without RNase or with varying concentration of RNase at 37°C. RNA

degraded (p. cent)

Concentration o[ RNase (rtg/ml) (*') t5 minutes

0 ............................. 1 ............................. 10 .............................

100 . . . . . . . . . . . .

-................

. 60 minntes

t20 minutes I 180 minutes

13.3 -4- 9.0

2 1 .6 -+- 9.0 34.9 - - -~- lO.O 39.0 ~- 11.0 58.0 1 63 .84 66.8 12.0 -3 7 . 7 -457.9 -'~ 9 O 166. 2 -F- 9.0 71.1 ____~8.0

(*) Acid-insoluble RNA was estimated in the total incubation mixture by Method I. Percentages are on the value for 0 hour. ('*) Values for 0 and 100 ~tg/ml are averages of 4-10 experiments and are followed by tile standard deviation. tion on the cell surface alone as at least a p a r t of the RNase taken up was f o u n d in the cell supernatant f r a c t i o n in an u n c h a n g e d form, and as in the p r e s e n c e of the e n z y m e (but not in its absence) the rRNA within the cells was p r o g r e s sively h y d r o l y s e d . On the c o n t r a r y , w h e n l i v e r slices w e r e i n c u b a t e d w i t h RNase, m u c h s m a l l e r a m o u n t s of the enzyme, if any, w e r e f o u n d to be associated w i t h the slices, and no detectable effect on the RNA of the slices w a s observed. These o b s e r v a t i o n s s h o w that l i v e r cell suspensions can take up RNase, a n d that the uptake in the slices, if any, is m u c h s m a l l e r w h e n c m n p a r e d to the cells in suspension. T h e uptake in the cell suspensions is u n l i k e l y to be a e o n s e q u e n c e of m e t a b o l i c death as l i v e r cell suspensions p r e p a r e d by the m e t h o d used here, r e s p i r e , o x i d i s e m a n y of the c o m m o n l y oxidisable snbstrates, s y n t h e s i s e RNA and p r o t e i n ( i n c l u d i n g s e r u m albumin), take up and metabolise lipids, are viable by the criteria of s t a i n a b i l i t y by t r y p a n blue and a b i l i t y to t r a n s p o r t n o n - m e t a b o l i s a b l e a m i n o a c i d s , and e x h i b i t m e t a b o l i c a c t i v i t y for p r o l o n g e d p e r i o d s u n d e r suitable c o n d i t i o n s (for r e f e r e n c e s , see B h a r g a v a [25, 26] ; D i c k s o n [27]). T h e a c q u i s i t i o n by l i v e r p a r e n c h y m a l cells of the ability to take up RNase m a y t h e r e f o r e r e p r e s e n t a specific change in t h e i r p r o p e r t i e s c o n s e q u e n t to an alter a t i o n in t h e i r level of organisation. This c h a n g e c o u l d be a result of the r e m o v a l of influences such as those of cells o t h e r than the p a r e n c h y m a t cells in liver, a n d / o r of the e x t r a c e l l u l a r material. This v i e w is s u p p o r t e d by the o b s e r v a t i o n that r e a g g r e g a t i o n of l i v e r p a r e n c h y m a l cells in the i u t r a p e r i t o n e a l c a v i t y results in a loss of the a b i l i t y to take up RNase [28]. O t h e r specific perm e a b i l i t y changes o c c u r r i n g in the p a r e n c h y m a l

BIOCH1MIE, 1973, 55, n ° 6-7.

cells on d i s p e r s i o n of l i v e r to a single cell suspension h a v e been d e s c r i b e d [25, 26].

Classification of cellular RNA on the basis of susceptibility to RNase. In the absence of RNase, at 28°C, v e r y little RNA of the l i v e r p a r e n c h y m a l cells w a s d e g r a d e d to acid-soluble m a t e r i a l ([19] ; Table I). At this t e m p e r a t u r e , in the p r e s e n c e of the enzyme, a m a x i m u m of about 40 p. cent of the RNA was d e g r a d e d (Table I). At 37°C, even in the absence of the enzyme, a m a x i m u m of about 40 p. cent of the cellular RNA w a s d e g r a d e d by an i n t r a c e l l n l a r nuclease ( [ 1 9 ] ; Table IV). H o w e v e r , the RNA d e g r a d e d by the exogenous e n z y m e at 28°C and the RNA d e g r a d e d by the e n d o g e n o u s e n z y m e at 37°C are likely to be different as the m a x i m a l degradation w a s a d d i t i v e w h e n exogenous e n z y m e was used at 37°C (table,IV). This ~vould suggest that RNA of the cells could be classified into t h r e e types : (a) RNA (ca 40 p. cent of the total RNA) w h i c h m a y be d e g r a d e d to acid-soluble m a t e r i a l only by the e n d o g e n o u s nuclease a c t i v a t e d on disp e r s i o n of l i v e r and i n c u b a t i o n of the cells at 37°C; (b) RNA (ca 40 p. cent of the total RNA) w h i c h m a y be d e g r a d e d to acid-soluble m a t e r i a l only by e x o g e n o u s l y a d d e d n u c l e a s e ; and (c) RNA (ca 20 p. cent of the total RNA) w h i c h is not d e g r a d e d to acid-soIuble m a t e r i a l by e i t h e r e n d o g e n o u s or exogenous nuclease. W h a t the nature of these RNAs m i g h t be is not clear f r o m this investigation. D e g r a d a t i o n of the RNA of the first type c o u l d be p i c k e d up by c e n t r i f u g a t i o n on a sucrose d e n s i t y g r a d i e n t or in an a n a l y t i c a l u l t r a c e n t r i fuge, but not by c h r o m a t o g r a p h y on a MAK or S e p h a d e x c o l u m n [19] ; that of the s e c o n d type could be p i c k e d up also on the MAK and S e p h a d e x columns. 44

B. Vijaya Kumar and P. M. Bhargaoa.

670

E[fect of RNase taken up on the ribosomes. The r i b o s o m e s isolated f r o m cells i n c u b a t e d with RNase exhibited a normal sedimentation profile but contained partially depolymerised RNA. T h e s e r i b o s o m e s w e r e f o u n d to b e n e a r l y as a c t i v e as n a t i v e r i b o s o m e s i n a p o l y U - s t i m u l a t e d polyphenylalanine-synthesising system. The above e f f e c t o f R N a s e o n r i b o s o m e s w i t h i n t h e c e l l s is s i m i l a r to t h a t o b s e r v e d in vitro u s i n g i s o l a t e d r i b o s o m e s (for r e f e r e n c e s , see the i n t r o d u c t i o n ) . T h e s e o b s e r v a t i o n s a r e also i n c o n f o r m i t y w i t h the view now generally held about the structure o f r i b o s o m e s i n w h i c h p a r t of t h e r R N A is e n v i s a g e d to e x i s t i n a h y d r o g e n b o n d e d f o r m i n a c c e s s i b l e o r r e s i s t a n t to e x o g e n o u s n u e l e a s e [14].

l~suM~. 1) On a montr~ que les eellules en suspension du p a r e n e h y m e h~patique du Rat i n e o r p o r e n t la ribonuel~ase 131I. 2) La nucl~ase ineorpor~e d6grade j u s q u ' h 40 p. cent de I'ARN celluIaire en e o n s t i t u a n t s acido-solubles. Cet ARN semble diff6rent de celui qui est d6grad6 par la nucl6ase endog6ne activ6e, apr~s homog~n6isation du tissu ~t l'6tat de suspension cellulaire et incubation h 37°C. 3) La ribonuel~ase incorpor~e h 28°C d~polymdrise p a r t i e l l e m e n t I'ARNr cellulaire de telle sorte que l ' e n s e m b l e de l'int~grit~ structurale ou l'activit~ biologique des ribosomes n ' e s t pas atteinte, n o n plus qne l'activit~ cellulaire de YARN t.

A eknolwledgmenls. The analytical u l t r a c e n t r i f u g e used in t h i s s t u d y was a gift f r o m The Welleome Trust, London. Assistance of Mr. P r a m o d in the ultracentrifuge r u n s is g r a t e f u l l y acknowledged. B.V.K. received a Senior Research F e l l o w s h i p of the Council of Scientific & I n d u s t r i a l Research, New Delhi. REFERENCES. 1. Braehet, J. (1955) Biochim. Biophys. Acta, 18, 247268.

BIOCHIMIE, 1973, 55, n ° 6-7.

2. Schumaker, V. N. (1958) Exptl. Cell Res., 15, 314331. 3. Alper, R. E., Dainko, J. L. & Schlenk, F. (1967) J. Bact., 93, 759-765. 4. Brenner, S. (1959) Biochim. Biophys. Aeta, 18, 531534. 5. Bridoux, M. & H a n o t i e r , J. (1956) Biochim. Biophys. Acla, 22, 103-110. 6. Thomson, T. L. & Shively, J. M. (1966) Y. Bact., 91, 673-676. 7. Brachet, J. (1955) Biochim. Biophys. Acta, '16, 611613. 8. Ledoux, L., Leelere, J. ~ Vanderhaeghe, F. (1954) Nature, 174, 793-794. 9. Huppert, J. ~ Pelmont, J. (1962) Arch. Biochem. Biophys., 98, 214-223. 10. Halder, D., F r e e m a n , K. B. a Work, T. S. (1967) Biochem. J., 102, 684-690. 11, Shakulov, R. S., Aitkhozhin, M. A. ,~ Spirin, A. S. (1962) Biokhimiya (USSR), English t r a n s l a t i o n , 27, 631-636. 12. Gierer, A. (1963) J. Mol. Biol., 6. 148-157. 13. Santer, M. a Smith, J. R. (1966) J. Bact., 92, 10991110. 14. Cox, R. A. (1969) Biochem. Y., 114, 753-767. 15. Chan, F., Schachter, E. M. a Rich, A. (1970) Biochim. Biophys. Acta, 209, 512-520. 16. Delihas, N. (1970) Biochem. Biophys. Res. Commun., 39, 905.910. 17. Huvos, P., Vereezkey, L. a Gaal, O. (1970) Biochem. Biophys. Res. Commun., 41, 1020-1026. 18. Kumar, B. V. ~ Bhargava, P. M. (1969) Life Sci., 8, 1103-1109. 19. Kumar, B. V. a Bhargava, P. M. (1972) J. Cellul. Physiol., 80, 175-188. 20. Jacob, S. T. ~ Bhargava, P. M. (1962) Exptl. Cell Res., 27, 453-467. 21. Raj, B. K., Premsagar, K. D. A. a Rao, M. S. N. (1968) Biochem. Biophys. Res. Commun., 31, 723730. 22. Ar]inghaus, R., Schaffer, J. & Schweet, R. (1964) Proc. Natl. Acad. Sei., 51, 1291-1299. 23. Tashiro, Y. ,¢ Siekevitz, P. (1965) J. Mol. Biol., 11, 149-165. 24. Bhargava, P. M., Pallaiah, T. a P r e m k u m a r , E. (1970) J. Theoret. Biol., 29, 447-469. 25. Bhargava, P. M, (1968) Science and Culture (Calcutta), 34 (suppl.), 105-127. 26. Bhargava, P. M., in (( Control processes in Multicellular Organisms >> (Ed. W o l s t e n h o l m e , G. E. W. and Knight, J.), pp. 158-177, J. ~ A. Churchill, London (1970). 27. Dickson, J. A. (1970) Exptl. Cell Res., 61, 235-245. 28. K r a n t i k u m a r , G. a Bhargava, P. M., in preparation.