ARAB JOURNAL OF MATHEMATICAL SCIENCES
Arab J Math Sci xxx(xx) (2013), xxx–xxx
The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I MILOUD MIHOUBI 1, HACE`NE BELBACHIR *,2 University of Science and Technology Houari Boumediene USTHB, Faculty of Mathematics, P.B. 32 El Alia, 16111 Algiers, Algeria
Abstract. We establish some formulas relating multipartitional polynomials to multinomial polynomials. They appear, respectively, as a natural extension of Bell polynomials and of polynomials of binomial type. Our results are illustrated by some comprehensive examples. Keywords: Multipartitional polynomials; Polynomial sequences of multinomial type; Bell polynomials
1. INTRODUCTION Recently, Mihoubi [4,5] studies the connection between Bell polynomials and binomial type sequences and deduces identities for complete and partial Bell polynomials. As an extension of our previous results on bipartitional polynomials, see [1,6], we establish some connections between multipartitional polynomials and polynomials of multinomial type. They appear, respectively, as a natural extension of Bell polynomials and the polynomials of binomial type. Let us introduce some definitions and notations. We define the complete (exponential) multipartitional polynomial An1 ;...;nr in the variables x0;...;0;1 ; . . . ; xn1 ;...;nr as
* Corresponding author. Tel.: +213 771425883; fax: +213 21276446. E-mail addresses:
[email protected],
[email protected] (M. Mihoubi),
[email protected],
[email protected] (H. Belbachir). 1 The research is supported by IFORCE Laboratory of USTHB University. 2 The research is supported by IFORCE Laboratory of USTHB University and CMEP Tassili bilateral Algerian-French program 09MDU765. Peer review under responsibility of King Saud University.
Production and hosting by Elsevier 1319-5166 ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ajmsc.2012.12.001 Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
2
M. Mihoubi, H. Belbachir
An1 ;...;nr ðx0;...;0;1 ; x0;...;0;2 ; . . . ; xn1 ;...;nr Þ :¼
X
n1 ! nr ! k0;...;0;1 !k0;...;0;2 ! kn1 ;...;nr ! kn1 ;...;nr x k0;...;0;1 xn1 ;...;nr 0;...;0;1 ; ð1Þ 0! 0!1! n1 ! nr !
where the summation is extended over all partitions of the multipartite number (n1 ; . . . ; nr ), that is, over all nonnegative integers (k0;...;0;1 ; . . . ; kn1 ;...;nr ) solution of the equations nr X
n1 X
ir ¼0
ij ki1 ;...;ir ¼ nj ;
j ¼ 1; . . . ; r; with the convention k0;...;0 ¼ 0:
ð2Þ
i1 ¼0
Also, for a given k integer, we define the partial (exponential) multipartitional polynomial of degree k : Bn1 ;...;nr ;k in the variables x0;...;0;1 ; . . . ; xn1 ;...;nr as the sum X n1 ! nr ! Bn1 ;...;nr ;k ðx0;...;0;1 ; x0;...;0;2 ; . . . ; xn1 ;...;nr Þ :¼ k0;...;0;1 !k0;...;0;2 ! . . . kn1 ;...;nr ! kn1 ;...;nr x k0;...;0;1 xn1 ;...;nr 0;...;0;1 ;ð3Þ 0! 0!1! n1 ! nr ! where the summation is extended over all partitions of the multipartite number (n1 ; . . . ; nr ) into k parts, that is, over all nonnegative integers (k0;...;0;1 ; . . . ; kn1 ;...;nr ) solution of the equations nr X
ir ¼0 nr X
n1 X ij ki1 ;...;ir ¼ nj ;
j ¼ 1; . . . ; r;
i1 ¼0
ir ¼0
ð4Þ
n1 X ki1 ;...;ir ¼ k: i1 ¼0
These polynomials generalize the partial and complete Bell polynomials, see [2,3,7,8], and for other recent results, see [4,5]. Some properties can be deduced from the above definitions, thus: for all real numbers a, b, c we have An1 ;...;nr ðar x0;...;0;1 ; . . . ; an11 anr r xn1 ;...;nr Þ ¼ an11 anr r An1 ;::;nr ðx0;...;0;1 ; . . . ; xn1 ;...;nr Þ;
ð5Þ
Bn1 ;...;nr ;k ðbar x0;...;0;1 ; . . . ; ban11 anr r xn1 ;...;nr Þ ¼ bk an11 anr r Bn1 ;...;nr ;k ðx0;...;0;1 ; . . . ; xn1 ;...;nr Þ: ð6Þ The exponential generating functions for An1 ;...;nr and Bn1 ;...;nr ;k are given by ! X X tn1 tnr t i1 t ir An1 ;...;nr ðx0;...;0;1 ; . . . ; xn1 ;...;nr Þ 1 r ¼ exp xi1 ;...;ir 1 r ; n1 ! nr ! i1 ! ir ! n1 ;...;nr P0 i1 þþir P1 X
n1
tn1 tnr 1 Bn1 ;...;nr ;k ðx0;...;0;1 ; . . . ; xn1 ;...;nr Þ 1 r ¼ n1 ! nr ! k! þþnr Pk
X
t i1 t ir xi1 ;...;ir 1 r i1 ! ir ! i1 þþir P1
ð7Þ
!k : ð8Þ
The polynomials of multinomial type (fn1 ;...;nr ðxÞ) have the following property: f0;...;0 ðxÞ :¼ 1 and
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
Multipartitional polynomials and 4 polynomial sequences of multinomial type, Part I
!x X ti11 tirr tn1 tnr fi1 ;...;ir ð1Þ ¼ fn1 ;...;nr ðxÞ 1 r : i1 ! ir ! n1 ! nr ! i1 ;...;ir P0 n1 þþnr P1 X
3
ð9Þ
We use the following notations tn tn11 tnr tn ¼ tn11 tnr r and ¼ r ; n! n1 ! nr ! a ¼ ða1 ; . . . ; ar Þ and
1 ¼ ð1; . . . ; 1Þ;
jnj ¼ n1 þ þ nr ; n! ¼ n! nr !; a b ¼ a1 b1 þ þ ar br ; a þ b ¼ ða1 þ b1 ; . . . ; ar þ br Þ; ka ¼ ðka1 ; . . . ; kar Þ; ða P bÞ () ða1 P b1 ; . . . ; ar P br Þ; ða > bÞ () ða1 > b1 ; . . . ; ar > br Þ; Dt ¼ Dz¼0
@ @ ; @t1 @tr d ¼ ; dz z¼0
x k
81 > < k! xðx 1Þ ðx k þ 1Þ if k P 1; ¼ 1 if k ¼ 0 ; > : 0 otherwise
a i
p
¼
a1 i1
ar ir ;
x 2 R;
a1 ; . . . ; ar are real numbers;
Bn;k ðxi Þ ¼ Bn1 ;...;nr ;k ðx0;...;0;1 ; . . . ; xn1 ;...;nr Þ; An ðxi Þ ¼ An1 ;...;nr ðx0;...;0;1 ; . . . ; xn1 ;...;nr Þ;
n P 0; k P 0 and 0 otherwise; n P 0 and 0 otherwise;
Bm;n;k ðxi;j Þ ¼ Bm;n;k ðx0;1 ; x1;0 ; . . . ; xm;n Þ; Am;n ðxi;j Þ ¼ Am;n ðx0;1 ; x1;0 ; . . . ; xm;n Þ; Bm;n;p;k ðxi;j;l Þ ¼ Bm;n;p;k ðx0;0;1 ; x0;1;0 ; . . . ; xm;n;p Þ; Am;n;p ðxi;j;l Þ ¼ Am;n;p ðx0;0;1 ; x0;1;0 ; . . . ; xm;n;p Þ; fn ðxÞ ¼ fn1 ;...;nr ðxÞ
if n P 0; f0 ðxÞ ¼ 1 and 0 otherwise;
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
4
M. Mihoubi, H. Belbachir
es ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ s-th position. Let S ¼ ðs1 ; . . . ; sr Þ be a vector with si 2 f0; 1g such that j S jP 1. Let N be the set of nonnegative integers, N ¼ N f0g and R be the set of real numbers. 2. IDENTITIES
ON MULTIPARTITIONAL POLYNOMIALS
Theorem 1. Let ðxn Þ be a sequence of real numbers. Then for j ¼ 1; . . . ; r, we have X n i
i
X n i
i
i
ð10Þ
ij xi Bni;k1 ðxj Þ ¼ nj Bn;k ðxj Þ;
ð11Þ
ij xi Ani ðxj Þ ¼ nj An ðxj Þ:
ð12Þ
p
X n i
xi Bni;k1 ðxj Þ ¼ kBn;k ðxj Þ;
p
p
Proof. From (8) we have X d tn 1 d X ti Bn;k ðxi Þ ¼ xi dxj n! k! dxj jijP1 i! jnjPk
!k
! X n tm tj tn ¼ Bm;k1 ðxi Þ ¼ Bnj;k1 ðxi Þ : m! j! jnjPjjjþk1 j p n! jmjPk1 X
Then d Bn;k ðxi Þ ¼ dxj
n j
Bnj;k1 ðxi Þ:
ð13Þ
p
Now, for a1 ¼ ¼ ar ¼ 1 in (6), use (13) and take the derivatives with respect to b of the two sides of (6), this gives Identity (10). We obtain similarly Identity (11). Identity (12) can be deduced by summing the two sides of Identity (11) over all values of k. h r Theorem 2. P Letj!ðxn Þ be a sequence of real numbers. For given d ¼ ðd1 ; . . . ; dr Þ 2 ðN Þ and yj :¼ d:i¼j i! xi we have
X n! d:n¼n
n!
X n! d:n¼n
n!
Bn;k ðxj Þ ¼ Bn;k ðyj Þ;
ð14Þ
An ðxj Þ ¼ An ðyj Þ;
ð15Þ
Bnes ;k ðxj Þ ¼ Bn;k ðxjes Þ; Anes ðxj Þ ¼ An ðxjes Þ;
s ¼ 1; . . . ; r; s ¼ 1; . . . ; r:
ð16Þ ð17Þ
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
Multipartitional polynomials and 4 polynomial sequences of multinomial type, Part I
5
Proof. From (8), setting t1 ¼ td1 ; . . . ; tr ¼ tdr , we obtain !k X 1 X ti tn X tn X n! xi ¼ Bn;k ðxj Þ ¼ Bn;k ðxj Þ; k! jijP1 i! n! nPk n! d:n¼n n! jnjPk 1 X ti xi k! jijP1 i!
!k
1 jX 1 X t j! ¼ xi k! j¼1 j! d:i¼j i!
!k ¼
X tn nPk
n!
Bn;k
X j! d:i¼j
i!
! xi ;
which give Identity (14). For ti ¼ 0, i ¼ 1; . . . ; r, i – s, ts ¼ t in (8), we get !k X 1 X ti tn X tn xies ¼ Bnes ;k ðxi Þ ¼ Bn;k ðxjes Þ ; k! iP1 i! n! nPk n! nPk which gives, by identification, Identity (16). The sum over all possible values of k in the two sides of each of Identities (14) and (16), gives Identities (15) and (17) respectively. h Theorem 3. Let ðxn Þ be a sequence of real numbers. Then Bn;k ðxjjj Þ ¼ Bjnj;k ðxj Þ;
ð18Þ
An ðxjjj Þ ¼ Ajnj ðxj Þ;
ð19Þ
jnj þ k j jSj1 n þ kS xjjj ¼ ðk!Þ Bjnjþk;k jxjþjSj1 : BnþkS;k jnj S p n p
ð20Þ
Proof. By (8), we have !k !k m X X 1 X ti 1 X xj ðjtjÞ tn j xjij ¼ ðjtjÞ ¼ Bm;k ðxj Þ ¼ Bjnj;k ðxj Þ : k! jijP1 i! k! jP1 j! m! n! mPk jnjPk Then, we obtain Identity (18). Identity (19) follows when we sum over all possible values of k the two sides of Identity (18). Identity (20) follows from the following expansion: !k !k i !k 1 X i ti 1 X X i t tkS X xj X ti xi ¼ xj ¼ Dt j! k! jP1 j! jij¼j i! k! jijP1 S p i! k! jP1 jij¼j S p i! !k !k kS X t xj tkS X ðjtjÞj1 jjSj ¼ ðjtjÞ ¼ jx k! jPjSj ðj jSjÞ! k! jP1 jþjSj1 j! ¼ tkS
X
Bm;k ðjxjþjSj1 Þ
mPk
¼t
Q
X
ðjmjÞ! tm Bjmjþk;k ðjxjþjSj1 Þ m! ðjmj þ kÞ! mP0 X n BjnjðjSj1Þk;k ðjxjþjSj1 Þ tn jSj1 ; ¼ ðk!Þ jnj ðjSj 1Þk n! nPkS kS p k P kS
using the fact that
X ðm kÞ! X tm ðjtjÞmk ¼ tkS Bm;k ðjxjþjSj1 Þ m! m! m! mPk jmj¼mk
i ðksi Þ!
¼ ðk!Þ
i
si
. h
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
6
M. Mihoubi, H. Belbachir
Corollary 4. For r ¼ 2 and S ¼ ð1; 0Þ; ð0; 1Þ or ð1; 1Þ we get respectively Bmþk;n;k ðixiþj Þ ¼
k Bmþnþk;k ðjxj Þ; mþnþk k
Bm;nþk;k ðjxiþj Þ ¼
mþk
nþk
k Bmþnþk;k ðjxj Þ; mþnþk k
Bmþk;nþk;k ðijxiþj Þ ¼ k!
nþk mþk k k Bmþnþk;k ðjxjþ1 Þ: mþnþk k
The two first identities of Corollary 4 are those of Theorem 3 in [6]. Corollary 5. Let ðxn Þ be a sequence of real numbers. Then, for r ¼ 3 and S ¼ ð1; 0; 0Þ, ð0; 1; 0Þ, ð0; 0; 1Þ, ð1; 1; 0Þ, ð1; 0; 1Þ, ð0; 1; 1Þ or ð1; 1; 1Þ, we get respectively Bmþk;n;p;k ðixiþjþl Þ ¼
mþk
k Bmþnþpþk;k ðjxj Þ; mþnþpþk k
nþk k Bmþnþpþk;k ðjxj Þ; Bm;nþk;p;k ðjxiþjþl Þ ¼ mþnþpþk k
pþk k Bmþnþpþk;k ðjxj Þ; Bm;n;pþk;k ðlxiþjþl Þ ¼ mþnþpþk k
mþk
Bmþk;nþk;p;k ðijxiþjþl Þ ¼ k!
nþk
k k Bmþnþpþk;k ðjxjþ1 Þ; mþnþpþk k
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
Multipartitional polynomials and 4 polynomial sequences of multinomial type, Part I
mþk
Bmþk;n;pþk;k ðilxiþjþl Þ ¼ k!
pþk
7
k k Bmþnþpþk;k ðjxjþ1 Þ; mþnþpþk k
pþk nþk k k Bmþnþpþk;k ðjxjþ1 Þ; Bm;nþk;pþk;k ðjlxiþjþl Þ ¼ k! mþnþpþk k Bmþk;nþk;pþk;k ðijlxiþjþl Þ ¼ ðk!Þ2
mþk k
3. POLYNOMIALS
nþk
pþk
k k mþnþpþk k
Bmþnþpþk;k ðjxjþ2 Þ:
OF MULTINOMIAL TYPE
Theorem 6. Let r P 1 be an integer and a ¼ ða1 ; . . . ; ar Þ 2 Rr . If ðfn ðxÞÞ is of multinomial type, then the sequence ðhn ðxÞÞ given by hn ðxÞ :¼
x fn ða n þ xÞ anþx
ð21Þ
is of multinomial type. Proof. By induction on r. The theorem is true for r ¼ 1 [4, Proposition 1]. Assume the theorem true for k ¼ 1; . . . ; r. Let ðfðn;nÞ ðxÞÞ be a sequence of multinomial type with ðn; nÞ ¼ ðn1 ; . . . ; nr ; nÞ, then by (9), we get ! !x X X X X tnrþ1 tn tn tnrþ1 ti tirþ1 fn;n ðxÞ ¼ fn;n ðxÞ ¼ fi;i ð1Þ n! n! nP0;nP0 n! n! i! i! nP0 nP0 iP0;iP0 ! !x X X ti ti ¼ fi;i ð1Þ rþ1 : i! i! iP0 iP0 If we set un ðxÞ ¼
X
fn;n ðxÞ
nP0
tnrþ1 ; n!
and thus X tn un ðxÞ ¼ n! nP0
X
ti ui ð1Þ i! iP0
!x ;
that is the sequence ðun ðxÞÞ is of multinomial type.
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
8
M. Mihoubi, H. Belbachir
Under the induction hypothesis, the sequence ðUn ðxÞÞ given by Un ðxÞ ¼ x
X tn un ða n þ xÞ x ¼ fn;n ða n þ xÞ rþ1 anþx a n þ x nP0 n!
is of multinomial type. We then have ! !x X X tn ti Un ðxÞ Ui ð1Þ ; ¼ n! i! nP0 iP0 or equivalently X tn vn ðxÞ rþ1 ¼ n! nP0
X
ti vi ð1Þ rþ1 i! iP0
!x with vn ðxÞ ¼
X fn;n ða n þ xÞ tn x : a n þ x n! nP0
This implies that the sequence ðvn ðxÞÞ is of binomial type and the sequence ðVn ðxÞÞ given by X x x tn vn ðarþ1 n þ xÞ ¼ fn;n ða n þ arþ1 n þ xÞ Vn ðxÞ ¼ arþ1 n þ x a n þ arþ1 n þ x n! nP0 P1 P1 n ti x is of binomial type too. We have ¼ n¼0 Vn ðxÞ tn!, or equivalently i¼0 Vi ð1Þ i! !x X fi;i ða i þ arþ1 i þ xÞ ti ti X fn;n ða n þ arþ1 n þ xtÞ tn tnrþ1 rþ1 x ¼ x : a i þ arþ1 i þ x i! i! a n þ arþ1 n þ x n! n! iP0;iP0 nP0;nrþ1 P0 This proves that the sequence ðhn;n ðxÞÞ given by x fn;n ða n þ arþ1 n þ xÞ hn;n ðxÞ :¼ a n þ arþ1 n þ x is of multinomial type.
h
From (9), one can infer that if the sequence ðfn ðxÞÞ is of multinomial type, then X n fn ðx þ yÞ ¼ fi ðxÞfni ðyÞ: ð22Þ i p i ð1Þ
ðrÞ
Theorem 7. Let ðfn ðxÞÞ, ðgn ðxÞÞ; . . . ; ðgn ðxÞÞ be sequences of binomial type. Then the polynomials ðpn ðxÞÞ and ðqn ðxÞÞ defined by pn ðxÞ ¼ fjnj ðxÞ and
qn ðxÞ ¼ gnð1Þ ðxÞ gðrÞ nr ðxÞ 1
ð23Þ
are of multinomial type. Proof. We have p0 ðxÞ ¼ q0 ðxÞ ¼ 1, X X tn X tn X ðjtjÞk pn ðxÞ ¼ fk ðxÞ ¼ fk ðxÞ ¼ n! kP0 n! kP0 k! nP0 jnj¼k
X
ðjtjÞk fk ð1Þ k! kP0
!x ;
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
Multipartitional polynomials and 4 polynomial sequences of multinomial type, Part I
and
! r X X tn Y tnkk ðkÞ qn ðxÞ ¼ g ðxÞ ¼ n! k¼1 n P0 nk nk ! nP0 k
r Y X k¼1
tnkk gðkÞ nk ð1Þ nk ! nk P0
9
!!x :
Remark 8. Let ðfn ðxÞÞ, ðgnð1Þ ðxÞÞ; . . . ; ðgðrÞ n ðxÞÞ be sequences of binomial type. Then, using Theorem 6, the sequences Pn ðxÞ ¼
x fjnj ða n þ xÞ anþx
and
Qn ðxÞ ¼
r Y x gðiÞ ða n þ xÞ a n þ x i¼1 ni
are of multinomial type. 4. MULTIPARTITIONAL
POLYNOMIALS AND MULTINOMIAL TYPE POLYNOMIALS
Roman [8, p. 82], proved that any sequence of binomial type ðfn ðxÞÞ, f0 ðxÞ ¼ 1, is related to the partial Bell polynomials in the form n X fn ðxÞ ¼ Bn;k ðDa¼0 fj ðaÞÞxk ; n P 1: ð24Þ k¼1
Similarly, we will establish that a sequence of multinomial type ðfn ðxÞÞ, and the partial multipartitional polynomials are related in the form given by the following theorem: Theorem 9. Let ðfn ðxÞÞ be a multinomial type sequence. Then, for ŒnŒ P 1, we have fn ðxÞ ¼
jnj X Bn;k ðDa¼0 fi ðaÞÞxk ¼ An ðxDa¼0 fi ðaÞÞ:
ð25Þ
k¼1
Proof. We have !k 1 tn X xk X ti Bn;k ðDa¼0 fi ðaÞÞx ¼ x Bn;k ðDa¼0 fi ðaÞÞ ¼ Da¼0 fi ðaÞ n! k¼0 n! k¼0 k! iP0 i! nP0 k¼0 jnjPk !! ! X X ti ti ¼ exp xDa¼0 fi ðaÞ ¼ exp x Da¼0 fi ðaÞ i! i! iP0 iP0 !a ! !! X X ti ti ¼ exp x ln fi ð1Þ fi ð1Þ ¼ exp xDa¼0 i! i! iP0 iP0 !x X X ti tn fi ð1Þ ¼ fn ðxÞ ; ¼ i! n! iP0 nP0
jnj X tn X
k
1 X
k
X
so, the desired identity follows by identification. h
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
10
M. Mihoubi, H. Belbachir
Theorem 10. Let a 2 R, a ¼ ða1 ; . . . ; ar Þ 2 Rr and ðfn ðxÞÞ be a multinomial type sequence. Then for n P kS, we have i n fiS ða ði SÞ þ aÞ fnkS ða ðn kSÞ þ akÞ ¼ akðk!ÞjSj1 Bn;k a : a ðn kSÞ þ ak S p a ði SÞ þ a kS p
ð26Þ
Proof. We have !k n X i t 1 X i ti Bn;k fiS ðaÞ ¼ fiS ðaÞ n! k! jijP1 S p i! S p jnjPk !k tkS X ti ¼ fi ðaÞ k! iP0 i! tkS X tn fn ðakÞ k! nP0 n! X n tn jSj1 ¼ ðk!Þ fnkS ðakÞ ; n! kS p nPkS
¼
i.e. Bn;k
i n jSj1 fiS ðaÞ ¼ ðk!Þ fnkS ðakÞ: S p kS p
It suffices to replace ðfn ðxÞÞ by ðhn ðxÞÞ given by (21).
ð27Þ h
Corollary 11. Let ðfn ðxÞÞ be a binomial type sequence. Then, for r ¼ 1, S ¼ ð1Þ, a ¼ a, the polynomials Bn;k ðxi Þ represent the partial Bell polynomials and n fnk ðaðn kÞ þ akÞ fi1 ðaðði 1ÞÞ þ aÞ Bn;k ai : ¼ ak aði 1Þ þ a aðn kÞ þ ak k Corollary 12. Let ðfm;n ðxÞÞ be a trinomial type sequence. Then, for r ¼ 2, S ¼ ð1; 0Þ, a ¼ ða; bÞ, we get m fmk;n ðaðm kÞ þ bn þ akÞ fi1;j ðaði 1Þ þ bj þ aÞ Bm;n;k ai ; ¼ ak aði 1Þ þ bj þ a aðm kÞ þ bn þ ak k for r ¼ 2, S ¼ ð0; 1Þ, a ¼ ða; bÞ, we get m fm;nk ðam þ bðn kÞ þ akÞ fi;j1 ðai þ bðj 1Þ þ aÞ Bm;n;k aj ; ¼ ak ai þ bðj 1Þ þ a am þ bðn kÞ þ ak k and for r ¼ 2, S ¼ ð1; 1Þ, a ¼ ða; bÞ, we get fi1;j1 ðaði 1Þ þ bðj 1Þ þ aÞ Bm;n;k aij aði 1Þ þ bðj 1Þ þ a m n fmk;nk ðaðm kÞ þ bðn kÞ þ akÞ ¼ ak : aðm kÞ þ bðn kÞ þ ak k k
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
Multipartitional polynomials and 4 polynomial sequences of multinomial type, Part I
11
The identity of Corollary 11 is Proposition 1 in [4] and the identities of Corollary 12 are those of Theorems 10 and 11 in [6]. Corollary 13. Let ðfm;n;p ðxÞÞ be a multinomial type sequence with f0;0;0 ðxÞ ¼ 1. Then, for r ¼ 3, S ¼ ð1; 0; 0Þ, a ¼ ða; b; cÞ, we get Bm;n;p;k
m fmk;n;p ðaðm kÞ þ bn þ cp þ akÞ fi1;j;l ðaði 1Þ þ bj þ cl þ aÞ ai ; ¼ ak aði 1Þ þ bj þ cl þ a aðm kÞ þ bn þ cp þ ak k
for r ¼ 3, S ¼ ð0; 1; 0Þ, a ¼ ða; b; cÞ, we get n fm;nk;p ðam þ bðn kÞ þ cp þ akÞ fi;j1;l ðai þ bðj 1Þ þ cl þ aÞ ¼ ak Bm;n;p;k aj ; ai þ bðj 1Þ þ cl þ a am þ bðn kÞ þ cp þ ak k for r ¼ 3, S ¼ ð0; 0; 1Þ, a ¼ ða; b; cÞ, we get p fm;n;pk ðam þ bn þ cðp kÞ þ akÞ fi;j;l1 ðai þ bj þ cðl 1Þ þ aÞ ¼ ak Bm;n;p;k al ; ai þ bj þ cðl 1Þ þ a am þ bn þ cðp kÞ þ ak k for r ¼ 3, S ¼ ð1; 1; 0Þ, a ¼ ða; b; cÞ, we get fi1;j1;l ðaði 1Þ þ bðj 1Þ þ cl þ aÞ Bm;n;p;k aij aði 1Þ þ bðj 1Þ þ cl þ a n fmk;nk;p ðaðm kÞ þ bðn kÞ þ cp þ akÞ m ¼ ak! ; aðm kÞ þ bðn kÞ þ cp þ ak k k for r ¼ 3, S ¼ ð1; 0; 1Þ, a ¼ ða; b; cÞ, we get fi1;j;l1 ðaði 1Þ þ bj þ cðl 1Þ þ aÞ Bm;n;p;k ail aði 1Þ þ bj þ cðl 1Þ þ a m p fmk;n;pk ðaðm kÞ þ bn þ cðp kÞ þ akÞ ¼ ak! ; aðm kÞ þ bn þ cðp kÞ þ ak k k for r ¼ 3, S ¼ ð0; 1; 1Þ, a ¼ ða; b; cÞ, we get fi;j1;l1 ðai þ bðj 1Þ þ cðl 1Þ þ aÞ Bm;n;p;k ajl ai þ bðj 1Þ þ cðl 1Þ þ a p fm;nk;pk ðam þ bðn kÞ þ cðp kÞ þ akÞ n ¼ ak! ; am þ bðn kÞ þ cðp kÞ þ ak k k and for r ¼ 3, S ¼ ð1; 1; 1Þ, a ¼ ða; b; cÞ, we get fi1;j1;l1 ðaði 1Þ þ bðj 1Þ þ cðl 1Þ þ aÞ Bm;n;p;k aijl aði 1Þ þ bðj 1Þ þ cðl 1Þ þ a m n p fmk;nk;pk ðaðm kÞ þ bðn kÞ þ cðp kÞ þ akÞ : ¼ aðk!Þ2 aðm kÞ þ bðn kÞ þ cðp kÞ þ ak k k k
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
12
M. Mihoubi, H. Belbachir
Example 14. When fn ðaÞ ¼ ajnj in (26), we get i n jiSj1 jSj1 jnj1 Bn;k a ða ði SÞ þ aÞ ða ðn kSÞ þ akÞ ¼ akðk!Þ S p kS p a1 and when fn ðaÞ ¼ n! , we get n p i ða ði SÞ þ aÞ1 ði SÞ! Bn;k a a ði SÞ þ a S p iS p n ða ðn kSÞ þ akÞ1 ðn kSÞ! jSj1 ¼ akðk!Þ : a ðn kSÞ þ ak kS p n kS p Using Theorem 7, Theorem 10 becomes Corollary 15. Let a 2 R, a ¼ ða1 ; . . . ; ar Þ 2 Rr and ðfn ðxÞÞ be a sequence of binomial type. Then, for n P kS, we have i n fjiSj ða ði SÞ þ aÞ fjnkSj ða ðn kSÞ þ akÞ jSj1 Bn;k a : ¼ akðk!Þ a ði SÞ þ a a ðn kSÞ þ ak S p kS p ð28Þ a Example 16. When fn ðaÞ ¼ n! in (28), one has n a ði SÞ þ a a ðn kSÞ þ ak ðjijÞ! ak ðjnjÞ! ¼ Bn;k a a ði SÞ þ a k! a ðn kSÞ þ ak ji Sj jn kSj and when fn ðaÞ ¼ Bn ðaÞ, (the single variable Bell polynomials), i n BjiSj ða ði SÞ þ aÞ BjnkSj ða ðn kSÞ þ akÞ ¼ akðk!ÞjSj1 Bn;k a : a ði SÞ þ a a ðn kSÞ þ ak S p kS p Theorem 17. Let a 2 R, a ¼ ða1 ; . . . ; ar Þ 2 Rr and ðfn ðxÞÞ be a multinomial type sequence. We have fi ða iÞ fn ða n þ aÞ An a : ¼a ai anþa
ð29Þ
Proof. From (25), we infer An ðaDx¼0 fi ðxÞÞ ¼ fn ðaÞ; which gives the desired identity by replacing fn ðaÞ by hn ðaÞ given by (21).
h
Corollary 18. Let ðfn ðxÞÞ be a binomial type sequence. For r ¼ 1, a ¼ a, the polynomials An ðxi Þ represent the complete Bell polynomials, and we have Am
fi ðaiÞ a ai
¼a
fm ðam þ aÞ : am þ a
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001
Multipartitional polynomials and 4 polynomial sequences of multinomial type, Part I
13
Corollary 19. Let ðfm;n ðxÞÞ be a trinomial type sequence. Then, for r ¼ 2, a ¼ ða; bÞ, fi;j ðai þ bjÞ fm;n ðam þ bn þ aÞ Am;n a ; ¼a ai þ bj am þ bn þ a and for r ¼ 3, a ¼ ða; b; cÞ, fi;j ðai þ bj þ clÞ fm;n;p ðam þ bn þ cp þ aÞ Am;n;p a : ¼a ai þ bj þ cl am þ bn þ cp þ a The identity of Corollary 18 is Proposition 3 in [5] and the identities of Corollary 19 are those of Theorem 14 in [6]. Example 20. For fn ðaÞ ¼ ajnj in (29), we get An ðaða iÞjij1Þ ¼ aða n þ aÞjnj1 ; x1 and for fn ðaÞ ¼ n! , we have n p ða iÞ1 ða n þ aÞ1 i! n! An a : ¼a ai anþa i n p p Using Theorem 7, Theorem 17 becomes Corollary 21. Let a 2 R, a ¼ ða1 ; . . . ; ar Þ 2 Rr and ðfn ðxÞÞ be a sequence of binomial type. We have fjij ða iÞ fjnj ða n þ aÞ An a : ð30Þ ¼a ai anþa a Example 22. For fn ðaÞ ¼ n! , we get from (30): n anþa ðjijÞ! a i ðjnjÞ! An a ¼a ; ai anþa jij jnj and for fn ðaÞ ¼ Bn ðaÞ, Bjij ða iÞ Bjnj ða n þ aÞ An a : ¼a ai anþa REFERENCES [1] H. Belbachir, M. Mihoubi, The (exponential) bipartitional polynomials and polynomial sequences of trinomial type, Part II, Integers 11 (2011) A29, 12 p. [2] Charalambos A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, A CRC Press Company, Boca Raton, London, New York, Washington, DC, 2001. [3] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, Netherlands, 1974. [4] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math. 308 (2008) 2450–2459. [5] M. Mihoubi, The role of binomial type sequences in determination identities for Bell polynomials. Ars Combin. (2013), in press. Preprint available at:
. [6] M. Mihoubi, H. Belbachir, The (exponential) bipartitional polynomials and polynomial sequences of trinomial type, Part I, Integers 11 (2011) A18, 17 p. [7] J. Riordan, Combinatorial Identities, Huntington, New York, 1979. [8] S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
Please cite this article in press as: M Mihoubi, H Belbachir. The (exponential) multipartitional polynomials and polynomial sequences of multinomial type, Part I. Arab J Math Sci (2013), http://dx.doi.org/10.1016/j.ajmsc.2012.12.001