The First Isolation of a Telluroketone and Its Reversible Dimerization

The First Isolation of a Telluroketone and Its Reversible Dimerization

@ Pergamon Temo/redrwI Letters,Vol.38,No. 14,pp.2301-2504,1997 01997 BkavicrScienceI.td Allrightsreserved.tinted in GreatBritsin Oo40-4039/97 $17.00...

475KB Sizes 1 Downloads 83 Views

@

Pergamon

Temo/redrwI Letters,Vol.38,No. 14,pp.2301-2504,1997 01997 BkavicrScienceI.td Allrightsreserved.tinted in GreatBritsin Oo40-4039/97 $17.00+ 0.00 PII: S0040-4039(97)00377-8

The First Isolation of a Telluroketone and Its Reversible Dimerization Mao Minoura,l Takayuki Kawashima,and Renji Okazaki*

Departmentof Chemistry,GraduateSchoolof Science,The Universityof Tokyo,

7-3-1Hongo,Bunkyo-kb,Tokyo 113,Japan

Abstract: The solid-state thennolysis of a sterically hindered A3-1,3,4-telluradiazoline2 afforded products resulting from intermediarytellone 1 and diazo compound8 formed by retrocyclization, whereas the flash vacuum therrnolysis of 2 led to isolation of tellone 1 as green needles. The spontaneousdimeriz.ationof 1 thus obtainedoccurredin the solid state to give the corresponding1,3ditelluretane10,whichunderwentthe thermalcycloreversionin solutionto regeneratepure telione 1. d) 1997Elsevier Science Ltd.

Compoundscontaininga carbon-telluriumdoublebondare knownto be unstable. The mostprevalent wayto stabilizea C=Tebondis theintroductionof heteroatomsubstituentson the tellurocarbonylcarbon,and some heteroatom stabilized tellurocarbonylcompoundshave been reported2since the first synthesisof telluroestersby Bartonet al. in 1979.3In contrastto well knownthio-4and selenoketones,stelluroketones (tellones)withoutsuchelectronicstabilizationhaveprovedelusivebecauseof the we~ness of a C2p-Tespz bondingandthe lackof suitablesyntheticmethods,althoughsometransienttellones6andtheircyclicdimers havebeenreported.6~ 7 We haverecentlycommunicatedthe synthesisof tellone1 stablein solutionby use of thermalcycloreversionof 1,3,4-telhsradiazoline 28andthe isolationof I?l-complexof 1 whichregenerates1 uponheatingin acetonitrile.g Wereporthemtheflashvacuumthermolysisof 1,3,4-telluradiazoline 2 leadingto the isolationof tellone 1 asgreencrystalsandits solid-statedimerizationto thecorresponding1,3-ditelluretanewhichcan reproduce puretellone1 upontherrnolysisin solution.10 The solid state therrnolysisof 211 was performedat 80, 160and 200 ‘C for 6 h in sealed tubes. Although2 was stableat80‘C for 6 h withoutany perceptibledecomposition,pyrolysisat 160and 200 “C afforded decomposition products 3 – 7 (Scheme 1 and TableI). On the contrary, thermolysis of the correspondingselenadiazoline9 undersimilarconditions(190“C,24 h) gave a mainlya two fold extmsion ,. ,, product3 (70%).12 2501 .,

2502

Scheme 1.

2

—w

L

8

1

3

5

J

4

7

6

Table 1. ReactionProductsof the Thermolysisof 2a

3 80“c 160“c 200“c

27 15

Yield/ 9. 4 5 no reaction 13 43 8 29

6

7

108 144

9 4

a: The product distribution was determined by integrating the peak area (2.1 — 0.9 ppm) of methyl groups in the ‘H NMR(COC13).

The relativelylow yield of the two fold extrusionproduct3 in the reactionof 2 comparedwith the thermolysisof 9 seemsto be dueto competitivereactionleadingto tellone1 andthediazocompound8, which was observedin the therrnolysisin solutions followedby the decompositionof 1 and 8 giving5,6, and 7. Theseresultspromptedus to attempttheisolationof 1 usingtheflashvacuumtherrrtolysis(FVT)technique.]s The FVTof 2 wascarriedout at 250‘C underthe pressureof 1x 10-3mmHg. Vaporof 2, whichwas generatedby heatingsolid2 mixedwell withquartzsandat 200 “C,was passedthrougha quartztubing(60 cm long,2 cm in diameter). Greensolidproductscontaining1,5, and6 werecollectedin thecoldtrapat -78 “C during3 h, while3 and 4 remainedin the quartzsand alongwith unchanged2. Heatingthe greensolid productsin the first cold trap underreducedpressurevaporized1,5, and 6, amongwhich1 wastrappedin the second cold trap at -78 “C whereas5 and 6 were trapped at the third trap cooled by liquid nitrogen. Tellone 1 thus purifiedis an emeraldgreencrystallinecompound.The NMR and electronicspectraof the greenneedlestakenin a sealedNMRtube (CDC13)andin a sealedUV-viscell (CHC13),respectively,were identicalwiththosetakenfor 1 obtainedfromthe therrnolysisof 2 in solution.8

2503

Interestingly,the greencolor of the crystallinetellone1 graduallyfadedawaywithinseveralhoursat room temperatureand orange crystalline 1,3-ditelluretane10 was formedquantitatively(Scheme2). The head-to-tailstructureof the tellonedimer 10 was characterizedby spectroscopicmeans.1AThe dimer 10 is stabletowardoxygen,water,and light,and the yieldof 1 isolatedin the FVTwas estimatedto be ca. 40%on the basisof the yieldof 10. Scheme 2. in the solidstate

FVT, 250“C 0.001 mmHg

2~

I;

Te

*

+ 1

green needles

160 ‘C, 6 h

*:* 10 orangeneedles

Although10 was stablein the solidstate,it slowlydecomposedin solutioncontaminatedwithoxygen. Dissociationof 10into 1 proceededin an absolutelydeaeratedCDC13solutionat 160‘C in a sealedtubeover 6 h. Intermittentmonitoringby IH NMR revealedthe quantitativeformationof 1; the signalsof 10 were decreasedwithconcomitantincreaseof the signalsdue to 1. Tellone1 was thermallyquitestable,gsurviving afterheatingat 160“C for 6 h and standingfor as longas a fewdaysat roomtemperature.Interestingly,any dimerizationproductwasnot observedin solution. Acknowledgement: This work was supportedby a Grant-in-Aidfor ScientificResearchNo. 04403005 fromthe Ministryof Education,ScienceandCulture,Japan. REFERENCES AND NOTES 1. Present address: Hiroshima University, Department of Chemistry, Faculty of Science, 1-3-1 Kagarniyama,Higashi-Hiroshima739,Japan. 2. Barrett, A. G. M.; Barton,D. H. R.; Read, R. W. J. Chem. Soc., Chenr. Commun. 1979, 645-647. 3. Grshovich,M. Z.; Elitsov, A. V. Z. CUmhch.Khim. 1969,39, 941-942; Lerstrup, K. A.; Henriksen, L. J. Chem. Soc., Chem. Commun. 1979, 1102-1103; Lappert,M. F.; Martin,T. R.; McLaughlin,G. M. J. Chem. Soc., Chem. Commun. 1980, 635-637; Barrett, A. G. M.; Read, R. W.; Barton, D. H. R. J. Chem. Soc., Perkin Trans. 11980, 2191-2195; Severengiz,T.; du Mont,W. W. J. Chem. Soc., Chem. Commun. 1987, 820-821; Kate, S.; Kageyama,H.; Kanda, T.; Murai, 7’.; Kawamura,T. Tetrahedron Lett. 1990,31, 3587-3590; Segi, M.; Kojima,A.; Nakajima,T.; Suga, S. Synlett1991, 2, 105-106.Kuhn, N.; Henkel, G.; Kratz, T. Chem. Ber. 1993, 126, 2047-2049; Kawahara, Y.; Kate, S.; Kanda,T.; Murai, T.; Ebihara,M. Bull. Chem. Soc. Jpn. 1995,68, 3507-3517; Kate, S.; Kawahara,Y.; Kageyama,H., Yamada,R.; Niyomura,O.; Murai,T.; Kanda,T. J. Am. Chem. Soc. 1996,118, 4.

1262-1267.

Duss, F. In Comprehensive Organic Chemistry; Barton, D. H. R.; Ollis, W. D., Eds.; Pergamon: Oxford, 1979;Vol. 3, pp 373-487;Voss, J. In Houben-Weyl Methoden der Organischen Chemie; Klamann,D. Ed.:GeorgeThieme:NewYork, 1985;Bd. El 1,pp 188-231.

2504

5.

6.

7.

Magnas,P. D. In Comprehensive Organic Chemistry; Barton,D. H. R.; Ollis,W. D., Eds.;Pergamon: Oxford, 1979;Vol. 3, pp 491-538;Paulmier,C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon: Oxford, 1986; pp 58-83; Guziec, F. S., Jr. In The Chemistry of Organic Selenium and Tellurium Compounds; Patti, S. Ed.; JohnWiley& Sons:New York 1987;Vol. 2, pp 215-273; Guziec, F. S. Jr.; Guziec, L. J. In Comprehensive Organic Functional Group Transformations; Pattenden,G., Ed.; Katritzky,A. R.; Meth-Cohn,O., Rees, C. W., Eds.-in-Chief; Pergamon:Oxford,1995;Vol. 3, pp 381-401. Segi, M.; Koyama,T.; Takata, Y.; Nakajima,T.; Suga, S. Y.Am. Chem.Soc. 1989,Ill, 8749-8751; Back,T. G.; Dyck,B. P.; Parvez,M. 1 Org. Chem. 1995,60, 4657-4659;alsosee:Erker,G.; Hock, R. Angew. Chem., lnt. Ed. Engl. 1989,28, 179-180. Boese, R.; Haas, A.; Limberg, C. J. Chem. Soc., Chem. Commun.1991, 1378-1379;Boese, R.; Haas, A.; Limberg, C. J. Chem. Soc., Dalton Trans. 1993, 2547-2556. Beck, J.; Haas, A.; Herrendorf,W.; Heuduk,H. J. Chem. Soc., Dalton Trans. 1996,4463-4470. For other examplesof 1,3-ditelluretanessee: Laishev, V. Z.; Petrov, M. L.; Petrov, A. A. Z. Org. Kim. 1981,17, 20641495-1496; 2071; Bender, S. L.; Haley, N. F.; Luss, H. R. Tetrahedron L.ett. 1981,22, Lakshmikantham,M. V.; Cava, M. P.; Albeck,M.; Engman,L.; Carroll,P.; Bergman,J.; Wudl, F. Tetrahedron Lett. 1981,22,4199-4200.

8. 9. 10. 11. 12.

13! 14.

Minoura,M.; Kawashima,T.; Okazaki,R. J. Am.Chem.Soc. 1993,115,7019-7020. Minoura,M.; Kawashima,T.; Tokitoh,N.; Okazaki,R. J. Chem. Soc., Chem. Commun.1996, 123124. In theseexperiments,all manipulationswereperformedin the darkwitha subduedred lumpexceptfor casesof checkingthecolor. Okazaki,R.; Minoura,M.; Kawashima,T. Chem.Lett. 1993, 1047-1048. Guziec, F. S., Jr.; SanFilippo,L. J.; Murphy,C. J.; Moustakis,C. A.; Cullen, E. R. Tetrahedron 1985,41, 4843-4852. Also see followings.Back, T. G.; Barton, D. H. R.; Britten-Kelly,M. R.; Guziec,F. S., Jr. J. Chem. Soc., Perkin Trans. I 1976, 2079-2089; Guziec,F. S., Jr; Murphy,C. J.; Cullen,E. R. J. Chem.Soc.,Perkin Trans. 11985, 107-113. Wiersum,U. E. Reel. Trav. Chim. Pays-Bus 1982,101, 317-332, 365-381. 1,1,1'',1'',3,3,3'',3''-Octamethyldispiro[indane-2,2'-[l,3]diteUuretane-5’,2’’-indanel (10): Orange needles.Mp 189-190‘C (daomp); iH NMR(CDC13,500 MHz)/j = 1.79(s,24H),7.17(s,8H); 13(2 , NMR(CDC13, 125 MHZ) 6 = 10.0(s), 34.8(q), 50.4(s), 123.O(d), 127.2(d), 146.7(s); 125Te NMR(CDC13,85.1 MHz)6 = 977.9;UV-vis(CHC13) ~ax 519 nm (C92). HRMS(FAB)Found:dZ M, 600.0594. 600.0604: Crdcdfor C26H32128Te2:

(Received in Japan 27 January 1997; revised 20 February 1997;accepted 21 February 1997)