Annales de Paléontologie 102 (2016) 219–224
Disponible en ligne sur
ScienceDirect www.sciencedirect.com
Original article
The first report of the bivalved arthropod Tuzoia from the ´ rovice Basin (Barrandian area, Czech Republic) Skryje–Tyˇ Premier signalement de l’arthropode « bivalve » Tuzoia dans le bassin de Skryje–T´ yrˇovice (Région barrandienne, République Tchèque) Oldˇrich Fatka a,∗ , Jaroslav Herynk b a b
Charles University in Prague, Faculty of Science, Institute of Geology and Palaeontology, Albertov 6, 12843 Prague 2, Czech Republic Západní 7, 36001 Karlovy Vary, Czech Republic
a r t i c l e
i n f o
Article history: Received 11 April 2016 Accepted 12 October 2016 Available online 17 November 2016 Keywords: Barrandian area Buchava Formation Czech Republic Mid-Cambrian Tuzoia
a b s t r a c t A fragment of a Burgess Shale-type fossil, bivalved arthropod Tuzoia Walcott, 1912, is described from ´ rovice Basin, Central Bohemia, Czech shales of the mid-Cambrian Buchava Formation in the Skryje–Tyˇ Republic. It is the second recorded find of Tuzoia from West Gondwana. Uncrushed and uncoloured preservation of the tuzoiid valve is consistent with the very thin non-mineralised cuticle described for this taxon. This new occurrence of the genus Tuzoia, as well as the earlier described genera Wiwaxia and Hurdia, indicate the presence of a Burgess Shale-type fauna in several stratigraphical levels of Cambrian sequence ´ rovice Basin. Distribution of other exceptionally preserved specimens established in the of the Skryje–Tyˇ Buchava Formation is briefly summarized and discussed. © 2016 Published by Elsevier Masson SAS.
r é s u m é Mots clés : Région barrandienne Formation de Buchava République Tchèque Cambrien « Moyen » Tuzoia
Le fragment d’un animal typique des schistes de Burgess, l’arthropode « bivalve » Tuzoia Walcott, 1912, est ´ rovice, décrit dans les schistes de la Formation de Buchava du Cambrien « Moyen » du bassin de Skryje–Tyˇ Bohème centrale, République Tchèque. C’est le second signalement de Tuzoia dans la partie ouest du Gondwana. L’aspect non écrasé et non coloré de la valve de Tuzoia est conforme avec une cuticule très fine non-mineralisée décrite pour ce taxon. Ce nouveau signalement du genre Tuzoia ainsi que des genres décrits précédemment tels que Wiwaxia et Hurdia, indique la présence d’une faune typique des schistes de ´ rovice. Burgess dans plusieurs niveaux stratigraphiques de la séquence cambrienne en bassin de Skryje–Tyˇ La distribution des autres fossiles à préservation exceptionnelle établie dans la Formation de Buchava est brièvement résumée et discutée. © 2016 Publie´ par Elsevier Masson SAS.
1. Introduction The genus Tuzoia Walcott, 1912 is a widespread Cambrian marine taxon, occurring at nearly twenty Burgess Shale-type localities (Vannier et al., 2007). Morphology of the non-mineralised carapace of this bivalved arthropod genus is characterized by a
∗ Corresponding author. E-mail address:
[email protected] (O. Fatka). http://dx.doi.org/10.1016/j.annpal.2016.10.002 0753-3969/© 2016 Published by Elsevier Masson SAS.
noticeable reticulate surface, two cardinal processes and a diverse number of marginal and lateral spines. Presence of the large netlike pattern makes a reliable assignment to this genus of incomplete carapace fragments possible. Tuzoia has been reported from numerous early and mid-Cambrian localities in Laurentia (Canada and U.S.A.; Walcott, 1912; Vannier et al., 2007), East Gondwana (South Australia and South China; Glaessner, 1979; Luo et al., 2006; García-Bellido et al., 2009; Zhao et al., 2011; Hu et al., 2013) and West Gondwana (Czech Republic; Chlupáˇc and Kordule, 2002). Rare specimens determined as Tuzoia sp. from the mid-Cambrian Jince Formation of the Pˇríbram–Jince Basin constitute the only
220
O. Fatka, J. Herynk / Annales de Paléontologie 102 (2016) 219–224
´ rovice and Fig. 1. Geography and stratigraphy. A) Location of the study area in Europe. B) Regional map showing Czech Republic, the Barrandian area and the Skryje–Tyˇ ´ ´ rovice Basin. Geology modified from Maˇsek et al. (1997). D) locality within the Skryje–Tyˇ Pˇríbram–Jince basins. C) Detailed geographical position of the Skryje–“K paryzkám” ´ ´ rovice Basin. Stratigraphy after Fatka et al. (2011b). Stratigraphic position of the Skryje–“K paryzkám” locality in the Cambrian Buchava Formation of the Skryje–Tyˇ Géographie et stratigraphie. A) Localisation du territoire étudié sur une carte de l’Europe. B) Carte régionale montrant la République tchèque, l’aire barrandienne et les bassins de yzkám » dans le bassin de Skryje–T´ yrˇovice. Géologie modifiée d’après Maˇsek et al. Skryje–T´ yrˇovice et Pˇríbram–Jince. C) Position géographique détaillée de la localité Skryje–« K par´ yzkám » au sein de la Formation de Buchava du bassin de Skryje–T´ yrˇovice. Stratigraphie modifiée d’après Fatka et al. (1997). D) Position stratigraphique de la localité Skryje–« K par´ (2011b).
occurrence of this arthropod genus in West Gondwana (Chlupáˇc and Kordule, 2002; Vannier et al., 2007). The purpose of the present paper is to document the first occurrence of Tuzoia in the mid-Cambrian Buchava Formation of the ´ rovice Basin (Barrandian area, Czech Republic Fig. 1). The Skryje–Tyˇ only known specimen, the postero-lateral part of a right valve, is incomplete, and is left in open nomenclature. 2. Geological setting and associated fossils In the Barrandian area, fossiliferous Cambrian rocks are known in two separate areas: in the large Pˇríbram–Jince Basin and in the ´ rovice Basin (Havlíˇcek, 1971; Geyer et al., 2008). smaller Skryje–Tyˇ 2.1. Skryje–T´ yrˇovice Basin A sequence of up to 200 meters of fine shales, greywackes, sandstones and subordinate conglomerates deposited in a marine ´ rovice Basin (Havlíˇcek, environment is known in the Skryje–Tyˇ 1971; Geyer et al., 2008). General overviews of the stratigraphy and depositional setting of Cambrian in this basin are available in Jahn (1896), Havlíˇcek (1971, 1998), Kukal (1971), and Geyer et al. (2008). Fatka et al. (2011b) summarized all data dealing with the lithostratigraphic subdivision of Cambrian sedimentary sequence, and three separate units: the Skryje, Slapnice and Mileˇc members, all within the newly established Buchava Formation (Fig. 1D). The mid-Cambrian Buchava Formation is well known for its ˇ diverse fossil content (e.g. Barrande, 1852; Pompeckj, 1896; Snajdr, 1958; Fatka, 2004). A rich fauna of trilobites, agnostids, hyoliths and brachiopods associated with rare echinoderms and molluscs has been studied for nearly two hundred years (e.g. Barrande, 1852;
ˇ Snajdr, 1958; Kraft and Marek, 1992; Chlupáˇc, 1999; Geyer et al., 2008). Despite more than 150 years of intensive investigation by both professional palaeontologists and amateur collectors, field work at exposures of the Buchava Formation continuously provides new species of trilobites, echinoderms, hyoliths and other skeletal fauna (e.g. Valent et al., 2013; Fatka and Kraft, 2014; Fatka and Szabad, 2014). Recently, rare specimens of poorly to completely non-mineralised Burgess Shale-type metazoans were also described (Chlupáˇc and Kordule, 2002; Maletz et al., 2005; Fatka et al., 2011a; Mikuláˇs et al., 2012; Fatka et al., 2013; Fatka and Kozák, in press). 2.2. Associated fauna and age The studied specimen of Tuzoia sp. was collected by the junior author (J.H.) at a man-made excavation in a small valley east of Skryje (Fig. 1C). In this area, several small outcrops were mentioned for the first time by Jahn (1896, p. 668), who included them yzkám” (= the small valley “K under the name Das Thälchen “K par´ ´ paryzkám”). However, it cannot be ruled out that some specimens preserved in fine olive-grey shales and greywackes from Joachim Barrande’s collection housed in the National Museum Prague also come from these outcrops. Barrande and his collectors applied the locality name “Skrey” for several outcrops in the wider area around this village (Chlupáˇc, 1999; Fatka et al., 2011b). A more than tenmeter-thick sequence in the upper levels of the Skryje Member is accessible in the western slope of this valley (Fig. 1C). Shales and greywackes contain a moderately diverse skeletal fauna of abundant trilobites Sao hirsuta; Solenopleurina tyrovicensis; Agraulos ceticephalus; Paradoxides (Hydrocephalus) carens; Paradoxides (Eccaparadoxides) pusillus; Paradoxides (E.) rohanovicus;
O. Fatka, J. Herynk / Annales de Paléontologie 102 (2016) 219–224
221
´ rovice Basin, Barrandian area, Skryje–« K paryzkám ´ Fig. 2. Photographs of Tuzoia sp. and associated trilobites Sao hirsuta, specimen CGS XA 921, Buchava Formation, Skryje–Tyˇ locality”. A) Internal mould of the valve of Tuzoia sp. partly covered by internal mould of S. hirsuta. B) External mould of the valve of Tuzoia sp. associated with remains of four specimens of S. hirsuta. C) Interpretative drawing of the reticulated pattern in preserved part of external mould of Tuzoia sp. with remains of three specimens of S. hirsuta. Abbreviations: rla: raised longitudinal area; lr: lateral ridge; ms: marginal spine; 4–7 indicate polygonal units (fossae) with 4 to 7 sides. Les photographies de Tuzoia sp. et trilobites associés Sao hirsuta, spécimen GGS XA 921, Formation de Buchava, bassin de Skryje–T´ yrˇovice, aire barrandienne, « localité Skryje–K par´ yzkám. ». A) Moule interne de la valve de Tuzoia sp. partiellement couvert d’une moule interne de S. hirsuta. B) Moule externe de la valve de Tuzoia sp., associée avec des restes de quatre spécimens de S. hirsuta. C) Dessin interprétatif du motif réticulé dans la partie conservée du moule externe de Tuzoia sp. avec des restes de trois spécimens de S. hirsuta. Abréviations : rla : zone longitudinale élevée ; lr : crête latérale; ms : épine marginale ; 4–7 indications des unités polygonales (fossae) avec 4 à 7 côtés.
Ellipsocephalus hoffi, associated with common agnostids Phalagnostus nudus; Pleuroctenium granullatum granullatum; Condylopyge rex; Peronopsis integra and Skryjagnostus pompeckji, and the cinctan Trochocystites bohemicus. The occurrence of the stratigraphically important solenopleurid trilobite S. hirsuta, and the agnostids C. rex and P. granullatum granullatum make it possible to correlate the upper levels of the Buchava Formation with the Caesaraugustian Regional Stage of the West Gondwanan chronostratigraphic sequence. Those upper levels therefore correspond to the Drumian Stage of Cambrian Series 3 (Álvaro et al., 2004; Geyer et al., 2008; Gozalo et al., 2011).
3. Material and methods Incomplete, slightly flattened valve of carapace preserved as internal and external mould in shale (Fig. 2). It is housed in the palaeontological collections of the Czech Geological Survey, Prague under inventory number CGS XA 921. The internal and external moulds were whitened with ammonium chloride and photographed with a NIKON D300® . The drawing of the specimen was made from photographs using CorelDraw® X3.
4. Systematic paleontology Phylum Arthropoda von Siebold, 1848 (Hegna et al., 2013) Class Uncertain Order Tuzoida Simonetta and Delle Cave, 1975 Family Tuzoiidae Raymond, 1935 Genus Tuzoia Walcott, 1912 Type species. Tuzoia retifera Walcott, 1912, mid-Cambrian Burgess Shale, British Columbia, Canada. Diagnosis. See Vannier et al. (2007, pp. 458–9). Discussion. More than twenty species have been described since the genus was established. However, Vannier et al. (2007) recognized only seven valid species, and several imperfectly known forms were left in open nomenclature (e.g. Chlupáˇc and Kordule, 2002; Vannier et al., 2007; Hu et al., 2013). Luo et al. (2006) established one new species (T. tylodesa Luo and Hu, 2006) from the Guanshan fauna in the Kunming and Wuding areas (China). This species was later also reported by Luo et al. (2008), Liu et al. (2012) and Hu et al. (2013). García-Bellido et al. (2009) recognized two species in South Australia: Tuzoia australis Glaessner, 1979, and one
222
O. Fatka, J. Herynk / Annales de Paléontologie 102 (2016) 219–224
yet to be described Tuzoia sp. Hendricks et al. (2008) considered T. getzi and T. nitida as two distinct taxa, whereas Vannier et al. (2007) preferred their synonymy with T. polleni. The distinct valve reticulation in Tuzoia was compared with that of pelagic ostracods, and it has been interpreted as a strengthening adaptation of a light carapace with minimum metabolic investment by Vannier et al. (2007). Tuzoia sp. Fig. 2 Material. Incomplete, slightly flattened postero-lateral part of right valve of carapace, preserved as internal and external mould of single specimen in shale, CGS XA 921. Description. The studied remain is incompletely preserved, the internal mould is 23.1 mm long and 16.6 mm wide, the external mould measures 24.2 mm in length and 18.9 mm in width. Length of complete carapace could be estimated to reach more than 50 mm and height of the valve without spines would range between 30 and 35 mm. The valve preserves part of a margin, where only three small marginal spines are discernible (ms1–3 in Figs. 2B, C); these spines are 1.5 mm to more than 3 mm long, and at least 1.5 mm wide at their base. No cardinal processes, dorsal spines, midposterior spine or lateral frill spines are preserved in either external or internal mould. The upper border of an apparently raised longitudinal area (rla in Fig. 2C), developed in the upper part of both internal and external mould, most probably corresponds to the lateral ridge (lr in Fig. 2C). The surface of both moulds of the valve bears the typical reticulate pattern of the genus, composed of polygonal units separated by narrow distinct crests (Fig. 2). The reticulate pattern is dense; size of the polygons does not diminish close to the lateral ridge. Tetragonal and pentagonal polygons are present, but hexagons and heptagons prevail. Polygons range around 2 mm by 2 mm, reaching up to 4.4 mm in the largest dimension. Lengths of individual crests range from about 0.6 to 2.5 mm, their width is around 0.3 mm. Dimensions. Tuzoia is usually found as empty carapaces of variable size, valve length ranges from 9 mm up to nearly 200 mm (Chlupáˇc and Kordule, 2002; Vannier et al., 2007; Wen et al., 2015). The dimensions described for the studied specimen fall within the common range of specimens of the genus. Comparison. Presence of at least three small marginal spines in the studied specimen agrees with three (? four) spines, presumed to occur at the postero-ventral margin of valve in specimens from the Jince Formation (Chlupáˇc and Kordule, 2002, Fig. 3). However, the Jince material differs in (1) apparently larger polygons and coarser reticulation, with diameter 4–7 mm, while the new material is smaller, at diameters of 2–4.4 mm, and (2) polygons that gradually diminish towards the margins of the valve, and near the lateral ridge. Similarly, the plastotype of “Pilocystites primitius” Barrande, 1887 (NM-L 9049, most likely conspecific with Tuzoia sp.; see Chlupáˇc and Kordule, 2002, p. 171, Fig. 5) and the “Large tuzoiid arthropod (n. gen.)” of Chlupáˇc and Kordule (2002, p. 172–3) show much coarser polygonal reticulation. Discussion. Remains of S. hirsuta and all other trilobites, echinoderms and other skeletal fauna collected at the Skryje–“K ´ paryzkám” locality are covered by yellow-red iron oxides. Larger exoskeletons of paradoxidid trilobites are commonly crushed. Compared to these remains, the external and internal mould of Tuzoia is not covered by iron oxides and shows no cracks.
Such preservation of Tuzoia is consistent with a very thin, nonmineralized cuticle, as supposed Vannier et al. (2007, p. 450). Such character of cuticle in combination with a slight tectonic deformation of Cambrian sediments explains the apparent rar´ rovice Basin. Shale ity of non-mineralised fossils in the Skryje–Tyˇ and greywacke usually split along mineralised skeletal remains, whereas non-mineralised organic material remains embedded in rock and such remains do not act as a splitting plane. 5. Interpretation of the studied assemblage Disposition and orientation of specimens. The studied sample was collected from loose rock debris, so the original orientation is not known. However, trilobite exoskeletons and the tuzoiid valve show a distinctive placement. If the remain of Tuzoia is oriented with its external surface downwards, only one articulated carcass of S. hirsuta shares this orientation (specimen a in Fig. 2B). In such case the other two articulated specimens and the isolated cephalon are upside down (Fig. 2B). Discussion. It is difficult to suppose that the early holaspid trilobite S. hirsuta with exoskeleton bearing numerous dorsal spines and spine-like tubercles (specimen a in Fig. 2B) was capable of active burrowing under the tuzoiid valve. Consequently, such an above-described arrangement of fossil remains most likely represents an allochthonous association assembled by currents. Slightly moved and rotated librigenae in two trilobite specimens (arrows in Figs. 2A, B) corroborate with only very subtle manipulation with both exoskeletons, which otherwise remain perfectly articulated; similarly, the dorsal spines and spine-like tubercles are not abraded. 6. Exceptional preservation in the Buchava Formation Exceptionally well-preserved fossils have been established in several stratigraphical levels of the Buchava Formation, and fulfil the definition of Konservat-Lagerstätte sensu Seilacher (1970). Burgess-type preservation is documented by the occurrence of (a) bivalve arthropod Forfexicaris? sp. (Chlupáˇc and Kordule, 2002); (b) the anomalocaridid Hurdia Walcott (Daley et al., 2009; Mikuláˇs et al., 2012); (c) the herein described Tuzoia; (d) the enigmatic Wiwaxia Walcott (Fatka et al., 2011a), (e) and the lobopodian Onychodictyon Hou et al. (Fatka and Kozák, in press). The preservation of non-biomineralized tissue is represented by the rare remains of a digestive system in ptychoparid and other trilobites (Jaekel, 1901; Fatka et al., 2014), as well as by discoidal fossils assigned to the pineapple-shaped ichnogenus Astropolichnus (Mikuláˇs and Fatka, 2017), and graptoloids (Maletz et al., 2005). Recently, rare remains of poorly to non-sclerotized in situ preserved hypostomes were ascertained in articulated exoskeletons of the genera Condylopyge and Skryjagnostus (Fatka and Kozák, in press). Weakly articulated skeletons are represented by diverse ontogenetic stages of triloˇ bites and agnostids documented by Barrande (1852) and Snajdr (1958), and make possible the application of quantitative methods in detailed study of larval morphology (Laibl et al., 2014, 2015). Similarly exceptionally preserved are hyolith conchs with operculum and with helenae in situ (Martí Mus and Bergström, 2005; Valent et al., 2011, 2013), and numerous echinoderm specimens with loosely connected ossicles (Barrande, 1887; Lefebvre and Fatka, 2003; Lefebvre, 2007 and Zamora et al., 2013). Numerous articulated specimens of the small trilobite Skreiaspis spinosus ascertained inside of large hyolithid conchs represent the gardening strategy known in other Cambrian trilobites (Mikuláˇs, 2001; Fatka et al., 2008). An articulated carcass of a small trilobite Agraulos ceticephalus preserved in situ at the end of feeding structure belongs to a specific type of mortichnia named fodichnial association (Fatka and Szabad, 2011). The occurrence of tiny burrow
O. Fatka, J. Herynk / Annales de Paléontologie 102 (2016) 219–224
systems associated with slightly skeletonized body fossils suggest grazing on or farming of bacteria (Mángano et al., 2012; Mikuláˇs et al., 2012). All these samples preserve interacting specimens. 7. Conclusions (1) The specimen of Tuzoia represents the second recorded find of this genus of Burgess-type preservation from West Gondwana. The remains of Tuzoia and the associated trilobites show a distinctive placement, interpreted as an allochthonous assemblage (assemblage accummulation generated by a current). (2) The examples of exceptionally preserved specimens classified here as A and B agree with the definition of KonservatLagerstätten of Seilacher (1970). However, the exceptional preservation classified as C does not fit with the original definition of this type of Lagerstätte. These samples do not preserve soft parts, but show interacting specimens designated by Boucot (1990), Boucot and Poinar (2010) and other authors as “frozen behavior” or mortichnia of Seilacher (2007). Disclosure of interest The authors declare that they have no competing interest. Acknowledgements This study was supported by PRVOUK P44 of the Ministry of education, youth and sports of Czech Republic. This paper is a contribution to the International Geoscience Program (IGCP) 591, “The Early to Middle Palaeozoic Revolution”. We are thankful to Jean Vannier (Université Claude-Bernard Lyon I) for insightful and critical comments. We thank Marika Polechová (Czech Geological Survey, Prague) for translation in French, Peter Daneˇs (National Museum Prague) for assistance with English, and Petr Budil (Czech Geological Survey, Prague), who kindly photographed the specimen. References Álvaro, J.J., Vizcaïno, D., Kordule, V., Fatka, O., Pillola, G.L., 2004. Some solenopleurine trilobites from the Languedocian (Late Mid Cambrian) of Western Europe. Geobios 37 (1), 135–147. Barrande, J., 1852. Système silurien du centre de la Bohême. Volume I. Praha & Paris. Prague, 935 p. Barrande, J., 1887. Systême silurien du centre de la Bohême. Volume VII. Classe des Echinodermes, Ordre des Cystidées. Praha & Leipzig, 233 p. Boucot, A.J., 1990. Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, London, 725 p. Boucot, A.J., Poinar Jr., G.O., 2010. Fossil Behavior Compendium. CRC Press, Boca Raton, London, New York, 363 p. Chlupáˇc, I., 1999. Barrande’s stratigraphic concepts, palaeontological localities and tradition - comparison with the present state. Journal of the Czech Geological Society 44 (1–2), 3–30. Chlupáˇc, I., Kordule, V., 2002. Arthropods of Burgess Shale type from the Middle Cambrian of Bohemia (Czech Republic). Bulletin of the Czech Geological Survey 77 (3), 167–182. Daley, A.C., Budd, G.E., Caron, J.B., Edgecombe, G.D., Collins, D., 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early Euarthropod evolution. Science 323, 1597–1600. ´ rovice–“Pod Fatka, O., 2004. Association of fossils and history of research at the Tyˇ ´ rovice Basin, Barrandian area). hruˇskou” locality (Middle Cambrian, Skryje–Tyˇ Journal of the Czech Geological Society 49 (3–4), 107–117. Fatka, O., Budil, P., David, M., Kozák, V., Micka, V., Szabad, M., 2014. Digestive structures in Cambrian and Ordovician trilobites from the Barrandian area (Czech Republic). In: Zhan, R.B., Huang, B. (Eds.), IGCP 591 Field Workshop 2014, 246. Nanjing University Press, Kunming, pp. 49–51. Fatka, O., Budil, P., Turek, V., 2013. Long-legged lobopodian from Cambrian of the Barrandian area, Czech Republic. In: Linndskog, A., Mehlqvist, K. (Eds.), IGCP 591 Annual Meeting 2013. Lund University, Lund, pp. 102–103. Fatka, O., Kozák, V. Hypostomes in Cambrian agnostids from the Barrandian are (Czech Republic). Bulletin of Geosciences (in press). Fatka, O., Kraft, P., 2014. Sphenothallus Hall, 1847 in the Cambrian of the ´ rovice Basin, Czech Republic. Annales Societatis Geologorum Poloniae Skryje–Tyˇ 83 (4), 309–315.
223
Fatka, O., Kraft, P., Szabad, M., 2011a. Wiwaxia Walcott, 1911 from the middle Cambrian of the Barrandian area (Czech Republic). Acta Palaeontologica Polonica 56 (4), 871–875, http://dx.doi.org/10.4202/app.2009.0052. Fatka, O., Micka, V., Szabad, M., Vokáˇc, V., Vorel, T., 2011b. Nomenclature of Cambrian ´ rovice Basin. Bulletin of Geosciences 85 (4), lithostratigraphy of the Skryje–Tyˇ 841–858, http://dx.doi.org/10.3140/bull.geosci.1284. Fatka, O., Szabad, M., 2011. Burrowing trilobite caught in the act. Paläontologische Zeitschrift 85 (4), 465–470, http://dx.doi.org/10.1007/s12542-011-0102-4. Fatka, O., Szabad, M., 2014. Family Dibrachicystidae from the “middle” Cambrian of the Barrandian area (Rhombifera, Echinodermata, Republic). Paläontologische Zeitschrift 88 (2), 159–166, Czech http://dx.doi.org/10.1007/s12542-013-0193-1. Fatka, O., Szabad, M., Budil, P., Micka, V., 2008. Position of trilobites in Cambrian ecosystem: preliminary remarks from the Barrandian region (Czechia). In: Rábano, I., Gozalo, R., García-Bellido, D. (Eds.), Advances in Trilobite Research. Cuadernos del Museo Geominero, 9, pp. 117–122. García-Bellido, D.C., Paterson, J.R., Edgecombe, G.D., Jago, J.B., Gehling, J.G., Lee, M.S.Y., 2009. The bivalved arthropods Isoxys and Tuzoia with soft-part preservation from the lower Cambrian Emu Bay Shale Lagerstätte (Kangaroo Island, Australia). Palaeontology 52 (6), 1221–1241, http://dx.doi.org/10.1111/ j.1475-4983.2009.00914.x. ˙ nska, ´ A., 2008. Cambrian. In: McCann, T. (Ed.), Geyer, G., Elicki, O., Fatka, O., Zyli Geology of Central Europe. Geological Society. London, pp. 155–202. Glaessner, M.F., 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa 3 (1), 21–31, http://dx.doi.org/ 10.1080/03115517908565437. ˜ E., 2011. Correlation between Gozalo, R., Chirivella Martorell, J.B., Esteve, J., Linan, the base of Drumian Stage and the base of middle Caesaraugustan Stage in the Iberian Chains (NE Spain). Bulletin of Geosciences 86 (3), 545–554, http://dx.doi.org/10.3140/bull.geosci.1254. Havlíˇcek, V., 1971. Stratigraphy of the Cambrian of Central Bohemia. Sborník Geo´ logickych Vˇed Geologie 20, 7–52. ˇ Havlíˇcek, V., 1998. Cambrian. In: Chlupáˇc, I., Havlíˇcek, V., Kˇríˇz, J., Kukal, Z., Storch, P. (Eds.), Palaeozoic of the Barrandian (Cambrian to Devonian). Geological Survey, Prague, pp. 20–38. Hegna, T.A., Legg, D.A., Møller, O.S., van Roy, P., Lerosey-Aubril, R., 2013. The correct authorship of the taxon name ‘Arthropoda’. Arthropod Systematics & Phylogeny 71 (2), 71–74. Hendricks, J.R., Lieberman, B.S., Stigall, A.L., 2008. Using GIS to study palaeobiogeographic and macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology 264, 163–175, http://dx.doi.org/10.1016/j.palaeo.2008.04.014. Hu, S.X., Zhu, M.Y., Luo, H., Steiner, M., Zhao, F.C., 2013. The Guanshan Biota. 1204. Yunnan Science and Technology Press, Kunming [In Chinese with English summary]. Jaekel, O., 1901. Uber die Organisation der Trilobiten. Teil I. Zeitschrift der Deutschen Geologischen Gesellschaft 53, 133–171. Jahn, J.J., 1896. Ueber die geologischen Verhältnisse des Cambrium von Tejˇrovic und Skrej in Böhmen. Jahrbuch der Keiserlichen-königlichen geologischen Reichanstalt 45, 641–790. ´ Kraft, P., Marek, J., 1992. Nejstarˇsí zpráva o “rokycanskych kuliˇckách” a skryjsko´ rovickém kambriu (The oldest known note about the “Rokycany nodules” and tyˇ ˇ ˇ ´ rovice area). Casopis Národního Muzea. Rada the Cambrian from the Skryje-Tyˇ pˇrírodovˇedovˇedecká 160 (1–4), 51–55 [In Czech with English abstract]. Kukal, Z., 1971. Sedimentology of Cambrian deposits of the Barrandian area. Sborník ´ vˇed. Geologie 20, 53–100. geologickych ´ rovice Laibl, L., Fatka, O., Budil, P., 2015. Unusual trilobite larva from the Skryje–Tyˇ Basin (Cambrian, Czech Republic). Palaeoworld 24 (1–2), 71–74, http://dx.doi.org/10.1016/j.palwor.2014.11.002. Laibl, L., Fatka, O., Crônier, C., Budil, P., 2014. Early ontogeny of the trilobite Sao hirsuta Barrande, 1846 and other ptychopariid trilobites from the ´ rovice Basin (Cambrian). Bulletin of Geosciences 89 (2), 291–307, Skryje–Tyˇ http://dx.doi.org/10.3140/bull.geosci.1438. Lefebvre, B., 2007. Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 156–199, http://dx.doi.org/10.1016/j.palaeo.2006.02.021. Lefebvre, B., Fatka, O., 2003. Palaeogeographical and palaeoecological aspects of the Cambrian-Ordovician radiation of echinoderms in Gondwanan Africa and periGondwanan Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 73–97, http://dx.doi.org/10.1016/S0031-0182(03)00303-1. Liu, J.N., Ou, Q., Han, J., Zhang, Z.F., He, T.J., Yao, X.Y., Fu, D.J., Shu, D.G., 2012. New occurrence of the Cambrian (Stage 4, Series 2) Guashan Biota in Huize, Yunnan, South China. Bulletin of Geosciences 87 (1), 125–132, http://dx.doi.org/10.3140/bull.geosci.1229. Luo, H.L., Fu, X.P., Hu, S.X., Li, Y., Chen, L.Z., You, T., Liu, Q., 2006. New bivalved arthropods from the early Cambrian Guanshan fauna in the Kunming and Wuding area. Acta Palaeontologica Sinica 45 (4), 460–472 [In Chinese with English summary]. Luo, H.L., Li, Y., Hu, S.X., Fu, X.P., Hou, S.G., Liu, X.R., Chen, L.Z., Li, F.J., Pang J.Y., Liu, Q., 2008. Early Cambrian Malong Fauna and Guanshan Fauna from Eastern Yunnan, China. Yunnan Science and Technology Press, Kunming, 1–122. [In Chinese with English abstract]. Maletz, J., Steiner, M., Fatka, O., 2005. Middle Cambrian pterobranchs and the Question: what is a graptolite. Lethaia 38 (1), 73–85, http://dx.doi.org/ 10.1080/00241160510013204. Martí Mus, M.M., Bergström, J., 2005. The morphology of hyolithids and its functional implications. Palaeontology 48 (6), 1139–1167.
224
O. Fatka, J. Herynk / Annales de Paléontologie 102 (2016) 219–224
ˇ epánek, P., Hula, ´ P., Stˇ ˚ Maˇsek, J., Straka, J., Hrazdíra, P., Pálensky, P., 1997. Geological and nature conservation map. Protected landscape area and biosphere reserve Kˇrivoklátsko. Czech Geological Survey, Prague [In Czech]. Mángano, M.G., Bromley, R.G., Harper, D.A.T., Nielsen, A.T., Smith, P., Vinther, J., 2012. Nonbiomineralized carapaces in Cambrian sea floor landscapes (Sirius Passet, Greenland): Opening a new window into early Phanerozoic benthic ecology. Geology 40 (6), 519–522, http://dx.doi.org/10.1130/G32853.1. Mikuláˇs, R., 2001. The trace fossil Rejkovicichnus necrofilus Mikuláˇs et al., 1996 (Middle Cambrian, Czech Republic): an early example of “gardening”. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 2001, 56–64. Mikuláˇs, R., Fatka, O., 2017. Ichnogenus Astropolichnus in the middle Cambrian of the Barrandian area, Czech Republic. Ichnos. Mikuláˇs, R., Fatka, O., Szabad, M., 2012. Paleoecologic implications of ichnofossils associated with slightly skeletonized body fossils, middle Cambrian of the Barrandian area, Czech Republic. Ichnos 19 (4), 199–210, http://dx.doi.org/10.1080/10420940.2012.703626. Pompeckj, J.F., 1896. Die Fauna des Kambriums von Tejˇrovic und Skrej in Böhmen. Jahrbuch der Keiserlichen-königlichen geologischen Reichanstalt 45, 495–615. Raymond, P.E., 1935. Leanchoilia and other Mid-Cambrian Arthropoda. Bulletin of the Museum of Comparative Zoology, Harvard University 76, 205–230. Seilacher, A., 1970. Begriff und Bedeutung der Fossil Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 1970, 34–39. Seilacher, A., 2007. Trace fossil analysis. Springer, Berlin, 226 p. Simonetta, A.M., Delle Cave, L.F., 1975. The Cambrian non Trilobite arthropods from the Burgess Shale of British Columbia. A study of their comparative morphology, taxonomy and evolutionary significance. Paleontographia Italica 69, 1–37 (New Series 39). ˇ Snajdr, M., 1958. Trilobiti cˇ eského stˇredního kambria (Bohemian Middle Cambrian trilobites). Rozpravy Ústˇredního ústavu geologického 24, 1–280 [In Czech with English abstract].
Vannier, J., Caron, J.B., Yuan, J.L., Briggs, D.E.G., Collins, D., Zhao, Y.L., Zhu, M.Y., 2007. Tuzoia: morphology and lifestyle of a large bivalved arthropod of the Cambrian seas. Journal of Paleontology 81 (2), 445–471. Valent, M., Fatka, O., Marek, L., 2013. Gracilitheca and Nephrotheca in Cambrian of the Barrandian area (Hyolitha, Orthothecida, Czech Republic). Alcheringa 37 (1), 115–124, http://dx.doi.org/10.1080/03115518.2012.709446. Valent, M., Fatka, O., Szabad, M., Vokáˇc, V., 2011. Carinolithidae fam. nov., Carinolithes bohemicus sp. nov. and Slehoferites slehoferi gen. et sp. nov.–new ´ rovice Basin hyolithid taxa from the Bohemian middle Cambrian (Skryje-Tyˇ Czech Republic). Palaeobiodiversity and Palaeoenvironments 91 (2), 101–109, http://dx.doi.org/10.1007/s12549-011-0049-1. von Siebold, C.T., 1848. Lehrbuch der vergleichenden Anatomie der Wirbellosen Thiere. Erster Theil. In: von Siebold, C.T., Stannius, H. (Eds.), Lehrbuch der vergleichenden Anatomie. von Veit & Comp, Berlin, pp. 1–679. Walcott, C.D., 1912. Cambrian Geology and Paleontology II. No. 6. Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merostomata. Smithsonian Miscellaneous Collections 57, 145–229. Wen, R.Q., Peng, J., Zhao, Y.L., 2015. Morphology and ontogeny of Tuzoia bispinosa from the Kaili Biota (Cambrian Stage 5) of eastern Guizhou, China. Palaeoworld 24, 61–70, http://dx.doi.org/10.1016/j.palwor.2014.12.005. Zamora, S., Lefebvre, B., Álvaro, J.J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J.P., Nardin, E., Parsley, R., Rozhnov, S., Sprinkle, J., Sumrall, C.D., Vizcaïno, D., Smith, A.B., 2013. Cambrian Echinoderm diversity and Palaeobiogeography. In: Harper, D.A.T., Servais, T. (Eds.), Early Palaeozoic Palaeobiogeography and Palaeogeography Geological Society, London, 38, pp. 151–164, http://dx.doi.org/10.1144/M38.13. Zhao, Y.L., Zhu, M.Y., Babcock, L.E., Peng, J. (Eds.), 2011. The Kaili Biota: marine organisms from 508 million years ago. Publishing Group, Guizhou, 251 p.