The infrared band ν6 of CD3I

The infrared band ν6 of CD3I

JOURNAL OF MOLECULAR SPECTROSCOPY 84,342-354 The Infrared (1980) Band v6 of CD31 M. KOIVUSAARI, J. KAUPPINEN, A-M. KELHALA, AND R. ANTTILA Depa...

742KB Sizes 1 Downloads 53 Views

JOURNAL

OF MOLECULAR

SPECTROSCOPY

84,342-354

The Infrared

(1980)

Band v6 of CD31

M. KOIVUSAARI, J. KAUPPINEN, A-M. KELHALA, AND R. ANTTILA Department

of Physics.

University of Oulu, SF-90570

Oulu 57, Finland

The lowest perpendicular fundamental Yeof CD,1 around 650 cm-’ is studied at a resolution of 0.015 cm-‘. More than 2000 rotational transitions are identified and they are used to get the molecular constants of the level v6 = 1, including, e.g., the 7 constants.

INTRODUCTION

A few years ago Anderson and Overend (I ) recorded the perpendicular fundamental band vg of CDJ with a resolution of about 0.03 cm-l. Using the interferograms which we registered for the lowest fundamental y3 (2), we could compute the spectrum in the region of vg, also. Since the present resolution is improved by a factor of two as compared to the previous measurements it has been possible to observe the J structure in the Q branches of the subbands. We also extended the assignments to higher J and K values than those given in Ref. (1). SPECTRUM AND RESULTS

The experimental conditions are given in Ref. (2). To illustrate the spectra used for the analysis, some examples are given. In Fig. 1 the Q branches “Q,, and “Qz are presented. The J structure begins to be resolved from about J = 25 onwards. Due to the I-type doubling, “QOappears slightly sharper than the other Q branches. This is discernible in Fig. 1, although the difference is not very striking. In Fig. 2 a small region of the upper part of the band is given together with the assignments. In the spectrum we identified about 2200 rotational transitions in vg. Several lines which proved to be strongly blended and shifted were omitted from the final fits. The lines used are listed in Table I. For the vibrational ground state the term values F(J,K)

= B,J(J

+ 1) + (A,, - B,,)K2 - D&W

+ 1)’

- D$PJ(J

+ 1) - D;K”

(1)

were applied. All the constants in Eq. (1) were fixed and this data set is presented at the beginning of Table II. We tried to determine the distortion constants 0; and 06 from ground-state combination differences using P, Q, and R lines and the constrained B,, value. The results from 602 differences were 0; = 1.250(7) x lop7

0022-2852/80/120342-13$02.00/O Copyright

0 1980 by Academic

All rights of reproduction

Press, Inc.

in any form reserved.

342

343

ue BAND OF CD,1

663

664

665 I

666

FIG. 1. The Q branches RQ,,and “Q2 in the fundamental band v6of CDJ. Owing to the l-type doubling HQ,,is narrower than the other Q branches. The experimental conditions were: absorption length 3 m, pressure 500 Pa (3.7 Torr), room temperature.

cm-’ andDiK = 1.620(42) x lo+ cm-l. The former of these confirms the result from the parallel band v3 (2), but has slightly wider error limits. The value ofDiKK,on the other hand, agrees with the microwave result (3), but the uncertainty is more than tenfold. Thus no ground-state constants from this work were used in the further analysis. The term values for the upper vibrational state v6 = 1 were calculated according to the expression (lk 1 = K) F’(.f,k,l)

= v6 + &J(./

+ 1) + (A, - &)k* - 2(A5)&&

- D&I*(.I + l)* - D$V.J(J

+ 1) - Dfk” + qgkl,J(J + 1) + $k31,.

(2)

When the observed lines were being fitted, they were corrected by ground-state contributions as in Ref. (5). Thus the output consisted of the band center, the changes of the rotational and centrifugal distortion constants due to the vibrational excitation, andA{ together with the 7 constants. The lines belonging to the subband K = 1 + K = 0 were not included in the general fit because of the l-type doubling. The results are compiled in Table II. Our at is in very good agreement with the microwave result 0.4902(13) x 10m3cm-’ of Kuczkowski (6). Even our value for q1 compares well with that given in Ref. (6).

344

KOIVUSAARI

ET AL.

692

633

694

EYi

636

636

637

690

633

7cIo I

701

702

703

704

700 I

FIG. 2. A small region in the R part of the y6 band of CD,1 to illustrate the quality of the spectra. The resolution is 0.015 cm-‘. The experimental conditions are given in the caption of Fig. 1.

Owing to the I-type doubling an additional term ?(1/2)q,J(J + 1) must be added to F’(J,k,l) in Eq. (2) when k = 1, = + 1. The energy levels are then doublets, so that the “Q,,(J) lines reach the upper components, whereas the RR0(J) and RPO(J) transitions lead to the lower component levels of the doublets. According to the sign convention of Cartwright and Mills (7) qs is then negative. In the analysis of the subband KAK = 0 to get the numerical value of qs we constrained all the constants to their previous values, letting qs be the only variable. In the

1

Nore.

231

.28 *cc

-15 -0‘ 1C6 -1, .,o

-04

to2 -14

-I5

S56.95?6 656.0222

656.aLSe 656.8127 656.7759 656.7350 CSb.bP75

556.‘116

65b.3‘79 656.2Ps8

S5~.20,2

The differences

.r’C .O2 .,l +ce l,, .,P .O9 ttl -01 +2c -2c

E57.3072 657.2620 657.2576 657.2311 657.206‘ t57.1713 657.147, 657.,,P, C57.0eb7 657.058> 657.D2,L

IhX = 0

+33

.J5 +te l LR +1c

,bi.J?DB

663.213, bb’j.2‘40 6bC.lJ25 b5C.1353

obs. -talc.

.C‘ -38 l ,3 l J6 +I9 .,e

11: l 3b .I‘ -32 +5c ‘3C 114 .,C +5c +32

bbl.,LP1 66,.,198 ,6,.O?lC ,bl.3557 661.3324 ,bC.P3LP 660.1527 660.9218 665.8963 660.S530

563.,‘?6 660.6979 6bG.6536 660.6,er. 660.5752 66L.523,

*2x 115

!

(cm-‘)

are given

652.2643 652.2363 652.1557

652.3599

663.56‘?

663.3596

66L.SSZP 65L.0071

666.2137 66‘.1578

bbG.k'PJ7 bbl.953, 55‘.3199 6b‘.SBIZ 6,‘.9535 bbL.BlSl 66&.77,9 LLI.,LlD 66‘.7056 66‘.,573 66‘.52,5 bLC.5836 bbL.536, 66b.bPSO 6,‘.‘521 664.1052

655.1573 665.1232

l ,L

l 28

-‘I .3L

+I5 -J7

-06 l c1. -10 -cle .,9 ‘00 -2‘ -37 125 -56 -22 .i‘ -2‘ l 10 l ,3 *I5

l 37 l 03

LAI = 2

-16 -72

-3b

66a.53‘9 6‘8.‘28, 6‘5.,,78

-15 -22 -‘I +,L +,2

-25

-07 -13 +a,

-3, -36

1L.3.33,6 S&E.7339 b‘E.73‘1 668.670! 6kP.6‘07

6‘8.92,s

blP.21,7 b‘P.ZIDD t&9.,77&

b&9.,537 649.3159

tl3 l 36 -33 -03 -16 l II3 -53

663.066~

,CS.i,‘4 565.1624

563.306’

,69.&3,2

66~.003‘ 563.9677 569.9366 665.9083 669.8729 5c3.es71 569.!033 669.7669 668.7313 66?i.698k 569.6573 569.blPb 663.5739

+64

.23 lc,

10,

+I9

l 55 -c, -Cb l 2’ +01 -17 -C7 -1‘ +c3 .I87 l2B r&k -05

6‘1.3512 644.9283 644.776) 6GL.7271

bCL.775L

117 -,7 -26 132

-35

l ,, 13, -32 l 02

6‘5.2‘2, 645.1993 bLS.1571

-37

-90

-02 .DJ -35 -13 .DS to2 -09 196 -9‘

6‘5.323~

6,5.,35?

bL5.‘7,6

645.9282 bLS.SC‘S 6‘5.778, 645.751, 6‘5.726, 6‘5.6975 6C5.6673 645.5383 6‘5.5064

LrAI:= -3

v6 of CDJ

-03 -30 -45 -66

K&K= 3

Band

569.3251 56?.JCbI ,61.290, 569.2712

Fundamental

KAX= -z

6‘9.6662 6‘9.6‘26 6‘9.6170 6‘9.5316 6‘9.56‘0 6LP.5387 6‘9.?367

in the Perpendicular

I

in the units of IO-” cm-‘.

-35 -61 -37

-‘I

-39 -53

652.6582 652.62CC

-36 -22 -12 -51 -51 -11

65J.12‘7 653.0367 b53.DSO5 65J.OJBI 652.971, 652.P32P -52

131 -LO

653.2605 65J.224J

652.8&&L

l 37 -00 -51

t1, -3‘ -51 -6,

653.3506 653.3514 653.3169

6,,.6,89 613.6211

653.6563

65,.675?

KM = -1

Line Positions

CC,.JOOP 561.277‘

KbK =

Observed

TABLE

671.9?3&

671.1912

67Z.,‘S3

672.JILS 672.2S57

672.5,21

672.7450 672.705, b72*6?3b

b72.1211 b72.8850 672.95‘6

672.9759

673.1‘,9 673.1124 673.0893 673.3623 673.0319

-28

.,8

.,P

.,J 134

.I0

-25 -15 l cl8

.L2 -02 ‘22

-10

.I, -3, l 21 .J5 -09

lb* = c

R

w

: 3

0

LO

bl 62 63 64 65 bb

5

-37 -27 l01 -35

673.6095

679.306

579.9b39

be3.0735

633.17‘5

b93.3225 b93.2737

631.4blP 653.4156

651.505

693.5328

650.7742

695.8232

683.?570 bS0.9257

bSl.5757

-44

-c3

t23

+39

110

*IO *OS

+05

l14

-13

414

134

lOE

-co *CS

101

*33.,439

t33.3163

633.4729

$33.5754

b33.9415 633.9990 633.8564 633.E133 b33.7b42 633.7179

634.0239

634.3721 b34.3481 634.3127 634.2779 634.2451 b34.2114 b34.1777 634.lJP9

634.4b40 634.4323

634.5352 634.5657 634.5371

-21

+21

-05

135

101 l09 l09 +21 -lb -76

lzs

-25 l4Z l05 -14 -05 l3J 122 l13

t27 -70

-11 l2‘ -23

bP3.6667

5S4.0722

5P4.1513

5e4.4714 604.4254 be4.3779

be4.6045 604.5634

5e4.34ov 5YL.6059 be4.7591 6e4.7262

5P4.9941 584.9523 6?4.9lbJ

5!5.21., 5eS.1865 bP5.lb32 bP3.1364 583.1085

bE3.2849

-31 -19

637.2964 637.2441 637.19Yb b37.1425

-36

.12

637.4901 637.3943

.I9 -14 -13 -14 139

-24

+I6 -05

+26

.i; 437 -41 -31

+32 -28

637.7482 b37.7351 637.6636 637.5209 637.5790

637.9233

637.9710 637.9350

630.0397

638.1595 63S.1305 63S.CP57 6?9.0687

. .._ _.

63Y.214C 638.1959

$29 -01 -11 -21

:

.27

675.9323 675.0752

-23

-34 +07

l35

-29 l17 -31 135

,7,.3‘26

67,.2402

575.42Yb b76.3947

576.5791

U;.;;;' . 676.7896 6?6.7546

l2S

575.957c 676.9243 +33

+2c +36 -18

577.0711 57?.F!426 677.0121

631.204D b91.177P b91.1527 681.1256

5e3.4709 5e3.4153

*I7 -09 -10 -0, .48

-1C

b41.1936

041.1032 b41.@479 6‘C.9973 640.9467 bLO.evPZ

.36 -lb *OS -C, 112 -17

t30 -07 -28 131 to9 +CO 1Cb tC2 to6 -39

641.5438 641.4997 641.4635 bL1.4178 641.3755 641.3298

6‘1.9978 641.PblP 6L1.9JYI 641.9166 tL1.8bS3 641.6544 64Y.B2!9 641.7916 641.7590 641.7205

-12 130

677.1428 577.1231

I-Continued

3" 3 3

i

D

57 5s 59

ii

: 3 3 i

3 0 0 3 J

3

: 3 I

3 3

; :

i

i 3 3

3

50 49 5, 52 53 54 55

39 LO ‘1 42 ‘3 44 45 4b 47 49

22 23 24 25 26 27 29 29 30 31 32 33 34 35 36 37 38

TABLE

630.5155

.27

-‘8 to‘

-13

l02

l3,

-07 -03 -0,

-09 l13

-3? -14 too -14

629.1J825

630.1192 630.1733 630.3255

635.2435 633.2059

633.4058

b30.5514 630.5137 b30.4S19

633.6497

-03

.Gl

639.7392

630.9195

llJ

-20 +OS +12 ‘lb

l‘S

l01

+,b l05 -07

-34 193

-03

a07 -23 *,3

-02

l12

tl5

r,3

697.6111

bBB.0331 687.9893

688.2035

696.3613

688.504b b96.4592

6.36.5995

696.7309

688.5917 688.9553 6ld.9151

689.JOl5 6B8.9b47

bBV.3738

6EV.2450 619.2222 6S9.192S 68V.1641 5S9.1327

b8V.3495 b89.3292

‘12

-43 l23

-3‘

-29

-37 -14

-10

-04

to3 +24 *I7

-02 -06

l22

-17 llY $37 113 633

+26 l5b

ZJ‘)o-

?LS“ZLP 8C91’219

EC66’~OL

52SO’LOL 65SO’SOL 2SS“SOL 22BL’SOL

‘S92’SOL

2bbS’SOL CCS~‘SOL 9?L?.EOL Ei‘S’SOL

PCZF’SOL SSS9’COL

e‘2L’to‘

L‘SL’SOL StoL’saL SCL6’SOL 67CS’SllL 0996’5OL

,!Z-

IIvcSC17*

Ls-

OC+ oc* Lcvat

LCSC.

6‘.

LC* ‘c* 1‘4 ‘9,c+

f ‘01’9‘9 CLSL*F‘P

L96L’C‘P ZV22’FLP

L‘‘1.

5cSC-

00.

9e26-stv 6LFt’SlP

ro66’s‘P

S2+

oo-

1c* SCto*

901

fLFL.

SOSi’b‘P Lf66’6‘9 00‘6’6‘P

60CE'6‘P

et27*6t9 2PS?‘6‘I

22SC-

oc+

,S,s*L69 stPs*L(IC

2CZS’lbP

CBLB’LZP ~658~229 L6,b’ZZP

kc.

~269’22P ?OSL’22P

LIcr*zZP

L‘II-

LCOL.

SC’

?btL’?b‘

9118’265 EOi6*76C 6:2c’2t.o

ossL’:ds S‘. ‘7.

czVI,,-

28 29 JO

:: ** 2,

1

:

:

1

-1c

1 1 1

-04

-2, l 20 .OP -56 -5c

-07 -0, .52

.32

6,5.26?,

676.6427 t.,6.P876 671.1211 b,,.Ll,, 6,,.PP11

*,P.ooJ? tBIP.3321 679.6692

680.3225

.10 -‘3 l 3e .CS -16 .52 -04 -I, .O,

.‘O -C? 610 *PO -1, .07

l 25

.‘i

-0, -10 .3, .25

-06

1

:

:

: .:

:: ::

16 17 18 19 20 21 22 23

:

-07 -39 l I* -24 -II

-32

1

9 10 ,1

bbZ.,PZb

.50 .OP

i

1

I

-67 -08

b

:

1 1

5 6

3

&

.,P

.5C

582.‘565

-53 -21 .51

-3‘ -51 “2 .36 -11 -16 12‘ -39 -08

-16 .01 -1‘ -24 -11 105 .18 -28 +27 -50 .,t -72 -25 -39 -17 .25

681.0757

,,P.,b32 680.0234 580.1506

515.73E6 L76.0973 6,6.‘689 6,,.11265 ,,,.,81, 577.5133 577.9010 5,8.2SBJ 518.5139

,6P.31‘5 b6P.7780 670.1570 s70.5555 ,70.9153 67,.2-+LI ,?I.6721 672.0‘26 bl2.4219 b,2.,8,8 6,1.1,91 6,,.5257 S,J.PO,, 571.2737 L,‘.,‘G? 675.0116

t52 -IS *22 -25 -15 -58 -27 .62 l 53

.‘P .08

d70.8‘P‘ 611.2006 ~71,555,

-17 -IL -39

-50 l 00 -2s

.oo

.O‘

.59 -21 -37

.JO

.‘2 -25

136

+Db .,S

-02

-'3c .‘9 -31

*Jo -07 -16 -33 -26 -05 .21 -68 -10 -09 -52

.i?

l n,

.GO

.05 -17 -59

.,L

-09 .,P '08 -06 -09 .GP

l ‘o

.6&

.O,

‘6‘

-11

-09 .2I .29 .>8 -79 -27 -18 -36 -‘2

430 t7-s .Ol -40 .06 l 09 .26

.ii

.c7

‘01

-10

.“

.11

-02

-22

*2t +02

l 05 l 22 -06

.‘I

-55 -32

-00

.08

.OP

.LP -‘J -7,

-01

-07 .04

*so

-30

*or

-57 +ll

-ii

.,I

t‘6

-1z

-64 .I,

l 27

.08

-32 109

430 l 56

-08

l 71

-0‘ -02 -40

PJflu!WQ-I

TI8VL

co-

LO.

cc* P,“‘OZI Lcco’o*~ ,,69.6LL :

:

*c

cc

SC 1c 9‘

::

v,

cc

:: LC 9c

09

-1

1:

r:

1:

I:

-1 -1 -1 -, -1 -1

1: 1:

-1 -1

1:

1: 1:

-1

-1

-1

1:

-1 -1 -1

1:

-1 -1 _,

-1

-1 -1

1:

1:

-1

r:

-1

1:

r:

TABLE

I -Continued

,f,.,ZPl

-36

TABLE

I-Continued

50 51

48 L?

32 33 3L

JO 31

is 26 27 28 2?

-1 -1 -1 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -, -1 -1 -1 -1 -1 -1 -1 -t -1 -1 -1 -1 -1 -1 -1 -1 -1 -7 -7 -1 -1 -1 -9 -1 -1 -1

-11 112 .lL -25 100 .C‘ l29 117 -&I -‘b +05 .I, -15 405 .Ol 108 -18 -22 +(I 151 loo -20 -03 .P, +17 -10 10& -1, -0I

-01 a09 .O, l03 -39 too to9

+57

515.1TJ1 615.7635 515.3538 61&.9,31 514.5210 61‘.1051 513.5918 613.2732 512.@436 512.62?2 612.0,“ 511.59AO 611.169‘ blO.7LB.S LlO.JZC7 609.9009 609.1728 509.0151 508.5228 508.199‘ bEI.Ib‘L 507.3325 505.9037 606.L730 505.0L21 505.5051 505.1736 bOb.7372 501.3022

503.&295 502.9915 502.5515 502.1119 501.5b59 501.22?4 bOO.78?0

599.9055

-JO .OC *I& -15 -16 lo‘ -5‘ +D2 -12 *lb lrJ9 .I8 129 '33 l08 .I6 -22 lcl6 -,8

.,I -23 +,B

~07.1738 LCS.75OL $05.3276 [email protected] bOS.4730 5(r5.0&81 b06.6153 604.1913 505.7503 bOJ.332I 602.9308 502.4595 602.0377 5C1.5312 501.1571 LDC.7324 ~CO.IP&l 599.8571 599.418,

59e.1353 597.55b5 597.2206

-,1 l09 156

-18

507.59Lb

5?5.S7?2 59S.4‘09 59‘.???&

-31 -33 l33 -co -I)1 -57 +,5 .05 +39 +32 -04

~li.13~3 611.7731 611.353‘ b1C.9‘1~ 510.529.S 610.1128 4@?.5?78 50?.27Bb SOP.9530 5OB.4393 SOE.0178

5?2.33I?

639.2285 537.0lL9 537.4303 636.9341 bJb.5588 635.1528 bO5.7346 bzl5.3115 604.89‘9 634.4762 b3L.0525 533.5302 5~3.2355 502.7325 532.3585 631.?32? 531.5061 531.0753 530.5~85 530.2179 5??.79?? 5cJV.3585 598.9271 519.L.92, 533.0593 5?7.62&? 517.1319 516.7596 5?6.3217 5?5.8?92 535.LLOP 5?&*???‘ 5?‘.55&7 5?‘.1172 5?3.590& 5?,.232L -7,

-91 -32 -35 -03 -3, +lO l,, -31 -,o .I? -31 433 -33 -90 .3? tl, +01 -37 l02 -11 +J? 413 .,J -OS -33 .OD .22 .5? +I2 435 .O? -10 -55 -15 l32 -23 595.S419 575.4162

595.27?7

59P.5942 599.2532 599.943, 5PS.6203 597.9913 5?7.555& 597.1352 5?5.70?~

5')~.3022 505.9810 503.1711 503.3562 502.6399 602.2235 bO1.5035 601.3892 504.?53! 500.5,?5 .Ol -18 -17 llO *lb +02 -05 118 l22 -46 -t5

113 -54 -01 -39 l08 +35 -DS -14 -07 -00

TABLE

l06 411 +lb +Ol .O? 113 to2 l33 -22 45‘ 425 -01

517.47?6 5?7.3587 5?5.5370 535.2124 5?5.79?3 595.3550 5)4.5117 5?4.0&72 5?3.5537 5?,.2,2L 5?2.7??6 572.3561

loo

-07 -06 -03 l39 -0

l05

530.L0b1 599.397~ 5?9.57?5 599.1553 518.7371 5?I.JI?b 5?7.8979

I-Conrinued

5e2.3595

-00

+23 -58

-53 405 +21 l56 +33 .22 +25

5P9.,42, 5e9.9177 5e3.k082 5e9.0591 se7.5239 587.1889 5e5.7364

5eJ.bBBl 5@,.237?

102 -18 -16 -22 -15 -02 -20 +26 -22 .I1 -29 l27 105 -0B -30

lo,

595.53bL 591.12Gb 595.7015 595.2841 59b.8653 3?4*4b53 594.0273 593.6044 593.1870 592.7593 592.3389 591.9102 5?l.L?05 591.0519 lQ3.5334 593.2032 587.2157 586.7932 585.3557 555.9295 585.bPPS 595.0163 SSl..L,CZ 59‘.2075

599.7582 589.342, 58B.9177 585.4882

592.5987 592.2748 59l*lb7? 5?l.L523 591.0289 590.5095

tO2 155 -32 -00 l07 -16 -lb lb5

+,b +OI -05 -5b

-35 -70 r27 +55 rll 120

-31 101 -13 -58 '27 '23

584.675‘ 581.2479 593.JJJ7 503.&027

*I7 -90 -27 -‘L

-I8

505.9503 585.5302

588.3392 507.5f?S 507.2157 505.7932

588.9912

582.5929 582.1713 581.7510 581.3289 580.8997 580.4595 50O.Ob51

58L.279‘ 583.6507 583.4627

5.85.110

-33 -17 .I9 +LB +o -21 l25

-11 -00 l25

-28

354

KOIVUSAARI TABLE

ET AL. II

Results from the Analysis of the Perpendicular

Band Yeof CDJ

Constrained ground state constants:

*0 *0

[cm-']

= 0.2014825

131

D;I

[lO-7 cm-' ]

=

1.244

[2]

[cm-‘]

=

[41

DJoK

[lo-6 cm-' I

=

1.611

[31

1); [lo-' cm-' ]

=

2.26

[4]

2.59356

Results from the fit: [cm-']

=

[lo-3 an-' I

=

-0.49049(23)

-3 cm-‘1 [IO

=

[lo-3 cm-'] [cm-']

"0

B6-Bo As-Ao-(B6-Bo)

*6-*0 (A<),

656.'692(2)

=

0.41(6)

DJK_DJK 6 o [lo-g m-‘I

=

8.5(12)

14.0553(29)

D;-D;

[1o-6 cm-']

=

0.5&9(9)

=

13.5649(32)

n;i

[ 10-6 cm-‘] =

=

0.463451('0)

D;-D;

ail-‘1

['o-4 cm-']

'lgK

Number of lines 1966, standard deviation 0.0026 cm

[lo-'

=

1.476(11)

0.4296(lo)

-1

Result from the subband KAK = 0: [lo-j cm-' I

q6

=

-0.13916(28)

aThe error limits are standard deviations in the units of the last digit given.

calculation we used 22 Q lines and 88 R orP lines. The fit, with a standard deviation of 0.0025 cm-l, led to the result shown at the bottom of Table II. It is near to the value in Ref. (6), but has slightly smaller error limits. RECEIVED:

October 5, 1979 REFERENCES

1. D. R. ANDERSON AND J. OVEREND, Spectrochim. Acta A 28, 1231- 1251 (1972). 2. R. ANTTILA, M. KOIVUSAARI,J. KAUPPINEN, E. KYR~, AND F. HEGELUND, J. Mol. Spectrosc. 84,225-233

(1980).

3. A. K. GARRISON,J. W. SIMMONS, AND C. ALEXANDER,J. Chem.

Phys. 45, 413-415 (1966). 4. H. MATSUURA AND T. SHIMANOUCHI,J. Mol. Spectrosc. 60, 93- 110 (1976). 5. F. HEGELUND, R. ANTTILA, AND J. KAUPPINEN, J. Mol. Spectrosc. 81, 164-178 (1980). 6. R. L. KUCZKOWSKI,J. Mol. Spectrosc. 45, 261-270 (1973). 7. G. J. CARTWRIGHTAND I. M. MILLS, J. MO/. Spectrosc. 34, 415-439

(1970).