The Interaction of CO and NO at the Surface of MgO: AN IR and ESR Study

The Interaction of CO and NO at the Surface of MgO: AN IR and ESR Study

M. Che and G.C. Bond (Editors), Adsorption and Catalysis o n Oxide Surfaces 0 1985 Elsevier Science Publishers B.V.. Amsterdam -Printed in The Netherl...

409KB Sizes 0 Downloads 42 Views

M. Che and G.C. Bond (Editors), Adsorption and Catalysis o n Oxide Surfaces 0 1985 Elsevier Science Publishers B.V.. Amsterdam -Printed in The Netherlands

225

THE I N T E R A C T I O N OF CO AND NO AT THE SURFACE OF MgO: AN I R A N D ESR STUDY

E . GARRONE

1

and E . GIAMELLO

2

I s t i t u t o d i Chimica F i s i c a , C.so Massimo d ' A z e g l i o 4 8 , 10125 Torino ( I t a l y ) 2

I s t i t u t o d i Chimica Generale ed I n o r g a n i c a , F a c o l t 5 d i Farmacia Via P . G i u r i a 9 , 10125 Torino ( I t a l y )

ABSTRACT CO and NO form on p a r t i c u l a r l y r e a c t i v e sites o f MgO a paramagnetic spec i e s , which h a s been r e c e n t l y c h a r a c t e r i z e d by i n f r a r e d s p e c t r o s c o p y and e l e c t r o n paramagnetic resonance s p e c t r o s c o p y ( E . Giarnello e t a l . , t o a p p e a r i n J . Chem. SOC. Faraday Trans. I ( 1 9 8 4 ) 1 . New d a t a a r e r e p o r t e d about t h e r e a c t i v i t y and s p e c t r a l f e a t u r e s . L a b e l l i n g o f t h e oxygen i n C O p r o v i d e s e v i dence a b o u t t h e s t r u c t u r e o f t h e s p e c i e s , a n d two p o s s i b l e models a r e d i s c u s sed.

INTRODUCTION

Because b o t h g a s e s

are present

i n t h e automobile e x h a u s t , t h e r e a c t i o n

between CO and NO h a s been e x t e n s i v e l y s t u d i e d on s u p p o r t e d metals, and t o a much lesser e x t e n t on p u r e o x i d e s . A s f a r a s MgO i s concerned,

t h e c o a d s o r p t i o n o f t h e two g a s e s h a s been

i n v e s t i g a t e d i n 1976 ( r e f . I) by UV-vis

d i f f u s e r e f l e c t a n c e s p e c t r o s c o p y . By -1 t h e p r e s e n c e o f a band a t about 30,000 c m , t h e i n f e r e n c e h a s been made t h a t

a CNO

2-

2 follows.

s p e c i e s i s formed a t t h e s u r f a c e . The b a s i c r e a s o n s f o r t h i s was as Both CO

portionation

(refs.

reaction.

2,

3 ) and NO

(ref.

4)

Carbonates and n i t r i t e s

undergo on MgO a d i s p r o -

are r e s p e c t i v e l y formed as

o x i d i z e d p a r t n e r s , w h i l s t t h e reduced ones a r e ,

i n t h e NO c a s e , h y p o n i t r i t e s 2N 0 i n c i s c o n f i g u r a t i o n and, i n t h e CO case, C 0 s p e c i e s of k e t e n i c 22 -r i 2 2 n a t u r e . A s d i m e r i c reduced s p e c i e s X 0 (X = C , N ) a r e formed i n t h e adsor2 2 2p t i o n o f s i n g l e g a s e s , t h e f o r m a t i o n o f a "mixed" d i m e r i c s p e c i e s CNO in 2-

2

t h e i r i n t e r a c t i o n appeared p l a u s i b l e .

W e have r e c e n t l y ( r e f . 5 ) i n v e s t i g a t e d i n some d e t a i l t h e CO/NO i n t e r a c t i o n at

the

MgO

surface,

and shown

that

a paramagnetic s p e c i e s i s formed i n

a p p r e c i a b l e amounts, s o t h a t i t s v i b r a t i o n a l s p e c t r a could be t a k e n . By t h e

226

use o f b i n a r y and t e r n a r y m i x t u r e s o f N and C i s o t o p e s , i t h a s been shown t h a t t h e paramagnetic s p e c i e s c o n t a i n s one carbon and one n i t r o g e n atom, and a t 2l e a s t two oxygen atoms, s o t h a t t h e proposed formula CNO was confirmed. 2 Both I R and ESR e v i d e n c e was i n agreement w i t h a s t r u c t u r e f o r t h e new s p e c i e s of a "mixed" dimer, i n t e r m e d i a t e between t h a t o f c i s h y p o n i t r i t e and ketenic species. In

p r e s e n t p a p e r , w e g i v e f u r t h e r evidence about t h e s t r u c t u r e and

the

mechanism o f f o r m a t i o n / d e p l e t i o n o f t h e new s p e c i e s , c o m i n g f r o m : i ) I R s p e c t r a , 12 18 14 16 of C 0 / N 0 m i x t u r e s ; i i ) computer s i m u l a t i o n o f ESR s p e c t r a ; i i i ) successive adsorption/desorption cycles.

EXPERIMENTAL

The

procedure

for

the

preparation

of

high-area

2 -1

( a b o u t 200 m g

)

Mg0

samples h a s been d e s c r i b e d e l s e w h e r e ( r e f . 2 ) . T h e samples have been o u t g a s s e d a t a b o u t 1100 K t o e l i m i n a t e a l l s u r f a c e atmospheric i m p u r i t i e s . s p e c t r a have been

IR

t a k e n on a

Perkin

Elmer 580 B s p e c t r o p h o t o m e t e r ,

equipped w i t h a Data S t a t i o n . ESR s p e c t r a have been r e c o r d e d on Varian E 109 machine o p e r a t i n g i n t h e X band ( a b o u t 9.4 GHz). Varian p i t c h (g=2.0029) was used

as

a

r e f e r e n c e . High p u r i t y g a s e s were employed. 13 15 18 c o n t e n t was 92% for CO and 99% for NO, and C 0.

The heavy

isotope

The computer program a v a i l a b l e a t t h e " P i e r r e e t Marie C u r i e " U n i v e r s i t y of P a r i s h a s been used f o r t h e s i m u l a t i o n o f EPR s p e c t r a .

RESULTS Computer s i m u l a t i o n of ESR s p e c t r a 12 15 Upon c o n t a c t o f a 1:l CO/ NO m i x t u r e

( t o t a l p r e s s u r e 600 Nm

-2

),

an

i n t e n s e and s t r u c t u r e d spectrum ( F i g . l a ) was r e c o r d e d . Other i s o t o p i c mixt u r e s gave even more c o m p l i c a t e d s p e c t r a , because of t h e h i g h e r n u c l e a r s p i n s

of

13

C and I 4 N

( I = 1 i n b o t h c a s e s ) . The i n t e r p r e t a t i o n o f t h e s p e c t r a was

c a r r i e d o u t i n o u r p r e v i o u s p a p e r , or a s e m i q u a n t i t a t i v e b a s i s , b y c o n s i d e r i n g 14 t h e s h i f t s caused by i s o t o p i c s u b s t i t u t i o n s , e . g . , N f o r I 5 N . T h i s worked reasonably w e l l for t h e o u t e r p a r t s of t h e s p e c t r a : t h e i n t e r p r e t a t i o n of t h e central portion (related t o two

downward peaks

at

the g

high

2

component) was i n s t e a d o n l y t e n t a t i v e . The

fields

reveal

the

presence

of

two

slightly

227

different

v e r s i o n s of t h e paramagnetic s p e c i e s , having s l i g h t l y d i f f e r e n t g

values (henceforth called g

and g ' 1 . 3 3

a)

3

b)

F i g 1. ( a ) Ex r i m e n t a l ESR spectrum o f t h e MgO sample a f t e r c o n t a c t w i t h 600 -2 !?? CO/ 15NO m i x t u r e . ( b ) Computer s i m u l a t i o n . Nm o f a 1:l

I n F i g . lb, t h e computer s i m u l a t i o n o f t h e e x p e r i m e n t a l spectrum i s g i v e n . The

agreement i s ,

i n our o p i n i o n , s a t i s f a c t o r y : t h e small f e a t u r e s i n t h e

e x p e r i m e n t a l spectrum n o t accounted f o r by t h e computation, a r e probably due t o small amounts o f o t h e r s p e c i e s .

sities of

these

features

This i s confirmed by t h e e r r a t i c i n t e n -

i n d i f f e r e n t e x p e r i m e n t s . Those,

however,

do n o t

correspond t o any o f t h e paramagnetic s p e c i e s , which are known t o form upon a d s o r p t i o n o f CO or N O a l o n e ( r e f s . 6-8). The s i m u l a t i o n i n F i g . 1 allowed u s 15 t o determine t h e p r i n c i p a l components o f t h e g and A ( N ) t e n s o r s . An analogous s i m u l a t i o n ( n o t r e p o r t e d ) 13 A( C) tensor.

of t h e

13

CO/

15

NO

spectrum y i e l d e d

the

228

The ESR features are collected in Table I: to our satisfaction, these data are not too far away from those computed in ref. ( 5 ) .

TABLE I

ESR parameters of the new species.

g

3'

1

2

2.0135

2.0060

2.0014

2.0022

3

A( I 5 N ) /G

9.7

10.0

25.0

23.0

A( 13C)/G

7.5

7.0

0.0

0.0

Infrared spectra of the new species.

A set of spectra similar to that in Fig. 2 has been already reported and discussed in ref. (5). The presence of bidentate carbonates (intense bands at 1160, 1330, 1010 and 850 cm

-2

)

-1

and nitrites (weak bands at 1220 and 1100 cm

)

is readily recognized.The new species is manifested by the two distinct bands at 1624 and 1091 cm seen at

h)

-1

800 cm

(labelled A and C respectively): a further weak band is

-1

(band D not shown in the figure). The reason for

re-examining this kind of experiments is the peculiar behaviour of the band at 1330 cm

-1

, which

been overlooked earlier. We may note that, before

has

outgassing, it is definitely more intense than

what expected from the inten-

sities of the partner carbonate bands at 1660 and 1010 cm (ref. 5) the demolition the 1660 and 1010 cm

-1

-1

.Outgassing causes

of the new species to yield carbonates: accordingly, -1

bands grow. That at 1330 cm

remains constant in

intensity (the set of curves in Fig. 2 have actually been chosen on purpose to show this feature), and only shifts slightly to lower frequencies: its intensity is now close to what expected. -1

Our interpretation is that the absorption around 1330 cm

is actually due

to the superimposition of two close bands, one due to bidentate carbonates, the other (band B) ascribed to the new species, this latter band having a higher intrinsic intensity. Upon isotopic substitution (

13

C for

12

C,

15 14 N for N), bands A , C and D

undergo the shifts in frequency which are collected in Table 11. As for band

229 B,

no

precise

companion

statement

c a r b o n a t e band.

can

be

made:

it

seems,

however,

to

follow

the

A much c l e a r e r d i s t i n c t i o n between band B and i t s

c a r b o n a t e companion band i s o b t a i n e d when d o s i n g a CI80/NO m i x t u r e

(Fig. 3 ) .

Before e v a c u a t i o n , t h e c a r b o n a t e band a p p e a r s as a s h o u l d e r o f t h e B band, and upon e v a c u a t i o n , a s h i f t o f some 15 cm

-1

is observed.

A

F i g . 2. I n f r a r e d s p e c t r a o f t h e M 0 sample. Dot-dash c u r v e : b a c k g r o u n d . Broken 12 14 c u r v e : a f t e r c o n t a c t w i t h 600 Nm of a 1:l CO/ NO m i x t u r e . S o l i d c u r v e : after s h o r t evacuation.

4

There are two o t h e r f e a t u r e s of i n t e r e s t i n F i g . 3 . F i r s t , band A , which, 13 1 2 upon C/ C s u b s t i t u t i o n behaves l i k e a p u r e C-0 s t r e t c h i n g mode ( r e f . 5 ) , i s now

observed

to

undergo a s h i f t d e f i n i t e l y s m a l l e r t h a n what e x p e c t e d ,

as

though t h e mass o f t h e oxygen atom were 1 7 i n s t e a d of 18. S e c o n d l y , band C , s h a r p and i n t e n s e i n t h e e x p e r i m e n t i n F i g . 2 , i s now broadened, a s though two components a t l e a s t were p r e s e n t .

230

TABLE I1 12

13

12

13

N

1624

1583

1091

l5N

1619

-

1081

C

14

C

BAND

A

12

13

1087

800

776

-

800

-

C

C

BAND

C

C

C

BAND

D

F i g . 3 . I n f r a r e d s p e c t r a of a d s o r b e d s p e c i e s ( d i f f e r e n c e s p e c t r a ) . Broken 18 -2 c u r v e : a f t e r d o s i n g a 1:l C O/NO (1,3 kNm ) . S o l i d c u r v e : a f t e r a s h o r t evacuation.

231 Adsorption/desorption cycles A f t e r e v a c u a t i o n , which c a u s e s t h e d e p l e t i o n o f t h e new s p e c i e s , t o t h e i n c r e a s e o f c a r b o n a t e s ( s e e F i g s . 2 and 3 ) , a s u c c e s s i v e d o s i n g o f t h e CO/NO m i x t u r e s restores both t h e ESR and t h e I R s p e c t r a , a l t h o u g h a t weaker i n t e n s i t y . T h i s can be r e p e a t e d s e v e r a l times. Again a f t e r e v a c u a t i o n , we have cont a c t e d t h e s u r f a c e with CO and N O a l o n e , and with g a s e s l i k e N 0 and N

2

2

which

a r e a l s o p r o d u c t s o f t h e CO/NO r e a c t i o n . I n no c a s e s , t h e new s p e c i e s has been restored.

DISCUSSION Being c h a r a c t e r i z e d by a t l e a s t f o u r I R bands, t h e new s p e c i e s must be more than triatomic.

The smallest paramagnetic molecule w i t h one carbon and one

n i t r o g e n atom i s t h u s CNO

22

,

as a l r e a d y h y p o t e s i z e d . The s t r u c t u r e proposed

i n r e f . ( 5 ) was

0

,O'

\\

C--N 0 0

T h i s s t r u c t u r e a p p e a r s however n o t a b l e t o e x p l a i n t h e i s o t o p i c s h i f t s i n 18 F i g . 3 ( e . g . , band A ) , which i n d i c a t e t h a t two oxygen atoms ( o n e 0 and one 16 0 ) are l i n k e d t o t h e carbon.

W e c o n s i d e r t h u s a d i f f e r e n t arrangement o f t h e f o u r atoms

0

II C

/ \

OQ

hNQ

whereby a s t r u c t u r e c l o s e t o a c a r b o n a t e i o n i s o b t a i n e d . From a n a i v e p o i n t o f view, t h e I R s p e c t r a o f t h e new s p e c i e s are i n q u a l i t a t i v e agreement. A l l f o u r bands f a l l n o t t o o f a r away from c a r b o n a t e bands. Would t h e new s p e c i e s have s t r u c t u r e 11, i t s h o u l d be i s o s t r u c t u r a l

and i s o e l e c t r o n i c w i t h t h e

.

T h i s l a t t e r i s known ( r e f . 9 ) t o have a C symmetry, 3 2v one bond h a s a more pronounced double bond c h a r a c t e r . If t h e same i s

r a d i c a l a n i o n CO

i.e.,

-

t r u e f o r s t r u c t u r e 11, one would e x p e c t t h a t band A ( r o u g h l y a C=O s t r e t c h ) 13 12 should respond t o a C/ C s u b s t i t u t i o n , j u s t as s h o u l d band B ( b a s i c a l l y a pseudoantisymmetric s t r e t c h o f t h e 0-C-N

metric

s t r e t c h of

0-C-N)

m o j e t y ) . Band C , i n s t e a d , (pseudosym-

s h o u l d respond

t o a change i n t h e mass of

the

232 n i t r o g e n and n o t t o a change i n t h e mass o f t h e carbon atom. Band D (C=O 13 12 bending mode) should a g a i n respond t o a C/ C s u b s t i t u t i o n . This i s roughly what observed ( T a b l e 11). Moreover, i f one admits t h a t w i t h i n s t r u c t u r e I1 t h e s c r a m b l i n g o f t h e oxygen atoms can o c c u r , t h e p r e s e n c e of two components i n 18 band C i n Fig. 3 i s j u s t i f i e d (pseudosymmetric s t r e t c h e s of 0-C-N and 16 0-C-N r e s p e c t i v e l y ) . The ESR s p e c t r a a r e a l s o i n agreement. From t h e d a t a i n Table I , we c a l c u l a t e through t h e u s u a l procedure

( r e f . 5 ) t h a t t h e s p i n d e n s i t y on t h e carbon

atom i s -0.075 and t h a t on t h e n i t r o g e n atom i s 0 . 2 2 8 . The CO

-

s p e c i e s has a s p i n d e n s i t y on t h e carbon o f -0.05 n o t t o o f a r from 3 what observed f o r our s p e c i e s . There a r e , however, two o b j e c t i o n s t o s t r u c t u r e 11. F i r s t , i n o r d e r t o have t h e u n p a i r e d e l e c t r o n on t h e oxygen atoms, one has t o l o c a l i z e b o t h c h a r g e s on the

nitrogen

observed

that

atom, the

activated, i . e . ,

which

appears

not

very

reasonable.

Secondly

we

have

f o r m a t i o n o f t h e new s p e c i e s i s l i t t l e (or n o t a t a l l )

i t does n o t seem t o come o u t o f t h e slow d i s p r o p o r t i o n a t i o n

reaction.

0

_cus

+ 2CO( g ) + N O ( g ) 4 C03

__ +

CNO

2-

2

Moreover, t h e decomposition o f t h e new s p e c i e s ( r e f . 5)

2CN02

2-

4

CO

22+ + C + % N + O 3 2 cus

s h o u l d l e a v e on t h e s u r f a c e v e r y r e a c t i v e atomic carbon, s o t h a t r e a d s o r p t i o n o f NO a l o n e s h o u l d r e s t o r e t h e new s p e c i e s

C

+ NO

(PI

+ 0

2+

4 CNO cus 2

2-

We c o n s i d e r t h u s a d i f f e r e n t s t r u c t u r e i n v o l v i n g one more oxygen atom

233

QN

/

/ O'

"

I

C

r

L

0 / \

0

0

0

The formation of such CN03

2-

OQ

'+

species does not involve any disproportiona-

tion and only requires a Mg-0 pair with high coordinative unsaturation:

CO

(g)

+ NO

2-

(g)

+ 0

cus

--3

CNO

2-

3

The decomposition of the new species would be in this case

so that no reactive species would be left on the surface.

Most probably the above reasoning about the isotopic effects should also hold for such species. These considerations however require a detailed normal mode analysis because of the complexity of structure 111. This, and the labelling of the oxygen in the nitric oxide, will be the subject of future work. REFERENCES 1 F.S. Stone and A. Zecchina, Proc. 6th Int. Congr. Catal., London 1976, The Chemical Society, 1977, p. 162. 2 E. Guglielminotti, S . Coluccia, E. Garrone, L. Cerruti and A . Zecchina, J. Chem. SOC. Faraday Trans. I , 75 (1975) 96. 3 A . Zecchina and F.S. Stone, J. Chem. SOC. Faraday Trans. I, 74 (1978) 2278. 4 L. Cerruti, A . Modone, E. Guglielminotti and E. Borello, J. Chem. SOC. Faraday Trans. I, 70 (1974) 729. 5 E. Giamello, E. Garrone, E. Guglielminotti and A . Zecchina, to appear in J. Chem. SOC. Faraday Trans. I ( 1 9 8 4 ) . 6 D. Cordischi, V. Indovina and M. Occhiuzzi, J. Chem. SOC. Faraday Trans. I, 76 (1980) 1147. 7 8

9

R.M. Morris, R.A. Kaba, T.C. Groshens, V.I. Klabunde, R.T. Baltisberger, N.F. Woolsey and V.I. Stenberg, J.A.C.S., 102 (1980) 3419. J. Lunsford, J. Chem. Phys., 46 (1967) 4347. G.W. Chautry, A . Horsfield, J.R. Morton and D.G. Whitten, Mol. Phys., 5 (1962) 506.