The Keimoes Suite redefined: The geochronological and geochemical characteristics of the ferroan granites of the eastern Namaqua Sector, Mesoproterozoic Namaqua-Natal Metamorphic Province, southern Africa

The Keimoes Suite redefined: The geochronological and geochemical characteristics of the ferroan granites of the eastern Namaqua Sector, Mesoproterozoic Namaqua-Natal Metamorphic Province, southern Africa

Accepted Manuscript The Keimoes Suite redefined: The geochronological and geochemical characteristics of the ferroan granites of the eastern Namaqua S...

15MB Sizes 176 Downloads 276 Views

Accepted Manuscript The Keimoes Suite redefined: The geochronological and geochemical characteristics of the ferroan granites of the eastern Namaqua Sector, Mesoproterozoic NamaquaNatal Metamorphic Province, southern Africa Russell Bailie, Paul Hugh Macey, Sedzani Nethenzheni, Dirk Frei, Petrus le Roux PII:

S1464-343X(17)30303-5

DOI:

10.1016/j.jafrearsci.2017.07.017

Reference:

AES 2969

To appear in:

Journal of African Earth Sciences

Received Date: 14 February 2017 Revised Date:

2 June 2017

Accepted Date: 17 July 2017

Please cite this article as: Bailie, R., Macey, P.H., Nethenzheni, S., Frei, D., le Roux, P., The Keimoes Suite redefined: The geochronological and geochemical characteristics of the ferroan granites of the eastern Namaqua Sector, Mesoproterozoic Namaqua-Natal Metamorphic Province, southern Africa, Journal of African Earth Sciences (2017), doi: 10.1016/j.jafrearsci.2017.07.017. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT 1

The Keimoes Suite redefined: The geochronological and geochemical

2

characteristics of the ferroan granites of the eastern Namaqua Sector,

3

Mesoproterozoic Namaqua-Natal Metamorphic Province, southern Africa

4 Russell Bailie a, *, Paul Hugh Macey b, Sedzani Nethenzheni a, Dirk Frei a, c, Petrus le Roux d

6

a

Department of Earth Sciences, University of the Western Cape, South Africa

7

b

Council for Geoscience, Western Cape Regional Office, South Africa

8

c

Central Analytical Facility, Stellenbosch University, South Africa

9

d

Department of Geological Sciences, University of Cape Town, South Africa

*Corresponding author

11

E-mail address: [email protected]

SC

10

RI PT

5

12 ABSTRACT

14

Voluminous granite gneisses and granites straddle the boundary between the Kakamas and Areachap

15

Terranes in the eastern Namaqua Sector (NS) of the Mesoproterozoic Namaqua-Natal Metamorphic

16

Province (NNMP). These rocks have been previously poorly defined and loosely grouped into the

17

Keimoes Suite, but a recent U-Pb age study has suggested the suite be subdivided into syn-tectonic

18

and post-tectonic groups relative to the main phase of the Namaqua Orogeny. This study adds new

19

whole rock geochemical, isotopic and age data for these granites that confirms the subdivision is

20

appropriate. The older group of syn-tectonic granite gneisses, dated between 1175 and 1146 Ma, have

21

penetrative foliations and are largely derived from fractionated, leucogranitic metaluminous to

22

peraluminous magmas with low maficity, low Ti, Mn and Ca. They were derived from mildly

23

depleted sources (εNd(t): -1.47 to 1.78), with Meso- to Paleoproterozoic Nd model ages (1.57-1.91 Ga),

24

and high initial Sr ratios (0.71970-0.75567) suggesting mixing between younger depleted and older,

25

arc-like sources imparting an arc-like signature to the magmas. High initial Sr ratios appear to be an

26

intrinsic character of these granites reflecting those of granites in the region and the highly radiogenic

27

nature of the NS.

28

The weakly to unfoliated late- to post-tectonic megacrystic granodiorites and monzogranites,

29

including charnockites, intruded between 1110 and 1078 Ma and constitute the Keimoes Suite proper.

30

They have I-type characteristics, being strongly metaluminous and locally hornblende- and

31

orthopyroxene-bearing with moderate SiO2 and with arc-type affinities (LILE enrichment relative to

32

the HFSE, Ta-Nb, Ti and P anomalies). However, the granitoids also have high Fe/Mg ratios, along

33

with high HFSE, LILE and REE contents more indicative of A-type granites. They show an

34

increasing maficity, metaluminous character, and general decreasing degree of fractionation with

35

decreasing age. They are similar to the syn-tectonic granites in having εNd(t) values close to zero (-2.95

AC C

EP

TE D

M AN U

13

1

ACCEPTED MANUSCRIPT to 2.83) and Meso- to Paleoproterozoic model ages (TDM: 1.38-1.99 Ga) but lower initial Sr ratios

37

(<0.723 in general) suggesting derivation from relatively depleted sources with a variable enriched

38

and/or crustal component.

39

The timing of emplacement of the syn-tectonic granites places peak D2 deformation in the eastern NS

40

predominantly at ∼1.16-1.15, varying from ∼1.18-1.13 Ga. There was more voluminous granitic

41

magmatism in the Areachap Terrane to the east during the late- to post-tectonic magmatic episode,

42

whereas the earlier, ∼1.18-1.14 Ga syn-tectonic magmatic episode is more concentrated to the west in

43

the Kakamas Terrane. The broad, protracted period of magmatism in the eastern NS attests to a long-

44

lived duration of high-heat flow in this portion of the southern African crust at this time. Nd model

45

ages of Meso- to Paleoproterozoic age reflect those in other granites throughout the NS suggesting

46

extensive reworking of Paleoproterozoic crust during the 1.2-1.0 Ga Namaquan Orogeny.

SC

RI PT

36

47 Keywords:

49

Eastern Namaqua Sector; post-tectonic felsic magmatism; ferroan, metaluminous megacrystic

50

granitoids; variably enriched sources; mixed model ages

M AN U

48

51 52

1. Introduction

The Namaqua-Natal Metamorphic Province (NNMP) developed as a Mesoproterozoic mobile belt

54

along the southern and western margin of the Archean-Paleoproterozoic Kaapvaal Craton during the

55

Rodinian supercontinent assembly (Hartnady et al., 1985; Cornell et al., 2006; Li et al., 2008, Fig. 1).

56

The Namaqua Sector (NS), forming the western portion of the NNMP, is dominated by granitic

57

gneisses and granites aged between ~1.3 and 1.0 Ga (e.g. Eglington, 2006 and references therein;

58

Bailie et al., 2011a; Cornell et al., 2012; Bial et al., 2015a; Colliston et al., 2015; Macey et al., 2015).

59

The granitic melts intruded almost continuously over this period but the most significant and

60

voluminous magmatic events occurred during several pulses linked to specific tectono-metamorphic

61

episodes and associated with major developing structures. The timing and location of these major

62

intrusive events varies across the NS and reflect the shift in the tectonic and thermal axis during the

63

long duration, high-T, low-P Namaqua Orogeny (Eglington, 2006; Miller, 2012). Clearly an

64

understanding of the characteristics, age and source of the various granite suites and the tectonics

65

controlling their emplacement is critical to unravelling the complex evolution of the NS and its heat

66

source.

67

The granites, granodiorites and charnockites of the Keimoes Suite intruded the eastern parts of the NS

68

of the NNMP (Fig. 1). A suite is defined as an assemblage of temporally and spatially related

69

magmatic rocks having chemical, mineralogical and textural features or characteristics that together

70

exhibit a continuous variation from one extremity to the other (Bates and Jackson, 1987). The original

AC C

EP

TE D

53

2

ACCEPTED MANUSCRIPT definition of the Keimoes Suite (SACS, 1980) was done before systematic regional mapping and, as

72

acknowledged by the authors, was loosely defined as a collection of intrusive rocks in the Keimoes-

73

Kakamas area, possibly not belonging to a single intrusive rock series and therefore subject to

74

redefinition and reclassification. It was differentiated from the older basement granites of the

75

Kaapvaal Craton to the east and an augen gneiss-dominated domain to the west based on the apparent

76

lack or weakness of the penetrative gneissic foliation (disregarding the localised shear zones). Several

77

refinements of the original definition have been proposed following geological surveys (e.g. Moen,

78

1988, 2007; Slabbert, 1998; Slabbert et al., 1999) and geochemical studies (Geringer et al. 1988) of

79

which the subdivision of Moen (2007) is most widely accepted. More recently, Cornell et al. (2012)

80

proposed subdividing the Keimoes Suite (sensu Moen, 2007) on the basis of new U-Pb ages

81

(Pettersson, 2008; Bailie et al., 2011a; Cornell et al., 2012) and intensity of gneissic fabric into an

82

older syn-tectonic group of foliated rocks (1203 to 1146 Ga), which they term the Augrabies Suite,

83

and a post-tectonic group of granites and charnockites (1113 to 1078 Ga) which remain in the

84

Keimoes Suite.

85

In light of the issues associated with this poorly defined suite, this study contributes new age, whole

86

rock major, trace, rare earth element (REE) geochemical and isotope data combined with a review of

87

the existing map information (intensity of regional gneissic foliation, texture, mineralogy and

88

distribution of granitoids) which can be used to further characterise these granites, their age of

89

emplacement relative to the main tectonothermal events of the eastern Namaqua Sector, as well as the

90

source characteristics. The main objective is to test whether the subdivision of these granitoids into

91

two suites relative to the main Namaquan deformation event, as proposed by Cornell et al. (2012), is

92

valid. The age of emplacement, whole rock geochemical and isotopic characteristics can also

93

contribute to a greater understanding of the role of voluminous granitic magmatism in not only the

94

eastern Namaqua Sector but also throughout the NNMP during the 1.2-1.0 Ga Namaquan Orogeny.

SC

M AN U

TE D

EP

96

2. Geological Setting

AC C

95

RI PT

71

97

The granites of the Keimoes Suite intrude the Kakamas and Areachap Terranes in the eastern parts of

98

the NS of the NNMP. The NS covers an area of over 100 000 km2 in the lower Orange River region

99

of the Northern Cape Province of South Africa and the Karas Region of southern Namibia (Hartnady

100

et al., 1985; Cornell et al., 2006; Fig. 1) and consists of Paleoproterozoic (~2.05-1.83 Ga) and

101

Mesoproterozoic (~1.3-1.0 Ga) igneous and metamorphic rocks that were deformed during various

102

phases of the low-P - high T ∼1.2-1.0 Ga Namaquan Orogeny (e.g. Cornell et al., 2006; Eglington,

103

2006; Bial et al., 2015a, b; Thomas et al., 2016; Macey et al., 2017). The NS is subdivided into five

104

terranes/domains defined by differences in lithostratigraphy, radiometric ages, structural trends and

105

intensities and metamorphic histories (e.g. Hartnady et al., 1985; Joubert, 1986; Cornell et al., 2006;

3

ACCEPTED MANUSCRIPT Eglington, 2006; Miller, 2008, 2012; Thomas et al., 2016; Macey et al., 2017; Fig. 1). The tectonic

107

domains are separated by major structural discontinuities and were juxtaposed during several regional

108

thrusting events.

109

The Richtersveld Subprovince forms the westernmost tectonic domain and consists of belts of calc-

110

alkaline, arc-derived volcanic rocks intruded by coeval granodiorite-dominated plutonites at ca. 2.02

111

Ga and ca. 1.88 Ga, respectively. The eastern parts of the subprovince were strongly deformed under

112

amphibolite-facies conditions during the Mesoproterozoic Namaquan Orogeny associated with minor

113

~1.2 Ga granite, leucogranite and gabbroic intrusions (Reid, 1997; Thomas et al., 2016; Macey et al.,

114

2017). The Bushmanland Subprovince is more complex with ∼1.85 Ga granitic gneisses and

115

migmatites dominating the northern parts, whereas in the south belts of high-grade supracrustal

116

gneisses of various ages (∼1.60-1.15 Ga) occur as rafts within voluminous intrusions of pre- to syn-

117

tectonic ~1.20-1.12 Ga granitic augen gneisses and quartzo-feldspathic gneisses and 1.10-1.035 Ga

118

late- to post-tectonic granites (e.g. Robb et al., 1999; Clifford et al., 2004; Eglington, 2006; McClung,

119

2006; Bailie et al., 2007). The Kaaien Terrane is the easternmost tectonic domain of the NS

120

representing a tectonic transition zone between the Kaapvaal Craton and Kheis Province and the NS

121

and is composed of ∼1.77 Ga metaquartzites, ∼1.37 and 1.17-1.10 Ga bimodal volcano-sedimentary

122

rocks and 1.10 Ga granitic intrusions (Van Niekerk, 2006; Bailie et al., 2011a, 2012).

123

The Kakamas Terrane (Fig. 1) is dominated by late Mesoproterozoic granulite-facies meta-

124

sedimentary rocks (~1220-1150 Ma) intruded by various 1.21-1.08 Ga granites, anatectic

125

leucogranites and minor gabbroic rocks (Pettersson et al., 2009; Bial et al., 2015a, b, 2016; Macey et

126

al., 2017). The Kakamas Terrane is regarded as a low-angle imbricate mega-nappe stack separated

127

from the Bushmanland and Richtersveld Subprovinces by major thrust structures (Onseepkans,

128

Hartebeest, Lower Fish River, Kerelbad thrusts; e.g. Praekelt, 1984; Colliston et al., 2015; Macey et

129

al., 2017).

130

The Areachap Terrane, to the east thereof (Fig. 1), is marked by numerous younger Nd model ages, of

131

Mesoproterozoic age (Pettersson et al., 2009) suggesting a juvenile component compared to the

132

dominant Paleoproterozoic model ages in the Bushmanland Subprovince to the west (Yuhara et al.

133

2002, Reid, 1997; Macey et al., 2017). The NW-trending Areachap Terrane is dominated by 1.30-1.22

134

Ga volcaniclastic, volcanic and sedimentary rocks (Areachap Group) representing a metamorphosed

135

juvenile Mesoproterozoic volcanic arc succession (Geringer et al., 1986, 1994; Cornell et al., 1990;

136

Pettersson et al., 2007; Cornell and Pettersson, 2007; Bailie et al., 2010) that was intruded by younger

137

∼1.20 to ∼1.10 Ga granitoids (Pettersson et al., 2007; Bailie et al., 2011a; Cornell et al., 2012). The

138

eastern boundary of the terrane is marked by the Trooilapspan shear zone (TLSZ) and the Brakbosch

139

fault (Fig. 1), whereas the boundary with the Kakamas Terrane is considered to be the Boven Rugzeer

140

Shear Zone (BRSZ) (Fig. 1). The Areachap Group was subjected to upper amphibolite facies

AC C

EP

TE D

M AN U

SC

RI PT

106

4

ACCEPTED MANUSCRIPT metamorphism to the north, and lower granulite facies metamorphism to the south. The northern part

142

of the Areachap Terrane, in particular, is characterised by a greater dominance of Paleoproterozoic

143

model ages (Geringer et al., 1986; Pettersson et al., 2007; Cornell and Pettersson, 2007) suggesting

144

that an older crustal component was present in the magmatic arc(s) which gave rise to the Areachap

145

Group (Pettersson et al., 2009).

146

The eastern Namaqua Sector was subjected to extensive polyphase low pressure, high temperature

147

metamorphism and deformation during the ∼1.2-1.0 Ga Namaquan Orogeny with four main high

148

grade deformation events recognized in the Kakamas and Areachap Terranes (Cornell et al., 1992,

149

2006; Pettersson et al., 2007; Bailie et al., 2011a; Bachmann et al., 2015). Intense fold and thrust

150

tectonics during the D2 deformation gave rise to large scale tight to isoclinal sub-vertical NW-trending

151

F2 folds and the regional penetrative foliation (e.g. Praekelt, 1984; Macey et al., 2015). Peak

152

metamorphic grade varies from lower granulite facies in the Kakamas Terrane to upper amphibolite

153

facies in the Areachap Terrane diminishing eastward to greenschist facies into the Kaaien Terrane

154

(Stowe, 1983; Cornell et al., 1992, 2006; Bial et al., 2015b, 2016). The main deformation and

155

metamorphism appears to have occurred over a protracted period dated between ~1.20 and 1.15 Ga

156

(Pettersson et al., 2007; Miller, 2012; Bachmann et al., 2015; Bial et al., 2015b). Subsequent D3

157

deformation, associated with M3 metamorphism gave rise to open east-west trending F3 folds at

158

amphibolite facies conditions (∼640oC and 4.8 kbar; Cornell et al., 1992) and was associated with

159

magmatism at around 1.10 Ga (Pettersson et al., 2007; Bailie et al., 2011a). D4 deformation involved

160

later reactivation and dextral strike-slip faulting along major regional shear zones and faults, including

161

the BRSZ, TLSZ, and Brakbosch shear zones (Geringer et al., 1994).Whilst many of the shear zones

162

are likely to have formed during D2 fold and thrust tectonics, they show evidence for extensive

163

reactivation, retrograde M4 metamorphism and vertical and lateral movement (e.g. van Bever Donker,

164

1980, 1991), with many showing a dextral shear sense, e.g. the BRSZ (van Bever Donker, 1991;

165

Miller, 2012), TLSZ and Brakbosch shear zones (Moen, 1999).

166

Regional lithological mapping by the geological survey of South Africa (Moen, 2007; Slabbert, 1998;

167

Slabbert et al., 1999) identified 29 biotite, biotite-hornblende and orthopyroxene-bearing granitoid

168

units in the Upington-Kakamas-Kenhardt region considered to constitute the Keimoes Suite. The

169

subdivision included two subsuites (further subdivided into 7 lithodemes) and was based on the

170

distribution, composition, texture and structural fabric of individual granite bodies (Geringer et al.,

171

1988; Stowe, 1983). Moen (2007) excluded the gabbroic members previously included in the

172

Keimoes Suite and limited it to the granitic units distributed between the Brakbosch fault and

173

Neusspruit-Wolf Kop shear zone (Fig. 1). Moen (2007) suggested a subdivision into syn-tectonic and

174

late-tectonic granites but cautioned that strain intensity is not only dependent on age relative to

175

deformation but the size and mineral composition of the granite.

AC C

EP

TE D

M AN U

SC

RI PT

141

5

ACCEPTED MANUSCRIPT Bulk zircon U-Pb, Pb-Pb and whole rock Rb-Sr ages obtained in the 1970s and 1980s show a wide

177

range from ~1264 to 1020 Ma with some granites giving widely different ages and thus early

178

geochronology (e.g. Geringer and Botha, 1977; Linstrom, 1977; Smit, 1977; Barton and Burger, 1983;

179

Jankowitz, 1987; summarised in Geringer et al. (1988) and Moen (2007)) did not really help to

180

subdivide or determine relative timing of emplacement and the role of the Keimoes Suite in the

181

tectonothermal evolution of the eastern NS. Recent U-Pb zircon dating yielded a range of ages for the

182

Keimoes Suite (as defined by Moen, 2007) between 1.2 and 1.08 Ga (Pettersson, 2008; Bailie et al.,

183

2011a; Cornell et al., 2012).

184

Based on these new ages, Cornell et al. (2012) suggest the Keimoes Suite be subdivided into an older

185

1.2-1.15 Ga syn-tectonic group, and a younger 1.11-1.08 Ga late- to post-tectonic suite, named the

186

Augrabies and Keimoes Suite, respectively. Cornell et al. (2012) proposed grouping the syn-tectonic

187

Vaalputs Granite (1146 ± 14 Ma), formerly included in the Keimoes Suite of Moen (2007), with the

188

similarly-aged Riemvasmaak augen gneiss dated at 1156 ± 8 Ma and 1151 ± 14 Ma (Pettersson,

189

2008). The Augrabies Gneiss, which occurs in close association with the Riemvasmaak Gneiss, has

190

been dated at 1168 ± 6 Ma (Colliston et al., 2015) and presumably would also fall into the Augrabies

191

Suite of Cornell et al. (2012).

192 193

3. Methodology

M AN U

SC

RI PT

176

Fourteen plutons were sampled during the course of this study. Typically five geochemical samples

195

per pluton were collected depending on the size and accessibility of the outcrops and exposed pluton.

196

Petrographic thin section and geochemical sample preparation were undertaken at the Department of

197

Earth Sciences, University of the Western Cape (UWC), Bellville, South Africa and at the Council for

198

Geoscience (CGS), Pretoria, South Africa. Fifty-four samples were analysed for trace elements,

199

including the rare earth elements (REE), by Inductively Coupled Plasma - Mass Spectrometry (ICP-

200

MS) analysis at the Central Analytical Facility (CAF), Stellenbosch University, with major element

201

contents determined by X-ray fluorescent (XRF) spectrometry at the CGS. Rb-Sr and Sm-Nd isotope

202

analysis was undertaken at the Department of Geological Sciences, University of Cape Town. U-Pb

203

age data were obtained at CAF, Stellenbosch University by laser ablation - single collector - magnetic

204

sector field - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). Details of the

205

analytical techniques are given in the Appendix.

AC C

EP

TE D

194

206 207

4. Lithological Description

208

The medium- to coarse-grained porphyritic monzogranites, granodiorites and charnockites of the

209

Keimoes Suite (sensu Moen, 2007) intrude the Kakamas and Areachap terranes in the eastern NS of

6

ACCEPTED MANUSCRIPT the NNMP. The granitoids are most voluminous along and immediately adjacent to the Boven

211

Rugzeer Shear Zone (BRSZ) which separates the terranes, diminishing in volume and aerial extent

212

both eastward and westward (Fig. 1). The two most voluminous members of the suite, the Vaalputs

213

Granite and Friersdale Charnockite are concentrated along the BRSZ.

214

Moen (1988; 2007), Slabbert (1998), Slabbert et al. (1999); Geringer et al. (1988); Bailie et al.

215

(2011a) and Cornell et al. (2012) provide detailed descriptions of the various members of the Keimoes

216

Suite and these, along with the observations of the 14 plutons studied during this study, are

217

summarized in Table 1.

218

The outcrop extents of the granites vary from small, isolated outcrops, to large, voluminous plutons.

219

Various granites, such as the Colston Granite, comprise two or more members which differ in terms

220

of mineral abundances, colour and texture. The Cnydas Subsuite is a genetically coherent group of

221

syn-tectonic, epizonal granitoids (Fig. 1; Jankowitz, 1987; Moen, 2007; Bailie et al., 2011a). The

222

Kleinbegin Subsuite refers to numerous outcrops of granite that intrude to the west of the Brakbosch

223

fault and is not a genetic grouping as such (Moen, 2007).

224

The Keimoes Suite (sensu Moen, 2007) is characterised by medium- to coarse-grained porphyritic

225

biotite granites varying from monzogranites to granodiorites. K-feldspar (Kfs) is typically more

226

abundant than plagioclase, with biotite being the dominant mafic mineral in most cases (10-15%

227

typically), which helps define a foliation, where developed. Rounded phenocrysts of Kfs are present

228

in some granites, but elsewhere, and more typically, randomly oriented euhedral-subhedral Kfs

229

phenocrysts are present. These vary in abundance from abundant to sparsely distributed. Some

230

younger granites, as defined by poorly developed to unfoliated characteristics, are non-porphyritic.

231

Hornblende is present in some cases (e.g. the Straussburg Granite). Muscovite is present in minor

232

amounts (6% and less) and is more prevalent in those granites which are cross-cut by, or have been

233

subjected to shearing, particularly the Vaalputs and Louisvale granites. Some granites contain

234

pyroxene in variable amounts thus forming charnockites. The most notable are the voluminous,

235

unfoliated Friersdale Charnockite and the Gous Charnockite, a member of the Cyndas Subsuite,

236

exposed in the far northern extent of the eastern NS granites. Both orthopyroxene and clinopyroxene,

237

in the form of augite, are present in these rocks. Garnet is sporadically present in some granites.

238

The granites exhibit variable degrees of foliation development. Foliation can also intensify toward the

239

margins of the pluton or exhibit a magmatic flow structure. As such, some of the foliation, particularly

240

along the margins, may be of magmatic origin rather than tectonic. Where developed the foliation is

241

defined by the mafic minerals, notably biotite, along with muscovite, which envelope or wrap around

242

glomeroporphyritic clusters of the felsic minerals, notably the feldspars (variable amounts of

243

plagioclase, microcline, perthite and orthoclase) as well as quartz, which also occurs in the

AC C

EP

TE D

M AN U

SC

RI PT

210

7

ACCEPTED MANUSCRIPT groundmass. Foliation intensity in the granites is found to partially correlate with the presence of, or

245

proximity to major crosscutting transcurrent shear zones.

246

Most of the granites contain numerous inclusions, with xenoliths largely reflecting the composition of

247

the intruded country rock. Inclusions also tend to be largely both mafic and leucocratic, with the

248

former typically biotite-rich to amphibolitic. Some granites, however, also contain inclusions of

249

tonalitic composition which are likely magmatic enclaves compositionally related to the host granite

250

representing relics of an earlier magma (e.g. Geringer et al., 1987). Crosscutting granitic and

251

pegmatitic veins are common features. Certain granites, such as the Friersdale Charnockite, crosscut

252

other granites as dykes.

253

Moen (2007) included the Josling Granite within the Keimoes Suite, although, based on an age of

254

1275 ± 7 Ma by Pettersson (2008), acknowledged that it likely does not form part of the Keimoes

255

Suite. The Josling Granite is characterised by a well-developed gneissic fabric, which contrasts with

256

the largely weakly foliated to unfoliated nature of many of the Keimoes Suite granitoids.

M AN U

SC

RI PT

244

257 258

5. Geochronology

The results of the eight granite samples dated during the course of this study are described

260

alphabetically and are summarised in Table 2. Age data from previous studies (Pettersson, 2008;

261

Bailie et al., 2011a; Cornell et al., 2012) are summarized separately below the new age data. The

262

tabulated analytical data may be found in Appendix Tables A1-A8. The uncertainties are expressed as

263

s (sample standard deviation) as opposed to σ, following the recommendations of Horstwood et al.

264

(2016), since only a representative sample of the entire population was taken. Given that the

265

206

266

ratios are used. Weighted mean ages are calculated, with 2% added to the uncertainty in quadrature to

267

account for systematic uncertainty following the recommendations of Hortwood et al. (2016) and

268

Spencer et al. (2016). All data with greater than 10% discordance is not considered in determining the

269

weighted mean age of the sample following a general recommendation by Gehrels et al. (2008).

270

Analyses which show a clear inherited component, as determined from CL imaging and their age, e.g.

271

spots Me1-12 and 13 of the Elsie se Gorra Granite (sample Me1 – Table A3) are also not included in

272

the weighted mean age.

TE D

259

AC C

EP

Pb/238U ratio gives higher precision for ages younger than ∼1.5 Ga (Spencer et al., 2016), these

273 274

5.1. Cnydas Subsuite – Smalvisch Granite

275

Most of the euhedral to subhedral zircons (100 - 250 µm; Fig. 2a) exhibit oscillatory zoning with

276

relatively bright cores. All 24 zircons analysed provided concordant data (99-102%; Table A1) with

277

overlapping core and rim ages and no evidence for older inheritance. These data provide a weighted

8

ACCEPTED MANUSCRIPT 278

mean U-Pb age of 1159 ± 28 Ma which is considered to be the crystallisation age of this granite (Fig.

279

3a).

280 281

5.2. Colston Granite The zircons from the Colston Granite are mostly elongate, ranging in size from 100 to 250 µm (Fig.

283

2b). Most of the larger (>150 µm) euhedral grains have bright cores and show oscillatory zoning, with

284

the smaller zircons (<100 µm) having mostly dark cores. Twenty five spots were analysed (Table A2).

285

The upper intercept age of 1161 ± 16 Ma obtained from all 25 spots is within error of the weighted

286

mean U-Pb age of 1151 ± 28 Ma (Fig. 3b). The latter is taken as the timing of intrusion of the granite.

287

Core and rim ages cannot be distinguished and no zircon inheritance or metamorphic overprinting

288

ages are evident in the data.

SC

RI PT

282

290

M AN U

289 5.3. Elsie se Gorra Granite

The zircon grains in the Elsie se Gorra Granite range in size from 100 µm to 200 µm (Fig. 2c). Of the

292

21 spots analysed only twelve were less than 10% discordant (Table A3). Of these, a dark, weakly

293

zoned core yielded 206Pb/238U inheritance ages of 1335 ± 35 and 1344 ± 35 Ma (Fig. 2c). The

294

remainder provide a weighted mean U-Pb age of 1175 ± 18 Ma which is considered to be the

295

crystallisation age (Fig. 3c; Table 2). Some cores are discordant having ages of > 1075 Ma possibly

296

reflecting metamorphism.

297 5.4. Josling Granite

EP

298

TE D

291

The zircons examined during this study are mostly prismatic (50 - 150 µm). Mostly bright oscillatory

300

zoned cores yield mostly concordant ages, whereas dark weakly zoned to unzoned rims are generally

301

characterised by high U contents (411 - 582 ppm) yielding mostly discordant ages (Fig. 2d). Of the 23

302

spots analysed only 12 yielded concordant data with the rest highly discordant (<61% concordant;

303

Table A4). The remaining concordant data from 12 zircons have a weighted mean U-Pb granite

304

crystallization age of 1217 ± 20 Ma (Fig. 3d), within error of the upper intercept age of 1222 ± 16 Ma.

AC C

299

305 306

5.5. Kanoneiland Granite

307

The zircons of the Kanoneiland Granite are dark, mostly unzoned and form subhedral to anhedral

308

grains 100 - 200 µm in size with moderately to well zoned cores (Fig. 2e). Twenty-two concordant

309

(98-101%; Table A5) analyses provide a weighted mean U-Pb age of 1098 ± 26 Ma which is regarded

310

as the crystallisation age (Fig. 3e). No inherited or metamorphic zircons were found. 9

ACCEPTED MANUSCRIPT 311 312

5.6. Keboes Granite The zircons of this granite exhibit oscillatory zoning with bright cores and dark rims and range in size

314

from 80 - 250 µm in size (Fig. 2f). Twenty-five spots were analysed, of which only one spot (spot 16

315

– Table A6) is strongly discordant. One concordant analysis (spot 3 – Table A6) of a dark, strongly

316

oscillatory zoned inherited zircon core provides a 206Pb/238U age of 1346 ± 35 Ma. The remaining 23

317

spots provide a weighted mean U-Pb age of 1105 ± 27 Ma (Fig. 3f) within error of the upper intercept

318

age of 1111 ± 10 Ma. The former is taken as the crystallisation age of the Keboes Granite. No

319

metamorphic ages were obtained from the zircons.

321

SC

320

RI PT

313

5.7. Klipkraal Granite

The zircons from the Klipkraal Granite are mostly subhedral, elongated sector zoned grains (80 µm to

323

150 µm, Fig. 2g). Only 8 spots were analyzed which yield only discordant data (≤90% concordant;

324

Table A7) from which an upper intercept age of 1270 ± 26 Ma (Fig. 3g) was determined. Since the

325

Klipkraal Granite is only weakly deformed and is unlikely to be older than 1.2 Ga this age is regarded

326

as representing inheritance from the Jannelsepan Formation (Areachap Group) country rocks into

327

which the Klipkraal Granite intrudes (Fig. 2) and which has an extrusion age of 1275 ± 7 Ma (Cornell

328

and Pettersson, 2007; Table 2). A weighted mean U-Pb age from two grains with 90% concordance

329

yields an age of ∼1111 Ma. The Klipkraal Granite is considered to be post-tectonic given its weakly

330

deformed nature and likely to have an age of ∼1110 Ma. This granite requires dating again in order to

331

determine its age of emplacement.

TE D

M AN U

322

333

EP

332 5.8. Louisvale Granite

Zircons of this granite range in size from 100 µm to 200 µm, with most having bright, well zoned

335

cores. The rest have dark, moderately to poorly zoned cores (Fig. 2h). Fourteen spots were analysed

336

(Table A8), of which one (spot 26) was badly discordant, and two (spots 11 and 33) each have 89%

337

concordance. The remaining 11 spots provide a weighted mean U-Pb age of 1125 ± 16 Ma which is

338

taken to be the crystallisation age of this granite (Fig. 3h). This is within error of the upper intercept

339

age of 1134 ± 16 Ma of a line fitted through all of the data. There are no inherited ages for this

340

granite.

AC C

334

341 342 343

5. Geochemistry 5.1. Whole rock major, trace element (TE) and rare earth element (REE) geochemistry 10

ACCEPTED MANUSCRIPT The geochemistry of 54 samples analysed during this project are presented in Tables 3 and 4 as well

345

as Figures 5 to 8 along with fields, in Fig. 5, representing the datasets of Jankowitz (1987) (Cyndas

346

Subsuite – Figs. 4a, b, 5) and Geringer et al. (1988) (Keimoes Suite - Fig. 4a) along with the

347

geochemistry of the Riemvasmaak Gneiss (Geringer, 1973; Saad, 1987) (Figs. 4a, b, 5). In the

348

following section, the data are described for the Keimoes Suite (sensu Moen, 2007) as a whole and as

349

comparisons between the syn-tectonic and post-tectonic granitoid groups (sensu Cornell et al., 2012).

350

The Josling Granite, clearly older than the Keimoes Suite, is included for completeness.

351

The Keimoes Suite granitoids classify mostly as monzogranite and, to a lesser degree, granodiorite on

352

the normative modal Q-A-P Streckeisen (1976) diagram (Fig. 4a). The granites are predominantly

353

ferroan (Fig. 4d), potassic and metaluminous (Fig. 4f). Most of the granites combine to define

354

coherent major element trends on the Harker plots with negative correlations between SiO2 and TiO2,

355

FeO(t), MgO, CaO, MnO and P2O5 (Fig. 5; the last not shown), and weakly positive correlations for

356

Na2O and K2O; Al2O3 does not show a definitive trend (Fig. 5). There are also broadly negative

357

correlations of SiO2 with V, Sc, Co, Zr and Hf.

358

Plots of maficity (defined as moles of Fe and Mg per 100 g of rock or magma – Clemens et al., 2011)

359

against other major and trace elemental concentrations (after Clemens et al., 2011; Clemens and

360

Stevens, 2012) do not define any significant differences in terms of both the major or trace elements

361

between the older ∼1.18-1.15 Ga syn-tectonic granites and the younger ∼1.11-1.08 Ga late- to post-

362

tectonic granites (Fig. 6). Maficity is used rather than traditional indices such as wt.% SiO2 as it is far

363

easier to relate mineralogical and chemical influences on magma composition, and hence potential

364

source differences (Clemens et al., 2011). It relates to the concentration of mafic minerals in the

365

granitic magma, with higher maficities implying a greater mafic mineral content. Such plots (Fig. 6)

366

indicate strong positive correlations between maficity and Ti, Fe, Mg, Mn, Zr and Hf, and less well

367

defined positive trends for Ca, P, and Eu. Na and K define fairly flat, to slightly negative trends

368

against maficity, with Al displaying a flat trend. The large ion lithophile (LIL) elements (Rb and Sr)

369

show flat trends, with Ba showing a very poorly define weakly positive slope.

370

With few exceptions, the trace elements show consistent saw-tooth trace element patterns on primitive

371

mantle-normalised (McDonough et al., 1992) spider diagrams (Fig. 7) with enrichment of Th, U and

372

Pb, and the large ion lithophile elements (LILE) over the high field strength elements (HFSE), and

373

depletions in Cs, Ba, Sr, P, Eu and Ti. All the granites show a prominent negative Nb-Ta ‘trough’

374

usually taken to indicate a subduction-related or crustal signature. The chondrite-normalised

375

(McDonough and Sun, 1995) REE plots are also mostly consistent, with moderate to strong light REE

376

enrichment (Fig. 7; (La/Lu)N: 3.6-20.9). The pattern is concave up with moderate fractionation in the

377

LREE [(La/Sm)N = 2.17-6.28] and moderately flat HREE traces [(Gd/Lu)N = 0.92-2.45]. For almost

378

all the granites Eu shows relatively moderate to strongly negative anomalies [(Eu/Eu*)N = 0.19-0.76]

AC C

EP

TE D

M AN U

SC

RI PT

344

11

ACCEPTED MANUSCRIPT The Louisvale Granite (or more correctly tonalite) appears to be the main geochemical outlier (Figs.

380

4-7) having anomalous concentrations in most of the major and trace elements (Figs. 5 to 7), distinctly

381

low concentration REE patterns and positive Eu anomalies and probably should be excluded from the

382

suite. The samples from the Kleinbegin Subsuite have low K2O and higher CaO (Figs. 5, 6) than the

383

remainder of the suite whereas the Elsie se Gorra leucogranite and Keboes Granite show distinctive

384

low maficities (Fig. 6), TE and REE patterns on the trace element spider and REE plots (Fig. 7). The

385

high MgO values for the Cyndas Subsuite in the Jankowitz dataset (Fig. 5) is likely due to analytical

386

error.

387

When comparing the geochemistry of the syn- and post-tectonic granites (sensu Cornell et al., 2012),

388

there is significant overlap in major and trace element compositions with general consistencies in

389

elemental trends, enrichments and depletions. The main distinguishing factors are that the syn-

390

tectonic intrusive rocks are generally more felsic (SiO2 mostly between ~69 and 78 wt.%; Colston

391

Granite is the main exception) and are mildly metaluminous to peraluminous as opposed to the post-

392

tectonic group being strongly metaluminous and having SiO2 values between 60 and ∼70 wt.%. The

393

post-tectonic group has a higher overall, and a narrower range of REE and trace element

394

concentrations relative to the syn-tectonic group (Fig. 7; Tables 3, 4).

395

M AN U

SC

RI PT

379

5.2. Radiogenic isotope geochemistry

397

The Sr-Nd isotopic data for the granites is given in Table 5 and shown in Fig. 8. Sm/Nd ratios vary

398

between 0.14 and 0.22, but are mostly between 0.18 and 0.21. Initial 143Nd/144Nd ratios vary between

399

0.51107 and 0.51136. Excluding the pre-tectonic ∼1.22 Ga Josling Granite, the εNd(t) values of the

400

granites are close to 0, varying from -2.95 to +2.83 (with a much lower value of -7.51 for the

401

Kleinbegin Granite) (Table 5). Sm-Nd model ages (TDM) vary from Meso- to Paleoproterozoic (TDM =

402

1.38 – 1.99 Ga), apart from older, >2.3 Ga model ages for the Kleinbegin Granite (Fig. 8c; Table 5).

403

Rb/Sr ratios are highly variable, ranging from 0.18 to 5.26, but mostly range between 0.59 and 1.63.

404

Initial Sr ratios [(87Sr/86Sr)I] range between 0.70630 and 0.77130 (Fig. 8a).

405

When comparing the isotopic geochemistry of the syn- and post-tectonic granites (sensu Cornell et al.,

406

2012) both have similar initial Nd ratios, with the syn-tectonic granites having a slightly narrower

407

range (0.51107-0.51128) compared to those of the post-tectonic group (0.51083-0.51136). The model

408

ages of both age groups are essentially the same (Table 5). The syn-tectonic group shows a wider

409

variability in terms of Rb/Sr ratio (0.18 to 5.26) compared to the post-tectonic group (Rb/Sr = 0.24-

410

1.63). Apart from the Keboes Granite, the syn-tectonic granites have higher initial Sr ratios, in general

411

(>0.720), compared to the post-tectonic group (Fig. 8a; Table 5).

AC C

EP

TE D

396

412

12

ACCEPTED MANUSCRIPT 6. Discussion

414

6.1. Recommendations for a new stratigraphy for the granitoids of the eastern Namaqua Sector

415

The Keimoes Suite (sensu Moen, 1988, 2007) yielded a wide range of modern U-Pb ages

416

between1275 Ma and 1078 Ma (Pettersson, 2008; Bailie et al., 2011a; Cornell et al., 2012; this study).

417

Based on new age and geochemical data we recommend excluding the much older Josling Granite

418

from the Keimoes Suite. The intrusive rocks can be subdivided on the basis of the intensity of the

419

gneissic fabric (as described by Moen, 2007). The granitoids having moderate to strong penetrative

420

gneissic fabrics (syn-tectonic) have ages between ~1175 and 1125 Ma, whereas the weakly deformed

421

granites and charnockites (late- to post-tectonic) intruded between ~1110 and 1078 Ma. On the basis

422

of age and strain intensity alone, the new age data presented in this paper are in agreement with the

423

subdivision proposed by Cornell et al. (2012). Foliation intensity is, however, not a reliable guide to

424

time of emplacement as various factors may influence this, such as size of the pluton, method of

425

emplacement, extent of magma flow, and the presence or absence of a persisting or waning regional

426

stress field amongst other factors (e.g. Paterson and Tobisch, 1988).

427

Based on its age and geochemistry we recommend excluding the more tonalitic Louisvale Granite

428

from the Keimoes Suite and renaming it the Louisvale Tonalite or Louisvale Gneiss. In agreement

429

with Cornell et al. (2012), we also recommend excluding the pre- to syn-tectonic granites previously

430

included in the Keimoes Suite, restricting it to the post-tectonic granites and charnockites. The newly

431

defined Keimoes Suite is therefore limited to unfoliated ferroan, metaluminous, largely feldspar

432

porphyritic, biotite ± hornblende ± orthopyroxene granites and charnockites with a restricted age of

433

between 1110 and 1078 Ma (Fig. 9) and confined spatially to between the Neusspruit shear zone and

434

Brakbosch fault (Moen, 2007; Fig. 1; Table 6). In this definition, most of the Keimoes Suite granites

435

are situated within the Areachap Terrane, and only the Friersdale Charnockite within the Kakamas

436

Terrane. Slabbert et al. (1999) recognised a number of small, isolated plutons to the south of

437

Kleinbegin that are thought to be associated with or part of the Keimoes Suite. These were not

438

examined as part of this study and require further work in the form of whole rock major, minor, trace

439

element and isotope geochemistry as well as single zircon U-Pb dating in order to clarify their age and

440

association in the eastern NS.

441

Cornell et al. (2012) also proposed grouping the foliated granites (pre- to syn-tectonic Elsie se Gorra,

442

Vaalputs and Colston Granites) with the augen gneisses (Riemvasmaak and Augrabies gneisses) in the

443

“Augrabies Suite”. Based on our new data, we confirm that the grouping of granitic and leucogranitic

444

gneisses aged between 1175 and 1146 Ma may be valid but the term “Augrabies” is already used for

445

the Augrabies Gneiss (Moen, 1988, 2007) and cannot be used for the suite name. Whilst we support

446

the possibility of grouping the pre- and syn-tectonic granite orthogneisses, the paucity of modern

447

geochemical data for these rocks makes it difficult to demonstrate they are co-genetic and therefore

AC C

EP

TE D

M AN U

SC

RI PT

413

13

ACCEPTED MANUSCRIPT we recommend leaving the Elsie se Gorra, Vaalputs and Colston granites as separate lithodemes until

449

additional work has been completed. We also suggest renaming the Elsie se Gorra and Vaalputs

450

Granites as “gneisses”.

451

The spatially restricted Cyndas Subsuite represent a series of granitoid types (monzogranites to

452

granodiorites) and a range of ages and composition from syn- to post-tectonic times (Jankowitz,

453

1987). As such it constitutes its own separate suite and should possibly be upgraded from a subsuite

454

of the Keimoes Suite, as previously defined (Moen, 2007), to its own separate suite. This study only

455

sampled the Smalvisch Granite of this subsuite and so cannot draw any interpretations or conclusions

456

based on the very limited data. The subsuite requires more extensive research, whole rock

457

geochemical analysis of all the different granites, and more intensive modern U-Pb zircon

458

geochronology than currently available from the work of Jankowitz (1987).

459

The generally unfoliated Colston Granite has an age of 1151 ± 28 Ma (this study) and thus is grouped

460

with the syn-tectonic granites. A similar thermal ionization mass spectrometer (TIMS) zircon age of

461

1156 ± 20 Ma was reported in the summary of Bailie et al. (2011a). Its unfoliated nature may be due

462

to its composition or mode of emplacement. Foliation intensity increases near the pluton margins

463

(Moen, 2007), a feature which does correlate with a syn-tectonic timing of emplacement (Paterson

464

and Tobisch, 1988).

M AN U

SC

RI PT

448

465

6.2. General textural, mineralogical and geochemical characteristics of the syn-tectonic granitic

467

gneisses

468

The well-foliated syn-tectonic Elsie se Gorra and Vaalputs granitoids are mostly medium-grained and

469

equigranular, locally with scattered rounded feldspar megacrysts. These grey coloured leucogneisses

470

are dominated by feldspar and quartz with only minor biotite and rare muscovite (Moen, 1988; 2007;

471

Slabbert, 1998). Hornblende is largely absent.

472

The syn-tectonic granites are ferroan monzogranites and granodiorites (Fig. 4; Table 6). Whilst the

473

geochemical characteristics of the syn- and post-tectonic groups show significant overlap, the

474

majority of the syn-tectonic group is more felsic than the post-tectonic granites. The generally high

475

SiO2 content (mostly between ~69 and 78 wt.%,), alkali-rich nature, low maficity, and low Ti, Mg, Fe,

476

Ca and Mn contents (Figs. 6, 7) of these syn-tectonic granite gneisses (the Colston Granite is the

477

exception in all cases) supports possible correlation with the near coeval, similarly acidic, but more

478

strongly deformed Riemvasmaak leucogranite augen gneiss and Augrabies granite gneiss (Fig. 4a, b),

479

although this would need to be tested more rigorously. In the past, these leucogranitic gneisses were

480

distinguished from the large bodies of syn-tectonic Riemvasmaak and Augrabies granite gneisses

481

dominating the western Kakamas Terrane on the basis that the latter are commonly augen-textured

482

(SACS, 1980), despite having similar compositions (Figs. 4, 5) and mineralogies (low biotite contents

AC C

EP

TE D

466

14

ACCEPTED MANUSCRIPT 483

and minor primary muscovite (Moen, 2007)). As such the syn-tectonic granites show similarities to

484

the augen gneisses apart from a well-developed augen texture.

485 6.3. Textural, mineralogical and geochemical characteristics of the late- to post-tectonic Keimoes

487

Suite

488

Mineralogically, many of the post-tectonic granites are typically feldspar porphyritic and have

489

significant amounts of biotite together with, or without, hornblende and/or orthopyroxene (Table 6).

490

Primary muscovite is not identified. In addition, the post-tectonic intrusions become more

491

granodioritic with decreasing age concomitant with an increase in mafic minerals and decreasing K-

492

feldspar content.

493

In terms of whole rock geochemistry, most of the Keimoes Suite granites, excluding the Louisvale

494

Tonalite, show consistent major element trends and classify as ferroan, mostly metaluminous

495

monzogranites (including charnockite) and granodiorites (Fig. 4). The post-tectonic granites show a

496

trend towards more intermediate, aluminous and less alkali compositions with decreasing age (Figs. 5,

497

6), a trend not observed in the syn-tectonic group. They have higher maficities and are less

498

fractionated than the syn-tectonic granites (Figs. 5, 6).

499

The Louisvale Granite differs in being dominantly tonalitic (Fig. 5), and has a major and trace

500

element geochemistry (Figs. 6-8) inconsistent with the other granites and granite gneisses. The

501

Louisvale Granite also has a higher initial 143Nd/144Nd ratio (0.51128), εNd(t) value (1.89) and a

502

younger model age (TDM = 1.49 Ga) than most of the other granites (Fig. 8), and, with a low initial Sr

503

ratio of 0.70630 (Fig. 8a), appears to have been derived from a relatively depleted mantle source with

504

minor crustal contribution. This compositional difference, along with the gneissic nature and age of

505

this granitoid, forms the basis for the exclusion of the Louisvale Granite from the Keimoes Suite.

SC

M AN U

TE D

EP

AC C

506

RI PT

486

507

6.4. Origins of the granites in the eastern Namaqua Sector

508

6.4.1. Origins of the post-tectonic Keimoes Suite

509

The post-tectonic Keimoes Suite, as defined in this study, has geochemical compositions reflecting

510

mixed or hybrid sources. On one hand, the granites have characteristics suggestive of I-type granites,

511

having more granodioritic compositions, with arc-like affinities (Ta-Nb, Ti and P anomalies – Fig. 7).

512

However, the high Fe/Mg ratios [0.82-3.84, avg. 1.66], and high HFSE, LILE and REE contents, are

513

more suggestive of A-type granites, particularly fractionated A2-type granites (Eby, 1992; Fig. 4e,

514

Loiselle and Wones, 1979).

15

ACCEPTED MANUSCRIPT The I-type, strongly metaluminous signature (Fig. 4f), and the presence of biotite ± hornblende ±

516

orthopyroxene as the predominant mafic minerals in these post-tectonic granites and charnockites,

517

argues for the melting of igneous sources with little to no sedimentary source material present giving

518

rise to dry parental magmas. Significant enrichments in Pb, Th, U, LREE relative to the HREE, and

519

the LILE relative to the HFSE, with depletions in Ba, Nb, Ta, Sr, Eu, Ti, Al2O3, V and Sc (Fig. 7)

520

indicate significant crustal contributions to the source magmas. A general geochemical trend to more

521

intermediate compositions with time and decreasing age of emplacement suggests that the initial

522

crustal component was initially greater and was reduced over time giving rise to a greater mantle

523

contribution (e.g. Fig. 8a, c, d).

524

εNd(t) values varying around, and close to zero (Fig. 8) suggest a variably depleted component, being

525

potentially mantle and/or juvenile lower crust. The Nd model ages range from relatively juvenile (as

526

young as 1.38 Ga (Fig. 8c; Table 5)) to Paleoproterozoic (TDM to 1.99 Ga) with potentially Archean

527

crustal contributions (the Kleinbegin Granite - εNd(t): -7.51; TDM: 2.34 Ga). These, combined with arc

528

signatures (Fig. 7), suggest the involvement of both juvenile, Mesoproterozoic crust as well as older,

529

∼1.85-2.0 Ga Paleoproterozoic crust (e.g. the Sperrgebiet and Richtersveld arcs; Reid, 1997; Thomas

530

et al., 2016; Macey et al., 2017). The ∼1.3-1.24 Ga Areachap arc (Pettersson et al., 2007) potentially

531

contributed juvenile Mesoproterozoic material. Mixing between juvenile material, of likely mantle

532

origin, and older Paleoproterozoic material, occurred. The Paleoproterozoic material was reworked at

533

this time. Initial Sr ratios [(87Sr/86Sr)I]] for the eastern NS granitoids, in general, are both high and

534

highly variable (0.70628-0.77130, and generally >0.707 – Table 5]. Such high SrI ratios are typical of

535

the NNMP (e.g. Fig. 12 of Eglington, 2006). Eglington (2006) interpreted these patterns as suggesting

536

reworking of material not older than 2.2 Ga. This is seen in the (87Sr/86Sr)I vs. age plot (Fig. 8d) where

537

the (87Sr/86Sr)I ratios vary along a general mixing trend between the depleted mantle (DM) curve and

538

Paleoproterozoic crust of ∼2.0 Ga age. The Keimoes Suite granites are characterized by high

539

maficities and low SrI ratios, which, in combination with low εNd(t) values, suggest that the older,

540

Paleoproterozoic material may not have been highly radiogenic and the mantle contribution was

541

significantly large.

542

Varying contributions of Meso- to Paleoproterozoic-ages sources to the parental magmas to the

543

Keimoes Suite granites is recorded by the presence of inherited zircons in these granites, e.g. Bailie et

544

al. (2011a). The intercept age determined for the Klipkraal Granite (1270 ± 26 Ma; this study) clearly

545

reflects inheritance and the age of the Areachap arc (Pettersson et al., 2007). Inherited zircons of older

546

Mesoproterozoic age (1346 Ma) are found in the Keboes Granite (this study; Table A1). These

547

inherited zircons thus likely reflect the influence of juvenile material of Mesoproterozoic age in the

548

source area to these granites. Cornell et al. (2012) reported xenocrysts with older ages of 1725 ± 25

AC C

EP

TE D

M AN U

SC

RI PT

515

16

ACCEPTED MANUSCRIPT Ma and 1475 ± 15 Ma age in the Friersdale Charnockite although the significance of these ages is not

550

clear but may reflect mixing.

551

The tectonic setting of the Keimoes Suite granites, using the Pearce et al. (1984) plots, is dominantly

552

of within-plate granites (WPG) (Fig. 9). The WPG field corresponds to a continental intra-plate to

553

continental back-arc as well as rifting settings and/or post-collision magmatism (Förster et al., 1997).

554

Such settings highlight a period of transcurrent shearing and extension at ∼1100 Ma (Jacobs et al.,

555

1993; Gutzmer et al., 2000; Pettersson et al., 2007; Bailie et al., 2012). It also correlates with the A-

556

type signature and mantle component of these granites related to crustal thinning and resultant mantle

557

upwelling at this time.

558

Cornell et al. (2012) proposed that the Keimoes Suite represents a mixed/hybrid melt generated during

559

late-Namaqua tectonics related to the ~1100 Ma subcontinental scale Umkondo plume (Hanson et al.,

560

2004). Further geochemical and isotopic studies are required in order to test this proposed hypothesis.

SC

RI PT

549

M AN U

561

6.4.2. Origins of the syn-tectonic granites and granitic gneisses

563

The pre- to syn-tectonic granites are characterized by fractionated leucogranitic melts that intruded

564

during peak metamorphism and the main deformation in the Kakamas and Areachap terranes

565

(Pettersson et al., 2007; Fig. 10). The syn-tectonic granites are more dominantly leucogranitic, being

566

mafic mineral-poor, and have a more S-type character compared to the late- to post-tectonic Keimoes

567

Suite granites. They exhibit similar enrichments and depletions as the post-tectonic Keimoes Suite

568

granites, particularly with regard to LILE enrichment (Fig. 7). The syn-tectonic granites have εNd(t)

569

values close to 0 (-1.47 to 1.78) (Fig. 9; Table 5) suggesting a mantle component to these melts. A

570

crustal signature is suggested by their leucogranitic compositions, enrichment in Rb, K, Th and U

571

(Fig. 7), and metaluminous to peraluminous characteristics (Fig. 4f). Nd model ages (TDM = 1.57-1.91

572

Ga) (Table 5) suggest variable degrees of mixing between sources of Meso- and Paleoproterozoic age

573

of likely arc derivation as denoted by arc-like signatures (LILE enrichment relative to the HFSE,

574

depletions in Nb, Ta and Ti). As for the Keimoes Suite, inherited zircons of Mesoproterozoic age

575

(1335-1344 Ma) are found in the Elsie se Gorra Granite (this study; Table A9). The syn-tectonic

576

granites are, however, characterized by lower maficities than the post-tectonic granites (Fig. 6)

577

suggesting a lower mafic mineral content and a more fractionated nature (correlating with high SiO2

578

content in general). They are also characterized by higher initial Sr ratios (Fig. 8c) and so likely

579

represent a greater degree of crustal melting, and incorporation of older, ∼2.0 Ga, radiogenic crust

580

relative to the post-tectonic Keimoes Suite. Mixing of radiogenic crust characterized by low εNd(t)

581

values, e.g. those of the Richtersveld Magmatic Arc (RMA) with low εNd(t) values of near 0 (0.53 to -

582

3.19 for the RMA - Macey et al., 2017), may explain the low εNd(t) values of the eastern NS granites.

AC C

EP

TE D

562

17

ACCEPTED MANUSCRIPT 583 6.5. General tectonic model

585

The period of arc magmatism associated with development of the 1.30-1.24 Ga Areachap arc

586

(Pettersson et al., 2007) due to eastward-directed subduction (Pettersson et al., 2007) was dominated

587

by extensive juvenile magmatism with dominantly Mesoproterozoic Nd model ages (Bailie et al.,

588

2010). A period of peak magmatism between ∼1.23 and 1.18 Ga is seen in the western Kakamas

589

Terrane (Fig. 10; Bial et al., 2015a), corresponding to extensive magmatism within the Bushmanland

590

Subprovince further west (Bailie et al., 2007; Cornell et al., 2009). This is taken to be amalgamation

591

of the Bushmanland Subprovince and Kakamas Terrane at this time. Extensive magmatism is not seen

592

during this period in the Areachap Terrane. Extensive magmatism, however, occurred between ∼1.18

593

Ga and 1.13 Ga in both the Kakamas and Areachap terranes (Fig. 10) associated with closure of the

594

Areachap ocean (Pettersson et al., 2007) leading to reworking of Paleoproterozoic material, and,

595

potentially, of the Areachap arc as well. Mixing of crustal melts with mantle material affected or

596

enriched by subduction processes is likely. Ocean basin closure resulted in peak metamorphic

597

conditions at ∼1.15 Ga. Accretion processes are likely given the low-P, high-T nature of the NS more

598

akin to a continental back-arc scenario compared to a continental collision scenario (Bial et al., 2015a,

599

b). Current interpretations, such as Cornell et al. (2011), interpret the Kakamas Terrane as a separate

600

crustal block that collided, or was juxtaposed with the Areachap Terrane prior to ∼1.12 Ga although

601

current age data do not support a collisional or amalgamation event between the two prior to ∼1.18 Ga

602

(Fig. 10).

603

Late- to post-tectonic magmatism is more voluminous, particularly in the Areachap Terrane (Fig. 10)

604

and is characterized by a substantial juvenile component. Potential slab breakoff, mantle upwelling or

605

collapse, and potential transcurrent shearing (Gutzmer et al., 2000; Bailie et al., 2012), likely resulted

606

in the late- to post-orogenic magmatism at ∼1.12-1.07 Ga characterized by variable mixing between

607

juvenile and older (reworked?) Paleoproterozoic sources. The overall proportion of the older,

608

radiogenic crust is less given the generally lower SrI ratios of the Keimoes Suite granites relative to

609

the more radiogenic, older syn-tectonic granites (Fig. 8), implying a greater non-radiogenic

610

component to the melts.

SC

M AN U

TE D

EP

AC C

611

RI PT

584

612

6.6. Implications for timing of tectonics in the eastern Namaqua Sector of the NNMP

613

Pettersson et al. (2007) reported an age of 1165 Ma for migmatization and deformation in the

614

Areachap Group which corresponds well with the dating of intrusion of the syn-tectonic granite

615

gneisses between 1175 and 1146 Ma. The emplacement of the syn-tectonic Vaalputs Granite Gneiss

18

ACCEPTED MANUSCRIPT (1146 Ma) and Riemvasmaak Gneisses (1156 Ma) across the boundary between the Areachap and

617

Kakamas terranes (Fig. 10) indicates that they were juxtaposed prior to ~1.16 Ga (Table 2).

618

The Louisvale Tonalite that intruded at ∼1125 Ma, is also strongly foliated and provides the

619

maximum age for the peak D2 Namaquan deformation. The minimum age for the D2/Namaquan

620

deformation in the eastern NS is constrained by the post-tectonic Keimoes Suite (sensu Cornell et al.,

621

2012; this study) for which the oldest reliably dated member, the weakly foliated Keboes Granite, has

622

been dated at 1105 Ma. The weak magmatic fabric observed in the margins of some of the post-

623

tectonic granites is considered the result of intrusion into a waning regional stress field (van Zyl,

624

1981).

625

Subsequent open E-W-trending F3 folds, associated with weaker D3 deformation, developed at ∼1.10

626

Ga (Pettersson et al., 2007). The post-tectonic Keimoes Suite is synchronous with this deformation

627

event although these granites are largely weakly foliated to unfoliated. The syn-tectonic Vaalputs

628

Granite and the weakly to unfoliated late- to post-tectonic Keimoes Suite granites are concentrated

629

along the BRSZ (Fig. 1), the boundary between the Kakamas and Areachap terranes, suggesting that

630

this major crustal feature played an important, long-lived role in the emplacement of the granites of

631

the eastern NS.

632

M AN U

SC

RI PT

616

6.7. Origins and age of Namaquan crust

634

Paleoproterozoic TDM ages are typical for most of the western Namaqua Sector (Reid, 1997; Clifford

635

et al., 1981, 1995, 2004; Yuhara et al., 2001; Bailie et al., 2007; Pettersson et al., 2009; Macey et al.,

636

2017) suggesting that large portions of the NS were derived from the magmatic reworking of

637

Paleoproterozoic crust (e.g. Clifford et al., 2004; Eglington, 2006; Pettersson et al., 2009; Bial et al.

638

2015a, b; Macey et al., 2017) carrying a subduction related arc signature based on geochemical

639

characteristics. εNd(t) values of rocks in the Bushmanland Subprovince to the west show a similar

640

pattern of being all near zero, whereas the SrI values give a large range of highly radiogenic values

641

(Clifford et al., 1981, 1995; Yuhara et al., 2001, 2002) which appears to be another characteristic

642

feature of the NS in general (Eglington, 2006). The subcontinental lithospheric mantle (SCLM) of

643

southern Africa is highly enriched in general having 87Sr/86Sr ratios varying between 0.7114 and

644

0.7550 (concentrates from kimberlite pipes – Richardson et al., 1984). Small variations in εNd(t) values

645

which vary around 0 have been used to suggest derivation from a mantle wedge metasomatised by

646

slab-derived melts (e.g. Wang et al., 2013). In the case of the NS it likely represents reworking of

647

Proterozoic arc-related crust and variable degrees of mixing with juvenile Mesoproterozoic material

648

(Eglington, 2006). Given the limited amount of isotopic data for the eastern NS in general (e.g.

649

Eglington, 2006; Pettersson et al., 2009) more extensive isotopic determinations are required in order

AC C

EP

TE D

633

19

ACCEPTED MANUSCRIPT 650

to more fully assess the origin of the highly radiogenic initial Sr isotopic signatures coupled to low

651

εNd(t) values of the NS.

652 6.8. The pre- to early syn-tectonic Josling Granite

654

The Josling Granite, with a well-developed, gneissic fabric is pre-tectonic with regards to the peak D2

655

deformation (Fig. 10). Pettersson (2008) determined an age of 1275 ± 7 Ma for this granite, whereas

656

the present study determined a younger age of 1217 ± 20 Ma. Based on its age it should be removed

657

from the Keimoes Suite. The Josling Granite may be related to an older cluster of pre-D2 intrusions

658

(1371 to 1220 Ma; Cornell et al., 2012) related to the development of the Areachap arc.

659

The Josling Granite is a feldspathic leucogranite characterized by low maficity (Fig. 6) and a

660

relatively high SiO2 content (Fig. 5) and is relatively fractionated. With a high initial 143Nd/144Nd ratio

661

(0.511158-0.511260), mildly positive εNd(t) values (1.79-3.77), and low initial Sr ratios (0.70674-

662

0.70821; Fig. 8; Table 5) it was derived from a relatively depleted source with a minor crustal

663

component. With model ages varying between 1.45 and 1.63 Ga it also shows mixing of Meso- and

664

Paleoproterozoic aged sources, with the former more dominant. Given its depleted source signature

665

and low initial Sr ratio it likely is related to juvenile magmatism related to development of the

666

Areachap arc, but, with a spread of model ages toward Paleoproterozoic ages, also reflects a generally

667

older Paleoproterozoic aged crustal source component to the magmas in the northern Areachap

668

Terrane (Pettersson et al., 2009; Bailie et al., 2010).

TE D

M AN U

SC

RI PT

653

669 7. Conclusions

671

New U-Pb zircon age data and whole rock geochemistry presented in this study support the new

672

definition of the Keimoes Suite as proposed by Cornell et al. (2012) in which the 1175-1146 Ma syn-

673

tectonic leucogranite and granite gneisses are removed from the suite. The Keimoes Suite (sensu

674

Cornell et al., 2012; this study) is now defined as a group of foliated to unfoliated late- to post-

675

tectonic, largely megacrystic granites and charnockites emplaced during a relatively narrow period

676

between 1110 and 1078 Ma.

677

The 1.11-1.08 Ga post-tectonic Keimoes Suite granites have geochemical compositions reflecting

678

mixed or hybrid sources with both fractionated I-type characteristics (metaluminous, hornblende- and

679

orthopyroxene-bearing and arc-like affinities) as well as fractionated A-type characteristics (high

680

Fe/Mg ratios, high HFSE, LILE and LREE contents). They exhibit an overall trend of increasing

681

maficity (elemental Fe + Mg), Ti, Ca and Mn, and decreasing Si, Na and K with decreasing age

682

becoming increasingly less fractionated and more metaluminous. Isotopic systematics suggest

683

derivation from a mildly depleted source with variable degrees of an enriched and/or crustal

AC C

EP

670

20

ACCEPTED MANUSCRIPT component, as denoted by εNd(t) values close to 0 and relatively low initial Sr isotope ratios (<0.725).

685

Variable mixing between juvenile Mesoproterozoic and older Paleoproterozoic arc material, the latter

686

likely represented by the Richtersveld arc, contributed to the parental melts and an arc-like signature

687

(LILE enrichment relative to the HFSE, negative Ta-Nb, P and Ti anomalies, enrichment in Pb, K, Th

688

and U). The Keimoes Suite granites were emplaced mostly within the Areachap Terrane of the eastern

689

NS, but the youngest member, the Friersdale Charnockite, intruded both the Kakamas and Areachap

690

Terranes and the tectonic boundary between them. The granites were emplaced during a period of

691

transcurrent shearing and extension at ∼1.11 Ga which was associated with crustal thinning and

692

mantle upwelling, as denoted by their A-type characteristics. The suite is concentrated along the

693

BRSZ suggesting this structure may have played a role in the migration of magmas into the upper

694

crust.

695

By contrast the ∼1.18-1.15 Ga syn-tectonic granites are fractionated metaluminous to peraluminous

696

moderately to strongly foliated leucogranites and gneisses with low maficity, Ti, Ca and Mn, and high

697

Si, Na and K contents suggesting largely pure melts. Isotopic ratios (εNd(t) values close to 0 (-1.47 to

698

1.78)) support a juvenile lower crustal source, but with a likely greater radiogenic crustal component

699

relative to the Keimoes Suite, as denoted by highly variable and high initial Sr isotope ratios likely

700

suggesting reworking of initially radiogenic crust. Nd model ages also suggest mixing between Meso-

701

and Paleoproterozoic aged sources. These granitic gneisses are also more voluminous toward the west

702

compared to the late- to post-tectonic Keimoes Suite granites possibly indicating a potential shift in

703

magmatism with time. The main penetrative fabric forming event in the eastern Namaqua Sector is

704

constrained to between ∼1125 and ∼1110 Ma, the ages of the youngest granite gneiss and the oldest

705

weakly foliated granite, respectively. The juxtapositioning of the Areachap and Kakamas terranes

706

occurred prior to 1.15 Ga.

707

The variable Nd model ages varying to Paleoproterozoic age confirm a dominant Paleoproterozoic arc

708

source in the Namaqua Sector, as also found by previous workers. This Paleoproterozoic aged arc was

709

extensively reworked during the Namaquan Orogeny. Granites in the eastern Namaqua Sector also

710

carry signatures of a more juvenile Mesoproterozoic source, as denoted by Nd model ages and

711

inherited zircons.

712

Further detailed geochemical and structural studies of the eastern Namaqua Sector granites are

713

required. The former is required to determine the more detailed petrogenesis of the syn-tectonic

714

granitic gneisses as well as the Keimoes Suite, with the latter to investigate their means of

715

emplacement. In addition, the relationship between the syn-tectonic granites straddling the boundary

716

between the Kakamas and Areachap terranes and the voluminous granitic gneisses of the central to

717

western Kakamas Terrane is of future research interest.

AC C

EP

TE D

M AN U

SC

RI PT

684

718 21

ACCEPTED MANUSCRIPT Acknowledgements

720

This project was done in conjunction with the Council for Geoscience (CGS) who funded some of the

721

analyses. The project was also funded by an NRF Y-rated researcher incentive funding grant awarded

722

to RB as well as a CGS bursary to SN. Whole rock geochemical analyses were undertaken by H.

723

Cloete and Melissa Crowley of the CGS (major elements) and Riana Rossouw of the Central

724

Analytical Facility, Stellenbosch University (trace elements). Many thanks to Dr. Luc Chevallier and

725

Dr. Hendrik Minnaar (CGS) for their logistical assistance during the field work phase of the study.

726

Peter Meyer and Janine Becorney of the Department of Earth Sciences, UWC are thanked for

727

technical support. Stefan Büttner and David Cornell are thanked for providing helpful and insightful

728

reviews of an earlier version of this manuscript. Jodie Miller and an anonymous reviewer are thanked

729

for helpful comments that substantially improve this version of the manuscript.

SC

RI PT

719

730 Appendix - Analytical techniques

732

Whole rock geochemistry

733

Major element contents for all representative samples were determined by X-ray fluorescent (XRF)

734

spectrometry at the CGS, Pretoria, on glass beads prepared from a 0.2 g sample following a lithium

735

metaborate/tetraborate fusion and dilute nitric acid digestion. Loss on ignition (LOI) was calculated

736

by the weight difference after ignition to 1000oC. Powdered whole-rock samples were mixed with

737

flux for a sample-to-flux (lithium tetraborate) ratio of 1:10. Thirty-two USGS and GSJ standard

738

reference samples were used for calibration of the instrument.

739

The trace and rare earth element (REE) abundances were determined using inductively coupled

740

plasma mass spectrometry (ICP-MS) at CAF following the same procedure as for the whole rock

741

analyses but with a separate 0.5 g split digested in Aqua Regia and analysed by ICP-MS. Fusion disks

742

prepared for XRF analysis by an automatic Claisse M4 Gas Fusion instrument and ultrapure Claisse

743

Flux, using a ratio of 1:10 sample : flux, were coarsely crushed and a chip of sample mounted along

744

with up to 12 other samples in a 2.4cm round resin disk. The mount was mapped, and then polished

745

for analysis.

746

A Resonetics 193nm Excimer laser connected to an Agilent 7500ce ICP-MS is used in the analysis of

747

trace elements in bulk rock samples at CAF, Stellenbosch University. Ablation is performed in He gas

748

at a flow rate of 0.35l/min, then mixed with argon (0.9l/min) and Nitrogen (0.004l/min) just before

749

introduction into the ICP plasma. For traces in fusions, 2 spots of 173µm are ablated on each sample

750

using a frequency of 10Hz and 100mJ energy.

751

Trace elements are quantified using NIST 612 for calibration and the % SiO2 from XRF measurement

752

as internal standard, using standard – sample bracketing. Two replicate measurements are made on

AC C

EP

TE D

M AN U

731

22

ACCEPTED MANUSCRIPT each sample. The calibration standard was run every 12 samples. A quality control standard is run in

754

the beginning of the sequence as well as with the calibration standards throughout. BCR-2 or BHVO

755

2G, both basaltic glass certified reference standards produced by the USGS (Dr Steve Wilson,

756

Denver, CO 80225), is used for this purpose. A fusion control standard from certified basaltic

757

reference material (BCR-2, also from the USGS) is also analysed in the beginning of a sequence to

758

verify the effective ablation of fused material. The precision and accuracy of the results are 2–5%

759

(1σ) for most elements. Detection limits of most trace elements are 0.1 ppm, except for Th and Co

760

(0.2 ppm), Sr (0.5 ppm), Sc and Zn (1 ppm), and V (8 ppm). Most REE have detection limits less than

761

or equal to 0.05 ppm, the exceptions being La and Ce (0.1 ppm), and Nd (0.3 ppm).

RI PT

753

762 Whole rock Rb-Sr and Sm-Nd isotope analysis

764

Rb-Sr and Sm-Nd isotope analysis, for the same eight samples that were analysed for geochronology,

765

was done at the Department of Geological Sciences, University of Cape Town (UCT). Following

766

concentration analysis, separation of Sr and Nd fractions in the same sample dissolutions were

767

undertaken by chromatographic techniques as described by Miková and Denková (2007), after that

768

described by Pin and Zaldegui (1997) and Pin et al. (1994). The Sr fractions were separated using

769

Eichrome Sr resin beds, and the aqueous solution was diluted in 2 ml 0.2% HNO3, ready for Sr

770

isotope ratio determination. The remaining portions were converted to salts, dried down and further

771

dissolved to extract the REEs using AG50W cation resin columns. The REE portions were converted

772

to nitrate, dried down and then diluted in 0.05M HNO3 to collect Nd using Eichrome Ln resin

773

columns. These portions were dried down and diluted in 1.5 ml 2% HNO3 for Nd isotope ratios

774

determination.

775

The determination of Rb, Sr, Sm and Nd concentrations in each sample was performed on a Thermo

776

XSeries II ICP-MS at UCT following dissolution with concentrated HF and HNO3, and dilution with

777

5% HNO3 containing an internal standard. Concentrations were determined in duplicate for each

778

sample. The international standard BHVO-2 was analysed with every batch of samples as a measure

779

to assess accuracy and precision.

780

Sr is analysed as a 200ppb 0.2% HNO3 solution. All Sr isotope analyses of unknowns are referenced

781

to bracketing analyses of the NIST SRM987 reference standard, using a reference value for 87Sr/86Sr

782

of 0.710255. The international reference material BHVO-2 gave a value of 0.703490 ± 15 relative to a

783

value of 0.703479 ± 20 reported by Weis et al. (2006). The long-term UCT average is 0.703479 ± 22

784

(n = 47). All Sr isotope data are corrected for Rb interference using the measured signal for 85Rb and

785

the natural 85Rb/87Rb ratio. Instrumental mass fractionation is corrected using the exponential law and

786

a 86Sr/88Sr value of 0.1194.

AC C

EP

TE D

M AN U

SC

763

23

ACCEPTED MANUSCRIPT Nd isotopes are analysed as 50 ppb 2% HNO3 solutions using a Nu Instruments DSN-100 desolvating

788

nebuliser. JNdi-1 is used as a reference standard, with a 143Nd/144Nd reference value of 0.512115,

789

corresponding to the La Jolla standard (Tanaka et al., 2000). The BHVO-2 reference material gave

790

values of 0.512981 ± 10, relative to a value of 0.512984 ± 11 reported by Weis et al. (2006). All Nd

791

isotope data are corrected for Sm and Ce interference using the measured signals for 147Sm and 140Ce,

792

and the natural Sm and Ce isotope abundances. Instrumental mass fractionation is corrected using the

793

exponential law and a 146Nd/144Nd value of 0.7219. The initial 87Sr/86Sr and 143Nd/144Nd ratios were

794

calculated using decay constants of 1.42 x 10-11 y-1 (Steiger and Jäger, 1977) and 6.54 x 10-12 y-1

795

(Begemann et al., 2001), respectively.

796

Measurements of standards BHVO-2 (Weis et al., 2006) and JNdi-1 (Tanaka et al., 2000) for samples

797

S188, 367 and 815 of the Friersdale Charnockite yielded 143Nd/144Nd values of 0.512987 ± 9 and

798

0.512115 ± 7 respectively. The long-term UCT average for BHVO-2 (n = 44) is 0.512985 ± 15

799

relative to the value of 0.512984 ± 11 (Weis et al., 2006). Sr isotope measurements of BHVO-2 and

800

reference material NIST987 for the same samples yielded 87Sr/86Sr values of 0.704375 ± 13 and

801

0.710255, respectively. Measurements of standards BHVO-2 and JNdi-1 for samples Me1, Mcol3,

802

Mkn4, Ml5, Mkb6, Mc8, Mkl3 and Mka6 yielded 143Nd/144Nd values of 0.512981 ± 10 and 0.512115

803

± 7 respectively. Sr isotope measurements of BHVO-2 and reference material NIST987 for the same

804

samples yielded 87Sr/86Sr values of 0.704390 ± 15 and 0.710255, respectively.

M AN U

SC

RI PT

787

TE D

805 U-Pb zircon LA-SF-ICP-MS age dating

807

Zircon crystals were extracted from samples by traditional methods of crushing and grinding,

808

followed by separation with a Wilfley table, heavy liquids, and a Frantz magnetic separator. Samples

809

are processed such that all zircons are retained in the final heavy mineral fraction. A split of these

810

grains (generally 50-100 grains) are selected from the grains available and incorporated into a 1 inch

811

resin mount together with fragments of Plešovice (Sláma et al., 2008) and 91500 (Wiedenbeck et al.,

812

1995) reference materials. The mounts are sanded down to a depth of ~20 µm, polished, imaged, and

813

cleaned prior to isotopic analysis.

814

All U-Pb age data of zircons was conducted by laser ablation - single collector – magnetic sector field

815

- inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS) employing a Thermo Finnigan

816

Element2 mass spectrometer coupled to a Resonetics Resolution HR-S155 excimer laser ablation

817

system at the Central Analytical Facility (CAF), Stellenbosch University. The analyses involve

818

ablation of zircon using a spot diameter of 30 µm and a crater depth of approximately 10-15 µm. A

819

sampling pattern of 30 µm single spot analyses was used. The use of the LA-ICP-MS dating

820

technique does not allow spots of <30 µm to be analysed so that metamorphic rims on zircons could,

AC C

EP

806

24

ACCEPTED MANUSCRIPT unfortunately, not be analysed. The methods employed for analysis and data processing are those

822

described by Frei and Gerdes (2009) with the modifications described in Cornell et al. (2016).

823

For quality control, the 91500 (Wiedenbeck et al., 1995), Plešovice (Sláma et al., 2008) and M127

824

(Nasdala et al., 2008; Mattinson, 2010) zircon reference materials were analysed, and the results were

825

consistently in excellent agreement with published ID-TIMS ages. 91500 has a concordia age of 1067

826

± 6 Ma (2s, MSWD = 0.34), M127 a concordia age of 527 ± 3 Ma (2s, MSWD = 0.29) and Plešovice

827

a concordia age of 339 ± 2 Ma (2s, MSWD = 0.47).

828

An in-house spreadsheet using the intercept method for laser induced elemental fractionation (LIEF)

829

correction is used for data processing. Mass discrimination is undertaken by standard-sample

830

bracketing with 207Pb/206Pb and 206Pb/238U normalized to reference material GJ-1 (Jackson et al.,

831

2004). Common Pb correction is accomplished by using the Hg-corrected 204Pb and assuming an

832

initial Pb composition from Stacey and Kramers (1975) at the projected age of the mineral with a 5%

833

uncertainty assigned. Ages are quoted at 2 sigma absolute, with propagation by quadratic addition.

834

Reproducibility and age uncertainty of reference material and common-Pb composition are

835

propagated. Uncertainties of 1.5 for 206Pb/204Pb and 0.3 for 206Pb/207Pb are applied to these

836

compositional values based on the variation in Pb isotopic composition in modern crystalline rocks.

837

For each analysis, the errors in determining 206Pb/238U and 206Pb/204Pb result in a measurement error of

838

~1-2% (at 2-sigma level) in the 206Pb/238U age. The errors in measurement of 206Pb/207Pb and

839

206

840

are substantially larger for younger grains due to low intensity of the 207Pb signal. For most analyses,

841

the cross-over in precision of 206Pb/238U and 206Pb/207Pb ages occurs at ~1.20 Ga (Gehrels et al., 2008),

842

although compilations of LA-ICP-MS and scanning ion mass spectrometer (SIMS) data suggests an

843

older crossover at ∼1.5 Ga (Spencer et al., 2016).

844

Inter-element fractionation of Pb/U is generally ~5%, whereas apparent fractionation of Pb isotopes is

845

generally <0.2%. In-run analysis of fragments of GJ-1 (generally every fifth measurement) with

846

known age of 608.5 ± 0.4 Ma (2-sigma error) (Jackson et al., 2004) is used to correct for this

847

fractionation. The uncertainty resulting from the calibration correction is generally 1-2% (2-sigma) for

848

both 206Pb/207Pb and 206Pb/238U ages. Concentrations of U and Pb and Th/U ratios are calculated

849

relative to the GJ-1 reference zircon.

850

Full analytical and data reduction details for the LA-SF-ICP-MS U-Pb dating undertaken at CAF,

851

Stellenbosch University, including operating procedures, sample preparation, instrument set up, as

852

advocated by Horstwood et al. (2016), are given in electronic supplementary material Table A11, with

853

the results for all quality control materials analysed reported in Table A12 in the electronic

854

supplementary material. Measurements of standards and reference materials are reported in Appendix

855

Tables A1 to A8. Uncertainties shown in these tables are at the 2-sigma level, and include only

M AN U

SC

RI PT

821

AC C

EP

TE D

Pb/204Pb also result in ~1-2% (at 2-sigma level) uncertainty in age for grains that are >1.0 Ga, but

25

ACCEPTED MANUSCRIPT measurement errors. Analyses that are >10% discordant (by comparison of 206Pb/238U and 206Pb/207Pb

857

ages) or >5% reverse discordant (both in italics in Tables A1 - A8) are not considered when

858

determining weighted mean U-Pb ages (Gehrels et al., 2008 recommended >20%). Inherited cores are

859

highlighted in bold in the data tables.

860

The resulting interpreted ages are shown on Pb*/U concordia diagrams and weighted mean diagrams

861

using the plots generated by Isoplot/Ex 3.0 (Ludwig, 2003). The weighted mean diagrams show the

862

weighted mean (weighting according to the square of the internal uncertainties), the final uncertainty

863

of the age (determined by quadratic addition of the weighted mean and external uncertainties), and the

864

MSWD of the data set. Ages are reported on the basis of 206Pb/238U following the recommendations of

865

Gehrels et al. (2008) as the zircons analysed are all less than ∼1.2 Ga. Spencer et al. (2016), based on

866

previous compilations of LA-ICP-MS zircon analyses, and SIMS zircon analyses, noted that an ∼1.5

867

Ga cross over point from 207Pb/206Pb ages to 206Pb/238U is preferable. The analytical data analysis, data

868

validation and reporting methodologies, as advocated by Horstwood et al. (2016), and the

869

international network of practitioners (LA-ICP-MS U-(Th-)Pb Network, given at the website:

870

http://www.PlasmAge.org/recommendations), have been followed as far as possible.

M AN U

SC

RI PT

856

871 References

873

Bachmann, K., Schulz, B., Bailie, R., Gutzmer, J., 2015. Monazite geochronology and

874

geothermobarometry in polymetamorphic host rocks of volcanic-hosted massive sulphide

875

mineralizations in the Mesoproterozoic Areachap Terrane, South Africa. J. Afr. Earth Sci. 111, 258-

876

272.

877

Bailie, R.H., 2008. Mesoproterozoic volcanism, metallogenesis and tectonic evolution along the

878

western margin of the Kaapvaal Craton, unpublished PhD thesis, University of Johannesburg, South

879

Africa, 236 pp.

880

Bailie, R., Armstrong, R.., Reid, D., 2007. Composition and single zircon U-Pb emplacement and

881

metamorphic ages of the Aggeneys Suite, Bushmanland, South Africa. S. Afr. J. Geol. 110, 87-110.

882

Bailie, R., Gutzmer, J., Rajesh, H., 2010. Lithogeochemistry as a tracer of the tectonic setting, lateral

883

integrity and mineralisation of a highly metamorphosed Mesoproterozoic volcanic arc sequence on

884

the eastern margin of the Namaqua Province, South Africa. Lithos 119, 345–362.

885

Bailie, R., Gutzmer, J., 2011. Age and primary architecture of the Copperton Zn-Cu VMS deposit,

886

Northern Cape Province, South Africa. Ore Geology Reviews 39, 164-179.

887

Bailie, R., Gutzmer, J., Rajesh, H.M., Armstrong, R., 2011a. Age of ferroan A-type post-tectonic

888

granitoids of the southern part of the Keimoes Suite, Northern Cape Province, South Africa. J. Afr.

889

Earth Sci. 60, 153-174.

AC C

EP

TE D

872

26

ACCEPTED MANUSCRIPT Bailie, R., Gutzmer, J., Rajesh, H.M., Armstrong, R., 2011b. Petrography, geochemistry and

891

geochronology of the metavolcanic rocks of the Mesoproterozoic Leerkrans Formation,

892

Wilgenhoutsdrif Group, South Africa – back-arc basin to the Areachap volcanic arc. S. Afr. J. Geol.

893

114, 167-194.

894

Bailie, R., Rajesh, H.M., Gutzmer, J., 2012. Bimodal volcanism at the western margin of the

895

Kaapvaal Craton in the aftermath of collisional events during the Namaqua-Natal Orogeny: The Koras

896

Group, South Africa. Precambr. Res. 200-203, 163-183.

897

Barton, E.S., Burger, A.J., 1983. Reconnaissance isotopic investigations in the Namaqua mobile belt

898

and implications for Proterozoic crustal evolution – Upington geotraverse. In: Botha, B.J.V. (Ed.),

899

Namaqualand Metamorphic Complex. Spec. Publ. Geol. Soc. S. Afr. 10, pp. 173-192.

900

Bates, R.L., Jackson, J.A., 1987. (Eds.) Glossary of geology. American Geological Institute,

901

Alexandria, Virginia, 788 pp., ISBN 0913312894.

902

Begemann, F., Ludwig, K.R., Lugmair, G.W., Min, K., Nyquist, L.E., Patchett, P.J., Renne P.R., Shih,

903

C.Y., Villa, I.M., Walker, R.J., 2001. Call for improved set of decay constants for geochronological

904

use. Geochim. Cosmochim. Acta 65, 111-121.

905

Ben Othman, D., Polve, M., Alègre, C.J., 1984. Nd-Sr isotopic composition of granulites and

906

constraints on the evolution of the lower continental crust. Nature 307, 510-515.

907

Bial, J., Büttner, S.H., Frei, D., 2015a. Formation and emplacement of two contrasting late-

908

Mesoproterozoic magma types in the central Namaqua Metamorphic Complex (South Africa,

909

Namibia): Evidence from geochemistry and geochronology. Lithos 224-225, 272-294.

910

Bial, J., Büttner, S.H., Schenk, V., Appel, P., 2015b. The long-term high-temperature history of the

911

central Namaqua Metamorphic Complex: Evidence for a Mesoproterozoic continental back-arc in

912

southern Africa. Precambr. Res. 268, 243-278.

913

Bial, J., Büttner, S., Appel, P., 2016. Timing and conditions of regional metamorphism and crustal

914

shearing in the granulite facies basement of south Namibia: Implications for the crustal evolution of

915

the Namaqualand metamorphic basement in the Mesoproterozoic. J. Afr. Earth Sci. 123, 145-176.

916

Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P.

917

(Ed.), Rare earth element geochemistry. Elsevier, Amsterdam, pp. 63-114.

918

Clemens, J.D., Stevens, G., 2012. What controls chemical variation in granitic magmas? Lithos 134-

919

135, 317-329.

920

Clemens, J.D., Stevens, G., Farina, F., 2011. The enigmatic sources of I-type granites: The peritectic

921

connexion. Lithos 126, 174-181.

AC C

EP

TE D

M AN U

SC

RI PT

890

27

ACCEPTED MANUSCRIPT Clifford, T.N., Stumpfl, E.F., Burger, A.J., McCarthy, T.S., Rex, D.C., 1981. Mineral-chemical and

923

isotopic studies of Namaqualand granulites, South Africa: a Grenville analogue. Contrib. Mineral.

924

Petrol. 77, 225-250.

925

Clifford, T.N., Barton, E.S., Retief, E.A., Rex, D.C., Fanning, C.M., 1995. A crustal progenitor for the

926

intrusive anorthosite-charnockite kindred of the cupriferous Koperberg Suite, O’okiep district,

927

Namaqualand, South Africa: New isotope data for the country rocks and intrusive. J. Petrol. 36, 231-

928

258.

929

Clifford, T.N., Barton, E.S., Stern, R.A., Duchesne, J.-C., 2004. U-Pb zircon calendar for Namaquan

930

(Grenville) crustal events in the granulite-facies terrane of the O’Okiep Copper District of South

931

Africa. J. Petrol. 45, 669-691.

932

Colliston, W.P, Cornell, D.H., Schoch, A.E., Praekelt, H.E., 2015. Geochronological constraints on

933

the Hartbees River Thrust and Augrabies Nappe: New insights into the assembly of the

934

Mesoproterozoic Namaqua-Natal Province of Southern Africa. Precambr. Res. 265, 150-165.

935

Cornell, D.H., Pettersson, Å., 2007. Ion probe zircon dating of metasediments from the Areachap and

936

Kakamas Terranes, Namaqua-Natal Province and the stratigraphic integrity of the Areachap Group. S.

937

Afr. J. Geol. 110, 575-584.

938

Cornell, D.H., Kröner, A., Humphreys, H.C., Griffin, G., 1990. Age of origin of the

939

polymetamorphosed Copperton Formation, Namaqua-Natal Province, determined by single grain

940

zircon Pb-Pb dating. S. Afr. J. Geol. 93, 709-716.

941

Cornell, D.H., Humphreys, H., Theart, H.F.J., Scheepers, D.J., 1992. A collision-related pressure–

942

temperature–time path for Prieska Copper Mine, Namaqua-Natal tectonic Province, South Africa.

943

Precambr. Res. 59, 43–71.

944

Cornell, D.H., Thomas, R.J., Moen, H.F.G., Reid, D.L., Moore, J.M., Gibson, R.L., 2006. The

945

Namaqua-Natal Province In: Johnson, M.R., Anhaeusser, C.R., Thomas, R.J. (Eds.), The Geology of

946

South Africa. Geol. Soc. S. Afr., Johannesburg/Council for Geoscience, Pretoria, pp. 325–379.

947

Cornell, D.H., Pettersson, Å., Whitehouse, M.J., Scherstén, A., 2009. A new chronostratigraphic

948

paradigm for the age and tectonic history of the Mesoproterozoic Bushmanland Ore District, South

949

Africa. Econ. Geol. 104, 385-404.

950

Cornell, D.H., van Schijndel, V., Ingolfsson, O., Scherstén, A., Karlsson, L., Wojtyla, J., Karlsson, K.,

951

2011. Evidence from Dwyka tillite cobbles of Archaean basement beneath the Kalahari sands of

952

southern Africa. Lithos 125, 482-502.

AC C

EP

TE D

M AN U

SC

RI PT

922

28

ACCEPTED MANUSCRIPT Cornell, D.H., Pettersson, Å., Simonsen, S.L., 2012. Zircon U-Pb emplacement and Nd-Hf crustal

954

residence ages of the Straussburg granite and Friersdale charnockite in the Namaqua-Natal Province,

955

South Africa. S. Afr. J. Geol 115, 465-484.

956

Cornell, D.H., Zack, T., Andersen, T., Corfu, F., Frei, D., Van Schijndel, V., 2016. Th-U-Pb zircon

957

geochronology of the Palaeoproterozoic Hartley Formation porphyry by six methods, with age

958

uncertainty approaching 1 Ma. S. Afr. J. Geol. 119, 473-494.

959

Eby, N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications.

960

Geology 20, 641-644.

961

Eglington, B.M., 2006. Evolution of the Namaqua-Natal Belt, southern Africa – a geochronological

962

and isotope geochemical review. J Afr. Earth Sci. 46, 93–111.

963

Fransson, M., 2008. U-Pb zircon dating of metasedimentary rocks in the Areachap, Kakamas and

964

Bushmanland Terranes in Namaqua Province, South Africa. Masters thesis, Earth Sciences Centre,

965

University of Gothenburg, B series, 49 pp., ISSN 1400-3821.

966

Förster, H.-J., Tischendorf, G., Trumbull, R.B., 1997. An evaluation of the Rb vs. (Y + Nb)

967

discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos 40, 261-293.

968

Frei, D., Gerdes, A., 2009. Precise and accurate in situ U–Pb dating of zircon with high sample

969

throughput by automated LA-SF-ICP-MS. Chem. Geol. 261, 261–270.

970

Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical

971

classification for granitic rocks. J. Petrol. 42, 2033-2048.

972

Gehrels, G.E., Valencia, V.A., Ruiz, J., 2008. Enhanced precision, accuracy, efficiency, and spatial

973

resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass

974

spectrometry. Geochem. Geophy. Geosy.. 9(3), 1-13. Doi:10.1029/2007GC001805.

975

Geringer, G.J., 1973. Die geologie van die Argeiese gesteentes en jongere formasies in die gebied wes

976

van Upington met spesiale verwysing na die granietvoorkomste (in Afrikaans). PhD thesis

977

(unpublished), University of the Orange Free State, 203 pp.

978

Geringer, G.J., Botha, B.J.V., 1977. Anatektiese graniete in die mobiele gordel Namakwaland, wes

979

van Upington (in Afrikaans). Bull. Geol. Surv. S. Afr. 61, 36 pp.

980

Geringer, G.J., Botha, B.J.V., Pretorius, J.J., Ludick, D.J., 1986. Calc-alkaline volcanism along the

981

eastern margin of the Namaqua mobile belt, South Africa – a possible middle Proterozoic volcanic

982

arc. Precambr. Res. 33, 139–170.

983

Geringer, G.J., De Bruiyn, H., Schoch, A.E., Botha, B.J.V., Van der Westhuizen, W.A., 1987. The

984

geochemistry and petrogenetic relationships of two granites and their inclusions in the Keimoes Suite

985

of the Namaqua Mobile Belt, South Africa. Precambr. Res. 36, 143–162.

AC C

EP

TE D

M AN U

SC

RI PT

953

29

ACCEPTED MANUSCRIPT Geringer, G.J., Botha, B.J.V., Slabbert, M.J., 1988. The Keimoes Suite – a composite granitoid

987

batholith along the eastern margin of the Namaqua mobile belt, South Africa. S. Afr. J. Geol. 91, 465–

988

476.

989

Geringer, G.J., Humphreys, H.C., Scheepers, D.J., 1994. Lithostratigraphy, protolithology and

990

tectonic setting of the Areachap Group along the eastern margin of the Namaqua Mobile Belt, South

991

Africa. S. Afr. J. Geol. 97, 78-100.

992

Gutzmer, J., Beukes, N.J., Pickard, A., Barley, M.E., 2000. 1170 Ma SHRIMP age for Koras Group

993

bimodal volcanism, northern Cape Province. S. Afr. J. Geol. 103, 32–37.

994

Hanson, R.E., Crowley, J.L., Bowring, S.A., Ramezani, J., Gose, W.A., Dalziel, I.W.D., Pancake,

995

J.A., Seidel, E.K., Blenkinsop, T.G., Mukwakwami, J., 2004. Coeval large-scale magmatism in the

996

Kalahari and Laurentian Cratons during Rodinia assembly. Science 304, 1126-1129.

997

Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collisional-zone

998

magmatism. In: Coward, M.P., Reis, A.C. (Eds.), Collision Tectonics: Geological Society (London)

999

Special Publication, 19, pp. 57-81.

M AN U

SC

RI PT

986

Hartnady, C., Joubert, P., Stowe, C., 1985. Proterozoic crustal evolution in southwestern Africa.

1001

Episodes 8, 236-244.

1002

Horstwood, M.S.A, Košler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, C., Pearson, N.J.,

1003

Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., Condon, D.J., Schoene, B., 2016.

1004

Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology – Uncertainty propagation,

1005

age interpretation and data reporting. Geostand. Geoanal. Res. 40(3), 311-332. doi: 10.1111/j.1751-

1006

908X.2016.00379.x

1007

Jackson, S., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation –

1008

inductively coupled plasma – mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol.

1009

211, 47–69.

1010

Jacobs, J., Thomas, R.J., Weber, K., 1993. Accretion and indentation tectonics at the southern edge of

1011

the Kaapvaal craton during the Kibaran (Grenville) orogeny. Geology 21(3), 203-206.

1012

Jankowitz, J.A.C., 1987. ‘n Petrochemiese ondersoek van die Subsuite Cyndas, wes van Upington (in

1013

Afrikaans). Bull. Geol. Surv. S. Afr. 87, 115 pp.

1014

Joubert, P., 1986. Namaqualand – a model of Proterozoic accretion? Trans. Geol. Soc. S. Afr. 89, 79–

1015

96.

1016

Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., 2005. Igneous

1017

rocks: a classification and glossary of terms: recommendations of the International Union of

AC C

EP

TE D

1000

30

ACCEPTED MANUSCRIPT Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge University

1019

Press, Cambridge, 237 pp.

1020

Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons,

1021

I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V.,

1022

Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration, and break-up history

1023

of Rodinia: A synthesis. Precambr. Res. 160, 179-210.

1024

Linström, W., 1977. Die geologie tussen Kenhardt en Marydale met spesiale verwysing na die

1025

verband tussen die Kheisgesteentes en die Namakwalandse mobiele gordel. PhD thesis (unpubl.) (in

1026

Afrikaans), University of the Orange Free State, Bloemfontein, 251 pp.

1027

Loiselle, M.C., Wones, D.R., 1979. Characteristics and origin of anorogenic granites. Geol. Soc. Am.

1028

92nd Annual Meeting, Abstracts with Programs, 11, no. 7, p. 468.

1029

Ludwig, K.R., 2003, Isoplot/Ex version 3: a geochronological toolkit for Miscrosoft Excel. Berkeley

1030

Geochronology Center, Special Publication No. 4, 77 pp.

1031

Macey, P.H., Minnaar, H., Miller, J.A., Lambert, C., Kisters, A.F.M., Diener, J., Thomas, R.J.,

1032

Groenewald, C., Indongo, J., Angombe, M., Smith, H., Shifatoka, G., Le Roux, P., Frei D. 2015. The

1033

Precambrian geology of the Warmbad Region, southern Namibia. An interim explanation to 1:50 000

1034

Geological Map Sheets of the 1:250 000 2818 Warmbad sheet. Geol. Surv. Namibia and Council for

1035

Geoscience of South Africa, 720pp, accompanied by twenty-four 1:50 000 geological maps.

1036

Macey, P.H., Thomas, R.J., Minnaar, H.M., Gresse, P.G., Lambert, C.W., Groenewald, C.A., Miller,

1037

J.A., Indongo, J.I., Angombe, M., Shifotoka, G., Frei, D., Diener, J.F.A., Kisters, A.F.M., Dhansay,

1038

T., Smith, H., Doggart, S., le Roux, P., Hartnady, M.I., Tinguely, C. 2017. Origin and evolution of the

1039

~1.9 Ga Richtersveld Magmatic Arc, SW Africa. Precambr. Res. 292, 417-451.

1040

Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull. 101,

1041

635-643.

1042

Mattinson, J.M., 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-

1043

TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275, 186-198.

1044

McClung, C.R., 2006. Basin analysis of the Bushmanland Basin, Namaqualand Metamorphic

1045

Complex, Northern Cape Province, South Africa. PhD thesis (unpubl.), University of Johannesburg,

1046

South Africa, 320 pp.

1047

McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253.

1048

McDonough, W.F., Sun., S.-S., Ringwood, A.E., Jagoutz, E., Hofmann, A.W., 1992. Potassium,

1049

rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim.

1050

Cosmochim. Acta 56, 1001-1012.

AC C

EP

TE D

M AN U

SC

RI PT

1018

31

ACCEPTED MANUSCRIPT Míková, J., Denková, P., 2007. Modified chromatographic separation scheme for Sr and Nd isotope

1052

analysis in geological silicate samples, J. Geosci. 52, 221-226.

1053

Miller, R. McG., 2008. The geology of Namibia, volume 1, Archaean to Mesoproterozoic. Geological

1054

Survey, Windhoek, Namibia.

1055

Miller, R. McG., 2012. Mesoproterozoic magmatism, sedimentation and terrane amalgamation in

1056

Southwestern Africa. S. Afr. J. Geol. 115, 417-448.

1057

Moen, H.F.G., 1988. The 1:250 000 scale geological map of the area 2820 Upington. Geological

1058

Survey of South Africa/Council for Geoscience, Pretoria.

1059

Moen, H.F.G., 1999. The Kheis Tectonic Subprovince, southern Africa: A lithostratigraphic

1060

perspective. S. Afr. J. Geol. 102, 27-42.

1061

Moen, H.F.G., 2007. The geology of the Upington Area. Map Sheet Explanation, 2820. Scale 1:250

1062

000. Council for Geoscience, Pretoria. 160 pp.

1063

Moen, H.F.G., Armstrong, R.A., 2008. New age constraints on the tectogenesis of the Kheis

1064

Subprovince and the evolution of the eastern Namaqua Province. S. Afr. J. Geol. 111, 79-88.

1065

Nasdala, L., Hofmeister, W., Norberg, N., Mattinson, J.M., Corfu, F., Dörr, W., Kamo, S.L.,

1066

Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Košler, J., Wan, Y., Götze, J., Häger, T., Kröner,

1067

A., Valley, J.W., 2008. Zircon M257 – a homogeneous natural reference material for the ion

1068

microprobe U-Pb analysis of zircon. Geostand. Geoanal. Res. 32, 247–265.

1069

O’Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. Geol.

1070

Surv. Profess. Paper 525, B79-B84.

1071

Paterson, S.R., Tobisch, O.T., 1988. Using pluton ages to date regional deformations: Problems with

1072

commonly used criteria. Geology 16, 1108-1111.

1073

Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the

1074

tectonic interpretation of granitic rocks. J. Petrol. 25, 956-983.

1075

Pettersson, Å., 2008. Mesoproterozoic crustal evolution in Southern Africa, PhD thesis, Gothenburg

1076

University, A117; http://gupea.ub.gu.se/handle/2077/17269.

1077

Pettersson, Å., Cornell, D.H., Moen, H.F.G., Reddy, S., Evans, D., 2007. Ion-probe dating of 1.2 Ga

1078

collision and crustal architecture in the Namaqua-Natal Province of southern Africa. Precambr. Res.

1079

158, 79–92.

1080

Pettersson, Å. Cornell, D.H., Yuhara, M., Hirahara, Y., 2009. Sm-Nd data for granitoids across the

1081

Namaqua-Natal Province, South Africa. Geol. Soc. London, Spec. Publ. 323, 219-230.

AC C

EP

TE D

M AN U

SC

RI PT

1051

32

ACCEPTED MANUSCRIPT Pin, C., Zalduegui, J.F.S., 1997. Sequential separation of light rare-earth elements, thorium and

1083

uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks.

1084

Anal. Chim. Acta, 339, 79-89.

1085

Pin, C., Briot, D., Bassin, C., Poitrasson, F., 1994. Concomitant separation of strontium and

1086

samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction

1087

chromatography. Anal. Chim. Acta, 298, 209-217.

1088

Praekelt, H.E., 1984. Die geologie van die gebied rondom Augrabies (2820 C). MSc thesis (unpubl.)

1089

(in Afrikaans), University of the Orange Free State, Bloemfontein, South Africa, 80 pp.

1090

Reid, D.L., 1997. Sm-Nd age and REE geochemistry of Proterozoic arc-related igneous rocks in the

1091

Richtersveld Subprovince, Namaqua Mobile Belt, southern Africa. J. Afr. Earth Sci. 24, 621-633.

1092

Richardson, S., Gurney, J., Erlank, A., Harris, J., 1984. Origin of diamonds in old enriched mantle.

1093

Nature 310, no. 5974. 198-202.

1094

Robb, L.J., Armstrong, R.A., Waters, D.J., 1999. The history of granulite-facies metamorphism and

1095

crustal growth from single zircon U-Pb geochronology: Namaqualand, South Africa. J. Petrol. 40,

1096

1747-1770.

1097

Saad, A.E., 1987. A petrological study of the tin-tungsten deposit at Renosterkop, Augrabies,

1098

Northern Cape Province. MSc thesis (unpubl.), Potchefstroom University, South Africa, 165 pp.

1099

SACS (South African Committee for Stratigraphy), 1980. Stratigraphy of South Africa. Part 1 (Comp.

1100

L.E. Kent), Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the

1101

Republics of Bophuthatswana, Transkei and Venda. Handbook Geol. Surv. S. Afr. 8, 690 pp.

1102

Slabbert, M.J., 1998. 1:250 000 Scale Geological Map of Kenhardt. Council for Geoscience.

1103

Slabbert, M.J., Moen, H.F.G., Boelema, R., 1999. Die geologie van die gebied Kenhardt. Explanation,

1104

sheet 2920. Council for Geoscience, South Africa, 123 pp.

1105

Sláma J., Košler, J., Condon, D.J., Crowley, J.L, Gerdes, A., Hanchar, J.M., Horstwood, M.S.A.,

1106

Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse,

1107

M.J., 2008. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic

1108

microanalysis. Chem. Geol. 249, 1–35.

1109

Smit, C.A., 1977. Die geologie rondom Groblershoop met spesiale verwysing na die verband tussen

1110

die Namakwalandse Mobiele Gordel en die Matsap-Kheisgesteentes. PhD thesis (unpubl.) (in

1111

Afrikaans), University of the Orange Free State, South Africa.

1112

Spencer, C.J., Thomas, R.J., Roberts, N.M.W., Cawood, P.A., Millar, I., Tapster, S., 2015. Crustal

1113

growth during island arc accretion and transcurrent deformation, Natal Metamorphic Province, South

1114

Africa: New isotopic constraints. Precambr. Res. 265, 203-217.

AC C

EP

TE D

M AN U

SC

RI PT

1082

33

ACCEPTED MANUSCRIPT Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016. Strategies towards statistically robust

1116

interpretations of in situ U-Pb zircon geochronology. Geosci. Front. 7, 581-589.

1117

Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotopic evolution by a two-stage

1118

model. Earth Planet. Sci. Lett. 26, 207-221.

1119

Steiger, R.H., Jäger, E., 1977. Subcommission on geochronology: Convention on use of decay

1120

constants in geo- and cosmochronology: Earth Planet. Sci. Lett. 126, 359-362.

1121

Streckeisen, A., 1976. To each plutonic rock its proper name. Earth-Sci. Rev. 12, 1-33.

1122

Stowe, C.W., 1983. The Upington geotraverse and its implications for craton margin tectonics. In:

1123

Botha, B.J.V. (Ed.), The Namaqualand Metamorphic Complex, Spec. Publ. Geol. Soc. S. Afr. 10, pp.

1124

147–171.

1125

Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M.,

1126

Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi. K., Yanagi, T., Nakano, T.,

1127

Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., Dragusanu, C., 2000. JNdi-1: a neodymium

1128

isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279-281.

1129

Thomas, R.J., Macey, P.H., Spencer, C., Dhansay, T., Diener, J.F.A., Lambert, C.W., Frei, D. Nguno,

1130

A., 2016. The Sperrgebiet Domain, Aurus Mountains, SW Namibia: A ∼2020-850 Ma window within

1131

the Pan-African Gariep Orogen. Precambr. Res. 286, 35-58.

1132

Van Bever Donker, J.M., 1980. Structural and metamorphic evolution of an area around Kakamas and

1133

Keimoes, Cape Province, South Africa. Bull. Precambr. Res. Unit, Univ. Cape Town 28, 165 pp.

1134

Van Bever Donker, J.M., 1991. A synthesis of the structural geology of a major tectonic boundary

1135

between a 1000 m.y. mobile belt and a 3000 m.y. craton. Tectonophysics 196, 359-370.

1136

Van Niekerk, H.S., 2006. The origin of the Kheis Terrane and its relationship with the Archean

1137

Kaapvaal Craton and the Grenvillian Namaqua Province in southern Africa. PhD thesis, University of

1138

Johannesburg, Johannesburg, 260 pp.

1139

Van Zyl, C.Z., 1981. Structural and metamorphic evolution in the transitional zone between craton

1140

and mobile belt, Upington Geotraverse. Bull. Precambr. Res. Unit, Univ. Cape Town 31, 243 pp.

1141

Wang, Y.J., Zhang, A.M., Cawood, P.A., Fan, W.M., Xu, J.F., Zhang, G.W., Zhang, Y.Z., 2013.

1142

Geochronological, geochemical and Nd–Hf–Os isotopic fingerprinting of an early Neoproterozoic

1143

arc–back-arc system in South China and its accretionary assembly along the margin of Rodinia.

1144

Precambr. Res. 231, 343–371.

1145

Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G.A., Hanano, D., Pretorius,

1146

W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M., Mahoney, J.B., 2006. High-precision

AC C

EP

TE D

M AN U

SC

RI PT

1115

34

ACCEPTED MANUSCRIPT isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem.

1148

Geophys. Geosys. 7(8), 30 pp. Q08006, doi:10.1029/2006GC001283.

1149

Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics,

1150

discrimination, and petrogenesis. Contrib. Mineral. Petrol. 95, 407–419.

1151

Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick,

1152

J.C., Spiegel, W., 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE

1153

analyses. Geostandard Newslett. 19, 1–23.

1154

Yuhara, M., Kagami, H., Tsuchiya, N., 2001. Rb-Sr and Sm-Nd systematics of granitic and

1155

metamorphic rocks in the Namaqualand Metamorphic Complex, South Africa: Implications for

1156

evolution of marginal part of Kaapvaal craton. Natl. Instit. Polar Res., Spec. Issue Mem. 55, 127-144.

1157

Yuhara, M., Miyazaki, T., Ishioka, J., Suzuki, S., Kagami, H., Tsuchiya, N., 2002. Rb-Sr and Sm-Nd

1158

mineral isochron ages of the metamorphic rocks in the Namaqualand Metamorphic Complex, South

1159

Africa. Gondwana Res. 5, 771-779.

1160

Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493-571.

1162

SC

M AN U

1161

RI PT

1147

List of figures

1164

Fig. 1. Distribution of granites and geochronological sample localities, eastern Namaqua Sector (NS).

1165

Compiled from the 1:250 000 scale map data of Moen (1988) and Slabbert (1998). Inset of the NNMP

1166

in southern Africa (after Cornell et al., 2006).

1167

Fig. 2. Zircon CL images for the dated eastern NS granites. Ages reported next to representations of

1168

analysed spots are 206Pb/238U ages. a. Smalvis Granite, Cyndas Subsuite, b. Colston Granite, c.

1169

Kanoneiland Granite, d. Keboes Granite, e. Louisvale Granite, f. Klipkraal Granite, g. Josling Granite,

1170

h. Elsie se Gorra Granite.

1171

Fig. 3. U-Pb isochron diagrams for the dated eastern NS granites. Plots are generated by Isoplot 3.0

1172

(Ludwig, 2003) but weighted mean ages are given rather than concordia ages. a. Smalvis Granite,

1173

Cyndas Subsuite, b. Colston Granite, c. Elsie se Gorra Granite, d. Josling Granite, e. Kanoneiland

1174

Granite, f. Keboes Granite, g. Klipkraal Granite, h. Louisvale Granite.

1175

Fig. 4. General geochemical characteristics and classification of the eastern NS granites. (a) QAP

1176

classification for granitoids, after Le Maitre et al. (2005), (b) The An-Ab-Or ternary plot to determine

1177

the composition of granite (after O’Connor, 1965), (c) The Na2O + K2O - CaO vs. SiO2 plot (after

1178

Frost et al., 2001), (d) Fe*/Fe*+ MgO vs. SiO2 plot used to determine if the rocks are ferroan or

1179

magnesian (after Frost et al., 2001), (e) The K2O+Na2O/CaO vs. Zr + Nb + Ce + Y plot indicating the

AC C

EP

TE D

1163

35

ACCEPTED MANUSCRIPT predominant A-type nature of the granites (after Whalen et al., 1987), (f) The molar Na2O+K2O/Al2O3

1181

vs. molar Al2O3/Na2O+K2O+CaO plot to differentiate between peralkaline, metaluminous and

1182

peraluminous granites (after Maniar and Piccoli, 1989). The fields for the compositions of the Cyndas

1183

Subsuite (after Jankowitz, 1987) and the Riemvasmaak Gneiss (after Geringer, 1973; Saad, 1987) are

1184

shown for (a) and (b).

1185

Fig. 5. Binary Harker diagrams for major and minor elements for the eastern NS granites. The fields

1186

for the Cyndas Subsuite (after Jankowitz, 1987) and the Riemvaasmaak Gneiss (after Geringer, 1973;

1187

Saad, 1987) are shown for reference.

1188

Fig. 6. Select major and minor element maficity (Mg + Fe) plots for the eastern NS granites.

1189

Fig. 6. (cont.) Select trace element maficity (Mg + Fe) plots for the eastern NS granites.

1190

Fig. 7. Spider diagrams and rare earth element (REE) plots for the syn-tectonic and late- to post-

1191

tectonic granites of the eastern NS granites. The colours and symbols are as for Figs. 5 and 6.

1192

Fig. 8. Isotopic diagrams for the eastern NS granites. a. εNd(t) vs. initial Sr showing major crustal and

1193

mantle sources, b. εNd(t) vs. 147Sm/144Nd, c. εNd(t) vs. age (in Ma), d. Initial Sr [SrI = (87Sr/86Sr)t], where t

1194

is the time of emplacement, vs. age, e. εNd(t) vs. maficity (elemental Fe + Mg), f. Initial Sr [SrI =

1195

(87Sr/86Sr)t] vs. maficity. The upper crust curve (Harris et al., 1986) and a theoretical lower crustal

1196

curve (Ben Othman et al., 1984) are indicated for reference in (a). The positions of the main oceanic

1197

mantle reservoirs identified by Zindler and Hart (1986) shown in (a) are: DM = depleted mantle, BSE

1198

= bulk silicate earth, EMI and EMII = enriched mantle I and II, HIMU = high mantle U/Pb ratio,

1199

PREMA = frequently observed prevalent mantle composition. The mantle source of MORB and the

1200

mantle end-members DMM, PREMA, HIMU, BSE, EMI and EMII are from Zindler and Hart (1986).

1201

The evolution curves for Paleoproterozoic crust of ∼2.4 Ga (c) and ∼2.0 Ga crust (d) is after Eglington

1202

(2006). The data used to plot d) and e) can be found in Appendix Table A10.

1203

Fig. 9. Tectonic setting discrimination diagrams for the late- to post-tectonic Keimoes Suite. a. The

1204

Rb vs. Y + Nb plot of Pearce et al. (1984). b. The Nb vs. Y plot of Pearce et al. (1984) is used because

1205

of the potential mobility of Rb during metamorphism.

1206

Fig. 10. Compilation of magmatic and metamorphic data for the Kakamas, Areachap and Kaaien

1207

terranes of the eastern NS (adapted after Spencer et al., 2015).

AC C

EP

TE D

M AN U

SC

RI PT

1180

1208

36

ACCEPTED MANUSCRIPT

potassic monzogranite

fine-grained, porphyritic

euhedral – subhedral K-fsp phenocrysts (up to 12 mm), qtz, K-fsp, plag, bt, msc

AC C

Keboes

EP

TE D

M AN U

SC

RI PT

Table 1 Features of the eastern Namaqua Sector granites (sensu Moen, 2007) (after Stowe, 1983; Geringer et al., 1987, 1988; Moen, 2007; Bailie et al., 2011a; Cornell et al., 2012) Granite Composition Grain Mineralogy Presence Host rocks Contacts Inclusions Age or relative Size of foliation age (in Ma) + ref. Josling leucogranite fine-grained qtz, K-fsp > plag, gneissic, well- Areachap Grp gradational 1275 ± 7b bt-poor, msc developed not part of Keimoese Elsie se Gorra leucogranite coarse-grained qtz, K-fsp, plag, bt moderate to no contacts, msc well-developed isolated outcrops Colston potassic, medium qtz, mcl, plag, bt, minor weakly Korannaland foliation numerous, 1156 ± 20 Ma peraluminous, equigranular, msc developed Group stronger toward mafic (can TIMS – zircon granodiorite porphyritic in central part contacts, no be up to 1 m) Geringer and Botha metam. effects (1977) Cyndas monzogranites variable, qtz, K-fsp, plag, bt ± hbl variable, mostly Korannaland mafic (cognate variable 1155Subsuite medium-coarse, ± msc, pyx (locally) unfoliated Group xenoliths) and 1061 Maa medium-fine metased xenoliths Vaalputs monzogranite, medium rounded phenocrysts of well-developed Korannaland sharp, generally numerous 1146 ± 14 b unevolved equigranular K-feldspar (up to 15 mm), Group concordant, qtz, feldspars, biotite, cross-cutting plag phenocrysts locally Louisvale heterogeneous, medium mafic – variable amts of strong / gneissic Bethesda Fm, concordant, during peak mesocratic to fsp phenocrysts, disharmonic Areachap Grp lit-par-lit, very metamorphism; leucocratic, opalescent blue qtz, flow pattern foliated; deep crustal tonalite to cordierite; leucocratic – gradational with monzogranite elongate mcl phenocrysts Klipkraal and Vaalputs Granites Gouskop medium qtz, K-fsp, plag, no bt moderate semi-pelites poor, subvertical lineation

Bethesda Fm, Areachap Grp, Louisvale Grn

sharp with Areachap Grp, Friersdale Charnockite

very few mafic lenticles

approx. same age as Kanoneiland Granite

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

Table 1 (cont.) Features of the eastern Namaqua Sector granites (sensu Moen, 2007) (after Stowe, 1983; Geringer et al., 1987, 1988; Moen, 2007; Bailie et al., 2011a; Cornell et al., 2012) Granite Composition Grain Mineralogy Presence Host rocks Contacts Inclusions Age or relative Size of foliation age (in Ma) + ref. Kanoneiland biotite-rich medium to qtz, K-fsp, plag, bt poor gradational with sharp, crossnumerous late-tectonic monzogranite coarse, nonKeboes, sharp cutting; metam. mafic and porphyritic with Vaalputs aureole present felsic inclusions and Louisvale Gemsbokbult monzogranite medium to qtz, K-fsp, plag, bt, weak Klip Koppies concordant and 1104 ± 11c coarse, staur Granite sheared, foliated equigranular Kleinbegin leucocratic medium to qtz, K-fsp, plag, bt, poor to Dagbreek Fm, clots of mafic 1101 ± 10c Subsuite granodiorite coarse, nonhbl, mgt, hmt unfoliated Jannelsepan Fm, mineral porphyritic Areachap Grp aggregates Klip Koppies monzogranites fine to K-fsp phenocrysts (5poor not exposed, small mafic 1096 ± 10c medium 30 mm), qtz, K-fsp, foliated nearing inclusions intrudes porphyritic plag, bt, msc contacts Gemsbokbult Straussburg bt-rich, medium-coarse, blue opaline qtz, K-fsp moderate to feldspathic sharp, metam. numerous 1089 ± 9d monzogranitic porphyritic (as large phenocrysts), poor quartzite, aureole lensoid granodioritic to locally plag (An20-35), bt, Dagbreek Fm developed mafic granitic minor hbl inclusions Klipkraal variable, commonly non-porph: plag, K-fsp, unfoliated Jannelsepan intrusive into young granodioriticporphyritic, hbl, hyp; porph: qtz, fsps Fm, Areachap Louisvale Granite monzogranite medium-coarse plag phenocrysts, bt, hbl Grp Gif Berg fine to medium, fsp phenocrysts (10 mm), unfoliated sharp, fineyoung porphyritic, qtz, K-fsp, plag, bt, gnt grained, chilled granophyric margin Neilers Drift biotite-rich coarse, nonbt-rich unfoliated intruded by none post-tectonic porphyritic Friersdale Friersdale monzogranite- fine- to opalescent blue qtz, unfoliated Korannaland concordant ellipsoidal 1080 ± 13b Charnockite granodiorite medium-grained, K-fsp, minor plag, Grp, Vaalputs to sharply (3-15 cm) of 1078 ± 12d porphyritic bt – groundmass; and Keboes discordant; mafic + bt, qtz, hyp, aug, Granites contact aureoles quartzitic plag – phenocrysts developed composition Abbreviations: mineralogy: aug – augite, bt – biotite, gnt – garnet, hbl – hornblende, hmt – hematite, hyp – hypersthene, K-fsp – K-feldspar, mgt – magnetite, msc- muscovite, plag – plagioclase, pyx – pyroxene, qtz – quartz; porph – porphyritic; References: a Jankowitz (1987), b Pettersson (2008), c Bailie et al. (2011a), d Cornell et al. (2012), e Moen (2007)

ACCEPTED MANUSCRIPT Table 2 Summary of geochronological data obtained in this study (top) and that from previous studies for the magmatic rocks of the eastern Namaqua Sector (in chronological order)

AC C

Reference this study this study this study this study this study this study this study this study Pettersson et al. (2007) Moen & Armstrong (2008) Moen & Armstrong (2008) Bailie et al. (2011b) Pettersson (2008) Cornell & Pettersson (2007) Bailie (2008) Pettersson et al. (2007) Fransson (2008) Bial et al. (2015a) Bial et al. (2015a) Pettersson (2008) Pettersson (2008) Bial et al. (2015a) Bial et al. (2015a) Bial et al. (2015a) Bial et al. (2015a) Bial et al. (2015a) Bial et al. (2015a) Bial et al. (2015a) Bial et al. (2015a) Pettersson (2008) Gutzmer et al. (2000) Colliston et al. (2015) Pettersson (2008) Jankowitz (1987) Pettersson (2008) Pettersson (2008) Jankowitz (1987) Colliston et al. (2015) Bailie et al. (2011a) Pettersson et al. (2007) Bailie et al. (2012) Bailie et al. (2011a) Bial et al. (2015a) Jankowitz (1987) Bailie et al. (2012) Bailie et al. (2012) Bailie et al. (2011a) Pettersson et al. (2007) Jankowitz (1987) Pettersson et al. (2007) Pettersson et al. (2007) Pettersson et al. (2007) Cornell et al. (2012) Jankowitz (1987) Pettersson (2008) Cornell et al. (2012)

SC

RI PT

Age of metamorphism

1142 ± 11 Ma 1165 ± 10 Ma

M AN U

Age of emplacement 1217 ± 20 Ma 1175 ± 18 Ma 1151 ± 28 Ma 1159 ± 28 Ma 1125 ± 16 Ma 1105 ± 27 Ma ∼1110 Ma1 1098 ± 26 Ma 1371 ± 9 Ma 1293 ± 9 Ma 1290 ± 8 Ma 1289 ± 9 Ma 1275 ± 7 Ma 1275 ± 7 Ma 1261 ± 18 Ma 1241 ± 12 Ma 1190 ± 27 Ma 1229 ± 16 Ma (lc) 1222 ± 13 Ma (lc) 1220 ± 10 Ma 1203 ± 11 Ma 1201 ± 10 Ma (mg) 1198 ± 46 Ma (mg) 1197 ± 10 Ma (mg) 1197 ± 11 Ma (lc) 1195 ± 16 Ma (mg) 1191 ± 7 Ma (mg) 1189 ± 18 Ma (lc) 1189 ± 6 Ma (mg) 1173 ± 12 Ma 1171 ± 7 Ma 1168 ± 6 Ma (ip) 1156 ± 8 Ma 1155 ± 62 Ma 1151 ± 14 Ma 1146 ± 14 Ma 1120 ± 22 Ma 1107 ± 11 Ma (la) 1104 ± 11 Ma 1104 ± 8 Ma 1101 ± 2 Ma 1101 ± 10 Ma 1101 ± 6 Ma 1100 ± 14 Ma 1100 ± 8 Ma 1098 ± 10 Ma 1096 ± 10 Ma 1095 ± 10 Ma 1094± 11 Ma 1093 ± 11 Ma 1093 ± 10 Ma 1092 ± 9 Ma 1089 ± 9 Ma 1087 ± 17 Ma 1080 ± 13 Ma 1078 ± 12 Ma

TE D

Terrane Areachap Kakamas Areachap Areachap Areachap Areachap Areachap Areachap Kaaien Kaaien Kaaien Kaaien Areachap Areachap Areachap Areachap Areachap Kakamas Kakamas Kakamas Kakamas Kakamas Kakamas Kakamas Kakamas Kakamas Kakamas Kakamas Kakamas Kaaien Kaaien Kakamas Areachap Areachap Kakamas Kakamas Areachap Kakamas Areachap Kaaien Kaaien Areachap Kakamas Areachap Kaaien Kaaien Areachap Kaaien Areachap Kaaien Kaaien Kaaien Areachap Areachap Kakamas Areachap

EP

Granite Josling Granite Elsie se Gorra Granite Colston Granite Smalvisch Granite, CS Louisvale Granite Keboes Granite Klipkraal Granite Kanoneiland Granite Swanartz Gneiss Kalkwerf Gneiss Wilgenhoutsdrif Group Wilgenhoutsdrif Group Josling Granite Areachap Group Areachap Group Areachap Group Areachap Group ZA-93-1 ZA-81-2 Dyasons Klip Gneiss Polisiehoek Granite ZA-68-1 ZA-70-1 ZA-82-2 ZA-80-1 ZA-49-2 ZA-62-1 ZA-103-1 ZA-61-2 Lower Koras Group Lower Koras Group Augrabies Granite Riemvasmaak Gneiss Cyndas E Granodiorite, CS Riemvasmaak Gneiss Vaalputs Granite Smalvisch Granite, CS Karama’am augen gneiss Gemsbokbult Granite Upper Koras Group Upper Koras Group Kleinbegin Granite Naros Granite (957/967) Gous Charnockite, CS Upper Koras Group Upper Koras Group Klip Koppies Granite Upper Koras Group Cyndas E Granodiorite, CS Rooiputs Granophyre Bloubos Granite Upper Koras Grp Straussburg Granite Enna Granite, CS Friersdale Charnockite Friersdale Charnockite

1156 ± 14 Ma

1108 ± 9 Ma 1108 ± 12 Ma (metam.?) 1098 ± 10 Ma 1091 ± 8 Ma 1125 ± 5 Ma 1088 ± 10 Ma

1090 ± 16 Ma

1062 ± 27 Ma 1014 ± 36 Ma

Abbreviations: CS – Cyndas Subsuite; la – LAICPMS, ip – ion probe; lc – leucogranite, mg – mesocratic granite; 1 assumed age based on field relationships and lack of foliation, inherited age of 1270 ± 26 Ma determined

ACCEPTED MANUSCRIPT

Table 3 Whole rock major, minor element and trace element geochemistry of the eastern Namaqua Metamorphic Province granites

AC C

EP

TE D

M AN U

SC

RI PT

Sample Mkl2 Mkl4 Mkl5 Mkl6 Mkl3 Ml1 Ml2 Ml4 Ml5 Mka1 Mka3 Mka6 Mka7 Mkb1 Mkb2 Mkb4 Mkb6 Mv2 SiO2 66.09 66.74 65.49 65.67 65.52 65.00 66.34 65.48 71.15 69.96 69.31 68.23 69.10 70.24 70.00 73.62 69.70 73.62 TiO2 0.90 0.94 1.11 1.14 0.95 0.58 0.89 0.58 0.29 0.75 0.70 0.73 0.76 0.48 0.50 0.18 0.49 0.32 Al2O3 13.11 12.97 13.85 13.71 13.11 17.18 13.19 16.77 15.23 12.68 13.12 13.73 13.06 13.64 14.07 14.30 14.27 13.26 8.87 8.73 7.24 7.47 8.92 4.82 8.24 4.95 2.23 5.40 5.10 5.45 5.37 3.77 3.71 1.64 3.70 2.69 Fe2O3 MnO 0.20 0.18 0.15 0.15 0.18 0.08 0.17 0.08 0.05 0.12 0.11 0.11 0.11 0.08 0.08 0.03 0.08 0.05 MgO 0.47 0.48 0.97 1.00 0.49 0.99 0.46 1.00 0.61 0.66 0.61 0.72 0.65 0.68 0.69 0.25 0.69 0.28 CaO 2.54 2.48 3.19 3.20 2.55 3.63 2.61 3.51 2.02 2.21 2.32 2.50 2.35 2.10 2.23 0.79 2.27 1.00 Na2O 1.51 2.19 2.26 2.20 2.42 4.90 2.38 4.81 4.88 2.46 2.70 2.80 2.66 2.93 2.98 2.97 3.06 2.69 K2O 5.09 4.33 4.74 4.44 4.52 1.93 4.61 1.95 2.63 4.72 4.75 4.68 4.73 4.82 4.82 5.14 4.81 5.48 P2O5 0.48 0.47 0.45 0.47 0.48 0.35 0.45 0.34 0.10 0.25 0.24 0.26 0.26 0.18 0.18 0.22 0.18 0.18 Cr2O3 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.003 0.002 0.001 0.005 0.002 0.002 0.005 0.005 0.003 0.002 0.005 L.O.I. 0.13 0.12 0.15 0.13 0.08 0.13 0.16 0.10 0.12 0.14 0.10 0.13 0.08 0.13 0.09 0.09 0.09 0.10 Total 99.39 99.63 99.59 99.58 99.23 99.58 99.50 99.58 99.31 99.34 99.05 99.34 99.14 99.06 99.35 99.24 99.33 99.32 Sc 23.3 25.3 20.9 21.5 26.7 11.5 22.9 11.8 7.5 17.5 16.3 20.1 14.3 12.3 12.1 6.9 11.8 10.0 Ti 5421 5620 6637 6845 5701 3457 5364 3474 1755 4509 4175 4368 4545 2880 2981 1093 2938 1941 V 30.0 26.2 72.9 80.0 35.1 78.2 30.5 51.4 47.6 61.1 52.6 60.3 58.2 50.4 47.4 21.8 79.1 38.9 101.8 72.3 50.7 84.1 149.6 124.4 92.4 134.8 184.4 154.6 66.5 81.9 116.0 131.2 79.4 74.4 102.1 208.9 Cra Co 7.8 7.9 11.7 11.4 9.1 7.7 7.8 5.7 4.4 7.5 7.0 8.0 7.1 5.9 6.0 3.0 8.2 4.0 Ni 7.1 7.4 11.1 11.5 11.7 10.7 8.8 12.2 12.0 9.8 12.4 9.7 10.1 11.5 11.7 8.6 10.3 11.3 Cu 20.2 18.5 25.1 26.7 27.6 47.3 14.9 14.5 33.9 11.7 21.5 14.6 12.2 14.0 20.6 17.8 43.2 29.2 Zn 122.6 124.8 113.9 107.1 146.1 112.0 115.2 71.2 57.8 97.3 93.2 98.7 90.7 71.7 77.8 113.1 129.5 52.9 Rb 174.2 204.1 199.6 186.2 220.2 172.8 189.8 233.6 89.0 245.9 234.5 233.2 227.8 255.7 242.9 335.9 185.6 404.5 Sr 151.1 146.7 165.3 171.2 165.1 292.6 151.9 124.7 501.6 159.6 148.3 142.9 155.3 131.0 130.7 43.1 294.3 63.1 Y 92.5 92.6 69.2 69.0 99.7 19.0 84.5 36.6 5.1 56.2 73.1 69.6 46.7 41.0 40.9 6.2 21.1 60.0 Zr 482.8 419.4 515.3 524.4 534.8 298.9 444.3 225.0 135.5 349.8 298.3 331.9 337.4 229.1 234.6 51.6 307.5 192.6 Nb 24.4 23.6 27.3 28.5 29.6 15.5 24.2 16.0 3.1 22.4 22.7 21.2 21.2 17.3 16.4 12.2 16.4 23.0 Cs 2.5 4.6 2.5 2.1 7.2 11.4 3.8 10.0 1.6 14.3 12.6 11.6 11.3 11.0 10.7 6.1 12.3 13.4 Ba 1443 1467 1198 1186 1588 253 1351 681 1364 874 882 824 870 715 714 174 255 451 Hf 13.7 12.2 14.4 14.2 14.6 7.0 12.3 6.3 3.3 10.0 8.4 9.5 9.5 6.6 6.8 2.0 7.3 6.4 Ta 2.5 2.9 1.5 3.1 3.8 1.6 1.6 3.2 1.0 2.1 2.6 1.9 1.6 3.0 1.5 1.3 1.7 2.8 Pb 41.3 40.9 41.7 39.3 38.6 17.6 36.1 30.3 33.7 32.6 32.0 34.8 31.0 32.5 30.9 37.0 18.0 35.2 Th 36.0 41.8 54.6 51.1 38.3 16.1 38.4 31.9 7.5 22.4 21.5 34.7 22.6 34.4 34.5 6.4 14.5 44.2 U 3.6 3.5 4.5 4.4 4.1 3.9 3.6 3.8 1.7 3.8 2.5 4.0 4.5 7.2 7.6 3.6 3.5 9.8 Note: Mkl – Klipkraal Granite, Ml – Louisvale Granite, Mka – Kanoneiland Granite, Mkb – Keboes Granite, Mv – Vaalputs Granite. All REE normalized relative to Boynton (1984). All major and minor elements measured in weight percent (wt.%). The trace elements are measured in parts per million (ppm). a Cr concentrations are unreliable due to milling in a Cr-steel mill.

ACCEPTED MANUSCRIPT

Table 3 (cont.) Whole rock major, minor element and trace element geochemistry of the eastern Namaqua Sector granites

AC C

EP

TE D

M AN U

SC

RI PT

Sample Mv3 Mv5 Mv9 Ms1 Ms2 Ms6 Ms7 Mf1 Mf4 Mf6 Mf7 Mc2 Mc6 Mc8 Mc9 Mcol1 Mcol2 Mcol3 SiO2 72.81 69.75 72.71 67.66 68.18 68.29 67.87 66.46 65.40 65.36 65.91 64.18 70.42 71.25 65.78 66.80 65.19 65.51 TiO2 0.29 0.83 0.30 0.96 0.95 0.91 0.99 1.24 1.27 1.30 1.28 1.34 0.66 0.50 1.19 0.86 1.07 1.15 Al2O3 13.35 11.89 13.32 13.37 13.00 13.14 12.92 12.85 13.00 13.15 12.77 13.75 13.42 13.25 13.53 14.04 13.90 13.51 2.74 5.52 2.73 5.52 5.40 5.43 5.45 7.09 7.28 7.37 7.41 7.45 3.99 3.16 6.97 6.06 7.13 7.36 Fe2O3 MnO 0.05 0.12 0.05 0.12 0.11 0.11 0.12 0.15 0.16 0.16 0.16 0.15 0.10 0.06 0.14 0.11 0.13 0.141 MgO 0.26 0.91 0.28 0.95 0.92 0.97 0.93 1.36 1.45 1.35 1.40 1.54 0.62 0.55 1.33 0.96 1.25 1.29 CaO 1.38 2.43 1.43 3.03 2.96 3.01 2.89 3.86 4.16 4.06 3.96 3.71 1.98 1.52 3.43 2.32 2.84 2.91 Na2O 3.03 2.48 3.03 2.77 2.59 2.73 2.61 2.50 2.59 2.62 2.53 2.64 2.93 3.13 2.64 2.27 2.10 2.22 K2O 5.30 4.21 5.34 4.53 4.81 4.39 4.84 3.90 3.81 3.75 3.91 3.87 5.08 5.38 4.11 5.01 4.52 4.39 P2O5 0.11 0.32 0.11 0.30 0.28 0.29 0.27 0.48 0.50 0.51 0.48 0.41 0.21 0.15 0.35 0.31 0.30 0.34 Cr2O3 n.d. 0.004 0.001 0.005 0.004 0.005 0.004 0.002 0.001 0.002 0.003 0.004 0001 0.005 0.02 0.002 0.002 0.001 L.O.I. 0.05 0.12 0.11 0.12 0.13 0.22 0.08 0.11 0.07 0.07 0.06 0.10 0.09 0.10 0.08 0.11 0.11 0.10 Total 99.38 98.59 99.43 99.33 99.34 99.50 98.96 99.99 99.68 99.69 99.87 99.15 99.49 99.05 99.58 98.84 98.56 98.92 Sc 10.7 16.3 10.6 16.6 16.1 19.0 11.9 22.8 21.9 21.3 20.9 10.5 10.7 23.1 15.2 19.0 19.2 15.3 Ti 1766 4991 1787 5736 5689 5453 5928 7422 7588 7774 7683 8012 3959 3013 7123 5130 6416 6892 V 25.6 72.8 22.6 87.5 90.5 91.6 66.8 115.3 115.0 125.9 117.0 50.4 40.2 116.2 68.7 90.8 96.4 89.4 76.3 164.3 60.2 142.6 162.7 68.9 182.2 52.6 79.9 162.4 74.1 107.4 56.5 69.9 104.5 63.8 109.5 142.0 Cra Co 3.3 7.6 3.1 9.4 9.2 10.9 6.8 13.6 12.8 13.3 15.6 5.9 5.2 16.6 10.6 13.3 13.2 9.0 Ni 9.4 14.5 7.5 12.9 14.8 18.1 13.9 16.1 15.1 18.8 18.6 11.0 8.8 20.7 17.4 17.4 15.3 14.4 Cu 29.5 11.9 25.4 14.5 26.3 31.4 13.4 67.7 16.0 100.3 28.9 23.8 17.2 35.8 36.6 29.5 19.2 25.4 Zn 36.5 85.8 39.1 75.6 77.9 90.2 76.7 110.5 99.7 104.8 108.8 112.3 60.8 130.4 83.5 97.4 86.7 70.5 Rb 510.9 196.3 489.6 195.9 224.5 199.2 278.6 156.6 161.4 159.4 167.8 226.7 265.1 193.1 246.5 218.1 217.6 196.3 Sr 67.0 182.2 65.3 188.0 171.5 197.3 126.6 279.4 277.3 264.3 240.0 159.3 162.6 220.1 110.0 118.9 149.1 180.3 Y 116.3 53.4 129.5 48.2 50.3 53.2 50.9 63.1 59.7 59.1 59.9 43.3 49.7 62.8 46.4 56.2 54.2 46.7 Zr 219.5 309.5 266.3 413.2 432.1 410.6 334.3 395.0 422.0 387.0 504.4 351.5 333.0 570.6 351.0 415.6 396.6 420.9 Nb 38.2 21.4 49.5 20.6 22.3 22.9 19.0 22.2 24.9 24.4 27.6 17.1 19.2 26.8 19.8 21.3 22.2 21.3 Cs 26.7 6.1 26.0 6.3 5.6 5.3 13.2 5.3 5.3 5.9 6.8 9.3 3.6 9.6 6.1 7.2 8.3 5.0 Ba 333 883 332 1104 1076 1193 884 1134 1130 1070 1105 753 756 1136 739 856 833 1069 Hf 7.6 8.5 8.8 11.2 12.0 11.0 9.8 10.3 11.1 10.3 13.5 10.0 9.7 15.0 10.3 11.8 10.9 11.1 Ta 4.2 1.7 4.8 1.5 2.7 1.6 2.0 1.5 1.8 2.4 2.6 1.6 1.4 1.8 2.8 1.3 1.5 2.6 Pb 34.0 26.8 33.4 30.8 32.4 37.1 40.6 29.3 27.3 28.8 28.0 22.7 31.7 32.2 34.7 31.8 29.6 32.2 Th 88.4 20.8 89.5 25.0 34.1 57.8 53.8 17.1 17.1 20.1 17.5 24.4 49.2 26.1 32.4 32.1 28.7 19.2 U 23.7 3.9 31.1 4.0 4.4 4.9 6.6 3.7 3.2 4.3 5.9 4.1 6.4 5.5 4.9 4.6 3.9 5.8 Note: Mv – Vaalputs Granite, Ms – Straussburg Granite, Mf – Friersdale Charnockite, Mc – Cyndas Subsuite, Mcol – Colston Granite. All REE are normalized relative to Boynton (1984). All major and minor elements measured in weight percent (wt.%). The trace elements are measured in parts per million (ppm). a Cr concentrations are unreliable due to milling in a Cr-steel mill.

ACCEPTED MANUSCRIPT

Table 3 (cont.) Whole rock major, minor element and trace element geochemistry of the eastern Namaqua Metamorphic Province granites

AC C

EP

TE D

M AN U

SC

RI PT

Sample Mcol4 Mcol6 Mge1 Mge2 Mge3 Mge5 Mkle1 Mkle2 Mkle3 Me1 Me2 Mks1 Mks2 Mks3 Mks4 Mkn2 Mkn4 Mkn7 SiO2 66.88 65.90 69.64 68.92 68.96 65.70 70.87 70.22 70.52 76.02 75.12 69.14 69.19 68.92 69.00 72.49 71.38 71.31 TiO2 0.97 1.02 0.71 0.82 0.76 1.02 0.47 0.55 0.53 0.28 0.29 0.75 0.74 0.80 0.79 0.30 0.34 0.34 Al2O3 13.79 13.76 13.41 13.05 12.95 12.81 13.66 13.64 13.68 12.07 12.36 12.95 12.97 13.11 13.02 13.84 13.96 14.14 6.19 6.45 4.52 6.07 5.99 8.54 3.49 3.97 3.80 1.77 1.92 5.91 5.73 5.89 5.65 3.09 3.17 3.34 Fe2O3 MnO 0.13 0.14 0.09 0.13 0.12 0.19 0.08 0.08 0.08 0.03 0.03 0.12 0.12 0.12 0.12 0.07 0.08 0.08 MgO 1.61 1.70 0.65 0.60 0.64 0.60 0.80 0.95 0.93 0.22 0.21 0.58 0.56 0.60 0.56 0.34 0.51 0.41 CaO 2.49 2.58 1.84 2.14 2.20 3.16 3.08 3.41 3.26 0.97 0.98 2.11 2.11 2.24 2.20 2.36 2.35 2.62 Na2O 2.26 2.23 2.48 2.26 2.27 2.11 3.47 3.38 3.50 2.72 2.66 2.25 2.32 2.36 2.46 3.54 3.36 3.66 K2O 3.95 4.18 5.51 5.07 5.02 4.97 3.30 2.93 2.87 5.25 5.65 5.21 5.16 4.95 4.97 3.09 3.80 3.12 P2O5 0.27 0.27 0.29 0.32 0.31 0.42 0.11 0.13 0.12 0.05 0.06 0.30 0.30 0.32 0.30 0.09 0.09 0.11 Cr2O3 0.004 0.006 n.d. 0.003 0.001 0.003 0.009 0.009 0.012 0.010 0.006 0.001 0.003 0.005 0.001 0.002 0.009 0.005 L.O.I. 0.16 0.12 0.16 0.09 0.09 0.10 0.08 0.09 0.10 0.09 0.09 0.08 0.05 0.11 0.09 0.08 0.10 0.07 Total 98.71 98.38 99.29 99.48 99.31 99.62 99.40 99.37 99.40 99.47 99.39 99.41 99.25 99.42 99.16 99.29 99.15 99.20 Sc 18.4 19.3 12.2 19.2 19.7 24.5 10.0 12.6 10.8 7.8 7.4 17.8 18.1 18.1 18.1 8.5 8.6 8.9 Ti 5822 6144 4252 4910 4576 6116 2839 3308 3191 1661 1747 4520 4429 4814 4762 1773 2017 2019 V 110.4 110.0 71.8 47.4 53.0 37.6 61.1 77.4 73.6 29.9 38.4 46.1 42.4 49.6 45.8 33.9 39.0 45.9 169.1 67.4 242.6 91.2 161.0 133.2 98.9 167.2 184.0 83.8 225.7 113.3 72.5 147.4 93.2 104.8 96.9 171.3 Cra Co 13.8 14.7 6.9 6.7 7.1 8.2 8.1 9.6 9.0 3.8 3.3 6.5 6.7 6.8 6.5 4.0 4.5 4.6 Ni 21.8 18.9 14.4 10.5 12.0 11.4 15.8 22.9 21.2 11.5 13.3 11.4 22.9 12.2 9.0 11.9 11.3 10.7 Cu 45.5 62.0 21.4 14.3 17.2 32.6 37.6 76.5 43.2 24.5 32.8 17.7 38.8 17.9 13.5 27.1 12.4 13.4 Zn 82.6 85.9 74.8 102.4 103.5 139.0 45.8 53.3 47.5 52.3 31.0 97.6 101.5 96.1 100.8 60.8 65.5 69.4 Rb 188.8 194.0 292.2 209.7 193.1 189.1 107.0 99.1 106.5 276.0 296.1 197.2 206.1 200.3 197.5 98.1 103.0 95.5 Sr 118.4 110.1 133.2 165.5 151.1 167.4 153.5 156.7 156.2 60.0 50.5 142.1 142.9 148.2 145.0 221.4 240.0 249.5 Y 57.8 60.6 54.1 52.7 50.3 77.3 59.6 56.7 44.0 10.4 8.6 49.7 52.3 51.3 50.4 25.2 21.7 22.3 Zr 364.6 387.8 341.5 369.5 351.4 510.2 275.3 307.3 307.7 224.2 171.2 323.9 325.6 340.1 344.0 263.9 205.9 227.3 Nb 18.3 18.6 20.1 20.9 21.6 28.8 11.4 13.3 10.9 9.4 9.7 20.4 19.9 21.3 21.2 12.5 11.5 12.2 Cs 6.8 6.9 13.9 3.5 3.4 2.4 1.8 2.0 2.6 1.7 1.6 5.7 6.5 6.0 6.0 3.0 2.6 2.5 Ba 770 805 931 1115 1102 1369 1135 982 959 523 520 1043 1084 1050 1061 1257 1534 1205 Hf 10.4 11.1 10.1 10.3 9.9 14.1 7.9 8.0 8.4 6.8 5.1 9.2 9.3 9.5 9.6 6.6 5.5 5.9 Ta 1.9 1.3 2.0 1.4 2.9 3.5 0.8 3.0 3.0 0.4 1.6 1.9 1.3 2.2 1.3 1.7 0.7 2.0 Pb 38.6 41.0 39.3 36.9 35.3 39.4 18.9 17.7 16.2 43.2 22.6 34.2 37.5 35.0 34.4 18.0 18.4 17.0 Th 56.4 83.3 55.5 29.0 28.9 37.5 16.9 13.1 5.9 68.7 3.8 27.3 29.1 28.9 28.1 15.7 11.5 12.2 U 6.0 7.6 6.6 3.0 2.3 3.6 2.0 1.6 1.5 3.6 0.8 3.2 3.2 3.2 2.7 2.1 1.9 1.6 Note: Mcol – Colston Granite, Mge – Gemsbokbult Granite, Mkle – Kleinbegin Granite, Me – Elsie se Gorra Granite, Mks – Klip Koppies Granite, Mkn – Josling Granite. All REE are normalized relative to Boynton (1984). All major and minor elements measured in weight percent (wt.%). The trace elements are measured in parts per million (ppm). a Cr concentrations are unreliable due to milling in a Cr-steel mill.

ACCEPTED MANUSCRIPT

Table 4 Whole rock rare earth element (REE) geochemistry of the eastern Namaqua Metamorphic Province granites Ml2 103.52 222.03 26.35 103.69 19.48 2.87 17.13 2.59 15.70 3.15 9.10 1.25 8.80 1.21 0.48 3.33 7.98 1.76 8.93 Ms7 85.65 189.44 20.80 76.07 13.74 1.60 10.54 1.55 8.91 1.75 5.24 0.77 5.56 0.79 0.41 3.91 10.45 1.66 11.35

Ml4 53.35 117.58 13.78 52.96 10.30 1.23 7.93 1.12 7.03 1.31 3.83 0.55 3.89 0.52 0.42 3.25 9.31 1.89 10.71 Mf1 85.38 180.22 21.25 82.44 15.58 3.11 13.73 2.02 12.16 2.40 6.59 0.95 6.60 0.96 0.65 3.44 8.77 1.77 9.25

Ml5 19.56 35.34 3.66 12.65 1.92 0.64 1.49 0.18 0.92 0.16 0.58 0.08 0.50 0.10 1.16 6.40 26.28 1.91 21.09 Mf4 82.24 174.74 20.65 81.01 15.48 3.05 12.62 1.86 11.09 2.36 6.67 0.88 6.02 0.88 0.67 3.33 9.27 1.77 9.70

Mka1 65.37 139.13 16.45 62.91 12.69 2.04 10.83 1.69 10.54 2.06 6.09 0.83 6.09 0.85 0.53 3.23 7.28 1.58 8.00 Mf6 81.60 174.21 20.38 79.82 14.47 2.86 12.22 1.86 11.15 2.25 6.51 0.94 6.21 0.87 0.66 3.54 8.92 1.74 9.74

Mka3 62.96 131.12 15.54 57.83 12.40 2.12 10.88 1.92 12.89 2.67 7.99 1.27 8.62 1.15 0.56 3.19 4.95 1.17 5.71 Mf7 75.10 160.26 19.41 74.52 14.81 2.81 12.45 1.82 11.23 2.31 6.19 0.95 6.24 0.86 0.63 3.18 8.16 1.79 9.07

Mka6 98.31 215.51 25.19 95.24 18.05 2.05 14.47 2.23 13.61 2.63 7.59 1.09 7.29 1.02 0.39 3.42 9.15 1.75 10.00 Mc2 49.27 106.61 12.93 51.03 10.56 1.58 9.12 1.39 8.15 1.58 4.35 0.60 4.39 0.61 0.49 2.93 7.61 1.85 8.42

Mka7 67.66 142.45 16.53 63.29 12.04 2.02 9.46 1.44 8.76 1.72 4.89 0.73 4.91 0.65 0.58 3.52 9.34 1.81 10.87 Mc6 90.58 199.36 23.06 85.25 15.66 1.47 11.75 1.69 9.51 1.89 5.16 0.74 5.05 0.77 0.33 3.63 12.16 1.89 12.25

RI PT

Ml1 35.74 62.61 6.34 23.07 4.48 0.84 3.66 0.51 3.16 0.65 1.86 0.26 1.94 0.27 0.64 5.00 12.52 1.65 13.55 Ms6 120.02 249.90 27.59 96.30 15.76 2.35 11.92 1.72 10.23 1.95 5.43 0.92 5.57 0.86 0.52 4.78 14.61 1.72 14.54

SC

Mkl3 113.05 241.53 29.09 115.35 21.73 3.49 19.64 3.06 18.93 3.72 10.81 1.66 10.57 1.55 0.52 3.26 7.25 1.57 7.60 Ms2 67.71 144.36 17.08 64.72 12.09 2.05 9.56 1.54 9.58 1.92 5.56 0.77 5.46 0.80 0.58 3.51 8.41 1.49 8.87

M AN U

Mkl6 115.41 260.89 31.96 128.49 22.72 2.71 16.34 2.26 13.25 2.67 7.39 0.95 6.82 0.98 0.43 3.19 11.48 2.07 12.27 Ms1 73.18 148.55 16.90 61.83 11.34 2.04 9.14 1.42 8.87 1.80 5.12 0.79 5.10 0.75 0.61 4.05 9.73 1.52 10.21

TE D

Mkl5 119.13 270.33 33.12 129.45 23.56 2.79 16.88 2.24 13.41 2.66 7.24 1.06 6.83 0.85 0.43 3.17 11.82 2.46 14.61 Mv9 112.63 238.91 25.60 89.71 17.65 1.11 16.03 2.99 20.33 4.34 14.11 2.14 14.72 2.14 0.20 4.00 5.19 0.93 5.48

EP

Mkl4 120.82 255.03 30.50 118.87 23.20 3.37 19.40 2.91 17.69 3.61 9.94 1.46 9.32 1.32 0.49 3.27 8.79 1.82 9.54 Mv5 66.64 142.83 16.81 64.49 12.55 2.11 11.01 1.67 10.24 2.08 5.73 0.78 5.69 0.79 0.55 3.33 7.95 1.73 8.79

AC C

Sample Mkl2 La 103.83 Ce 223.32 Pr 26.61 Nd 104.60 Sm 20.62 Eu 3.07 Gd 17.96 Tb 2.74 Dy 16.71 Ho 3.49 Er 10.26 Tm 1.40 Yb 9.85 Lu 1.40 Eu/Eu* 0.49 (La/Sm)N 3.16 (La/Yb)N 7.15 (Gd/Lu)N 1.59 (La/Lu)N 7.70 Sample Mv3 La 118.57 Ce 250.73 Pr 27.17 Nd 93.04 Sm 18.88 Eu 1.08 Gd 16.65 Tb 3.05 Dy 18.48 Ho 4.08 Er 11.86 Tm 1.94 Yb 13.03 Lu 1.96 Eu/Eu* 0.19 (La/Yb)N 3.94 (La/Sm)N6.17 (Gd/Lu)N1.05 (La/Lu)N 6.30

Mkb1 57.27 124.67 14.96 56.94 10.99 1.40 8.43 1.30 7.63 1.56 4.22 0.62 4.25 0.63 0.44 3.27 9.14 1.67 9.53 Mc8 89.12 186.30 21.56 82.17 15.08 2.59 12.87 1.85 11.71 2.30 6.77 0.96 6.53 0.98 0.57 3.71 9.25 1.63 9.49

Mkb2 56.39 122.74 14.40 56.07 10.90 1.28 8.36 1.25 7.46 1.48 4.52 0.60 4.31 0.59 0.41 3.25 8.87 1.77 10.03 Mc9 69.85 157.29 18.94 75.11 15.22 1.68 11.96 1.68 9.58 1.74 4.68 0.67 4.41 0.62 0.38 2.88 10.75 2.40 11.80

Mkb4 14.42 31.79 3.66 14.74 3.78 0.51 3.00 0.35 1.52 0.18 0.50 0.08 0.47 0.08 0.46 2.39 20.67 4.61 18.65 Mcol1 79.73 178.27 21.39 85.87 17.20 1.88 13.84 1.96 11.34 2.06 5.84 0.84 5.28 0.79 0.37 2.91 10.25 2.17 10.51

Mkb6 32.64 57.10 5.93 21.09 4.33 0.88 3.41 0.57 3.35 0.71 2.25 0.34 2.11 0.25 0.70 4.73 10.51 1.68 13.51 Mcol2 77.56 170.32 20.31 80.20 15.95 2.09 12.67 1.78 10.75 2.07 5.58 0.74 5.38 0.75 0.45 3.05 9.77 2.10 10.82

Mv2 65.69 148.41 17.34 66.56 13.65 0.94 10.85 1.68 10.58 2.19 6.30 0.97 6.35 0.98 0.24 3.02 7.02 1.37 6.95 Mcol3 37.60 91.58 12.07 50.80 10.22 2.00 8.81 1.34 8.39 1.68 5.21 0.70 4.92 0.73 0.65 2.31 5.18 1.49 5.35

ACCEPTED MANUSCRIPT

Table 4 (cont.) Whole rock rare earth element (REE) geochemistry of the eastern Namaqua Metamorphic Province granites

AC C

EP

TE D

M AN U

SC

RI PT

Sample Mcol4 Mcol6 Mge1 Mge2 Mge3 Mge5 Mkle1 Mkle2 Mkle3 Me1 Me2 Mks1 Mks2 Mks3 Mks4 Mkn2 Mkn4 Mkn7 La 92.78 113.28 90.99 78.42 77.15 99.25 40.73 43.85 24.68 65.99 27.59 73.65 73.85 76.40 73.30 55.38 41.62 43.64 Ce 205.12 258.90 198.85 168.21 165.08 221.45 96.18 98.12 56.56 147.24 53.75 157.39 154.36 162.46 156.94 103.80 76.42 82.31 Pr 24.49 30.53 21.91 19.78 19.41 26.62 11.97 12.10 7.39 16.03 5.38 18.72 18.55 19.20 18.37 11.23 8.39 8.75 Nd 93.73 113.78 80.82 77.13 75.62 107.31 46.45 46.17 31.63 57.14 19.16 71.41 73.00 75.16 71.77 40.20 29.83 32.26 Sm 17.46 19.78 14.42 14.98 14.71 20.26 9.78 9.05 6.99 8.96 3.33 14.17 14.49 14.95 14.12 7.59 5.37 5.66 Eu 1.74 1.97 1.79 2.40 2.23 3.08 1.33 1.48 1.24 1.17 1.07 2.11 2.20 2.25 2.22 1.49 1.27 1.40 Gd 12.91 15.17 10.82 12.44 11.49 16.51 9.28 8.70 6.68 6.11 2.99 11.54 11.89 11.89 11.97 6.40 4.60 4.72 Tb 1.89 2.08 1.62 1.77 1.64 2.44 1.60 1.47 1.16 0.65 0.36 1.71 1.65 1.68 1.65 0.90 0.70 0.72 Dy 11.10 11.84 9.54 10.05 9.68 14.73 10.35 9.20 7.31 2.78 1.94 9.32 9.96 9.57 9.79 5.11 4.00 4.24 Ho 2.18 2.29 1.98 1.93 1.94 2.96 2.22 1.94 1.57 0.46 0.36 1.87 1.97 1.87 1.90 0.91 0.80 0.84 Er 6.12 6.20 5.56 5.61 5.27 8.53 6.18 5.77 4.59 1.08 0.76 5.17 5.49 5.43 5.54 2.61 2.22 2.20 Tm 0.86 0.90 0.80 0.77 0.77 1.18 0.85 0.90 0.66 0.12 0.12 0.73 0.75 0.73 0.78 0.37 0.33 0.32 Yb 5.69 5.93 5.72 5.42 5.18 8.05 5.59 5.86 4.61 0.78 0.71 4.99 5.13 4.87 5.12 2.40 1.99 2.07 Lu 0.80 0.83 0.88 0.77 0.74 1.16 0.76 0.88 0.71 0.13 0.11 0.70 0.72 0.70 0.75 0.35 0.29 0.29 Eu/Eu* 0.35 0.35 0.44 0.54 0.52 0.52 0.43 0.51 0.55 0.49 1.04 0.50 0.51 0.52 0.52 0.65 0.78 0.83 (La/Yb)N 3.33 3.59 3.96 3.28 3.29 3.07 2.61 3.04 2.22 4.62 5.20 3.26 3.20 3.20 3.26 4.58 4.86 4.84 (La/Sm)N11.06 12.95 10.78 9.82 10.11 8.36 4.94 5.08 3.63 57.14 26.36 10.01 9.76 10.65 9.72 15.64 14.21 14.33 (Gd/Lu)N1.99 2.26 1.52 1.99 1.94 1.76 1.51 1.23 1.17 5.71 3.23 2.06 2.06 2.10 1.97 2.23 2.00 2.00 14.19 10.74 10.55 10.92 8.88 5.56 5.22 3.62 51.84 25.08 11.03 10.73 11.35 10.13 16.26 15.20 15.56 (La/Lu)N 12.02 Note: Mv – Vaalputs Granite, Ms – Straussburg Granite, Mf – Friersdale Charnockite, Mc – Cyndas Subsuite, Mcol – Colston Granite, Mkl – Klipkraal Granite, Ml – Louisvale Granite, Mka – Kanoneiland Granite, Mkb – Keboes Granite, Mv – Vaalputs Granite Mcol – Colston Granite, Mge – Gemsbokbult Granite, Mkle – Kleinbegin Granite, Me – Elsie se Gorra Granite, Mks – Klip Koppies Granite, Mkn – Josling Granite. All REE are normalized relative to Boynton (1984). The REE are measured in parts per million (ppm).

ACCEPTED MANUSCRIPT

Table 5 Isotopic data for the granites of the eastern Namaqua Sector for this study, and those from literature data, arranged from oldest to youngest according to emplacement age

AC C

EP

TE D

M AN U

SC

RI PT

143 87 Granite Sm Nd Sm/ Nd/ 2σ σ 147Sm/ (143Nd/ Age εNd(t) εNd(o) TCHUR TDM Rb Sr Rb/ (87Sr/ Rb/ SrI Ref.a 144 144 144 86 86 (ppm) (ppm) Nd Nd Nd Nd)o (Ma) (Ma) (Ma) Sr Sr)o Sr Josling 5.4 29.8 0.18 0.51203 9 0.1089 0.51116 1217 1.79 -11.90 1059 1630 103.0 240.0 0.43 0.72662 1.1406 0.70674 1 Josling 4.2 27.3 0.15 0.51200 6 0.0928 0.51126 1217 3.77 -12.41 934 1447 114.4 207.6 0.55 0.73373 1.4638 0.70821 1 Elsie se 9.0 57.1 0.16 0.51192 10 0.0949 0.51119 1175 1.40 -13.93 1068 1571 276.0 60.0 4.60 0.95515 12.227 0.74944 1 Cyndas 15.1 82.2 0.18 0.51205 10 0.1110 0.51120 1159 1.17 -11.55 1053 1637 193.1 220.1 0.88 0.79434 2.3304 0.75567 1 Cyndas 11.8 65.0 0.18 0.51205 7 0.1094 0.51122 1159 1.56 -11.38 1019 1600 221.8 174.1 1.27 0.77653 3.3840 0.72038 1 Colston 10.2 50.8 0.20 0.51200 8 0.1217 0.51107 1151 -1.47 -12.52 1303 1908 196.3 180.0 1.09 0.78169 2.8965 0.73396 1 Colston 10.3 47.8 0.22 0.51215 7 0.1307 0.51116 1151 0.24 -9.48 1121 1829 221.3 42.1 5.26 0.95662 13.963 0.72653 1 Vaalputs 11.0 55.7 0.20 0.51215 7 0.1196 0.51125 1146 1.78 -9.53 966 1619 187.2 180.5 1.04 0.76491 2.7556 0.71970 1 Louis 1.9 12.7 0.15 0.51196 12 0.0918 0.51128 1125 1.89 -13.23 985 1487 89.0 501.6 0.18 0.71389 0.4715 0.70630 1 Klipkr 108.6 576.8 0.19 0.51197 10 0.1139 0.51114 1110b -1.25 -13.01 1227 1798 1101 825.7 1.33 0.77235 3.5419 0.71608 1 -2.50 -13.94 1349 1910 175.2 161.2 1.09 0.76482 2.8869 0.71896 1 Klipkr 20.8 108.6 0.19 0.51192 8 0.1160 0.51108 1110b Keboes 4.3 21.1 0.21 0.51198 14 0.1242 0.51107 1105 -2.64 -12.89 1388 1993 185.6 294.3 0.63 0.79779 1.6753 0.77130 1 Kleinbe 7.4 37.4 0.20 0.51170 7 0.1196 0.51083 1101 -7.51 -18.34 1853 2344 221 179 1.23 0.76380 3.2795 0.71212 1 Kanon 18.1 95.2 0.19 0.51208 10 0.1146 0.51125 1098 0.57 -10.96 1044 1651 233.2 142.9 1.63 0.79110 4.3332 0.72300 1 Kanon 1.7 12.1 0.14 0.51197 5 0.0835 0.51136 1098 2.83 -13.08 903 1383 129.6 533.1 0.24 0.71753 0.6458 0.70738 1 Klip Ko 9.7 53.1 0.18 0.51195 7 0.1105 0.51115 1096 -1.44 -13.52 1224 1777 209 149 1.40 0.72387 3.7259 1 Strauss 15.4 98.1 0.16 0.51176 10 0.0949 0.51108 1089 -2.95 -17.12 1313 1780 157.9 228.0 0.69 0.74612 1.8398 0.71744 1 Friers 14.2 79.4 0.18 0.51203 8 0.1082 0.51127 1078 0.41 -11.81 1042 1612 164.8 262.2 0.63 0.73666 1.6695 0.71090 1 Friers 14.4 78.8 0.18 0.51201 9 0.1105 0.51123 1078 -0.35 -12.24 1110 1682 164.9 277.1 0.60 0.73434 1.5807 0.70995 1 Friers 14.3 76.6 0.19 0.51201 10 0.1129 0.51121 1078 -0.67 -12.23 1140 1720 160.1 271.0 0.59 0.73407 1.5692 0.70987 1 Josling 6.9 30.8 0.22 0.51227 20 0.1359 0.51119 1217 2.36 -7.12 915 1716 2 Vaalputs 10.5 53.9 0.19 0.51202 20 0.1174 0.51113 1146 -0.50 -12.13 1195 1792 2 Gemsbok 14.0 77.9 0.18 0.51198 12 0.0930 0.51131 1104 1.91 -12.76 961 1471 3 Kleinbe 13.7 88.7 0.15 0.51164 8 0.1187 0.51079 1101 -8.44 -19.41 1938 2409 3 Klip Ko 14.6 74.6 0.20 0.51202 10 0.1257 0.51112 1096 -2.06 -12.02 1321 1950 3 Strauss 11.6 58.0 0.20 0.51197 10 0.1206 0.51111 1089 -2.49 -13.09 1342 1933 2 Friers 14.9 78.7 0.19 0.51200 20 0.1143 0.51119 1078 -1.08 -12.45 1179 1761 2 Friers 14.7 77.4 0.19 0.51198 20 0.1144 0.51117 1078 -1.42 -12.78 1212 1788 2 a References: 1 – this study, 2 – Pettersson et al. (2009), 3 – Bailie et al. (2011a) b Presumed as no U-Pb zircon emplacement age determined; age estimated based on field relationships Abbreviations: Elsie se – Elsie se Gorra, Friers – Friersdale Charnockite, Gemsbok – Gemsbokbult, Kanon – Kanoneiland, Kleinbe – Kleinbegin, Klip Ko – Klip Koppies, Klipkra – Klipkraal, Louis – Louisvale, Strauss - Straussburg

Sample No. Mkn4 Mkn Me1 Mc8 Cyn1 Mcol3 Col1 Vaal Ml5 Mkl3 Klp Mkb6 Kle1 Mka6 Kan1 Klip Str1 S188 S815 S367

ACCEPTED MANUSCRIPT

Late- to post-tectonic granites (Keimoes Suite) c Monzogranite to variable, Granodiorite; mostlybt-rich for mediumsome, ferroan, grained, metaluminous most porphyritic/ megacrystic

εNd(t) range

Host rocks + contacts

SrI range

TDM model ages (Ma)

gneissic, welldeveloped

Areachap Grp, gradational

moderate to well-developed

Korannaland -1.47 to 0.71970- 1571-1908 Grp, foliation 1.78 0.74944 stronger toward contacts, concordant

RI PT

Presence of foliation

1217

1175-1146

M AN U

SC

1.79 to 0.70674- 1447-1716 3.77 0.70821

Emplacement age (in Ma)

strong / gneissic Bethesda Fm, 1.89 disharmonic Areachap Grp, flow pattern concordant, lit-par-lit, foliated, gradational with syn-tectonic granites

0.70630

1487

1125

TE D

Table 6 Summary of proposed subdivision of the eastern Namaqua Sector granites Granite Composition Grain Mineralogy Size Early syn-tectonic granite Josling leucogranite fine-grained qtz, K-fsp > plag, metaluminous bt-poor, msc Syn-tectonic granites a, b leucogranite coarse- to qtz, K-fsp, plag, bt, to granodiorite, mediumminor msc ferroan, grained, metaluminous typically to peraluminous medium, equigranular Louisvale heterogeneous, medium mafic – variable amts of mesocratic to fsp phenocrysts, leucocratic, opalescent blue qtz, tonalite to cordierite; leucocratic – monzogranite, elongate mcl phenocrysts ferroan, metaluminous

Areachap Grp, -2.95 to 0.70738- 1383-1993 d 1110-1078 older granites; 2.83 c 0.77130 country rocks Dagbreek Fm, Korannaland Grp; sharp, cross-cutting; metam. aureole a The Cyndas Subsuite is excluded from this table due to showing a range of different granite varieties within the subsuite. Generalizations with regard to element contents and petrogenesis cannot not, therefore, be made. b The summary is generalized for the overall age grouping. c Generalized summary for the Keimoes Suite as each granite can show variable and differing aspects relative to the other Keimoes Suite granites. c excluding the Kleinbegin Granite (εnd(t) = -7.51 to -8.44), d Excluding the Kleinbegin Granite (TDM = 2344-2409 Ma)

AC C

EP

qtz, K-fsp, plag, bt ± hbl weak/poor to ± opx (in some); K-fsp unfoliated phenocrysts

Abbreviations: mineralogy: bt – biotite, fsp – feldspar, hbl – hornblende, K-fsp – K-feldspar, mcl – microcline, msc- muscovite, opx – orthopyroxene, plag – plagioclase, pyx – pyroxene, qtz – quartz; porph – porphyritic; Fm – Formation, Grp – Group, metam. – metamorphic, amts - amounts

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

Mc8-01 Mc8-02 Mc8-03 Mc8-04 Mc8-05 Mc8-06 Mc8-07 Mc8-08 Mc8-09 Mc8-10 Mc8-11 Mc8-12 Mc8-13 Mc8-14 Mc8-15 Mc8-16 Mc8-17 Mc8-18 Mc8-19 Mc8-20 Mc8-22 Mc8-23 Mc8-24 Mc8-25

Dark core Dark core Dark core Dark core Bright core Dark core Bright core Dark core Bright core Dark rim Dark core Bright core Bright core Bright core Dark core Bright core Bright core Bright core Dark core Bright core Bright core Bright core Dark core Dark rim

Mc8

Mc8-21 irregular signal

Pb/235Ub

2 σd

206

Pb/238Ub

2 σd

rhoc



43 47 50 43 58 48 49 44 52 47 49 48 46 48 57 45 50 59 49 51 44 45 43 49 avg.

0.080 0.085 0.092 0.080 0.107 0.087 0.091 0.081 0.095 0.087 0.090 0.088 0.084 0.087 0.106 0.083 0.093 0.108 0.090 0.095 0.080 0.081 0.079 0.089

0.1957 0.1961 0.1973 0.1953 0.1988 0.1966 0.1998 0.1976 0.1979 0.1987 0.1952 0.1963 0.1969 0.1966 0.1990 0.1948 0.1985 0.1967 0.1990 0.2003 0.1942 0.1937 0.1956 0.1956

0.0056 0.0057 0.0058 0.0056 0.0058 0.0057 0.0058 0.0057 0.0059 0.0057 0.0057 0.0057 0.0057 0.0057 0.0059 0.0056 0.0058 0.0058 0.0058 0.0059 0.0056 0.0056 0.0056 0.0056

0.76 0.72 0.68 0.76 0.59 0.70 0.69 0.76 0.67 0.72 0.68 0.71 0.74 0.71 0.60 0.72 0.67 0.57 0.69 0.67 0.75 0.74 0.76 0.68

0.0786 0.0780 0.0786 0.0783 0.0791 0.0777 0.0786 0.0781 0.0781 0.0787 0.0781 0.0785 0.0791 0.0783 0.0786 0.0771 0.0781 0.0775 0.0780 0.0789 0.0778 0.0779 0.0774 0.0786

0.0019 0.0022 0.0025 0.0019 0.0032 0.0023 0.0024 0.0019 0.0026 0.0022 0.0024 0.0023 0.0021 0.0023 0.0031 0.0021 0.0025 0.0033 0.0024 0.0026 0.0020 0.0021 0.0019 0.0024

1156 1152 1161 1152 1170 1151 1170 1158 1158 1167 1149 1156 1164 1156 1167 1139 1161 1150 1162 1174 1143 1142 1144 1155

0

0

#DIV/0!

0.00

#VALUE!

-0.002

0.018

#VALUE!

0.0000

#VALUE!

0

U [ppm]a Pb [ppm]a Th/U meas

716 547 71 70 70

39 30 13 13 13

0.10 0.08 0.33 0.34 0.34

207

Pb/235Ub

0.40 0.40 1.84 1.87 1.88

2 σd

206

Pb/238Ub

0.02 0.02 0.08 0.08 0.08

0.054 0.054 0.179 0.181 0.181

2 σd

0.002 0.002 0.005 0.005 0.005

rhoc

0.71 0.72 0.70 0.70 0.70

Conc.

Pb/235U

207

2.121 2.109 2.138 2.108 2.167 2.106 2.165 2.129 2.129 2.156 2.102 2.123 2.147 2.123 2.156 2.070 2.137 2.102 2.139 2.179 2.082 2.079 2.086 2.120

207

Pb/206Pbe

EP

PL-06 PL-07 91500-06 91500-07 91500-08

Dates [Ma]

1.14 2.56 1.95 1.13 1.69 1.83 1.75 1.25 1.51 1.40 2.07 1.78 1.46 1.66 2.57 2.25 1.99 2.07 1.57 1.83 0.78 0.68 2.12 1.13

Pb/238U



1152 1155 1161 1150 1169 1157 1174 1163 1164 1168 1150 1155 1159 1157 1170 1147 1167 1158 1170 1177 1144 1141 1152 1152 1159

30 31 31 30 31 31 31 31 32 31 31 31 31 31 32 30 31 31 31 31 30 30 30 30

-10

115

206

0.0534 0.0532 0.0746 0.0751 0.0751

2 σd

0.0015 0.0015 0.0023 0.0023 0.0023



%

1162 1146 1161 1155 1173 1139 1161 1151 1149 1165 1149 1159 1175 1155 1161 1123 1149 1134 1147 1169 1141 1143 1130 1162

48 56 62 48 78 58 59 49 65 55 62 58 52 57 77 54 63 83 60 64 51 52 49 60

99 101 100 100 100 102 101 101 101 100 100 100 99 100 101 102 102 102 102 101 100 100 102 99

0

4000

-10200

207

Pb/206Pb

#VALUE!

Dates [Ma]

Conc.

Pb/235U



340 339 1061 1071 1072

14 14 45 45 45

207

Pb/238U



339 339 1063 1071 1073

10 10 29 29 29

206

207

Pb/206Pb

344 338 1057 1071 1071

U and Pb concentrations and Th/U ratios are calculated relative to the GJ-1 reference zircon. b Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value);

207 d

Pb/235U calculated using (207Pb/206Pb)/(238U/206Pb * 1/137.88). c Rho is the error correlation defined as the quotient of the propagated errors of the 206Pb/238U and the 207Pb/235U ratio.

Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD).e Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975).

AC C

a

PL PL 91500 91500 91500

2 σd

31 12 9 29 8 11 9 28 6 13 12 11 19 11 15 19 10 10 9 9 28 22 43 23

RATIOS Analysis

Pb/206Pbe

160 61 45 148 40 57 46 144 33 66 61 54 95 57 76 97 53 53 48 44 142 113 220 116

Reference Materials Sample

207

M AN U

Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8 Mc8

207

RI PT

Analysis Comment U [ppm]a Pb [ppm]a Th/U meas

TE D

Sample

SC

Table A1 LA-ICP-MS U-Pb geochronological data for zircons from the Smalvisch Granite, Cyndas Subsuite, eastern Namaqua Sector Mc8 RATIOS



%

64 62 61 60 60

98 100 101 100 100

weighted Uncertainty mean age variance

1159.0

27

88.85

weighted uncertainty variance mean 339.1 4.36 1069.15

9.31

17

MSWD 1.000

MSWD

1.535

ACCEPTED MANUSCRIPT

Analysis Comment U [ppm]a Pb [ppm]a Th/U meas Mcol-01 Dark core 66 13 0.82 Mcol-02 Dark rim 62 12 0.57 Mcol-03 Bright rim 66 13 0.60 Mcol-04 Dark core 194 38 0.72 Mcol-05 Bright core 55 11 0.88 Mcol-06 Bright core 113 21 0.83 Mcol-07 Bright core 99 18 0.42 Mcol-08 Bright core 35 7 0.73 Mcol-09 Bright core 100 20 0.57 Mcol-10 Dark core 59 12 0.79 Mcol-11 Dark rim 96 19 0.40 Mcol-12 Dark core 121 24 0.46 Mcol-13 Dark core 61 12 0.87 Mcol-14 Dark core 112 22 0.56 Mcol-15 Bright core 89 18 0.99 Mcol-16 Dark core 187 36 0.37 Mcol-17 Bright core 46 9 0.68 Mcol-18 Dark core 134 26 0.64 Mcol-19 Dark core 181 36 0.98 Mcol-20 Bright rim 104 20 0.41 Mcol-21 Dark core 149 29 0.83 Mcol-22 Bright core 42 8 0.70 Mcol-23 Dark rim 125 25 0.33 Mcol-24 Bright core 95 18 0.99 Mcol-25 Bright core 65 13 0.71

207

Pb/235Ub 2.152 2.104 2.150 2.117 2.141 2.046 2.012 2.150 2.098 2.120 2.079 2.138 2.127 2.137 2.144 2.098 2.129 2.123 2.128 2.124 2.119 2.135 2.168 2.025 2.128

2σ 0.086 0.093 0.086 0.078 0.094 0.109 0.083 0.104 0.096 0.088 0.086 0.088 0.117 0.129 0.084 0.101 0.093 0.091 0.081 0.088 0.088 0.109 0.100 0.087 0.103 d

206

Pb/238Ub 0.1981 0.1964 0.1972 0.1950 0.1971 0.1887 0.1866 0.1983 0.1955 0.1963 0.1938 0.1966 0.1981 0.1967 0.1974 0.1936 0.1975 0.1961 0.1967 0.1950 0.1971 0.1978 0.1977 0.1879 0.1969

Dates [Ma] 2 σd 0.0057 0.0056 0.0057 0.0055 0.0057 0.0054 0.0053 0.0058 0.0056 0.0057 0.0056 0.0056 0.0057 0.0056 0.0057 0.0055 0.0058 0.0056 0.0056 0.0056 0.0056 0.0058 0.0057 0.0054 0.0058

rhoc 0.72 0.65 0.72 0.77 0.66 0.53 0.70 0.60 0.63 0.69 0.70 0.69 0.53 0.48 0.73 0.59 0.67 0.67 0.75 0.69 0.69 0.57 0.62 0.67 0.60

207

Pb/206Pbe 0.0788 0.0777 0.0791 0.0787 0.0788 0.0786 0.0782 0.0786 0.0778 0.0784 0.0778 0.0789 0.0779 0.0788 0.0788 0.0786 0.0782 0.0786 0.0785 0.0790 0.0780 0.0783 0.0795 0.0782 0.0784

2 σd 0.0022 0.0026 0.0022 0.0019 0.0026 0.0035 0.0023 0.0030 0.0028 0.0023 0.0023 0.0024 0.0036 0.0042 0.0021 0.0031 0.0026 0.0025 0.0020 0.0024 0.0023 0.0033 0.0029 0.0025 0.0030

Conc. 2σ 47 51 46 43 51 60 46 56 53 48 47 48 64 70 46 55 51 49 44 48 48 59 54 49 56

207

Pb/235U 1166 1150 1165 1154 1162 1131 1120 1165 1148 1155 1142 1161 1158 1161 1163 1148 1158 1156 1158 1156 1155 1160 1171 1124 1158

Reference Materials

RATIOS Sample

Analysis

PL PL 91500 91500 91500

PL-04 PL-05 91500-03 91500-04 91500-05

U [ppm]a Pb [ppm]a Th [ppm] Th/U meas Th/U calc

547 579 82 81 79

30 31 15 15 14

43 46 27 27 26

0.08 0.08 0.33 0.33 0.33

0.03 0.03 0.09 0.09 0.09

207

Pb/235Ub

0.40 0.40 1.93 1.87 1.87

2 σd

1s%

0.02 0.02 0.10 0.08 0.08

2.07 2.45 2.50 2.14 2.08

206

Pb/238Ub

0.054 0.054 0.180 0.181 0.180

1 σd

2 σd

1s%

rhoc

0.001 0.001 0.003 0.003 0.003

0.002 0.002 0.005 0.005 0.005

1.44 1.44 1.46 1.46 1.45

0.69 0.59 0.58 0.68 0.70

207

Pb/206Pbe

0.0536 0.0538 0.0778 0.0749 0.0752

U and Pb concentrations and Th/U ratios are calculated relative to the GJ-1 reference zircon. b Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value);

2σ 31 30 31 30 31 29 29 31 30 31 30 30 31 30 31 30 31 30 30 30 30 31 31 29 31

2σ 55 66 54 46 65 88 58 76 70 59 58 59 92 104 52 76 64 62 49 59 59 82 70 63 76

207

Pb/206Pb 1167 1140 1174 1165 1167 1163 1152 1163 1143 1156 1142 1169 1144 1167 1167 1162 1152 1161 1158 1172 1146 1154 1185 1152 1157

Pb/235 U calculated using ( 207 Pb/206 Pb)/(238 U/206 Pb * 1/137.88). c Rho is the error correlation defined as the quotient of the propagated errors of the 206 Pb/238 U and the 207 Pb/235 U ratio.

1 σd

2 σd

1s%

0.0008 0.0011 0.0016 0.0012 0.0011

0.0016 0.0021 0.0032 0.0023 0.0022

1.4925 1.9892 2.0306 1.5629 1.4902

EP

TE D

Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD). e Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975).

AC C

d

Pb/238U 1165 1156 1160 1149 1160 1114 1103 1166 1151 1155 1142 1157 1165 1158 1161 1141 1162 1154 1158 1149 1160 1163 1163 1110 1159

weighted uncertainty mean variance

% 100 101 99 99 99 96 96 100 101 100 100 99 102 99 100 98 101 99 100 98 101 101 98 96 100

1151.4

27.54

285.31

MSWD 1.042

Dates [Ma]

1 σd

0.01 0.01 0.05 0.04 0.04

a

207

206

SC

Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3 Mcol3

M AN U

Sample

RI PT

Table A2 LA-ICP-MS U-Pb geochronological data for zircons from the Colston Granite, eastern Namaqua Sector Mcol3 RATIOS

Pb/235U



342 344 1091 1071 1069

14 17 55 46 45

207

Conc. Pb/238U



340 341 1066 1073 1068

9 10 29 29 29

206

Pb/206Pb



%

354 362 1142 1065 1073

67 88 80 62 59

96 94 93 101 100

207

Age Display analysis 207Pb/206Pb 2.8 2.8 2.7 2.7 2.7

PL PL 91500 91500 91500

340 341 1142 1065 1073

weighted 1σ



conc %

5 5 40 31 30

9 10 80 62 59

96 94 93 101 100

mean

340.45 1068.95

uncertainty variance 4.36 0.305 9.28

10.41

MSWD 1.984 1.499

ACCEPTED MANUSCRIPT

Table A3 LA-ICP-MS U-Pb geochronological data for zircons from the Elsie se Gorra Granite, eastern Namaqua Sector Me1 RATIOS Pb/235Ub 1.40 1.14 2.01 2.23 2.22 2.23 2.73 2.75 0.96 1.04 0.93 1.60 2.26 2.22 2.01 2.21 1.85 2.20 2.21 1.89 2.21

2 σd 0.05 0.04 0.10 0.10 0.08 0.09 0.10 0.10 0.03 0.04 0.03 0.06 0.08 0.08 0.09 0.08 0.07 0.08 0.08 0.12 0.09

Pb/238Ub 0.134 0.109 0.183 0.203 0.203 0.202 0.230 0.232 0.087 0.096 0.088 0.147 0.198 0.202 0.181 0.202 0.169 0.201 0.201 0.170 0.201

2 σd 0.004 0.003 0.005 0.006 0.006 0.006 0.007 0.007 0.003 0.003 0.003 0.004 0.006 0.006 0.005 0.006 0.005 0.006 0.006 0.005 0.006

rhoc 0.81 0.80 0.59 0.67 0.76 0.74 0.77 0.78 0.80 0.74 0.80 0.79 0.78 0.77 0.67 0.78 0.78 0.77 0.78 0.47 0.74

0.012 -0.006 -0.010 -0.017 0.039 0.009 0.025 -0.114 -0.008

0.023 0.005 0.037 0.057 0.071 0.023 0.014 0.473 0.013

#VALUE! -0.48 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

206

Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1

Me1-07 metamict - irregular signal 0 Me1-08 metamict - irregular signal 0 Me1-09 metamict - irregular signal 0 Me1-10 metamict - irregular signal 0 Me1-11 metamict - irregular signal 0 Me1-17 metamict - irregular signal 1 Me1-20 metamict - irregular signal 0 Me1-25 metamict - irregular signal 0 Me1-29 metamict - irregular signal 0

0 0 0 0 0 0 0 0 0

0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.02 #DIV/0! 0.37 #DIV/0!

0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00

#VALUE! 0.46 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

a

Pb/206Pbe 0.0758 0.0763 0.0795 0.0797 0.0794 0.0800 0.0860 0.0862 0.0798 0.0789 0.0770 0.0793 0.0827 0.0795 0.0805 0.0793 0.0796 0.0795 0.0794 0.0806 0.0795

0.0000 -0.3152 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

#VALUE! 0.4827 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

TE D

Not used

Dates [Ma] 2 σd 0.0016 0.0016 0.0031 0.0026 0.0019 0.0021 0.0020 0.0020 0.0017 0.0020 0.0017 0.0017 0.0019 0.0019 0.0026 0.0018 0.0018 0.0019 0.0018 0.0044 0.0021

207

Conc. 2σ

207

Pb/235U 889 774 1118 1190 1188 1189 1336 1343 684 725 668 972 1200 1187 1118 1186 1065 1181 1183 1079 1183

32 28 54 51 45 46 50 50 25 28 24 35 44 44 48 44 39 44 43 67 46

206

Pb/238U 810 665 1085 1191 1192 1185 1335 1344 540 589 542 882 1167 1187 1071 1189 1007 1180 1183 1014 1183

0 237 0 0 0 0 0 0 0

#VALUE! 415 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

78 -39 -67 -110 249 57 160 -782 -49

U and Pb concentrations and Th/U ratios are calculated relative to the GJ-1 reference zircon. b Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); Pb/235U calculated using ( 207Pb/206Pb)/(238U/206Pb * 1/137.88). c Rho is the error correlation defined as the quotient of the propagated errors of the

Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD).

e

206

Pb/238U and the 207Pb/235U ratio.

Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975).

EP

d

AC C

207

2σ 22 18 29 31 31 31 35 35 15 16 15 24 31 31 28 31 27 31 31 27 31

RI PT

207

SC

Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1 Me1

Analysis Comment U [ppm]a Pb [ppm]a Th/U meas Me1-01 Dark core 2110 283 0.29 Me1-02 Dark core 2214 241 0.26 Me1-03 Bright rim 325 60 0.67 Me1-04 Dark core 519 105 0.14 Me1-05 Bright core 526 107 0.12 Me1-06 Bright core 549 111 0.12 Me1-12 inherited core (dark) 353 81 0.21 Me1-13 inherited core (dark) 330 76 0.20 Me1-14 Bright rim 3748 327 0.05 Me1-15 Bright rim 3470 332 0.06 Me1-16 Bright core 2462 216 0.10 Me1-18 Bright core 1913 281 0.34 Me1-19 Bright core 438 87 0.15 Me1-21 Bright core 270 55 0.21 Me1-22 Dark core 861 156 0.34 Me1-23 Bright rim 515 104 0.24 Me1-24 Bright core 1024 173 0.21 Me1-26 Bright core 338 68 0.15 Me1-27 Dark rim 965 194 0.28 Me1-28 Bright core 353 60 0.22 Me1-30 Bright core 223 45 0.21

M AN U

Sample

148 33 239 375 437 147 91 3440 84

207

Pb/206Pb 1090 1102 1184 1190 1181 1197 1337 1342 1193 1170 1121 1180 1262 1186 1210 1180 1186 1184 1182 1212 1184 0 0 0 0 0 0 0 0 0

weighted uncertainty variance



%

mean

42 43 77 63 47 50 45 44 42 51 43 43 44 46 63 45 45 46 45 105 52

74 60 92 100 101 99 100 100 45 50 48 75 92 100 89 101 85 100 100 84 100

1174.74

4000 0 4000 4000 4000 4000 4000 4000 4000

78200 -39200 -67100 -110000 248500 56700 159700 -782000 -49300

17.57

931.01

MSWD 1.104

ACCEPTED MANUSCRIPT

Table A4 LA-ICP-MS U-Pb geochronological data for zircons from the Josling Granite, eastern Namaqua Sector Mkn4 RATIOS Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4 Mkn4

Mkn5-01 Mkn5-02 Mkn5-03 Mkn5-04 Mkn5-07 Mkn5-08 Mkn5-09 Mkn5-10 Mkn5-11 Mkn5-12 Mkn5-13 Mkn5-14 Mkn5-15 Mkn5-16 Mkn5-17 Mkn5-18 Mkn5-19 Mkn5-20 Mkn5-21 Mkn5-22 Mkn5-23 Mkn5-24 Mkn5-25

Dark rim Bright core Bright core Dark rim Bright core Dark rim Dark rim CL bright core CL dark rim Bright core Bright core Dark rim Dark rim CL bright core CL dark rim Dark core Dark core CL dark core CL bright rim Bright core Bright core CL bright core CL dark rim

Mkn5-05 Mkn5-06

not zircon not zircon

U [ppm]a Pb [ppm]a Th/U meas 1923 188 0.02 76 16 0.52 54 11 0.47 1283 124 0.08 46 9 0.59 582 121 0.60 411 86 0.62 51 11 0.60 3411 149 0.02 303 22 0.10 42 5 0.64 1858 191 0.02 2572 115 0.01 92 19 0.65 1335 130 0.03 337 70 0.58 113 23 0.87 2632 172 0.07 968 106 0.05 297 61 0.30 182 38 0.52 140 29 0.30 1609 141 0.04

207

Pb/235Ub 1.088 2.350 2.329 1.023 2.309 2.310 2.330 2.345 0.396 0.839 1.445 1.146 0.401 2.325 1.089 2.315 2.298 0.741 1.231 2.288 2.331 2.272 0.970

2 σd 0.040 0.100 0.111 0.038 0.106 0.084 0.085 0.103 0.015 0.044 0.140 0.042 0.015 0.091 0.041 0.086 0.092 0.033 0.049 0.101 0.149 0.088 0.038

206

Pb/238Ub 0.0977 0.2097 0.2082 0.0967 0.2068 0.2082 0.2094 0.2084 0.0438 0.0740 0.1270 0.1030 0.0449 0.2079 0.0977 0.2084 0.2083 0.0652 0.1096 0.2057 0.2073 0.2060 0.0878

Dates [Ma] 2 σd 0.0028 0.0061 0.0063 0.0028 0.0061 0.0060 0.0060 0.0062 0.0013 0.0021 0.0037 0.0030 0.0013 0.0061 0.0028 0.0060 0.0061 0.0019 0.0032 0.0061 0.0062 0.0060 0.0025

rhoc 0.80 0.69 0.64 0.78 0.64 0.79 0.79 0.68 0.77 0.56 0.30 0.79 0.79 0.74 0.78 0.78 0.72 0.66 0.72 0.67 0.47 0.75 0.74

0.005 0.020

#VALUE! #VALUE!

Not used Mkn4 Mkn4

2 1

0 0

0.00 0.00

0.00 0.00

#VALUE! #VALUE!

0.002 0.026

RATIOS Sample

Analysis

PL PL PL PL PL

A_135 A_136 A_137 A_138 A_139

U [ppm]a Pb [ppm]a Th/U meas

500 496 500 494 405

27 27 27 27 22

0.08 0.08 0.08 0.08 0.08

207

Pb/235Ub

0.40 0.40 0.40 0.39 0.40

2 σd

0.02 0.02 0.02 0.02 0.02

206

Pb/238Ub

0.054 0.055 0.054 0.054 0.054

2 σd

rhoc

0.002 0.002 0.002 0.002 0.002

0.73 0.73 0.72 0.72 0.66

2 σd 0.0018 0.0025 0.0030 0.0018 0.0029 0.0018 0.0018 0.0026 0.0016 0.0036 0.0076 0.0018 0.0015 0.0021 0.0019 0.0019 0.0022 0.0027 0.0023 0.0026 0.0046 0.0021 0.0021

0.0000 0.0000

207

Pb/206Pbe

0.0528 0.0533 0.0534 0.0528 0.0531

Conc. 2σ

207

Pb/235U 748 1228 1221 715 1215 1215 1221 1226 339 619 908 775 342 1220 748 1217 1212 563 815 1209 1222 1204 689

27 52 58 27 56 44 45 54 13 32 88 28 13 48 28 45 49 25 33 53 78 47 27

Pb/238U 601 1227 1219 595 1212 1219 1226 1220 276 461 770 632 283 1218 601 1221 1220 407 670 1206 1214 1208 542



12 164

30 128

Pb/238U



341 343 340 338 340

10 10 10 10 10

206

#VALUE! #VALUE!

0 0

#VALUE! #VALUE!

Pb/235U calculated using ( 207Pb/206Pb)/(238U/206Pb * 1/137.88). c Rho is the error correlation defined as the quotient of the propagated errors of the

Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD).

e

Pb/206Pb 1217 1228 1225 1113 1222 1208 1214 1236 794 1250 1258 1213 768 1224 1216 1210 1197 1258 1233 1214 1235 1196 1202 0 0



%

43 60 71 47 69 44 44 62 50 84 176 44 48 51 45 46 54 64 54 63 109 51 52

49 100 100 53 99 101 101 99 35 37 61 52 37 99 49 101 102 32 54 99 98 101 45

4000 4000

11900 163800

0.0014 0.0015 0.0015 0.0015 0.0018

Conc.

Pb/235U



338 343 340 336 339

13 14 14 13 15

207

206

206

Pb/238U and the 207Pb/235U ratio.

Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975).

AC C

d

17 33 34 16 33 32 32 33 8 13 21 17 8 32 17 32 32 11 18 33 33 32 15

207

Dates [Ma] 2 σd

U and Pb concentrations and Th/U ratios are calculated relative to the GJ-1 reference zircon. b Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value);

207

EP

a

Pb/206Pbe 0.0808 0.0813 0.0811 0.0767 0.0810 0.0805 0.0807 0.0816 0.0656 0.0822 0.0825 0.0807 0.0648 0.0811 0.0808 0.0806 0.0800 0.0825 0.0815 0.0807 0.0816 0.0800 0.0802

TE D

Reference Materials

207

RI PT

Comment

SC

Analysis

M AN U

Sample

207

Pb/206Pb

321 342 344 320 335



%

62 62 62 63 74

106 100 99 105 101

weighted mean uncertainty variance 1217.43 19.78 38.43

MSWD 1.091

weighted mean uncertainty variance 340.15 6.95 2.53

MSWD 1.250

ACCEPTED MANUSCRIPT

Table A5 LA-ICP-MS U-Pb geochronological data for zircons from the Kanoneiland Granite, eastern Namaqua Sector Mka6 RATIOS

Mka6 Mka6 Mka6

Mka6-06 Mka6-07 Mka6-08 Mka6-09 Mka6-10 Mka6-11 Mka6-12 Mka6-13 Mka6-16 Mka6-17 Mka6-18 Mka6-20 Mka6-21 Mka6-22 Mka6-23 Mka6-24 Mka6-25

Bright core Dark core Bright core Dark core Dark core Bright core Dark core Bright core Bright core Bright core Bright core Bright core

Mka6-14 irregular cPb Mka6-15 irregular cPb Mka6-19 metamict

2 σd 0.075 0.075 0.076 0.077 0.095

Dates [Ma]

Pb/238Ub 0.1803 0.1811 0.1791 0.1785 0.1803

2 σd 0.0053 0.0053 0.0053 0.0052 0.0053

rhoc 0.73 0.73 0.72 0.71 0.58

206

Pb/206Pbe 0.0752 0.0752 0.0748 0.0750 0.0752

2 σd 0.0021 0.0021 0.0021 0.0022 0.0031

207

393 219 300 365 267 255 700 339 194 422 156 339 267 219 265 128 229

73 41 56 69 50 48 131 64 36 79 29 64 49 41 50 24 42

0.44 0.40 0.33 0.48 0.40 0.36 0.13 0.42 0.50 0.34 0.43 0.27 0.41 0.36 0.34 0.46 0.48

1.961 1.958 1.965 1.977 1.974 1.959 1.970 1.973 1.944 1.976 1.988 1.981 1.950 1.945 1.993 2.013 1.938

0.072 0.073 0.072 0.073 0.073 0.073 0.072 0.073 0.073 0.073 0.107 0.074 0.075 0.074 0.075 0.084 0.075

0.1854 0.1872 0.1873 0.1879 0.1880 0.1869 0.1867 0.1881 0.1857 0.1875 0.1888 0.1883 0.1850 0.1862 0.1892 0.1901 0.1853

0.0053 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0055 0.0054 0.0053 0.0054 0.0055 0.0056 0.0055

0.78 0.77 0.78 0.78 0.78 0.77 0.79 0.78 0.77 0.78 0.54 0.78 0.75 0.76 0.77 0.70 0.76

0.0767 0.0759 0.0761 0.0763 0.0761 0.0760 0.0766 0.0761 0.0760 0.0764 0.0764 0.0763 0.0764 0.0758 0.0764 0.0768 0.0759

0.0018 0.0018 0.0017 0.0017 0.0018 0.0018 0.0017 0.0018 0.0018 0.0017 0.0035 0.0018 0.0019 0.0019 0.0018 0.0023 0.0019

0 2 1

0 0 0

0.00 0.00 0.00

0.00 0.00 0.00

#VALUE! #VALUE! #VALUE!

-0.020 0.007 -0.006

0.041 0.006 0.009

#VALUE! #VALUE! #VALUE!

0.0000 0.0000 0.0000

#VALUE! #VALUE! #VALUE!

RATIOS Sample

Analysis

PL PL PL PL PL

PL-01 PL-02 PL-03 PL-04 PL-05

U [ppm]a Pb [ppm]a Th/U meas

501 493 488 493 521

27 26 26 27 28

207

Pb/235Ub

0.08 0.13 0.08 0.08 0.08

0.39 0.39 0.40 0.40 0.40

2 σd

0.02 0.03 0.02 0.02 0.02

206

Pb/238Ub

0.054 0.053 0.054 0.054 0.054

2 σd

TE D

Reference Materials rhoc

0.002 0.002 0.002 0.002 0.002

Pb/206Pbe

0.72 0.37 0.73 0.65 0.70

0.0528 0.0535 0.0531 0.0533 0.0532



0.0015 0.0040 0.0015 0.0018 0.0016



43 43 44 44 54

Pb/238U 1069 1073 1062 1059 1068

1102 1101 1104 1108 1107 1101 1105 1106 1096 1107 1112 1109 1098 1097 1113 1120 1094

41 41 41 41 41 41 40 41 41 41 60 41 42 42 42 47 43

1096 1106 1107 1110 1111 1104 1103 1111 1098 1108 1115 1112 1094 1101 1117 1122 1096

29 29 29 29 29 29 29 29 29 29 30 30 29 29 30 30 30

0 0 0

#VALUE! #VALUE! #VALUE!

-129 46 -40

271 38 57

Pb/238U



340 335 340 340 340 339.0

10 10 10 10 10

207

Pb/235U calculated using ( 207Pb/206Pb)/(238U/206Pb * 1/137.88). c Rho is the error correlation defined as the quotient of the propagated errors of the

Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD).

e

29 29 29 29 29



338 337 339 340 339

14 27 14 15 14

206

206

Pb/238U and the 207Pb/235U ratio.

AC C

1110

1100

1090

1080

1070

1060 0

200

400

U [ppm]

600

800



%

55 55 57 58 81

100 100 100 99 100

1114 1092 1098 1103 1099 1096 1110 1097 1094 1106 1106 1104 1107 1089 1106 1116 1092

46 47 46 45 46 47 44 46 48 45 90 46 50 49 48 59 50

98 101 101 101 101 101 99 101 100 100 101 101 99 101 101 101 100

0 0 0

4000 4000 4000

-129400 46000 -39600

207

Pb/206Pb 1073 1074 1063 1069 1073

Conc.

Pb/235U

207

Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975). 1120

Date [Ma]

d

206

Dates [Ma]

U and Pb concentrations and Th/U ratios are calculated relative to the GJ-1 reference zircon. b Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value);

EP

a

2 σd

207

Conc.

Pb/235U 1070 1073 1062 1062 1070

207

RI PT

Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Mka6 Not used

Pb/235Ub 1.869 1.878 1.847 1.846 1.868

207

SC

Mka6 Mka6 Mka6 Mka6 Mka6

Analysis Comment U [ppm]a Pb [ppm]a Th/U meas Mka6-01 low U! - bright core 78 14 0.33 Mka6-02 low U! - dark core 77 14 0.33 low U! - bright core 81 14 0.33 Mka6-03 Mka6-04 low U! - bright core 82 15 0.33 Mka6-05 low U! - bright core 80 14 0.33

M AN U

Sample

207

Pb/206Pb

322 348 331 343 336



%

63 163 62 75 67

106 96 103 99 101

weighted uncertainty variance mean 1097.51 25.37 336.21

MSWD

weighted uncertainty variance mean 339.03 6.93 3.57

MSWD

1.048

1.248

ACCEPTED MANUSCRIPT

Table A6 LA-ICP-MS U-Pb geochronological data for zircons from the Keboes Granite, eastern Namaqua Sector Mkb6 RATIOS Pb/235Ub 1.973 2.002 2.763 1.999 1.842 2.022 1.967 1.977 1.984 2.013 2.033 1.985 1.970 2.046 1.965 1.095 1.939 2.000 1.957 1.928 1.962 1.955 2.009 1.991 1.877

2 σd 0.078 0.077 0.104 0.073 0.067 0.081 0.076 0.075 0.073 0.077 0.080 0.075 0.073 0.076 0.073 0.040 0.073 0.073 0.081 0.074 0.080 0.077 0.078 0.077 0.070

206

2 σd

206

Pb/238Ub 0.1873 0.1878 0.2323 0.1893 0.1737 0.1895 0.1871 0.1872 0.1881 0.1901 0.1901 0.1875 0.1871 0.1923 0.1872 0.1044 0.1854 0.1898 0.1865 0.1839 0.1877 0.1862 0.1896 0.1881 0.1773

Dates [Ma]

2 σd 0.0055 0.0055 0.0067 0.0054 0.0050 0.0055 0.0054 0.0054 0.0054 0.0056 0.0055 0.0054 0.0054 0.0056 0.0054 0.0030 0.0054 0.0055 0.0054 0.0053 0.0054 0.0054 0.0055 0.0055 0.0051

rhoc 0.75 0.75 0.77 0.79 0.79 0.72 0.75 0.77 0.78 0.77 0.73 0.77 0.78 0.78 0.77 0.78 0.76 0.79 0.70 0.75 0.71 0.74 0.75 0.75 0.78

207

2 σd

rhoc

207

0.005 0.005 0.005 0.005 0.005

0.71 0.71 0.71 0.65 0.70

Pb/206Pbe 0.0764 0.0773 0.0863 0.0766 0.0769 0.0774 0.0763 0.0766 0.0765 0.0768 0.0776 0.0768 0.0764 0.0772 0.0761 0.0761 0.0758 0.0764 0.0761 0.0761 0.0758 0.0761 0.0769 0.0767 0.0768

Reference materials

RATIOS Analysis

91500 91500 91500 91500 91500

A_101 A_102 A_103 A_104 A_105

U [ppm]a Pb [ppm]a Th/U meas

80 81 82 84 84

14 15 15 15 15

207

Pb/235Ub

0.34 0.33 0.34 0.34 0.34

1.87 1.88 1.88 1.87 1.83

207

Pb/235U 1106 1116 1346 1115 1061 1123 1104 1108 1110 1120 1127 1111 1105 1131 1103 751 1095 1116 1101 1091 1103 1100 1118 1112 1073

Conc. weighted uncertainty variance 2σ 44 43 50 41 38 45 43 42 41 43 44 42 41 42 41 28 41 41 46 42 45 44 43 43 40

206

Pb/238U 1107 1110 1346 1117 1033 1119 1105 1106 1111 1122 1122 1108 1106 1134 1106 640 1097 1120 1103 1088 1109 1101 1119 1111 1052

0.08 0.08 0.08 0.09 0.08

0.180 0.181 0.181 0.180 0.178

a

Pb/206Pbe

0.0751 0.0756 0.0751 0.0753 0.0746

2 σd

e

0.0022 0.0022 0.0022 0.0026 0.0023



1069 1074 1074 1069 1058

44 45 44 49 45

Pb/238U



1069 1070 1075 1065 1058

29 29 29 29 29

206

206

Pb/238U and the 207Pb/235U ratio.

Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975).

AC C

Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD).

EP

Pb/235U calculated using ( 207Pb/206Pb)/(238U/206Pb * 1/137.88). c Rho is the error correlation defined as the quotient of the propagated errors of the

d

30 30 35 30 27 30 30 29 29 30 30 29 29 30 29 18 29 30 29 29 30 30 30 30 28

207

Pb/206Pb 1106 1129 1345 1111 1119 1132 1102 1110 1108 1116 1137 1116 1105 1126 1098 1097 1090 1106 1098 1097 1091 1099 1117 1114 1115



%

52 50 46 44 44 55 51 48 45 48 53 48 46 47 47 45 49 45 58 50 57 53 50 51 47

100 98 100 101 92 99 100 100 100 100 99 99 100 101 101 58 101 101 100 99 102 100 100 100 94

mean 1104.94

27

465

Conc. weighted uncertainty variance

Pb/235U

207

U and Pb concentrations and Th/U ratios are calculated relative to the GJ-1 reference zircon. b Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value);

207



Dates [Ma]

Pb/238Ub

TE D

Sample

2 σd 0.0020 0.0020 0.0021 0.0017 0.0017 0.0022 0.0020 0.0018 0.0017 0.0019 0.0021 0.0019 0.0018 0.0018 0.0018 0.0017 0.0019 0.0017 0.0022 0.0019 0.0022 0.0020 0.0020 0.0020 0.0018

RI PT

207

SC

Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6 Mkb6

Analysis Comment U [ppm]a Pb [ppm]a Th/U meas Mkb6-01 Bright core 107 20 0.55 Mkb6-02 Bright core 157 29 0.52 37 0.40 Mkb6-03Inherited core 161 Mkb6-04 Dark core 401 76 0.35 Mkb6-05 Dark rim 559 97 0.28 Mkb6-06 Bright rim 137 26 0.39 Mkb6-07 Bright core 133 25 0.30 Mkb6-08 Dark core 184 34 0.49 Mkb6-09 Dark rim 328 62 0.40 Mkb6-10 Bright core 153 29 0.30 Mkb6-11 Dark core 167 32 0.46 Mkb6-12 Bright rim 215 40 0.29 Mkb6-13 Bright core 275 51 0.39 Mkb6-14 Bright core 251 48 0.55 Mkb6-15 Bright core 237 44 0.51 Mkb6-16 Dark core 1447 151 0.28 Mkb6-17 Dark core 308 57 0.51 Mkb6-18 Dark rim 1068 203 0.31 Mkb6-19 Bright core 111 21 0.35 Mkb6-20 Bright core 156 29 0.26 Mkb6-21 Bright core 163 31 0.40 Mkb6-22 Bright core 116 22 0.37 Mkb6-23 Bright core 204 39 0.29 Mkb6-24 Bright core 169 32 0.41 Mkb6-25 Dark core 703 125 0.29

M AN U

Sample

207

Pb/206Pb

1070 1084 1071 1078 1057



%

58 58 58 70 61

100 99 100 99 100

mean 1067.3

12.05

31.37

MSWD 1.045

MSWD 1.250

ACCEPTED MANUSCRIPT

Table A7 LA-ICP-MS U-Pb geochronological data for zircons from the Klipkraal Granite, eastern Namaqua Sector MKl3 RATIOS

MK MK

A_044 cPb inclusions A_050 cPb inclusions

192 460 422 943 1058 139 763 932

36 82 80 166 112 26 92 150

0.84 0.33 1.77 0.11 0.12 0.70 0.20 0.11

0 1

0 0

#DIV/0! 0.00

Pb/235Ub

2 σd

2.10 2.02 2.14 2.03 1.12 2.13 1.36 1.82

0.07 0.06 0.07 0.07 0.03 0.07 0.04 0.06

0.00 0.00

#VALUE! #VALUE!

Dates [Ma]

2 σd

rhoc

0.187 0.178 0.189 0.176 0.105 0.189 0.121 0.161

0.004 0.004 0.004 0.004 0.002 0.004 0.003 0.003

0.69 0.71 0.70 0.67 0.71 0.68 0.70 0.70

0.0812 0.0823 0.0823 0.0834 0.0773 0.0817 0.0818 0.0820

-0.028 -0.013

0.032 0.012

#VALUE! #VALUE!

0.0000 0.0000

206

Pb/238Ub

207

Pb/206Pbe

Conc.

Pb/235U



0.0018 0.0018 0.0018 0.0020 0.0017 0.0019 0.0018 0.0018

1147 1122 1163 1124 764 1158 873 1051

#VALUE! #VALUE!

0 0

2 σd

b

207

Pb/238U



36 35 36 36 23 37 27 33

1106 1057 1117 1046 646 1116 735 961

#VALUE! #VALUE!

-181 -84

206

Pb/206Pb



%

22 21 22 21 13 22 15 19

1226 1252 1251 1278 1128 1237 1240 1245

44 42 43 47 43 46 43 43

90 84 89 82 57 90 59 77

214 76

0 0

4000 4000

-180900 -84000

U and Pb concentrations and Th/U ratios are calculated relative to the GJ-1 reference zircon. Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value); Pb/235U calculated using ( 207Pb/206Pb)/(238U/206Pb * 1/137.88). c Rho is the error correlation defined as the quotient of the propagated errors of the e

206

Pb/238U and the 207Pb/235U ratio.

Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975).

M AN U

Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD).

TE D

d

EP

207

AC C

a

A_041 Dark rim A_042 Bright rim A_043 Dark core A_045 Bright core A_046 Dark core A_047 Dark core A_048 Bright core A_049 Bright rim

207

RI PT

MK MK MK MK MK MK MK MK Not used

Analysis Comment U [ppm]a Pb [ppm]a Th/U meas

SC

Sample

207

weighted mean 1110.77

uncertainty variance 6.68

22.57

MSWD 1.999

ACCEPTED MANUSCRIPT

Table A8 LA-ICP-MS U-Pb geochronological data for zircons from the Louisvale Granite, eastern Namaqua Sector MI3 RATIOS 207

Pb/235Ub 2.036 2.058 1.920 1.965 2.019 2.045 2.076 2.056 2.047 0.991 2.016 2.024 2.039 1.904

2 σd 0.068 0.070 0.088 0.061 0.065 0.087 0.081 0.067 0.076 0.031 0.072 0.072 0.085 0.140

Dates [Ma]

Pb/238Ub 0.193 0.192 0.176 0.184 0.190 0.192 0.195 0.192 0.192 0.092 0.188 0.190 0.190 0.175

2 σd 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.002 0.004 0.004 0.004 0.004

rhoc 0.67 0.65 0.48 0.70 0.68 0.51 0.56 0.67 0.60 0.70 0.61 0.62 0.53 0.30

-0.012 -0.031 -0.005

0.053 0.032 0.168

#VALUE! #VALUE! #VALUE!

2 σd

rhoc

0.65 0.65 0.65 0.65 0.65 0.47 0.65 0.65 0.64 0.64

0.0756 0.0757 0.0751 0.0775 0.0754 0.0746 0.0754 0.0744 0.0754 0.0751

0.68 0.68 0.68 0.67 0.67 0.66 0.67 0.67

0.0531 0.0538 0.0529 0.0537 0.0534 0.0529 0.0534 0.0532

206

207

Pb/206Pbe 0.0766 0.0779 0.0792 0.0776 0.0771 0.0774 0.0774 0.0779 0.0775 0.0782 0.0777 0.0773 0.0777 0.0787

2 σd 0.0019 0.0020 0.0032 0.0017 0.0018 0.0028 0.0025 0.0019 0.0023 0.0017 0.0022 0.0021 0.0027 0.0055

Not used A_0067-6 fractionation A_007 irregular signal A_0277-6 fractionation

0 0 0

0 0 0

0.00 #DIV/0! #DIV/0!

0.00 0.00 0.00

#VALUE! #VALUE! #VALUE!

0.0000 0.0000 0.0000

Reference materials

RATIOS Pb/235Ub

206

Pb/238U 1136 1131 1044 1087 1122 1130 1146 1130 1130 567 1112 1121 1124 1042

2σ 23 23 21 22 23 23 23 23 23 12 22 23 23 21

206

Pb/238Ub

A_016 A_017 A_018 A_021 A_022 A_023 A_034 A_035 A_051 A_052

78 78 78 79 78 80 77 78 77 77

14 14 14 14 14 14 14 14 14 14

0.29 0.29 0.29 0.30 0.29 0.29 0.29 0.29 0.31 0.31

1.856 1.866 1.868 1.910 1.885 1.852 1.888 1.840 1.871 1.873

0.063 0.063 0.064 0.065 0.064 0.097 0.064 0.063 0.065 0.065

0.1782 0.1788 0.1805 0.1788 0.1813 0.1801 0.1817 0.1794 0.1800 0.1809

0.0039 0.0040 0.0040 0.0040 0.0040 0.0044 0.0040 0.0040 0.0040 0.0040

PL PL PL PL PL PL PL PL

A_008 A_009 A_010 A_031 A_032 A_038 A_039 A_040

625 637 622 612 598 621 628 650

34 34 34 33 33 34 34 35

0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08

0.395 0.399 0.393 0.401 0.401 0.396 0.398 0.395

0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

0.0539 0.0537 0.0539 0.0541 0.0545 0.0543 0.0542 0.0538

0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

207

EP

91500 91500 91500 91500 91500 91500 91500 91500 91500 91500

0 0 0

#VALUE! #VALUE! #VALUE!

-79 -203 -30

344 214 1086

Pb/206Pbe

d

Pb/235U calculated using ( 207Pb/206Pb)/(238U/206Pb * 1/137.88). c Rho is the error correlation defined as the quotient of the propagated errors of the

Quadratic addition of within-run errors (2 SD) and daily reproducibility of GJ-1 (2 SD).

e

Pb/206Pb 1112 1143 1177 1137 1123 1133 1130 1143 1134 1151 1139 1128 1139 1165 0 0 0

2σ 49 51 79 44 46 72 64 48 59 43 55 55 69 135

% 102 99 89 96 100 100 101 99 100 49 98 99 99 89

4000 4000 4000

-78500 -203400 -29700

Conc.

Pb/235U



0.0019 0.0019 0.0020 0.0020 0.0019 0.0034 0.0020 0.0019 0.0020 0.0020

1066 1069 1070 1084 1076 1064 1077 1060 1071 1072

0.0013 0.0013 0.0012 0.0013 0.0013 0.0013 0.0013 0.0013

338 341 336 342 343 339 341 338

2 σd

207

Pb/238U



36 36 37 37 37 56 37 36 37 37

1057 1061 1070 1061 1074 1068 1076 1064 1067 1072

22 22 22 22 22 24 22 22 22 22

11 11 11 11 11 11 11 11

339 337 338 340 342 341 340 338

7 7 7 7 7 7 7 7

206

U and Pb concentrations and Th/U ratios are calculated relative to the GJ-1 reference zircon. b Corrected for background and within-run Pb/U fractionation and normalised to reference zircon GJ-1 (ID-TIMS values/measured value);

207

207

Dates [Ma]

2 σd

Analysis

TE D

207

Sample

AC C

a

U [ppm]a Pb [ppm]a Th/U meas

#VALUE! #VALUE! #VALUE!

Pb/235U 1127 1135 1088 1104 1122 1131 1141 1134 1131 699 1121 1123 1129 1082

M AN U

MI MI MI

Conc. 2σ 37 39 50 34 36 48 45 37 42 22 40 40 47 79

207

RI PT

MI3 MI3 MI3 MI3 MI3 MI3 MI3 MI3 MI3 MI3 MI3 MI3 MI3 MI3

Analysis Comment U [ppm]a Pb [ppm]a Th/U meas A_004 Dark rim 83 16 1.03 A_005 Bright core 91 17 1.08 A_011 Dark core 553 97 0.53 574 105 0.51 A_012 Bright core A_013 Bright core 134 26 1.04 A_014 Dark core 290 56 0.73 A_015 Bright rim 225 44 1.17 A_024 Bright core 148 28 0.91 A_025 Dark core 105 20 0.98 A_026 Dark core 1590 146 0.10 A_028 Bright core 176 33 1.29 A_029 Bright rim 90 17 0.80 A_030 Dark core 88 17 1.15 A_033 Bright core 86 15 0.29

SC

Sample

206

Pb/238U and the 207Pb/235U ratio.

Corrected for mass-bias by normalising to GJ-1 reference zircon (~0.6 per atomic mass unit) and common Pb using the model Pb composition of Stacey & Kramers (1975).

207



%

1083 1087 1070 1133 1079 1057 1078 1053 1079 1072

51 51 52 50 51 92 52 52 53 53

98 98 100 94 100 101 100 101 99 100

334 363 323 360 347 324 345 339

53 53 53 54 54 55 55 55

101 93 105 95 99 105 99 100

Pb/206Pb

weighted uncertainty variance mean 1124.5 15.79 176.25

MSWD

weighted uncertainty variance mean 1066.87 14.83 36.32

MSWD

339.33

7.6

2.31

1.084

1.111

1.143

ACCEPTED MANUSCRIPT

AC C

EP

TE D

M AN U

SC

RI PT

Highlights • Voluminous syn- and late- to post-tectonic granitic magmatism in eastern Namaqua Sector • Older syn-tectonic granite gneisses, emplaced 1175-1146 Ma, are fractionated metaluminous to peraluminous leucogranites • Redefined Keimoes Suite comprises weakly foliated 1110-1078 Ma late- to post-tectonic megacrystic, ferroan metaluminous granodiorites and monzogranites • Model ages of both granitic groups reflect mixing of Meso- and Paleoproterozoic sources and reworking of Paleoproterozoic arc crust • Timing of emplacement of granites constrains peak D2 Namaquan deformation in region to ∼1.13-1.11 Ga