The Length of the de Rham Curve

The Length of the de Rham Curve

journal of mathematical analysis and applications 223, 182–195 (1998) article no. AY985967 The Length of the de Rham Curve Serge Dubuc D´epartement d...

192KB Sizes 9 Downloads 78 Views

journal of mathematical analysis and applications 223, 182–195 (1998) article no. AY985967

The Length of the de Rham Curve Serge Dubuc D´epartement de Math´ematiques et de Statistique, Universit´e de Montr´eal, C.P. 6128 Succursale Centre-ville, Montr´eal (Qu´ebec), Canada H3C 3J7

and Jean-Louis Merrien and Paul Sablonni`ere INSA de Rennes, 20 avenue des Buttes de Coesmes, 35043 Rennes Cedex, France Submitted by Joseph D. Ward Received February 4, 1997

The length L of the de Rham curve is the common limit of two monotonic sequences of lengths ln ‘ and Ln ‘ of inscribed and circumscribed polygons, respectively. Numerical computations show that their convergence is linear with the same convergence rate. This result is easy to prove for the parabola. For arbitrary de Rham curves, we prove two nearby results. First, the existence of a limit q ∈ “0; 1’ of the sequence of ratios Ln+1 − L‘/Ln − L‘ implies the convergence to the same limit of the two sequences ln+1 − L‘/ln − L‘ and Ln+1 − ln+1 ‘/Ln − ln ‘. Second, the sequence Ln+1 − Ln ‘ is bounded by a convergent geometric sequence. In practice, this allows us to accelerate the convergence of both sequences by standard extrapolation algorithms. © 1998 Academic Press

1. INTRODUCTION The de Rham curve Cγ , studied in [3], is the limit of a sequence of polygons depending on a parameter γ. We are interested in the computation of the length L of this curve. This problem was already considered by other authors in the context of computer-aided geometric design, in particular for piecewise polynomial or rational curves (see, e.g., [4] and [5]). In a further paper, we shall develop applications to the problem of constructing an interpolating convex curve with prescribed length. 182 0022-247X/98 $25.00 Copyright © 1998 by Academic Press All rights of reproduction in any form reserved.

length of the de rham curve

183

Here is an outline of the paper: In Section 2, we recall the construction of the curve Cγ and its known properties. In Section 3, we first define upper and lower approximations of L as the lengths of two approximating polygons. They form two sequences Ln ‘ and ln ‘ which both converge monotonically to L. In Section 4, we study the convergence speed of Ln ‘ to L. Numerical computations strongly suggest that both sequences Ln ‘ and ln ‘ converge lineary to L for all γ > 1 (various examples are given in Section 6). We prove that the existence of Ln+1 − Ln ; n→+∞ Ln − Ln−1

q = lim

q ∈ “0; 1’; with q 6=

γ ; γ+2

implies the existence of Ln+1 − L n→+∞ Ln − L lim

and

ln+1 − L y n→+∞ l n − L lim

moreover these limits are also q. But we did not succeed in proving the existence of this limit, except for the parabola (γ = 2). In that case, we prove in Section 5 that both limits are equal to 1/4. However, in the general case (γ > 1), we can prove that there exist constants c > 0 and 0 < κ < 1 depending on γ such that ŽLn+1 − Ln Ž ≤ cκn . This shows that the convergence of Ln ‘ is at worst linear. Finally, this suggests the possibility of accelerating the convergence of the two sequences Ln ‘ and ln ‘ by the ε-algorithm or the iterated Aitken’s 12 algorithm (see e.g., [1, Chap. 2]), since they do not need the knowledge of the exact rate of convergence of these sequences.

2. CONSTRUCTION AND PROPERTIES OF THE DE RHAM CURVE Let ABC be a triangle. The curve is the limit of a sequence of polygons, ”P n ; n = 0; 1; 2; : : :• starting with P 0 = ”A; B; C•. Then the points dividing in three parts the sides of the polygon P n obtained at the nth step are the vertices of the next one. The three parts have lengths proportional to 1; γ; 1 successively. The number of sides of P n is 2n + 1. We denote by S0n ; S1n ; : : : ; S2nn +1 the vertices of P n . The construction of de Rham in order to get the next polygon P n+1 = ”S0n+1 ; S1n+1 ; : : : ; S2n+1 n+1 +1 • n+1 n n n is as follows: S = 1 − β‘S + βS from the previous one P i 2i i+1 and n+1 n n n S2i+1 = βSi + 1 − β‘Si+1 for i = 0; : : : ; 2 , where β = 1/γ + 2‘. In Fig. 1, we show the first step in the construction of de Rham with P 0 = ”A; B; C• and P 1 = ”A0 ; B0 ; C 0 ; D0 •.

184

dubuc, merrien and sablonni` ere

FIG. 1. The first step in the construction of de Rham.

The following properties are given by de Rham. • The polygons P n are convex and the sequence P n ‘ converges to a curve Cγ which is continuous and convex. • Cγ is tangent at the midpoint of each side of P n . • If γ > 1, Cγ has a tangent at each point and the slope m is continuous. • For γ = 2, C2 is an arc of a parabola from the midpoint of ’AB“ to the midpoint of ’BC“. For the next sections, we shall suppose γ > 1.

3. UPPER AND LOWER APPROXIMATIONS OF THE LENGTH OF THE CURVE We denote by M0n ; M1n ; : : : ; M2nn the midpoints of the sides of P n . Let Ln be the length of P n measured from the midpoint M0n of the first side to the midpoint M2nn of the last one, and let ln be the length of the polygonal line joining the midpoints: M0n M1n · · · M2nn . With this notation, Min = Sin + n+1 n ‘/2 and M2i = Min . We write ŽUŽ for the euclidean norm of the vector Si+1 U. Thus, we have L0 = ŽM00 S10 Ž + ŽS10 M10 Ž = ŽABŽ + ŽBCŽ‘/2; l0 = ŽACŽ/2;

length of the de rham curve

185

and for all n ∈  Ln =

n 2X −1

i=0

ln =

n 2X −1

i=0

n n n ŽMin Si+1 Ž + ŽSi+1 Mi+1 Ž;

n ŽMin Mi+1 Ž:

From now on, we shall omit the upper index n in Min if it is not necessary for the comprehension; similarly, we shall write Mj0 instead of Mjn+1 . Proposition 1.

For all n ∈ , the following holds: Ln+1 =

γLn + 2ln : γ+2

Proof. Let j = 2i, then for i = 0; : : : ; 2n we have, 0 0 0 0 0 0 0 Ž + ŽSj+1 Mj+1 Ž + ŽMj+1 Sj+2 Ž + ŽSj+2 Mj+2 Ž ŽMj0 Sj+1 0 0 0 0 0 = ŽMj0 Sj+1 Ž + ŽSj+1 Sj+2 Ž + ŽSj+2 Mj+2 Ž

=

2 γ 㠎M S Ž + ŽM M Ž + ŽS M Ž γ + 2 i i+1 γ + 2 i i+1 γ + 2 i+1 i+1

=

2 㠐ŽMi Si+1 Ž + ŽSi+1 Mi+1 Ž‘ + ŽM M Ž: γ+2 γ + 1 i i+1

Adding these equalities gives the result, since Ln+1 =

2n+1 X−1 j=0

0 0 0 ŽMj0 Sj+1 Ž + ŽSj+1 Mj+1 Ž:

Proposition 2. The two sequences (Ln ) and (ln ) are respectively decreasing and increasing and they converge to the same limit L, which is the length of Cγ . Proof. Again let j = 2i: 0 0 0 0 Ž ≤ ŽMj0 Mj+1 Ž + ŽMj+1 Mj+2 Ž, therefore ln ≤ ln+1 . • ŽMi Mi+1 Ž = ŽMj0 Mj+2 • Similarly,

ŽMi Si+1 Ž + ŽSi+1 Mi+1 Ž 0 0 0 0 Ž + ŽSj+1 Si+1 Ž + ŽSi+1 Sj+2 Ž + ŽSj+2 Mi+1 Ž = ŽMi Sj+1 0 0 0 0 ≥ ŽMi Sj+1 Ž + ŽSj+1 Sj+2 Ž + ŽSj+2 Mi+1 Ž 0 0 0 0 0 0 0 = ŽMj0 Sj+1 Ž + ŽSj+1 Mj+1 Ž + ŽMj+1 Sj+2 Ž + ŽSj+2 Mj+2 Ž;

therefore Ln ≥ Ln+1 .

186

dubuc, merrien and sablonni` ere

FIG. 2. The main parameters in the construction of de Rham.

• Now Ln ≥ ŽACŽ/2 and ln ≤ ŽABŽ + ŽBCŽ‘/2, so that both sequences are converging, respectively, to L and l. From the preceding proposition, we deduce L = l, which is the length of Cγ .

4. ON THE RATE OF CONVERGENCE OF THE SEQUENCE Ln We shall now study the asymptotic behavior of the sequence Ln ‘; we first prove that when n goes to +∞ the ratios of the lengths of any two consecutive sides of P n are uniformly bounded, then we prove that the angle between two sides tends to π. With the help of these preliminary results we shall be able to study the convergence of Ln ‘. We denote by λ0 = ŽS0 S1 Ž, λ1 = ŽS1 S2 Ž; : : :, λ2n = ŽS2n S2n +1 Ž the successive lengths of the sides of P n and by λ00 ; λ01 ; : : : ; λ02n+1 those of P n+1 . The sides of P n (resp. P n+1 ) make angles θ0 = ܐS0 S1 ; S1 S2 ‘; : : : ; θ2n −1 = ܐS2n −1 S2n ; S2n S2n +1 ‘ (resp. θ00 ; : : : ; θ20 n+1 −1 ). See Fig 2. We shall study the ratio Ln+1 − Ln ‘/Ln − Ln−1 ‘; indeed, Brezinski and Redivo Zaglia have proved in [1] that, for a sequence un ‘ converging to u ∈  and for q ∈  with ŽqŽ 6= 1, un+1 − u =q n→+∞ un − u lim

if and only if

un+1 − un = q: n→+∞ un − un−1 lim

With the next proposition, we shall be able to get the rate of convergence of ln ‘ from the one of Ln ‘. Proposition 3.

If

Ln+1 − L =q n→+∞ Ln − L lim

with q 6= 1 and q 6=

γ γ+2

length of the de rham curve

187

then

ln+1 − L Ln+1 − ln+1 = q: = lim n n→+∞ l − L n→+∞ Ln − ln Proof. By Proposition 1, γ + 2‘Ln+1 = γLn + 2ln ; then γ + 2‘L = γL + 2L. So that, by difference, γ + 2‘Ln+1 − L‘ − γLn − L‘ = 2ln − L‘ and γ + 2‘Ln − L‘ − γLn−1 − L‘ = 2ln−1 − L‘ from the preceding step. By division, we successively get lim

ln − L γ + 2‘Ln+1 − L‘ − γLn − L‘ = n−1 ; n n−1 γ + 2‘L − L‘ − γL − L‘ l −L ln − L γ + 2‘Ln+1 − L‘/Ln − L‘ − γ = : γ + 2 − γLn−1 − L‘/Ln − L‘ ln−1 − L As n tends to +∞, we get γ + 2‘q − γ ln+1 − L = lim n→+∞ l n − L γ + 2 − γ/q as soon as q 6= γ/γ + 2‘. Similarly, using γ + 2‘’Ln+1 − L‘ − Ln − L‘“ = 2ln − Ln ‘ and the preceding step, we easily get q−1 l n − Ln q= = lim n−1 1 − 1/q n→+∞ l − Ln−1 as soon as q 6= 1. q=

Proposition 4.

For every n ∈  we have s ! n 2X −1 4λi λi+1 cos2 θi /2‘ 1 n+1 n L −L = λ + λi+1 ‘ 1− −1 : γ + 2 i=0 i λi + λi+1 ‘2

Proof. We recall that β = 1/γ + 2‘; we set α = γ/γ + 2‘ and again j = 2i. Then, for i = 0; 1; : : : ; 2n − 1, writing ai = βλi and bi = βλi+1 , we have λ0j = αλi ; q λ0j+1 = a2i + b2i − 2ai bi cos θi r θ = ai + bi ‘2 − 4ai bi cos2 i 2 r θ = ⠐λi + λi+1 ‘2 − 4λi λi+1 cos2 i 2 s 4λi λi+1 θ = βλi + λi+1 ‘ 1 − cos2 i ; 2 λi + λi+1 ‘ 2 and λ02n+1 = αλ2n .

188

dubuc, merrien and sablonni` ere

P2n −1 λi + λ2n /2 and a similar formula for Ln+1 , we Using Ln = λ0 /2 + i=1 n n+1 n can evaluate ε = L −L : λ λn εn = α 0 + αλ1 + · · · + αλ2n −1 + α 2 2 2 s n 2X −1 4λi λi+1 θ + βλi + λi+1 ‘ 1 − cos2 i 2 λ + λ ‘ 2 i i+1 i=0   λn λ0 + λ1 + · · · + λ2n −1 + 2 − 2 2 s ! n 2X −1 α − 1‘λi + λi+1 ‘ 4λi λi+1 θi 2 = + βλi + λi+1 ‘ 1 − cos λi + λi+1 ‘2 2 2 i=0 s ! n 2X −1 4λi λi+1 θ =⠐λi + λi+1 ‘ 1− cos2 i − 1 : 2 λ + λ ‘ 2 i i+1 i=0 Proposition 5. Let rin = λni+1 /λni for i ∈ ”0; : : : ; 2n • be the ratios of two successive lengths at step n. If γ > 1, then there exist r 0 and R0 such that, for every n ∈ , for every i ∈ ”0; : : : ; 2n •, r 0 ≤ rin ≤ R0 : Proof. First, let us remark that the angles θin of P n are bounded away from 0 since θ00 ≤ θin ≤ π. We can suppose that there exists θ0 ∈ 0; π‘ such that θ0 ≤ θin ≤ π: Now, omitting n and i, let r = λi+1 /λi , θ = ܐSi Si+1 ; Si+1 Si+2 ‘ and r10 =

λ0j+1 λ0j

;

r20 =

λ0j+2

λ0j+1

;

with j = 2i:

Then r10 =

1 2 r − 2r cos θ + 1‘1/2 γ

and

r20 =

r 2

γr y − 2r cos θ + 1‘1/2

see Fig 2. We consider the two functions f and g defined by f x‘ =

1 2 x − 2x cos θ + 1‘1/2 γ

and gx‘ = γxx2 − 2x cos θ + 1‘−1/2 with x > 0. So we have r10 = f r‘ and r20 = gr‘.

length of the de rham curve

189

Since x2 − 2x cos θ + 1 ≤ x2 + 2x + 1 = 1 + x‘2 ; x2 − 2x cos θ + 1 ≥ x2 − 2x cos θ0 + 1 ≥ sin2 θ0 ; we get the following bounds for f x‘, x ∈ + :   1+x 1 sin θ0 ≤ f x‘ ≤ ≤ max x; ; γ γ γ−1 and similarly, we obtain minx; γ − 1‘ ≤ gx‘ ≤ Now let r 0 = min



 ŽBCŽ sin θ0 ; ;γ − 1 ŽABŽ γ

and

γ : sin θ0

R0 = max



 ŽBCŽ 1 γ ; ; : ŽABŽ sin θ0 γ − 1

Using the above inequalities,we immediately get the result by induction on n ∈ . Proposition 6. There exists c ∈  and q ∈ “0; 1’ such that for every n ∈ , for every i ∈ ”1; : : : ; 2n •, Žπ − θin Ž ≤ cqn . Proof. In the following computations, we are using Fig. 2 and Fig. 3. Let us consider in the polygonal line P n the triangle Si Si+1 Si+2 . We set θ = ܐSi Si+1 ; Si+1 Si+2 ‘. If r = ŽSi+1 Si+2 Ž/ŽSi Si+1 Ž, then the triangle Si Si+1 Si+2 is similar to the triangle whose vertices are 1; 0‘, 0; 0‘, 0 0 0 ; Sj+1 Sj+2 ‘ and r cos θ; r sin θ‘. If j = 2i, we denote by ϕ1 = ܐSj0 Sj+1 0 0 0 0 0 0 ϕ2 = ܐSj+1 Sj+2 ; Sj+2 Sj+3 ‘. Since the triangle Sj Si+1 Sj+2 is similar to Si Si+1 Si+2 , the vector W whose endpoints are 1; 0‘ and r cos θ; r sin θ‘ makes an angle ϕ1 with the x-axis. If w = ŽW Ž, one has the vector identity w cos ϕ1 ; w sin ϕ1 ‘ = r cos θ − 1; r sin θ‘. From this, it follows that 1 1p 1 + cot2 θ: = cot θ − cot ϕ1 = cot θ − r sin θ r

FIG. 3. Computation of angles in the construction of de Rham.

190

dubuc, merrien and sablonni` ere

Moreover ϕ2 = θ − π − ϕ1 ‘, hence cot ϕ2 =

p 1 + cot θ cot ϕ1 = cot θ − r 1 + cot2 θ: cot ϕ1 − cot θ

0 , and ri = λi+1 /λi , with Setting mi = cot θi , m0j = cot θj0 , m0j+1 = cot θj+1 j = 2i, we get p q 1 + mi 2 0 0 and mj+1 = mi − ri 1 + mi 2 : mj = mi − ri q q Also, 1 + m2i ≥ 1 and 1 + m2i ≥ −mi imply

m0j+1 ≤ mi − ri ;

m0j ≤ mi − 1/ri ; m0j ≤ m0i 1 + 1/ri ‘;

and

m0j+1 ≤ mi 1 + ri ‘:

Let ρ = min1/R0 ; r 0 ‘, where R0 and r 0 are defined in the preceding proposition. By induction, there exists c1 ∈  such that, for all n ∈  and i ∈ ”1; : : : ; 2n •, mni ≤ c1 − nρ, so that mni ‘ tends to −∞ as n tends to +∞ and the angles θin tend to π. Similarly, there exists c2 < 0 such that, for all n sufficiently large and for i ∈ ”1; : : : ; 2n •, mni ≤ c2 1 + ρ‘n . Then there exists a constant c3 > 0 such that sinπ − θin ‘ = p

1 1 + mni ‘2

≤ c3

1 = c3 qn 1 + ρ‘n

with q ∈ “0; 1’ and we can conclude that for some constant c4 > 0 the following holds: Žπ − θin Ž ≤ c4 qn :

Proposition 7. n ∈ ;

∗ There exists c ∈ + and κ ∈ “0; 1’ such that, for every

ŽLn+1 − Ln Ž ≤ cκn : Proof.

From Proposition 4 we know that s ! n 2X −1 2 θ /2‘ 4λ λ cos 1 i i+1 i λ + λi+1 ‘ 1− −1 : εn = Ln+1 − Ln = γ + 2 i=0 i λi + λi+1 ‘2

length of the de rham curve √

Now as

191

1 − x ≥ 1 − x for x ∈ ’0; 1“, we get n

Žεn Ž ≤

−1 4λi λi+1 cos2 θi /2‘ 1 2X γ + 2 i=0 λi + λi+1 n

−1 2 2X π − θi ≤ λi + λi+1 ‘ sin2 γ + 2 i=0 2



c q2n 2 2L 4 = cκn : γ+2 2

5. THE CASE OF THE PARABOLA, γ = 2 Starting with the triangle ABC, for γ = 2, we obtain an arc of parabola C2 joining the midpoint S0 of ’AB“ to the midpoint S2 of ’BC“. Let S1 = B, 1Si = Si+1 − Si , and 12 Si = 1Si+1 − 1Si . In this particular case, we are able to evaluate the length L of C2 and to estimate the convergence rates of the sequences Ln ‘ and ln ‘. Proposition 8.

The length L of the curve C2 is equal to   Ž1S0 Ž Ž1S1 Ž2 − 1S0 :1S1 ‘2 1S1 :12 S0 + Ž1S1 Ž Ž12 S0 Ž L= ln 3 1S0 :12 S0 + Ž1S0 Ž Ž12 S0 Ž Ž12 S0 Ž 2

+ Proof.

Ž1S1 Ž1S1 :12 S0 ‘ − Ž1S0 Ž1S0 :12 S0 ‘ 2

Ž12 S0 Ž

:

The equation of the parabola is Mt‘ = S0 1 − t‘2 + 2S1 t1 − t‘ + S2 t 2

with t ∈ ’0; 1“:

Since M 0 t‘ = 21S0 1 − t‘ + 1S1 t‘, we obtain Z1 Z1 L= ŽM 0 t‘Ž dt = 2 pt‘‘1/2 dt; 0

0

2

where pt‘ = α0 1 − t‘ + 2α1 t1 − t‘ + α2 t 2 , α0 = Ž1S0 Ž2 , α1 = 1S0 :1S1 , and α2 = Ž1S1 Ž2 . Let 1α0 = α1 − α0 = 1S0 :12 S0 ;

1α1 = α2 − α1 = 1S1 :12 S0 ;

and 12 α0 = α2 − 2α1 + α0 = Ž12 S0 Ž2 : Then we have α0 α2 − α21 = Ž1S0 Ž2 Ž1S1 Ž2 − 1S0 :1S1 ‘2 ≥ 0 by the Schwarz inequality.

192

dubuc, merrien and sablonni` ere

Now, let a2 = α0 α2 − α21 ‘/12 α0 . Then the change of variable q 1α u = t 12 α0 + p 0 12 α0 in the integral gives L= p

Z

2 12 α0

u1 u0

p

u2 + a2 du;

p p with u0 = 1α0 / 12 α0 and u1 = 1α1 / 12 α0 , from which we immediately deduce     q 2 q q 2 2 a u   u1 + u1 + a  u1  L= p ln  + 2 u21 + a2 − 20 u20 + a2  : q   a a 2 12 α0 2 u0 + u0 + a Since

q

u20 + a2 = Ž1S0 Ž, p

u0 12 α0

=

q

u21 + a2 = Ž1S1 Ž, and

1S0 :12 S0 ; Ž12 S0 Ž2

p

u1 12 α0

=

1S1 :12 S0 ; Ž12 S0 Ž2

and p

a2 12 α0

=

Ž1S0 Ž2 Ž1S1 Ž2 − 1S0 :1S1 ‘2 ; Ž12 S0 Ž3

we obtain the desired result. Proposition 9. More specifically,

The two sequences Ln ‘ and ln ‘ converge linearly to L.

1 Ln+1 − L ln+1 − L Ln+1 − ln+1 = : = lim = lim n n n n n→+∞ L − L n→+∞ l − L n→+∞ L −l 4 lim

Proof. For any function g ∈ C ∞ ’0; 1“, there hold, respectively, the two following asymptotic expansions for the values of the trapezoidal rule and of the midpoint rule with step length 1/2n (see, e.g., [2, pp. 189–190]):    n Z1 2X −1  1 1 i 1 g0‘ + gt‘ dt − n g n + g1‘ 2 2 2 2 0 i=1 =− Z

1 0

1 g0 1‘ − g0 0‘ + O4−2n ‘; 12 4n

 2n  1 X 2i − 1 1 g0 1‘ − g0 0‘ gt‘ dt − n g + O4−2n ‘: = 2 i=1 2n+1 24 4n

length of the de rham curve

193

This proves that the two sequences converge linearly to the integral with a convergence rate equal to 1/4. Applying these results to gt‘ = ŽM 0 t‘Ž gives the two first announced limits, since Z1 ŽM 0 t‘Ždt; L= 0

Ln = and

    n 2X −1 1 1 0 M 0 i + 1 ŽM 0 1‘Ž ŽM 0‘Ž + 2n 2 2n 2 i=1

 2n    0 2i − 1 1 X : l = n M 2 i=1 2n+1 n

It suffices to prove these equalities for n = 0, as the general formulas are summations of local formulas in each interval ’i/2n ; i + 1‘/2n “, i ∈ ”0; : : : ; 2n − 1•. With the notation of the previous proposition, we easily compute L0 = Ž1S0 Ž + Ž1S1 Ž

and

l0 = ŽS0 S2 Ž = Ž1S0 + 1S1 Ž:

Since ŽM 0 0‘Ž = 2Ž1S0 Ž, ŽM 0 1‘Ž = 2Ž1S1 Ž, and ŽM 0 1/2‘ = Ž1S0 + 1S1 Ž, we see immediately that   1 1 0 0 0 0 L = ŽM 0‘Ž + ŽM 1‘Ž‘ and l = M 0 2 2 are, respectively, the values of theR trapezoidal rule and of the midpoint 1 rule applied to the integral L = 0 ŽM 0 t‘Ž dt. Similarly, Ln and ln are, respectively, the values of the composed trapezoidal and midpoint rules, with a step of length h = 1/2n , applied to the same integral. Finally, we compute g0 0‘ = 2

1S0 :12 S0 = 2Ž12 S0 Ž cos θ0 ; Ž1S0 Ž

g0 1‘ = 2

1S1 :12 S0 = 2Ž12 S0 Ž cos θ1 ; Ž1S1 Ž

where θ0 = ܐ1S0 ; 12 S0 ‘ and θ1 = ܐ1S1 ; 12 S0 ‘, hence g0 1‘ − g0 0‘ = 2Ž12 S0 Žcos θ1 − cos θ0 ‘ 6= 0: Similarly, the first term of the asymptotic expansion of Ln − ln being equal to 18 g0 1‘ − g0 0‘‘/4n , we deduce the third limit in the same way.

194

dubuc, merrien and sablonni` ere 6. EXAMPLES

In an orthonormal basis, let A = −1; 1‘, B = 0; 0‘, and C = 1; 2‘. The following three tables show the computed values of the successive lengths Ln and ln and the ratios of their differences for different values of γ: n

Ln

ln

0 1 2 :: :

1.825141 1.421080 1.331533 :: :

1.118034 1.264372 1.294985 :: :

n

Ln

ln

0 1 2 :: :

1.825141 1.471587 1.393683 :: :

1.118034 1.315779 1.355960 :: :

n

Ln

ln

0 1 2 :: :

1.825141 1.542298 1.484878 :: :

1.118034 1.398749 1.447380 :: :

10 11

10 11

10 11

1.3038891 1.3038888

1.3685601 1.3685599

1.4650072 1.4650070

1.3038886 1.3038887

1.3685596 1.3685597

1.4650067 1.4650069

Ln − Ln−1 Ln−1 − Ln−2

ln − ln−1 l − ln−2

0.221618 :: :

0.209189 :: :

Ln − Ln−1 Ln−1 − Ln−2

ln − ln−1 l − ln−2

0.220347 :: :

0.203198 :: :

Ln − Ln−1 Ln−1 − Ln−2

ln − ln−1 l − ln−2

0.203009 :: :

0.173241 :: :

0.251342 0.251460

0.250000 0.250000

0.248206 0.248208

n−1

γ = 1:5,

0.251176 0.251360

n−1

γ = 2,

0.250000 0.250000

n−1

γ = 3.

0.248205 0.248208

The last table shows the computed maximum and minimum values of λni+1 /λni at step n = 11; these extrema seem to converge to γ − 1 and 1/γ − 1‘, respectively, for γ ≥ 2 and to 1/γ − 1‘ and γ − 1 for 1 < γ ≤ 2: γ

n = 11,

1.5 1.8 2 2.5 3 5 10

max

λni+1 λni

1.986 1.251 1.001 1.500 2.000 4.000 9.000

min

λni+1 λni

0.506 0.801 0.999 0.667 0.500 0.250 0.111

length of the de rham curve

195

REFERENCES 1. C. Brezinski and M. Redivo Zaglia, “Extrapolation Methods, Theory and Practice,” NorthHolland, New York, 1991. 2. L. M. Milne-Thomson, “The Calculus of Finite Differences,” 2nd ed., Chelsea, New York, 1981. 3. G. de Rham, Sur une courbe plane, J. Math. Pures Appl. (9) 35 (1956), 25–42. 4. J. A. Roulier and B. Piper, Prescribing the length of rational B´ezier curves, Comput. Aided Geom. Design 13 (1996), 23–43. 5. J. A Roulier, Specifying the arc length of B´ezier curves, Comput. Aided Geom. Design 10 (1993), 25–56.