The Membrane Equilibrium with Chemical Reactions

The Membrane Equilibrium with Chemical Reactions

CURRENT TOPICS IN MEMBRANES AND TRANSPORT,VOLUME 19 The Membrane Equilibrium with Chemical Reactions FRIEDRICH A. SAUER Max-Planck-Imtitut filr Bioph...

1MB Sizes 1 Downloads 55 Views

CURRENT TOPICS IN MEMBRANES AND TRANSPORT,VOLUME 19

The Membrane Equilibrium with Chemical Reactions FRIEDRICH A. SAUER Max-Planck-Imtitut filr Biophysik Frankfurt, Federal Republic of Germany

I.

INTRODUCTION

Many b i o l o g i c a l membranes show a t i g h t c o u p l i n g between f l o w and chemical r e a c t i o n s , which o c c u r i n o r a t t h e membrane. I f t h i s coupling i s complete, t h e s t o p f l o w o r s t a t i c head s t a t e of t h e membrane s y s t e m In becomes a c o n s t r a i n e d thermodynamic e q u i l i b r i u m . t h i s a r t i c l e w e w i l l a n a l y z e t h i s e q u i l i b r i u m and comp a r e it w i t h t h e r e s u l t s of n o n e q u i l i b r i u m thermodynamics. W e d i s c u s s t h e thermodynamic e q u i l i b r i u m between two p h a s e s I and 'I s e p a r a t e d by a membrane which i s r i g i d and c a n n o t move. Phases and have t h e volumes V' and v " , r e s p e c t i v e l y ( F i g . 1 ) . Without loss of g e n e r a l i t y , w e assume t h a t t h e system ( b o t h p h a s e s and t h e membrane) have t h e common t e m p e r a t u r e T. Both p h a s e s c o n t a i n t h e component water ( d e n o t e d by s u b s c r i p t w t h r o u g h o u t ) , t h e s o l v e n t f o r which t h e membrane i s permeable. There are s o l u t e conponents of t h e f o l l o w i n g kinds: components k ( k = 1, n ) , f o r which t h e

...,

21

Copyright 0 1983 by Academic Press, Inc. All nghts of reproduction in any form reserved. ISBN 0-12-1533190

22

FRIEDRICHA. SAUER

V I

V

T

T

I1

F i g . 1 . A membrane i n contact with two homogeneous phases and Selective reversible electrodes are used t o measure electrochemical potential d i f f e r e n c e s .

'

".

...,

membrane i s permeable; components j ( j = j + 1, m), f o r which t h e membrane is impermeable; and components t ( t = m + 1, r ) , f o r which t h e membrane i s i m permeable. They react a t t h e s i d e of t h e membrane f a c u ) , for i n g t h e t phase. Components s (s = r + 1, which t h e membrane i s permeable o n l y i n complete c o u p l i n g w i t h t h e chemical r e a c t i o n . According t o Gibbs ( 1 9 6 1 , pp. 83-85) o n e g e t s t h e e q u i l i b r i u m c o n d i t i o n s from t h e v a r i a t i o n s of t h e Helmholtz f r e e e n e r g y F . More p r e c i s e l y , t h e f i r s t - o r d e r v a r i a t i o n o f F = F ' + F " around e q u i l i b r i u m must be zero, when v', v " , and T a r e k e p t c o n s t a n t and t h e system a s a whole i s c l o s e € o r m a t e r i a l exchange. T h i s means t h a t

...,

6F = 6F'

+

6F"

...,

= 0

(1.1)

o b s e r v i n g t h e above-mentioned c o n s t r a i n t s . Because t h e d e f i n e d system i s t o o complex, w e d i s c u s s it s t e p by s t e p , a t f i r s t l e a v i n g o u t many o f t h e components i n t r o duced above and d i s c u s s i n g i n d e t a i l t h e d i f f e r e n c e s between e l e c t r o l y t e s and n o n e l e c t r o l y t e s . A t t h e end w e come back t o t h e g e n e r a l e q u i l i b r i u m c a s e and d i s c u s s p o s s i b l e consequences.

MEMBRANE EQUILIBRIUM

11.

23

NONELECTROLYTE SOLUTION WITHOUT CHEMICAL REACTION

The s y s t e m u n d e r d i s c u s s i o n c o n t a i n s w a t e r ( w ) a s t h e s o l v e n t , t h e p e r m e a n t component ( k ) , and t h e impermeant component ( j ) . A l l components a r e assumed t o b e nonelectrolytes. The v a r i a t i o n s o f F ' and F " a r e g i v e n by

where t h e p are c h e m i c a l p o t e n t i a l s and t h e n a r e t h e mole numbers of t h e components. I t i s assumed t h a t 6 T = 0;

6V'

(2.2)

= 6V" = 0

and f o r t h e components ( j ) w e have 6n

I

j

= 6n

II

j

= 0

(2.3)

Because t h e s y s t e m as a whole i s c l o s e d , one h a s t h e conditions 6n

I

W

+

(1

6 n w = 0;

6n

1

k

+

11

6nk = 0

(2.4)

I n t r o d u c i n g Eqs. ( 2 . 1 ) and ( 2 . 4 ) i n t o Eq. ( l . l ) ,o n e g e t s t h e e q u i l i b r i u m c o n d i t i o n i n t h e form

If, as w i t h A b e i n g t h e d i f f e r e n c e between I and ' I . w a s assumed, t h e components ( k ) and water a r e i n d e p e n d e n t components, one c o n c l u d e s from Eq. ( 2 . 5 ) t h a t Apk = 0

( k = 1,

...,

n);

Auw = 0

(2.6)

FRIEDRICHA. SAUER

24

The e q u i l i b r i u m c o n d i t i o n s ( 2 . 6 ) e n a b l e u s t o c a l c u l a t e p r e s s u r e and composition o f t h e 'I p h a s e , i f p r e s s u r e and c o m p o s i t i o n o f t h e I phase and t h e concen phase t r a t i o n s of t h e impermeant components ( j ) i n t h e are known. T h i s u s u a l l y l e a d s t o t h e s i t u a t i o n t h a t o n e h a s t o s o l v e a system of t r a n s c e n d e n t a l e q u a t i o n s . In case t h e s o l u t i o n i s d i l u t e , one h a s 'k

-

'kO ( T , p)

+

I n ck

RT

(2.7)

where p i s t h e p r e s s u r e and C k t h e c o n c e n t r a t i o n . Then o n e c a n f i n d a n approximate s o l u t i o n of Eqs. ( 2 . 6 ) . R e w r i t i n g Eqs. ( 2 . 6 1 , one g e t s 1

I

Pk(P'

I

Cj)

CkI

-

1

Vk(P",

I

Ck,

c

.I

J

and

= Pw(P",

II

Ck,

II

c

.I J

-

PW(PflI c

I

I

k'

c.) J

(2.9)

E q u a t i o n s ( 2 . 8 ) and ( 2 . 9 ) are of t h e form

-

(AIJ)c=c'

(2.10)

-(AP)P=pll

I n t r o d u c i n g Eq. ( 2 . 7 ) i n t o Eq. ( 2 . 8 ) and n e g l e c t i n g t h e p r e s s u r e dependence of t h e p a r t i a l molar volumes vk gives

vk

I

II

AP = - R T l n ( c k / c k )

I n a s i m i l a r way t h e l e f t - h a n d s i d e of Eq. be e x p r e s s e d and one g e t s

vw

AP =

-

(AVw)p=pll

(2.11)

( 2 . 9 ) can (2.12)

where vW i s t h e p a r t i a l molar volume o f t h e w a t e r . F o r small c o n c e n t r a t i o n d i f f e r e n c e s t h e e q u a t i o n s c a n be s i m p l i f i e d f u r t h e r . I f (2.13)

MEMBRANE EQUILIBRIUM

Eq.

25

( 2 . 1 1 ) becomes 1

Vk

AP = -RT

A ck/ c k

...,

( k = 1,

n)

(2.14)

F o r d i l u t e s o l u t i o n s w e have v k c l < < 1. T h e r e f o r e , R T I A <~ < ~ A P~ f o r t h e p e r m e a n t chmponents k . Under t h e s e c o n d i t i o n s t h e Gibbs-Duhem r e l a t i o n become s

---fLTl C

w

(

n

1

Ack

k=l

rn

1

+

Acj)

(2.15)

j=n+l

Combination o f Eq. ( 2 . 1 5 ) w i t h Eq;. gives f o r the pressure difference

(2.12)

and ( 2 . 1 4 )

rn

+

(iVw

k = l c L V A~ p = R T

j=1 n+l

AC j

(2.16a)

or rn

( 1

-

j=n+l

1

= RT j=n+l A c j

c;V\)*.

(2.16b)

F o r d i l u t e s o l u t i o n s one h a s rn

and one g e t s

c

rn Ap = R T

j=n+1

Ac

j

which i s v a n ' t H o f f ' s l a w .

(2.17)

The c o n c e n t r a t i o n d i f f e r e n c e

FRIEDRICH A. SAUER

26

o f t h e p e r m e a n t components i s g i v e n by (2.18) j=n+l

ELECTROLYTE SOLUTION WITHOUT CHEMICAL REACTIONS

111.

Homogeneous e l e c t r o l y t e s o l u t i o n s must f u l f i l l t h e e l e c t r o n e u t r a l i t y condition: n

rn

1

eknk

+

k=l

1 e ~j.n j = n +1

=

o

(3.1)

where t h e e k and e . are t h e e l e c t r i c a l c h a r g e s p e r mole of t h e i o n s . T h a t ’ c o n d i t i o n h a s c o n s e q u e n c e s f o r t h e d e f i n i t i o n a n d measurement of t h e c h e m i c a l p o t e n t i a l s of t h e ions. ( G i b b s , 1961; Guggenheim, 1 9 6 7 ) . Every v a r i a t i o n of t h e mole numbers must f u l f i l l Eq. ( 3 . 1 ) a g a i n . Because of Eq. ( 3 . 1 ) rn - 1 i n d e p e n d e n t v a r i a t i o n s of t h e m o l e numbers a r e p o s s i b l e . Choosing t h e n t h i o n a s t h e key i o n , o n e g e t s en

6nn -

n-1

- 1

m

-

6 nk

ek

k= 1

1 j=n+l

e

j

6n

j

(3.2)

F o r t h e v a r i a t i o n of t h e Helmholtz f r e e e n e r g y a t cons t a n t T I v, and nW o n e g e t s n-1 6

~

1

=

k=l

( n1

vk

rn 6nk

+

1

j=n+l

v j( n ) 6 n j

(3.3)

where p i n ’ and p j n ) a r e t h e c h e m i c a l p o t e n t i a l s of t h e i o n s . They depend on t h e c h o i c e o f t h e key i o n c o r r e s p o n d i n g t o Eq. ( 3 . 2 ) . The c h e m i c a l p o t e n t i a l s of t h e i o n s so d e f i n e d are m e a s u r a b l e q u a n t i t i e s . Choosing a n o t h e r i o n 1 # n a s t h e key i o n , o n e g e t s

MEMBRANE EQUILIBRIUM

27

n

m

(3.4)

and n

rn (3.5)

Comparing E q s . ( 3 . 2 ) and ( 3 . 3 ) w i t h E q s . ( 3 . 4 ) and ( 3 . 5 1 , one g e t s t h e r e l a t i o n s between t h e c h e m i c a l pot e n t i a l s o f i o n s d e f i n e d f o r d i f f e r e n t key i o n s n and

(3.6)

(3.7)

(3.8)

(3.9)

( j = n

+

1,

...,

rn)

(3.10)

S i m i l a r c o n s i d e r a t i o n s must be a p p l i e d f o r t h e d e f i n i t i o n of t h e p a r t i a l molar volumes of i o n s . They depend on t h e c h o i c e of t h e key i o n . One g e t s t h e t h e r m o s t a t i c r e l a t i o n f o r t h e p a r t i a l molar volume v i n ) :

FRIEDRICH A. SAUER

28

(3.11) Now w e c o n s i d e r t h e v a r i a t i o n of t h e f r e e e n e r g y a r o u n d t h e e q u i l i b r i u m s t a t e and g e t f o r e a c h p h a s e and " n-1 k=l

(3.12)

n-1 k=l

for I

and w i t h t h e component n b e i n g t h e key i o n . Because t h e s y s t e m as a whole i s c l o s e d , w e have t h e c o n d i t i o n s 1

bnw

+

I1

6nw = 0;

1

6nk

I1

+

6nk = 0

(k =

1,

...,

n

-

1)

(3.14) Then t h e e q u i l i b r i u m c o n d i t i o n (1.1) h a s t h e form (3.15) From E q .

(3.15) we conclude t h a t

Apw = 0;

"k

(n) = 0

(k =

1,

...,

n

-

1)

(3.16)

These a r e t h e e q u i l i b r i u m c o n d i t i o n s f o r e l e c t r o l y t e sol u t i o n s , which a r e i n a c c o r d a n c e w i t h t h e e l e c t r o n e u t r a l i t y condition (3.1). To g e t t h e e l e c t r i c a l p o t e n t i a l d i f f e r e n c e s a t e q u i l i b r i u m , w e i n t r o d u c e p a i r s o f i d e n t i c a l , r e v e r si b l e e l e c t r o d e s i n t o t h e p h a s e s ' and " and p a s s a s m a l l amount of c h a r g e q a c r o s s t h e system. The e q u i l i b r i u m c o n d i t i o n (1.1) c h a n g e s t o 6F = 6F'

+

6F" = E l

69

(3.17)

MEMBRANE EQUILIBRIUM

29

f o r t h e permeant i o n s and t o

+

6 F = 6F'

6F" = E

j

(3.18)

6g

f o r t h e impermeant i o n s , Here E l and E j a r e t h e e l e c t r i c a l p o t e n t i a l d i f f e r e n c e s measured a t e q u i l i b r i u m w i t h

t h e h e l p o f r e v e r s i b l e e l e c t r o d e s f o r k and j , r e s p e c t i v e l y . E q u a t i o n s ( 3 . 1 7 ) and ( 3 . 1 8 ) e x p r e s s t h e f a c t t h a t t h e change o f t h e f r e e e n e r g y must be e q u a l t o t h e r e v e r s i b l e e l e c t r i c work done o n t h e system by c h a r g e t r a n s f e r . I f we t a k e a p a i r of e l e c t r o d e s r e v e r s i b l e f o r t h e l t h p e r m e a b l e i o n and t r a n s f e r a c h a r g e 6 q , we have f o r t h e v a r i a t i o n of t h e mole numbers of t h e impermeant i o n s 6n

j

= 6n

j

= 0

( j

= n + 1,

1

+

II

(k =

6nk = 0

1,

(3.19)

For t h e p e r m e a n t i o n s w e

because t h e system i s c l o s e d . have a g a i n 6nk

..., rn)

...,

(3.20)

n)

T h i s e q u a t i o n i s v a l i d a l s o f o r t h e l t h permeant i o n . Because of t h e charge t r a n s f e r , we g e t 1

6n 1 = 6 q / e l

+ 6nl ,

II

6nl = - 6 q / e l

-

-

6n 1

(3.21)

where 6 q / e l e q u a l s t h e amount o f component 1 coming from t h e e l e c t r o d e and 6nl i s t h e exchange of 1 v i a t h e membrane. Combination of Eqs. ( 3 . 2 1 ) l e a d s t o Eq. ( 3 . 2 0 ) . The v a r i a t i o n of t h e f r e e e n e r g y becomes n-1 6F'

+

6F"

=

1

A p k( n ) tin'

k

k= 1

+ ~u~

tin:

(3.22)

Because of t h e e q u i l i b r i u m c o n d i t i o n s ( 3 . 1 6 ) , t h i s e x p r e s s i o n i s z e r o and w e c o n c l u d e from Eq. ( 3 . 1 7 ) t h a t a t equilibrium E

1

= 0

( 1 = 1,

...,

n)

or A?

:e E = 0 1 1

( 1 = 1,

...,

n)

(3.24)

30

FRIEDRICHA. SAUER

where A q l i s c a l l e d t h e e l e c t r o c h e m i c a l p o t e n t i a l d i f f e r e n c e . T h i s means t h a t a t e q u i l i b r i u m t h e e l e c t r o c h e m i c a l p o t e n t i a l d i f f e r e n c e (ECPD) of a l l p e r m e a n t i o n s i s zero. The ECPD i s measured w i t h a p a i r of i d e n t i c a l r e v e r s i b l e e l e c t r o d e s . These e q u i l i b r i u m c o n d i t i o n s a r e a g a i n i n accordance w i t h t h e e l e c t r o n e u t r a l i t y c o n d i t i o n ( 3 . 1 ) . I f w e t a k e a p a i r of i d e n t i c a l revers i b l e e l e c t r o d e s f o r a n impermeant i o n , s a y j = y I t h e c o n d i t i o n (3.19) changes i n t o I

6n

Y

II

= 6q/ey;

6n

+

n-1

6F" =

(3.25)

= -6q/ey

( 3 . 3 ) we g e t f o r t h e v a r i a t i o n of t h e

and b e c a u s e of Eq. free energy 6F'

Y

1

1

A p k( n1 6 n k

+

I

Apw

6nw

+

Apy( n ) 6 q / e

k= 1

(3.26) Under e q u i l i b r i u m (3.16) t h i s becomes

and t h e ECPD f o r a n impearmeant i o n becomes

Taking a n o t h e r impermeant i o n , s a y m , as t h e key i o n , one g e t s b e c a u s e of Eq. ( 3 . 1 0 ) (3.29) P u t t i n g j = m and o b s e r v i n g t h a t A u E ) E 0 , one g e t s (3.30) Combining Eqs.

( 3 . 2 9 ) and ( 3 . 3 0 ) y i e l d s e .

Aqj

= Apjm)

+

e m An rn

(3.31)

MEMBRANEEQUILIBRIUM

31

a r e l a t i o n between ECPDs and c h e m i c a l p o t e n t i a l d i f f e r e n c e s o f i o n s . N o t e t h a t t h i s r e l a t i o n c o n t a i n s measurable q u a n t i t i e s only. I t should n o t be mistaken f o r t h e nonthermodynamic r e l a t i o n A n = Ap

+

(3.32)

e A$

where A $ i s t h e s o - c a l l e d "membrane p o t e n t i a l " and Ap i s a s i n g l e i o n chemical p o t e n t i a l d i f f e r e n c e . F i n a l l y , Eq. ( 3 . 3 1 ) i s v a l i d f o r any c h o i c e o f t h e key i o n . So w e have a l s o e

k + e

Ank = ApLn)

An

n

(3.33)

n

I n terms o f t h e ECPDs t h e e q u i l i b r i u m c o n d i t i o n s r e a d Apw = 0;

Ank = 0

( k = 1,

f o r t h e permeant components. meable i o n s are g i v e n by

...,

n)

(3.34)

The E C P D s f o r t h e imper(3.35)

i f Eqs. ( 3 . 3 4 ) are f u l f i l l e d and t h e key i o n i s a p e r meable i o n . I t s h o u l d b e mentioned t h a t t h e ECPDs f o r uncharged components i w i t h e i = 0 , b e c a u s e of Eq. ( 3 . 3 3 ) , g o o v e r So w e have i n t o t h e chemical p o t e n t i a l d i f f e r e n c e s A p i . Ani

(3.36)

= Api

= Apln)

f o r ei E 0 . Coming back t o t h e e q u i l i b r i u m c o n d i t i o n s f o r t h e p e r m e a b l e i o n s ( 3 . 1 6 1 , w e found t h a t "k

(n)

= 0

(k =

1,

...,

n

-

1)

(3.37)

i f n ( t h e k e y i o n ) i s a l s o permeant. Choosing a n impermeant i o n s a y m , a s t h e key i o n , Eq. ( 3 . 3 7 ) c h a n g e s i nt o

"k

(m

_

- ee-

m

(3.38)

FRIEDRICH A. SAUER

32

U s e h a s been made of Eq.

3.10). O t h e r w i s e Eq. ( 3 . 3 7 ) r e m a i n s form i n v a r i a n t a s l o n g a s t h e key i o n i s a p e r meable i o n . Summarizinq t h e r e s u t s of t h e f o r e g o i n g c o n s i d e r a t i o n s , we f o u n d - t h e e q u i l i b r i u m c o n d i t i o n s Avw = 0 ;

and p h a s e s

( k = 1,

(n) = 0

and

n

...,

n

-

1)

(3.39)

obey t h e e l e c t r o n e u t r a l i t y c o n d i t i o n

'I

rn

l e k n k + k=l

1

j = n +1

(3.40)

e n = O j

j

A t e q u i l i b r i u m t h e s e c o n d i t i o n s are v a l i d r e g a r d l e s s o f

whether w e p u t e l e c t r o d e s i n t o t h e p h a s e s ' and I' o r n o t . A c t i v a t i n g one more d e g r e e of freedom by c h a r g e t r a n s f e r with t h e h e l p of r e v e r s i b l e e l e c t r o d e s [because of Eq. ( 3 . 4 0 ) t h i s i s i m p o s s i b l e w i t h o u t e l e c t r o d e s ] , w e f i n d f o r t h e ECPDs t h a t

Ank=o

(k=l,

..., n ) ;

A n j = A p j( n )

( j = n + l ,

..., rn) (3.41)

T o c a l c u l a t e p r e s s u r e and c o m p o s i t i o n o f t h e I' p h a s e , if p r e s s u r e and c o m p o s i t i o n of t h e I p h a s e and t h e c o n c e n t r a t i o n s of t h e impermeable components j i n t h e I' p h a s e are g i v e n , w e p r o c e e d a s w e d i d i n S e c t i o n 11. For d i l u t e e l e c t r o l y t e s o l u t i o n s w e make t h e Ansatz

From Eqs.

vW

( 3 . 3 9 ) and ( 3 . 4 2 ) w e g e t

AP = - ( A ' w ) P = p "

For small c o n c e n t r a t i o n d i f f e r e n c e s w e g e t

(3.44)

MEMBRANE EQUILIBRIUM

33

(3.45) Making u s e of Eqs. we f i n d

(3.39) and t h e Gibbs-Duhem e q u a t i o n ,

n-1

= c

I

(n)

‘kV c k1 Ap

k= 1

W

rn

- -RC TI w

1 j=n+l

( c j

-2GAc) n c

n

(3.46) and t h e r e f o r e from Eq.

(3.44)

F o r d i l u t e s o l u t i o n s , b e c a u s e of

(3.47)

(3.48) N e g l e c t i n g t e r m s o f t h e form

FRIEDRICH A. SAUER

34

and making u s e of t h e e l e c t r o n e u t r a l i t y c o n d i t i o n s , (3.48) goes over i n t o

Eq.

n Ap =

1

n

rn

1

e k ( e k - e .)c' J k

AC

k=l

j

1

(3.49)

T h i s i s t h e g e n e r a l i z a t i o n of v a n ' t H o f f ' s l a w f o r electrolyte solutions. Taking j u s t one permeable i o n ( n = 1) and one i m p e r m e a b l e F i o n (rn = 2 1 , E q . ( 3 . 4 9 ) becomes Ap = R T ( 1

-

(3.50)

e2/el)Ac2

F o r t h e e l e c t r o c h e m i c a l p o t e n t i a l d i f f e r e n c e of t h e j t h impermeant i o n w e g e t from E q . ( 3 . 2 8 )

(j = n

+ 1,

..., rn)

(3.51)

Combining E q s . ( 3 . 4 5 ) and o b s e r v i n g t h e e l e c t r o n e u t r a l i t y c o n d i t i o n , o n e ge t s

(3.52) I n t r o d u c t i o n of E q .

(3.52) i n t o Eq.

(3.51) g i v e s

(3.53) I n t h e s p e c i a l c a s e of E q .

(3.50) one g e t s

MEMBRANE EQUILIBRIUM

35

(3.54) I f a g a i n c '2 ~ 2

< < 1, t h e n AC

IV.

2

(3.55)

NONELECTROLYTE SOLUTION W I T H CHEMICAL REACTIONS

I n a d d i t i o n t o t h e components k and j , w e i n t r o duce components t , which c a n n o t p e r m e a t e t h e membrane b u t r e a c t a t t h e s i d e of t h e membrane f a c i n g t h e ' p h a s e according t o

where t h e v t arg! t h e s t o i c h i o m e t r i c numbers. change of t h e n t i s g i v e n by 1

6n

t

= v

t

65

( t = rn

+

1,

...,

Every (4.2)

r)

where 6 5 i s t h e change i n t h e p r o g r e s s of t h e r e a c t i o n . Because t h e t-components c a n n o t p e r m e a t e t h r o u g h t h e membrane, w e have II

An, = 0

( t = rn

+ 1,

...,

(4.3)

r)

F u r t h e r m o r e , we have components s which c a n p e r m e a t e t h e membrane o n l y i f 6 6 i s u n e q u a l t o z e r o . The s - c o m p o n e n t s do n o t undergo a c h e m i c a l change b u t a r e t r a n s f e r r e d a c r o s s t h e membrane. For a c l o s e d s y s t e m w e have 1

6ns

-

-

6n

It

S

= ts 6 5

(s = r

+

1,

...,

u)

(4.4)

FRIEDRICH A. SAUER

36

Here t h e t , a r e t h e t r a n s f e r e n c e numbers. They s h o u l d n o t be confused w i t h t h e s t o i c h i o m e t r i c numbers v t , because t h e components s a r e c o n s e r v e d ( s remains s ) . F o r t h e change of t h e f r e e e n e r g y i n b o t h p h a s e s w e get n

r

U

and

(4.5) n 6F"

U 11

=

s=r+l

k=l

U s e h a s been made of E q s .

tsuz

65

+ vw

and ( t h e system i s c l o s e d and j i s impermeant). rium w e have 6F'

+

(4.41,

6F" = 0

and t h e r e f o r e n

1

(4.31,

'Pk

6 n k1

k=l

II

6 nw I

n j

-

n

II

= O

A t equiiib-

(4.6)

+(

t s Aps

-

+

.)tic

Apw 6 n i =

0

s=r+l

(4.7)

F o r t h e c l o s e d system i t w a s assumed 6n

I

k

+

II

6nk = 0;

6n

I

W

+

II

6nw = 0

Because 6 n k , f n w r and 6 5 a r e i n d e p e n d e n t v a r i a t i o n s , w e g e t the equilibrium conditions Apk = 0

(k = 1,

..., n ) ;

Allw=

0

U

1

s=r+l

t s Aps

-

A'

= 0

(4.9)

MEMBRANE EQUILIBRIUM

37

Here (4.10)

i s t h e D e Donder a f f i n i t y of t h e c h e m i c a l r e a c t i o n ( 4 . 1 ) . To c a l c u l a t e t h e p r e s s u r e and t h e c o m p o s i t i o n of t h e 'I p h a s e f o r a g i v e n p r e s s u r e and c o m p o s i t i o n of t h e I phase, t h e e q u i l i b r i u m c o n d i t i o n s are incomplete i f t h e number o f s-components i s l a r g e r t h a n o n e . One g e t s

t h e a d d i t i o n a l e q u a t i o n s by i n t e g r a t i o n of Eqs. ( 4 . 4 ) . T h i s i n t e g r a t i o n s t a r t s w i t h an a r b i t r a r y n o n e q u i l i b r i u m s t a t e 0 a n d g o e s t o t h e r e a l e q u i l i b r i u m s t a t e 5,. Therefore 11

II

n S - n so = - tS

-

w i t h A t = 5, 50. c o n s t a n t , one g e t s c

11

s

- c

II

SO

= - -t S V I#

A5

(s = r

+

1,

...,

A f t e r d i v i s i o n by

At

(s

= r

+

1,

(4.11)

U)

v",

which i s k e p t

..., u )

(4.12)

From Eqs. ( 4 . 1 2 ) one sees t h a t t h e e q u i l i b r i y m d i s t r i b u t i o n d e p e n d s on t h e i n i t i a l c o n c e n t r a t i o n s c s o I i f t h e number o f s-components i s l a r g e r t h a n o n e . E l i m i n a t i o n o f A 5 i n Eqs. ( 4 . 1 2 ) g i v e s II

c

s

II

= c

s o + -t u

uo

(s

= r

+

1,

...,

u

-

1)

(4.13) The s e t of e q u a t i o n s ( 4 . 1 3 ) t o g e t h e r w i t h t h e e q u i l i b rium c o n d i t i o n s ( 4 . 9 ) e n a b l e one t o c a l c u l a t e t h e e q u i l i b r i u m p r e s s u r e and c o m p o s i t i o n o f t h e I' p h a s e . In g e n e r a l t h i s l e a d s t o t h e s o l u t i o n of a system of t r a n s cendental equations. I n t h e following we g i v e an approximate s o l u t i o n for t h e s p e c i a l case of a d i l u t e s o l u t i o n . The compon e n t s w i l l b e w a t e r (w), one s-component ( s = r + 1 1 , and t h e r e a c t a n t t ( t = m + 1, , r ) Because t h e r e a c t a n t s do n o t p e r m e a t e a c r o s s t h e membrane, t h e i r c o n c e n t r a t i o n s are p r e s c r i b e d . l , T ~d e t e r m i n e t h e p r e s s u r e p " and t h e c o n c e n t r a t i o n c ~ + w ~ e , have t h e equations

. ..

.

FRIEDRICH A. SAUER

38

Under t h e assumption of a d i l u t e s o l u t i o n t h i s l e a d s t o I

r

cw Vw AP = - c w ( A ~ w ) p = p = ,l R T (

If E q .

c

1

Act +

A'Cr+l

t=m+l

1

(4.15)

1

( 2 . 7 ) i s v a l i d and cWvw > > c ~ + ~ V ~ one + ~ g, e t r

1

Ap = R T

t=m+l

AC

+

t

1

Acr+l

Cr + l

A'

I

C1

A1/tr+l

r+l

(

Act

t=m+l

+

'Ic'+')

RTtr+l

(4.16)

T h i s means t h e o s m o t i c p r e s s u r e d i f f e r e n c e Ap depends On A ' . I f 1 >> c we g e t r + l'r+1'

1

(4.17) F o r more t h a n o n e s-component w e make u s e of E q s . and rewrite them i n t h e form Acs

= AcsO

+tS

(Acu

-

Acuo)

(s = r

+

1,

(4.13)

..., u )

tU

(4.18) where t h e l a s t e q u a t i o n f o r s = u i s a n i d e n t i t y . The e q u i l i b r i u m c o n d i t i o n s f o r d i l u t e s o l u t i o n s and s m a l l c o n c e n t r a t i o n d i f f e r e n c e s Acs and A c t go o v e r i n t o

MEMBRANE EQUILIBRIUM

39

(4.19) and U

U

1

t V Ap s s

+

RT

tS i-

s=r+l

s=r+l

Combination of Eqs.

C

A c S = A'

(4.20)

s

(4.18) and (4.20) leads to

U

-

1

(4.21) C

s=r+l

S

The contribution of the s-components to the osmotic pressure difference becomes then

-

2 -1

s=r+1

R*(

U

A' + -R T

c

Cs

ts J

U

c

s = r + l v=r+l U

[

1

s=r+l v = r + l tvf
-

>)Ac CS

1

s=r+l

Here we assume that U

2)

U

tstvV" <<

1

(4.22)

so

FRIEDRICHA. SAUER

40

V.

ELECTROLYTE SOLUTION W I T H CHEMICAL W A C T I O N S

Assuming t h a t t h e r e i s a t l e a s t one i o n of t h e t y p e k p r e s e n t which can permeate t h e membrane i n d e p e n d e n t l y of t h e r e a c t i o n , w e t a k e t h i s i o n as t h e key i o n . From t h e f o r e g o i n g p a r a g r a p h s w e f i n d t h e e q u i librium conditions

"k

(n) = 0

(k =

1,

..., n -

1 ) ; Apw = 0

s=r+l

where n i s t h e key i o n . Acs = Acso

+

tS

Together w i t h

(Ac

U

U

-

Acuo)

(s = r

+ 1,

..., u ) (5.21

Eqs. ( 5 . 1 ) allow o n e t o c a l c u l a t e t h e e q u i l i b r i u m d i s t r i b u t i o n o f t h e components and t h e p r e s s u r e i f t h e I phase i s g i v e n . For t h e ECPDs w e g e t

(s = r

+

1,

...,

u)

(5.3)

T h e r e f o r e , w e c a n w r i t e t h e g e n e r a l i z e d e q u i l i b r i u m cond i t i o n s i n t h e form

U

1

ts A n s

-

A'

= 0

(5.41

s=r+l

T h i s h a s been d e r i v e d u n d e r t h e c o n d i t i o n t h a t t h e r e e x i s t s a n i o n which can permeate i n d e p e n d e n t l y of t h e chemical r e a c t i o n . I f t h i s i s n o t t h e case, w e have t o d i s t i n g u i s h two s i t u a t i o n s .

MEMBRANE EQUILIBRIUM

41

L e t us assume t h e o n l y i o n s p r e s e n t a r e t h o s e o f W e take t h e ion w i t h t h e index u as t h e the s-type. key i o n . For t h e v a r i a t i o n o f t h e f r e e e n e r g y one g e t s u-1

1

bF =

(u)

ts

' -

A'

6ns

65

+

Apw

I

6nw

(5.5)

If t h e system a s a whole i s c l o s e d (no e l e c t r o d e s )

have

I

tins = t

65

S

(s =

r

+ 1,

...,

u

-

1)

,

we

(5.6)

and b e c a u s e of t h e e l e c t r o n e u t r a l i t y c o n d i t i o n u-1

I

=

6n

c

-

eS

e ts

(5.7)

6E

s=r+l

A s on t h e o t h e r s i d e u i s o f t h e s - t y p e ,

w e have

65

6nU = t

(5.8)

ni

To g e t v a r i a t i o n s of t h e i n t h e closed system w i t h o u t v i o l a t i n g the e l e c t r o n e u t r a l i t y condition, U

1

e t

s s

= O

(5.9)

s=r+l

m u s t be f u l f i l l e d . l I f Eq. ( 5 . 9 ) i s n o t f u l f i l l e d , v a r i a t i o n s of t h e n s a r e p o s s i b l e o n l y by means o f e l e c t r o d e s . Assuming t h e v a l i d i t y o f E q . ( 5 . 9 ) , one g e t s the equilibrium conditions u-1

1

A v w = 0;

t s A p s( u )

-

A'

= 0

(5.10)

s=r+l

Together w i t h the material c o n d i t i o n s Ac

S

= Ac

so

tS + tU

(AcU

-

Ac

uo

)

(s =

r

+ 1,

...,

u

-2)

(5.11)

FRIEDRICH A. SAUER

42

t h e e q u i l i b r i u m d i s t r i b u t i o n i s determined. Under t h e c o n d i t i o n ( 5 . 9 ) it i s i m p o s s i b l e t o p a s s e l e c t r i c a l c h a r g e a c r o s s t h e membrane w i t h t h e h e l p of r e v e r s i b l e electrodes. L e t u s assume w e have a p a i r o f e l e c t r o d e s r e v e r s i b l e t o t h e i o n u . Then w e have (5.12) 1

6nS

--

From Eqs.

ts 65

s

#

(5.13)

u

( 5 . 1 2 ) and ( 5 . 1 3 ) w e g e t

U

U

1

es 6 n i = 6q

+

s=r+l

1

t s e s 65

(5.14)

s=r+l

Because of Eq. t i o n we g e t

( 5 . 9 ) and t h e e l e c t r o n e u t r a l i t y c o n d i (5.15)

6q = 0

T h i s means t h a t it i s i m p o s s i b l e t o p a s s e l e c t r i c a l c h a r g e a c r o s s t h e membrane. T h e r e i s no e l e c t r i c cont a c t between b o t h p h a s e s and no ECPD i s d e f i n e d . On the o t h e r side i f w e release the condition (5.91, w e have from Eq. ( 5 . 1 4 ) (5.16) I f 6 q = 0 ( c l o s e d s y s t e m ) . I f c:=r+l t e # 0, we f i n d 6 5 = 0 b e c a u s e of t h e e l e c t r o n e u t r a l i t y c o n d i t i o n . T h i s means no v a r i a t i o n of t h e mole numbers are poss i b l e i n t h e c l o s e d system. For an open system ( w i t h e l e c t r o d e s ) one g e t s from Eq. (5.14)

c U

6q =

Because of

-

s=r+l

tses 65

(5.17)

MEMBRANE EQUILIBRIUM

43

6q e

(5.18)

6F =

U

t h e e q u i l i b r i u m c o n d i t i o n becomes

(5.19) and t h e r e f o r e

(5.20) Making u s e of E q .

( 3 . 3 3 1 , one g e t s

(5.21) E q u a t i o n s ( 5 . 2 0 ) c a n be u s e d t o c a l c u l a t e t h e p r e s s u r e d i f f e r e n c e Ap and t h e ECPD A n u , which b u i l d up a t e q u i l i b r i u m . Because C;=r+l e t # 0 and no o t h e r p e r m e a t i n g i o n s a r e p r e s e n t , t h e d i s t r i b u t i o n o f t h e comp o n e n t s w i l l n o t change. I n t h e s p e c i a l case t h a t Acs - AcsO = 0 w e g e t

(5.22)

and Ans

= Anu es/eu

( s = r + 1,

.. .,

u

-

1)

(5.23)

I n t h e g e n e r a l c a s e , when a l l t h e d i f f e r e n t k i n d s o f components ( k , j , t , s ) a r e p r e s e n t , o n e g e t s t h e e q u i librium conditions

FRIEDRICH A. SAUER

44

Apw

= 0;

"k

..., n

( k = 1,

(n) = 0

-

1)

U

(5.24) s=r+l

where n i s t h e k e y i o n . T o g e t h e r w i t h Eq. ( 4 . 1 8 ) I Eqs. ( 5 . 2 4 ) d e t e r m i n e t h e e q u i l i b r i u m d i s t r i b u t i o n of p r e s s u r e and components. F o r t h e ECPDs o n e g e t s ( k = 1,

Aqk= 0

... , n ) ;

(t=m

+

1,

Aqs

- A y s( n )

..., r ) ; ( j = n

+

A

(s=r ~

1,

~

+ 1,

= (n A) V

..., rn)

..., u )

~

(5.25)

With t h e h e l p of Eqs. ( 5 . 2 5 ) t h e " c h e m i c a l " e q u i l i b r i u m c o n d i t i o n c o u l d be w r i t t e n i n t h e form U

(5.26)

I n t h e f o l l o w i n g w e compare t h i s r e s u l t of e q u i l i b r i u m thermodynamics w i t h t h e s t o p - f l o w s i t u a t i o n o f nonequil i b r i u m thermodynamics. For s i m p l i c i t y w e assume t h a t o n l y s- and t-components are p r e s e n t . Then we g e t f o r t h e s-components U II

Js =

w=r+l

'sh

Anh

+ Ls 5

A'

(s = r

+

1,

...,

u)

(5.27) and f o r t h e r e a c t i o n r a t e

J

5

U

J

5

=

1

h=r+l

L S h Anh

+

L

55

A'

(5.28)

For t h e t i m e b e i n g w e release t h e c o n d i t i o n o f c o m p l e t e coupling. Then t h e c o n d i t i o n s of u n c o n s t r a i n e d thermodynamic ' e q u i l i b r i u m are .

MEMBRANE EQUILIBRIUM

45

II

J s = 0;

J

5

= 0

(s

= r

+

...,

1,

u)

(5.29)

From t h a t w e c o n c l u d e i f t h e Onsager m a t r i x i s nons i n g u l a r (independent flows) t h a t = 0;

A'

Anh = 0

a t equilibrium.

#

J~

0;

+

(h = r

1,

...,

u)

(5.30)

I n t h e stop-flow s i t u a t i o n

J~ = 0

(s =

r

+

1,

...,

U )

(5.31)

we g e t U

(5.32) o r i n vector notation (5.33) where Lo h a s t h e e l e m e n t s L s h and t h e v e c t o r L5 h a s t h e components ~ c = ; L, ~ assuming Onsager r e c i p r o c i t y . Here t h e s u p e r s c r i p t "sf" d e n o t e s s t o p flow. F u r t h e r Introduction more, w e assume t h a t Lo i s n o n s i n g u l a r . of t h e v e c t o r t of t h e t r a n s f e r e n c e numbers d e f i n e d by

... , n ) (5.34) leads t o

(5.35) The r e a c t i o n r a t e a t s t o p f l o w i s g i v e n by

FRIEDRICHA. SAUER

46

(5.36)

55

s=r+l

Because t h e t o t a l Onsager m a t r i x is p o s i t i v e d e f i n i t e , w e have (5.37) T h i s means t h a t t h e f a c t o r i n f r o n t of A ' i n Eq. ( 5 . 3 5 ) is positive. From t h e p o s i t i v e v a l u e o f t h e d e t e r m i n a n t of t h e t o t a l Onsager m a t r i x o n e can show t h a t t h i s f a c t o r i s less t h a n u n i t y . The p r o o f g o e s a s f o l l o w s . W e have t h e r e l a t i o n ( d e t Ltot)

=

5

)

(5.38)

[ H i n t : One g e t s t h i s r e l a t i o n by e x p a n s i o n o f ( d e t & , t o t ) a b o u t t h e e l e m e n t s o f t h e l a s t row.] Because ( d e t Ltot)

0

and ( d e t L ) are p o s i t i v e , w e h a v e

T 0-laL 0 < (L5*L

5)'L5s

< 1

(5.39)

Taking t h e a b s o l u t e v a l u e of Eq. ( 5 . 3 5 ) and making u s e of i n e q u a l i t y ( 5 . 3 9 ) , one g e t s t h e i n e q u a l i t y (5.40) From r e l a t i o n s ( 5 . 3 5 ) and (5.39) one c o n c l u d e s t h a t A ' and E T * A n S f have t h e same s i g n . T h e r e f o r e , w e c a n w r i t e two p o s s i h e i n e q u a l i t i e s : (5.41) or

MEMBRANE EQUILIBRIUM

47

(5.42) s=r+l

d e p e n d i n g on t h e s i g n of A ' . The i n e q u a l i t i e s (5.41) and (5.42) a r e d i r e c t c o n s e q u e n c e s of t h e s e c o n d law o f thermodynamics. Comparing t h i s r e s u l t w i t h Eq. (5.36) I w e come t o t h e c o n c l u s i o n t h a t €or an i n c o m p l e t e c o u p l e d s y s t e m ( a l l f l o w s i n c l u d i n g J~ a r e i n d e p e n d e n t ) a t s t o p flow i n general

#

Jsf

5

(5.43)

0

For a c o m p l e t e l y c o u p l e d s y s t e m i n n o n e q u i l i b r i u m t h e c o n d i t i o n (4.4) g o e s o v e r i n t o II

J~ = -t

J

s 5

(s = r

+

1,

. . . I

u)

(5.44)

i n e a c h s t a t e of t h e s y s t e m and n o t o n l y i n l e v e l flow. T h i s means t h e f l o w s a r e d e p e n d e n t now and t h e t o t a l Onsager m a t r i x becomes s i n g u l a r . Comparing Eqs. (5.44) w i t h Eqs. (5.27) and (5.281, one g e t s 0

(5.45)

L s h = Ls5Lh(/L5E

and

J5 = L5

5

(4'

-

s=r+l

is

Ans)

which f u l f i l l s c o n d i t i o n (5.44). F o r a c o m p l e t e l y c o u p l e d s y s t e m o n e h a s one i n d e p e n d e n t f l o w and o n e i n d e p e n d e n t d r i v i n g f o r c e o n l y . The f l o w m i g h t be t h e J 5 and t h e d r i v i n g f o r c e i s t h e n

A'

is

s=r+l

Aqs

(5.47)

FRIEDRICHA. SAUER

40

The s t o p - f l o w s i t u a t i o n c o i n c i d e s w i t h t h e c o n s t r a i n e d thermodynamic e q u i l i b r i u m . A t s t o p f l o w w e have

and t h e c o n d i t i o n f o r t h e d r i v i n g f o r c e (5.47) becomes U

A'

-

1

(5.49)

is

s=r+l

t h e same c o n d i t i o n a s w a s d e r i v e d ,at Eq. ( 5 . 4 ) . Then, and o n l y t h e n , t h e i n e q u a l i t i e s ( 5 . 4 ) and ( 5 . 4 2 ) become equalities. I f one u s e s Eq. (5.49) € o r t h e e v a l u a t i o n o f t h e a f f i n i t y A ' o f t h e d r i v i n g chemical r e a c t i o n , one must be s u r e t h a t t h e system is c o m p l e t e l y c o u p l e d . T h i s means Eqs. (5.44) must b e f u l f i l l e d i n e a c h s t a t e o f t h e system. O t h e r w i s e , Eq. (5.35) must be used. Here t h e knowledge o f t h e Onsager m a t r i x i s needed. R e w r i t i n g Eq. (5.351, one g e t s

L

55

c s=r+l

(5.50) 0-1

tsthLsh h=r+t

I f o n l y some of t h e f l o w s are c o m p l e t e l y c o u p l e d , t h e stop-flow s t a t e a g a i n c o i n c i d e s w i t h t h e c o n s t r a i n t e q u i l i b r i u m . L e t u s assume w e have s-components (5.51)

...,

and k-components ( k = 1, n ) which are n o t completel y c o u p l e d . Then t h e s t o p - f l o w c o n d i t i o n s II

Js =

0

(s = r

+

1,

...,

u);

II

Jk = 0

( k = 1,

..., n ) (5.52)

because of Eqs.

(5.51) imply

MEMBRANE EQUILIBRIUM

J

5

49

= o

(5.53)

T h i s means c o n s t r a i n e d e q u i l i b r i u m w i t h t h e e q u i l i b r i u m conditions Ank = 0

( k = 1,

...,

U

n);

A'

-

1

is

Ans

= 0

s=r+l

(5.54) T h e r e w i l l be no b u i l d u p of E C P D s f o r t h e k-components. T h i s a l s o happens i n t h e c a s e of n o n v a n i s h i n g Lk It s h o u l d be mentioned t h a t s u c h a s y s t e m , n e v e r t h e i e s s , shows a l e v e l f l o w

.

I n a system f o r which p a r t s o f i t a r e c o m p l e t e l y c o u p l e d , t h e s t o p - f l o w e x p e r i m e n t g i v e s no i n d i c a t i o n f o r t h e a c t i v e t r a n s p o r t of t h e incompletely coupled components. C o n s i d e r a t i o n s b a s e d on the i n e q u a l i t i e s ( 5 . 3 7 ) a l l o w e d Kedem and Caplan ( 1 9 6 5 ) t o d e r i v e t h e i r r e s u l t s on thermodynamic e f f i c i e n c y of membrane s y s t e m s w i t h active transport.

VI.

SUMMARY

U s u a l l y components which p e r m e a t e a c r o s s a memb r a n e do n o t c o n t r i b u t e t o t h e o s m o t i c p r e s s u r e d i f f e r ence a t theryodynamic e q u i l i b r i u m i n d i l u t e s o l u t i o n s . As l o n g as ckvk i s s m a l l compared t o u n i t y , t h e i r cont r i b u t i o n c a n be n e g l e c t e d . T h a t i s n o t t r u e f o r components which are completel y c o u p l e d t o a chemical r e a c t i o n . These components c a n b u i l d up l a r g e r d i f f e r e n c e s o f t h e i r c h e m i c a l potent i a l s , which t h e n c o n t r i b u t e t o t h e o s m o t i c p r e s s u r e d i f f e r e n c e . For t h i s osmochemical e q u i l i b r i u m o n e g e t s Eq. ( 4 . 1 6 ) :

50

FRIEDRICH A. SAUER

T h i s means t h a t t h e a f f i n i t y A' of t h e chemical r e a c t i o n g i v e s an a d d i t i o n a l c o n t r i b u t i o n t o t h e osmotic p r e s The s u r e depending on t h e t r a n s f e r e n c e number t,+l. s i g n of t h e t e r m w i t h A' depends o n t h e s i g n of t h e t r a n s f e r e n c e number and t h e s i g n of A' i t s e l f . T h i s res u l t can e a s i l y be e x t e n d e d f o r membranes where t h e r e a c t i n g components p e r m e a t e t h e membrane and o t h e r i m permeant components j a r e p r e s e n t . W e g e t them t h e osm o t i c p r e s s u r e d i f f e r e n c e between d i l u t e s o l u t i o n s

By a d j u s t m e n t of t h e A c j i t i s p o s s i b l e t o v a r y t h e Ap. I f t h e r e i s more t h a n one component p r e s e n t which i s c o m p l e t e l y c o u p l e d , w e g e t memory e f f e c t s i n t h e osmot i c pressure. T h i s means t h e f i n a l osmotic p r e s s u r e d i f f e r e n c e depends on t h e i n i t i a l c o n c e n t r a t i o n d i f f e r of t h e c o m p l e t e l y coupled components. F o r ences A c t h a t comB8re Eq. (4.22). The w i d e l y used r e l a t i o n o f Eq. (5.49):

which r e l a t e s t h e e l e c t r o c h e m i c a l p o t e n t i a l d i f f e r e n c e s i n a s t o p - f l o w s t a t e w i t h t h e a f f i n i t y A ' o f t h e metab o l i c r e a c t i o n , i s r i g o r o u s l y v a l i d i f t h e components are c o m p l e t e l y c o u p l e d t o t h e chemical r e a c t i o n . Then t h e s t o p - f l o w s t a t e becomes a c o n s t r a i n e d thermodynamic e q u i l i b r i u m . For i n c o m p l e t e l y c o u p l e d systems Eq. (5.49) must be r e p l a c e d by t h e i n e q u a l i t y (5.40) :

which i s a consequence o f t h e second l a w o f thermodynamics.

MEMBRANE EQUlLlBRlUM

51

REFERENCES Gibbs, J. W. (1961). "The S c i e n t i f i c Papers," pp. 83-85, 331-349, 4 06-4 12. Guggenheim, E. A, (1967). "Thermodynamics," Chap. 8. North Holland, Amsterdam. Kedem, O., and Caplan, S. R. (1965). T r a n s . F a r a d a y SOC. 6 1 , 1897.