Accepted Manuscript Title: The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment Author: Ana M. Jansen Samanta C.C. Xavier Andr´e Luiz R. Roque PII: DOI: Reference:
S0001-706X(15)30066-8 http://dx.doi.org/doi:10.1016/j.actatropica.2015.07.018 ACTROP 3686
To appear in:
Acta Tropica
Received date: Revised date: Accepted date:
29-5-2015 13-7-2015 15-7-2015
Please cite this article as: Jansen, Ana M., Xavier, Samanta C.C., Roque, Andr´e Luiz R., The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment.Acta Tropica http://dx.doi.org/10.1016/j.actatropica.2015.07.018 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
1 2 3 4
Themultiple,complexandchangeablescenariosoftheTrypanoso
5
macruzitransmissioncycleinthesylvaticenvironment
6 7 8 9
Ana M. Jansena,* Samanta C. C. Xavier a, André Luiz R. Roquea
10 11 12 13
aLaboratoryofTrypanosomatidBiology,OswaldoCruzInstitute,FIOCRUZ,Av.Brasil4365,ZIPCODE210
14
40-360,RiodeJaneiro/RJ,Brazil;
15
e-mail:
[email protected](AMJ),
[email protected](SCCX),
[email protected](ALRR)
16 17 18 19 20 21
*Corresponding author. Tel: +55-21-2562-1416; Fax: +55-21-2562-1609
22
E-mail address:
[email protected] (A.M. Jansen)
23
24
Abstract
25
Inthisstudy,wereportanddiscusstheresultsgeneratedfromover20yearsofstudiesoftheTrypanosomacruzisy
26
lvatictransmissioncycle.Ourresultshaveuncoverednewaspectsandreviewedoldconceptsonissuesincludin
27
greservoirs,truegeneralistspecies,associationofmammalianspecieswithdistinctDiscreteTypingUnits-
28
DTUs,distributionofT.cruzigenotypesinthewild,mixedinfections,andT.cruzitransmissionecology.Usingp
29
arasitologicalandserologicaltests,weexaminedT.cruziinfection
30
mammalianordersdispersedallover
31
cruziisolateswerecharacterizedbymini-exongenesequencepolymorphismandPCRRFLPtoidentifyDTUs.
32
InfectionbyT.cruziwasdetectedbyserologicalmethodsin20%oftheexaminedanimalsandisolatedfrom41%
33
ofthoseinfected,correspondingto8%ofalltheexaminedmammals.Eachmammaltaxonrespondeduniquelyt
34
oT.cruziinfection.Didelphisspp.
35
lastingparasitemias(positivehemocultures)causedbyTcIbutmaintainandrapidlycontrolparasitemiascause
36
dbyTcIItoalmostundetectablelevels.Incontrast,thetamarinspeciesLeontopithecusrosaliaandL.chrysomel
37
asmaintainlong-lastingandhighparasitemiascausedbyTcIIsimilarlytoPhilandersp.
38
ThecoatiNasuanasuamaintainshighparasitemiasbybothparentalT.cruziDTUsTcIorTcIIandbyTcII/TcIV(
39
formerlyZ3)atdetectablelevels.Wildanddomesticcanidaeseemtodisplayonlyashortperiodofreservoircom
40
petence.T.cruziinfectionwasdemonstratedinthewildcanidspeciesCerdocyon
41
brachyurus,and positive hemoculturewas obtainedinone hyper carnivorespecies (Leoparduspardalis),
42
demonstratingthatT.cruzitransmissionisdeeplyimmersedinthetrophicnet.T.cruziDTUdistributioninnature
43
didnotexhibitanyassociationwithaparticularbiomeorhabitat.TcIpredominatesthroughout(58%oftheT.cru
44
ziisolates);however,inspiteofbeingsignificantlylessfrequent(17%),TcIIisalsowidelydistributed.Concomi
45
tantDTUinfectionoccurredin16%ofinfectedmammalsofallbiomesandincludedarborealandterrestrialspec
46
ies,aswellasbats.TcI/TcIIconcomitantinfectionwasthemostcommonandwidelydispersed,withmixedTcI/
47
TcIIinfectionsespeciallycommonincoatisandinDidelphimorphia.Thesecondmostcommonpatternofconc
48
omitantinfectionwasTcI/TcIV,observedinChiroptera,DidelphimorphiaandPrimates.Takentogether,ourre
49
sultsdemonstratethecomplexityofT.cruzireservoirsystemanditstransmissionstrategies,indicatingthatthere
50
isconsiderablymoretobelearnedregardingecologyofT.cruzi.
51
in7,285mammalianspecimensfromnine theBrazilianbiomes.TheobtainedT.
areabletomaintainhighandlong-
thousandChrysocyon
52 53
Keywords: Trypanosomacruzi,DTU,Reservoirs,Transmissioncycles,Ecologyofparasites
54
1.”Everythingchangesandnothingstandsstill”(HeraclitusofEphesus)
55
Inthisstudy,wepresentanddiscussaspectsofwhatconstitutestheenzootictransmissioncycleofTrypa
56
nosomacruzi(Kinetoplastida,Trypanosomatidae),presentingexamplesofthediverseanduniquescenariosin
57
whichtransmissionofT.cruzioccurs.Thesedataresultfrom20yearsofobservationandanalysesofT.
58
cruzitransmissionamong
59
rangingwildmammalsspanningsevenordersanddispersedamongthedistinctbiomesofBrazil.Furthermore,
60
wealsopresentasummaryofourkeyfindings,includingnewdataonthesubject.
free-
61 62
1.1.Generalaspects
63
TrypanosomiasisduetoT.cruziisprimarilyanancientandwidespreadenzootic
64
infectiondistributedthroughoutthemammalianfaunaoftheAmericas,reachingfromsouthernUSAtosouther
65
nArgentina.Humaninfectionmayresultin
66
Chagasdiseaseandmostlikelybeganassoonashumansarrivedonthecontinentapproximately15,000yearsbp(
67
Gul
68
2000).Untilrecently,itwasthoughtthatChagasdiseaseinBrazilwasundercontrol,nolongerposingapublichea
69
lthproblem.However,
70
threatenshumanhealthunderdistinctepidemiologicalscenarios,evenoutsidetheAmericas(Gascon et
71
2010).ThenumberofcasesandoutbreaksofChagasdiseasehaveincreased(or at least become more apparent)
72
overthelastdecadeduetoinfectionbytheoralrouteinLatinAmericaandduetobloodtransfusion,particularlyin
73
Spain(Andrade
74
2011).Chagasdiseasetransmittedbytheoralroutehasbeenprimarilyobserved
75
intheAmazon(inBrazilandneighboringcountries)andindicatesthattrypanosomiasisbyT.cruziisprimarilya
76
nenzootic
77
infection.ThisphenomenonmakesstudyingthetransmissioncycleofT.cruziinthewildoffundamentalimport
78
anceifpreventionofnewhumancasesistobeachieved.Additionally,thetransmissioncycleofthiskinetoplastid
79
inthewildenvironmentoffersanexceptionalstudymodelforunderstandingparasitism.
80 81
et
al,
trypanosomiasisbyT.cruzihas
et
al,
2014;
re-emerged
Tanowitz
andagain
et
al,
al,
ThemostpuzzlingfeaturesofT.cruzi,namely,itsextremeheterogeneityandbiologicalplasticity,mak ethestudyofitsecologybothinterestingandchallenging.
Infact,
someoftheissuesraisedbyCarlosChagas
82
remainunanswered
83
eventoday.Onesuchissueistheassociationofagivensubpopulationoftheparasitewithagiventriatominespeci
84
esreservoirsorhostspecies,aswellaswiththedistincthumandiseasecharacteristics.Morphologicalheterogen
85
eityhasalreadybeenrecognizedbyChagas(1909)andBrumpt(1913),bothofwhomhypothesized
86
roleplayedbytheslenderandstumpyformsoftheparasitethattheyobservedinbloodsmears, but currently this
87
feature
88
valued.Theincreaseintheanalyticalpowerofnewmethodologicaltoolsallowedinvestigationofintra-
89
speciesheterogeneitybybiological,biochemical,andmolecularmethods.Thesestudiesansweredmanyquest
90
ionsbutalsoraisedmanynewones(Burgos et al, 2007; Fernandes et al, 1998; Tibayrenc and Ayala, 1988;
91
Dvorak,
92
1977).TheseminalarticlesofMiles(1977)openedanimportantresearchfrontwithhispioneeringworkonthebi
93
ochemicalcharacterizationofT.cruziandmanyaspectsofitsdiversityandecology.Currently,sevengenotypes,
94
ordiscretetypingunits(DTUs),arerecognizedinthetaxon:TcI,TcII,TcIII,TcIV,TcV,TcVI,andTcbat,withthi
95
slatterbeingagenotypethatwillmostlikelyberecognizedasTcVIIinthenearfuture(Hamilton et al, 2012;
96
Zingales et al, 2009).
97
is
1984;
no
Miles
et
distinct
longer
al,
1980;
Theurgetoexplainabiologicalphenomenon,especiallywhenitisassociatedwithhumandisease,carri
98
estheriskofover-
99
generalizationbasedonalimitedunderstandingofthesubject.Itisimportanttorememberthatabiologicalphen
100
omenonhasnowell-
101
definedboundariesandshouldbestudiedasacomplexsystemasmuchaspossiblewithaholisticfocus.Studying
102
theindividualpartsofasystemdoesnotallowfortheunderstandingofthewholebecausethecomponentsexhibit
103
uniquepropertieswhenimmersedincompletescenarios.Complexsystemsincludedifferentorganizationalle
104
velsthatrangefromthesubatomicleveltoanimalpopulations(Mazzocchi,
105
2008).Similartoapuzzle,onepiecemeansnothingwhenisolatedfromtheset,andthepictureisnotclearuntilallt
106
hepiecesareputtogether.Thispointiswell-
107
illustratedbytheassumptionsthathavebeenconstructedanddeconstructedsequentially,overtheyears,aboutt
108
heecologyofT.cruziDTUs.
109
Classically,theparentalDTUTcIwasassociatedwiththesylvatictransmissioncyclebyseveralauthors
110
,mostlikelybecauseTcIprevailsamongtheisolatesobtainedfromwildmammals(Fernandes
111
1998).Inturn,TcIIwasclassicallyassociatedwiththedomiciliarytransmissioncycle,includinghumaninfecti
112
ons,andspecificallywiththe severe gastricformofhumandiseaseinthecentralwestregionofBrazil(Zingales
113
et
114
Theincreaseinfieldexcursions,theexpansionofthespectrumofexaminedmammalianspeciesandespeciallyt
115
helong-
116
termstudieshavedeconstructedseveraloftheformerlyproposedassociationsandprovidedsomeanswerstothe
117
manyquestionsonthissubject(Xavier et al, 2014; Ramírez et al, 2014; Enriquez et al, 2013; Maloney et
118
al,
119
2006).However,themainquestionregardingtheecologyofthelineagesofT.cruzistillremainsunanswered.
120
et
al,
2010;
Meja-Jaramillo
et
al,
2012).
al,
2009;
Cortez
et
al,
WithrespecttotheecologyofTcII,Pinhoandcolleagues(2000)detectedtwoZ2infecteddidelphidmarsupial
121
species,DidelphisauritaandPhilanderfrenatus,collectedintheAtlanticcoastalrainforest.
122
Thereafter,TcIIwasfoundtoinfectseveralothermammaliantaxaindistincthabitatsandbiomes,includingthe
123
AmazonandalsoNewOrleans,USA(Herrera et al, 2015; Lima et al, 2014; Shikanai-Yasuda and
124
Carvalho, 2012).
125
TransmissionofT.cruziinnatureiscommonlyrepresentedasalinearandsequentialphenomenon.Not
126
hingcouldbemorereductionist.AnimalsareconstantlybeingexposedtoinfectionbydifferentT.cruziDTUsthr
127
oughsingle,mixed or multiple DTUsinoculae, whichcan occur once ormultipletimes.T. cruzi may also
128
access
129
themammalianhostbydistinctinfectiveforms(oralandcontaminative),whichcanoccuronceorrepeatedly.Ho
130
st-to-
131
hostdispersionisassuredbydozensoftriatominespecies,whicharehematophagousbutderivenourishmentfro
132
mvariousanimalspecies.Takentogether,thesetraitsresultinT.cruzibeingfoundinfectingmammalsinallwild
133
habitats,foreststrataandniches.Thus,theenzootictransmissioncycleofT.cruziinnatureshouldbereferredtoin
134
thepluraltransmissioncycles
135
becauseevenwithinthesameforestfragment,itmayornotbepresentinallstrata,and/oritmayoccurinseparatetr
136
ansmissioncyclesthatmayormaynotoverlap.
137
TransmissionofT.cruziisdeeplywovenintothefoodwebbecauseitisfrequentlytransferredtoanewho
138
stbytheoralroute,andbecauseitstriatominevectorsareconsideredmicropredators(Herrera
139
2011).Afoodnetiscomposedoftheorganismsthatareinterconnectedbytransferenceofenergy.Becausetheor
140
ganismswithinatrophicnetcommonlyfeedonmorethanonespecies,acomplexinteractionnetworkresults,en
141
ablingT.cruzitransmission.Indeed,eachhostspeciesexploitstheirexistinghabitatsandnichesindistinctways;
142
hence,theecologicalinteractionsandencountersamongthevectorandhostspeciesaremodulatedbythefaunal
143
composition,which,inturn,isevidentlyshapedbythelandscape.Consequently,transmissionofT.cruziinnatur
144
eoccurswithinahugenetworkinwhicheachnoderepresentsonespeciesandtheverticesrepresenttheirecologi
145
calinteractions.
146
Thisimpliesthattheremovalorinsertionofasinglenoderesultsinacompletelydifferentdesignofthisnetwork.I
147
nfact,theslightestchangewillresultintheemergenceofanewenzooticscenario,distinctfromtheprevious,mer
148
curial,butirreversible,asifitwereakaleidoscope.Theseaspectsareseldomconsideredwhencollectingandinte
149
rpretingdata.
150
et
al,
Acomplexsystemsimilartothisoneneedstobestudiedasawholebecauseitisimpossibletounderstand
151
thefunctionofsucha
152
onemustalsoconsidertheindividual
153
analyticalandtheholisticapproaches
154
hostparasitessuchasT.cruzi.
complex
network
focusingsolelyononepartofit.Paradoxically, componentsofthesystem.Reconcilingboththe isthegreatandinterestingchallengeofstudyingmulti-
155 156
2.T.cruzireservoirsandvectors:conceptualreview
157
Communicationrequiresthatobjects,livingthingsandnaturalphenomenareceivenames,areordered
158
andareclassified;however,whilea classificationsystem allowsforthe exchangeof information,experiences
159
andthoughts,thissameorderingsystemcanalsorestraintheadvanceoftheconceptualframework.
160
Theobservationofnaturedemandsadmittinguncertainty,instabilityandchangeability,alwayskeepinginmin
161
dthatnaturalphenomenaoccurin complexmatrices withelements thatare completelyinterdependent
162
(Mazzocchi,
163
donotdisplaydefinedcontoursorlimitsandareconstantlychanging,sometimesfasterthanourtheoretical(con
164
ceptualortaxonomical)boxesinwhichweinsistthatthesephenomenamustfit.Thisisexemplifiedbyourattem
165
ptstodefinereservoirs,anissuethathasbeenmodifiedovertime(Silva et al, 2005; Ashford 2003; 1996;
2012;
2008;
Montoya
et
al,
2006).Naturalphenomena
166
Haydon et al, 2002; Barreto and Ribeiro, 1979; Brumpt, 1936).
167
Thus,BrumptinhisseminalbookPrecisdeParasitologie(1936)definesareservoiras“Lestresquisont
168
susceptiblesdherbergerlesmmesparasites queHommeoules animauxdomestiquesconstituentles rservoirs
169
degermes”.
170
Underthisanthropocentricdefinition,theauthorconsidershumansasthetargetspeciesofparasitesfromothera
171
nimals.Domesticanimalsarealsocitedin
172
causeby infectingthem.
173
Carlos
thedefinition
duetothe
economiclosses
thatparasitesmay
174
Chagas(1912),inhisdescriptionofwhatcouldbetheT.cruzireservoir,referstothearmadilloTatusianovemcinc
175
ta(sic)asapossibledepositoryofTrypanosomacruziontheexternalworld.Thetermdepositoryreflectstheconc
176
eptthatunderliesthedefinitioninthosedayswhenanimalswerepresumedtoberatherstaticsystemsandnotlivin
177
gentitieswithintricateandpeculiarecologicalcharacteristics.
178
Actually,eachmammalianspeciesconstitutesacomplex,multivariateandchangeablelivingsystem,
179
exercisingdifferentselectiveforcesontheirparasitesinthedifferentenvironmentsoftheiroccurrence.Allofthe
180
hostspeciesselectsubpopulationsofT.cruziinauniquewayandpresentdifferentinfectionpatternsthatdepend
181
onnumerousmacroenvironmental(landscape)andmicroenvironmentalvariables(individualpeculiarities)(
182
Dvorak 1984; Deane et al, 1984a).Furthermore, fromanecological focus, humansare justonemore
183
hostspeciesin theT.cruzi transmission cycle,asareallotherspeciesofmammals.
184
Adefinitionthathasbecomewidelyacceptedsincethe1960sreferstoreservoirsastheanimalsthatares
185
ourcesofinfectionforhumansordomesticanimals(duetotheireconomicimportance).Moreover,itwasalsoac
186
ceptedasfactthatreservoirhostsdonotsufferdiseaseconsequencesfromthepresenceoftheparasite.Firstofall,
187
itisnowincreasinglyrecognizedthatbothvirulenceandpathogenicitymayrepresentfitnesstraits
188
thatcanenhancedispersion ofthe parasite(Woolhouse et al, 2001; Giorgio, 1995; Lenski and May,
189
1994).Furthermore,healthimpairmentina
190
trappedandthereforehighlystressedwildanimalisratherdifficulttodetect.Moreover,thelifeofananimalinthe
191
wildishighlycompetitive.Itislikelythatanimalswithsub-optimalhealthwillnotbeabletosurvive
192
longandmaybemoreeasilypreyedupon,enhancingparasite-i.e.,T.cruzi-dispersion.
193
Definingwhatisareservoirisatheoreticalandpracticalchallenge;moreover,identifyingreservoirsof
194
aheterogeneousandmulti-hostparasitesuchasT. cruziisspeciallypuzzlinganddifficult(Jansen and Roque,
195
2010).Wehavebeenconsideringareservoiraspossiblyincludingmorethanoneanimalspecies.Infact,weadopt
196
edaslightlymodifieddefinitionofAshford(1966),whostatedthatareservoirmaybeconsideredasacomplexec
197
ologicalsystemconsistingofoneormorespecies
198
innature.Thissystemshouldalwaysbeconsideredinasinglespace-timescale(Jansen and Roque, 2010).
responsibleformaintainingagivenparasitespecies
199 200
2.1. Thetriatominevectors
201
VectorsofT.cruziareincludedintheorderHemiptera,familyReduviidae,subfamilyTriatominae.Atot
202
alof142speciesdividedinto18generaconstitutethistaxon(Silva et al, 2012; Lent and Wygodzinsky,
203
1979).Thetriatominesconstituteapolyphyleticgroupthatdisplaysecologicalandbiochemicaldifferences,ev
204
enwithallrepresentativesbeingstrictlyhematophagous(Schofield
205
2009).Thus,asanexample,speciesofthegenusTriatomaareassociatedwithrockyenvironmentsandRhodnius
206
sp.withpalmtrees(Gaunt
207
notextendtoitshosts.Indeed,theyarespecialistsin
208
thetypeoftissuefromwhichtheyfeed(blood),althoughunderexperimentalconditions,therearedescriptionso
209
ftriatominethatcompletedtheircyclefeedingoncockroaches(Lazzari et al, 2013).
and
Miles,
and
2000).Thisassociationwith
Galvão,
agivenenvironmentdoes
210
Insidethegutofthevector,T.cruzimustfirstsurvivetheharshconditionsofthestomach;then,itmustmu
211
ltiplyandundergometacyclogenesis.Allthesecrucialstepsdependonthebiologicalandbiochemicalidiosyncr
212
asiesofthedifferent parasitesubpopulationsandvectorspecies (Meja-Jaramillo et al., 2009; Azambuja et
213
al, 2004; Mello et al, 1996).
214
Theparasiteis
215
notalwayssuccessful.Infact,thesophisticatedimmunesystemofthetriatomineisahindrancethatmustbeover
216
comebytheparasite(Waniek
217
2011).Thus,somestrainsarenotabletosurviveinthedigestivetractofthebugorarenotabletotransformintothei
218
nfectivemetacyclic forms (Araujo et al, 2009; Azambuja et al, 2004; Mello et al, 1996).Another often-
219
overlooked
220
infectionoftriatominebugsbydifferentDTUs.Innature,hardlyatriatominewillnotcomeintocontactwithdiffe
221
rentDTUsbroughtbydifferentspecimensofmammalsonwhichtheinsectwillfeed.Experimentalstudiesonth
point
et
is
thefrequent
al,
concomitant
222
esubjectarelessfrequentbut
223
thatT.cruzigrowthinthesmallintestineofRhodniusprolixuswasmoresuccessfulinmixedTcI/TcIIinfectionst
224
haninsingleinfectionswiththesegenotypes.Additionally,theauthorsalsoobservedthatTcIseemedtobethepr
225
edominantisolateeveninmixedinfections(Araujo
226
2014).ItisworthmentioningthatT.cruziisolatesinonebiomemayinfectandestablishperfectlyintriatominebu
227
gsfromanotherbiome,includingthosepresentingtotallydifferentphysiognomiccharacteristics.Thiswasdem
228
onstratedbythesuccessfulexperimentalinfectionofTriatomabrasiliensis,atriatominespeciescommonlyfou
229
ndinsemi-aridareasofnorth-
230
easternBrazil,withoneT.cruzi(TcI)derivedfromaDidelphisauritacapturedintheAtlanticrainforest(Araujo
231
et al, 2007).
mightbehighly
informative.Recently,itwasobserved
et
al,
232
Oneofthekeydeterminantsofthesuccessofthecontaminativerouteofinfectionistheamountoftimebe
233
tweenthestartofthebloodmealbytheinsectanddefecation,whentheinfectivemetacyclicformsareeliminated.
234
Thus,itisclassicallythoughtthatspecieswithgoodvectorcapacityarethosewhosetimebetweenfeedingandde
235
fecationwastheshortest.Inthecurrentscenario,wheretheoraltransmissionthatoccursbyingestionoffoodcon
236
taminatedwithmetacyclicformsgainedgreaterimportance,thisdeterminantisnolongerthebestwaytodeterm
237
inethecompetenceofaspeciesoftriatomine.Infact,inthisscenario,anytriatominespeciescanbeconsideredop
238
timalbecauseitcontainsmetacyclicforms(Pereira et al, 2009).
239
ConsideringthateachofthedistinctBrazilianbiomes,includingAmazonia,Savannah,dryCaatinga,P
240
antanalandtheAtlanticForest,constituteidiosyncraticlandscapemosaics,onemustrealizethatthetransmissi
241
oncycleofT.cruziinnatureisacomplex,multivariable,nonlinearsystemthatdependsontheinterplayofseveral
242
stillunknownvariables.T.cruziisanextremelysuccessfulparasitespeciesthat
243
isabletooccupyalmostalltissuesofitshundredmammalianhostspecies,includingunorthodoxsitessuchasthe
244
stenchglandsofdidelphidmarsupials(Deane
245
1984b).ThefactthatT.cruzicanperformbothmultiplicativecycles(amastigoteandepimastigote)inthesamem
246
ammalianhost,theopossum,suggeststhatopossumsaretheonlymammalsthatcanactasareservoir,aswellasav
247
ectorofT.cruzi.Infact,opossumseliminatethecontentofthesescentglandswhenstressedandarethereforeable
248
todisseminatetheparasiteintotheirsurroundings.Thisfinding,observedonlyobserved70yearsafterthefirstd
249
escriptionofT.cruzibyCarlosChagas,indicatesthatotherecologicalfeaturesofthistrypanosomatidmightstill
et
al,
250
be unknown(Deane et al, 1984b).
251
T.cruzimaybeconsideredatruegeneralistparasitespeciesbecauseit
252
isabletoexploitthediverseresourcesofitshosts.Thereisanimportantissuewithintheparasitismphenomenon:
253
Whataretheevolutionaryadvantagesofaparasitebeinghighlyspecializedoverbeinggeneralist?Generalistsp
254
ecieshavetheabilitytoexploreabroadrangeofresourcesandarethereforemoreadaptabletoenvironmentalmo
255
dificationsinadditiontodisplayingahighercapacityofdispersion.Theconsequencesarethatamorevariableen
256
vironmentwillfavorgeneralistspecies(Fried
257
2010).Duetohumanactivity,wearecurrentlyexperiencingaperiodofprofoundclimaticchanges,includingani
258
ncreaseofglobalsurfacetemperaturesandanincreaseofCO2levels(Awmack and Leather, 2002; Percy et
259
al,
260
2002)additionaltothecontinuousinvasionofformerlywildareas.Theimpactofthesechangesontheecologyof
261
thetransmissioncyclesofT.cruziisunknown.However,therearevectorspeciesofT.cruziandseveralhighlyresi
262
lientmammalianspeciesinallBrazilianbiomes.Thus,thecurrenttendencyofincreasingdroughtandtemperat
263
uremayresultintheeliminationofseveraltriatomineandmammalianspecies;however,generalistspecieswillc
264
ertainlyadaptandevenbenefitfromthistypeofenvironmentalchange.Thatis,theenzootictransmissionofT.cr
265
uziwillcertainlynotbeeradicatedbythistypeofclimatechange.Onthecontrary,itismorelikelytoexpand.Infact
266
,theenzooticcycleofT.cruziisalreadybecomingmorerobustintheUSAandlocalauthoritiesarealreadyawareo
267
ftheproblem, especially concerning the Latin American immigrants(Bern et al, 2011).
268
et
al,
ThespectacularphenotypicplasticityofT.
269
cruziismostlikelytheresultofitslongevolutionprocess,whichincludeditsjumpfrom
270
absolutelycontrasting environments:the digestive tract ofinsectsto theintracellular environment
271
ofthetissuesofmammalianspecies(orviceversa).
two
272 273
3.
274
Thewildenvironmentalengineerscreatenewbiocenosesthatenhanceinterspeciesencountersandtrans-
275
missionofT.cruzi.
276 277
Duetotechnology,theenvironmentalimpactofhumanactionisamplifiedandmayberatherdramaticb ecauseofitsspeedandscale.However,
independent
ofman’saction,
the
environment
isconstantly
278
changingduetoseveralfactors,includingtheactivityofitsnon-
279
humaninhabitants.Naturalengineersmodifythenaturalenvironmentbybuilding
280
shelterstoprocreateorsimplytorest.Thesenests/sheltersfrequentlyresultintruebiocenosisbecause
281
theymaybeusedconcomitantlybyotherlivingbeings,includingtriatomines(Gaunt
282
2000).Oncetheyhavenofurtherusefortheirbuilders,suchshelterswillbeusedbyothertaxainaprocessthatincr
283
easestheecologicalinteractionofdistinctandunrelatedanimalspecies(Desbiez
284
2013).Onestrikingexampleincludesthegiantarmadillo(Priodontesmaximus).Thebehavioralpatternofthiss
285
peciesincludestheexcavation,useandabandonmentofdozensofholesduringitslifespan.Theseholes/tunnels
286
maysuccessivelybeusedbyotherspecies,suchasthecoatis(Nasuanasua),oncillas(Leopardustigrinus,alsok
287
nownasthelittlespottedcat),andanteaters(Myrmecophagatetradactyla).Foxes(Lycalopexvetulus)modifyth
288
esetunnelsadaptingthemforbreeding(Desbiez
289
Thesetunnelsareobviouslyhighlyfavorablesheltersfortriatominesandconsequentlyimportantforthemainte
290
nanceandspreadoftheparasite.Moreover,thesequenceofecologicalsuccessionbymammalianfaunaofagive
291
nhabitatisquiteunpredictableturningitratherunreliabletoestablishanyassociationhypothesisofaT.cruziDT
292
Uandamammalianhostspeciesbasedonitsuseofacertainhabitat.
and
and
and
Kluyber,
Miles,
Kluyber,
2013).
293
Anotherexampleoftherichnessofpossibilitiesofencountersbetweenmammalianspeciesisofferedb
294
ycoatinests.Nasuanasuabuildtheirnestsintreetopsatheightsbetween10and20m.Therearetwotypesofcoati
295
nests,restingandbreedingnests.Femalesraisetheiryounginthebreedingnestsduringthefirsttwoorthreemont
296
hsoftheirlife.Afterthistime,thefemaleandhercubsleavethenestthatwillbereusedbyotheranimals(Olifiers et
297
al,
298
2009).Recently,theuseofcameratrapstomonitorcoatisnestsrecordedthepresenceofaThrichomysfosteri,aca
299
viomorphrodentspeciesdescribedasbeingterrestrial.Insidethenest,triatomine
300
(andotherinsectspecies)
301
Thisterrestrialrodentspeciesreachedthecoatinestprobablybyexploringanaturalhighwayformedoftrunksof
302
fallentreesand/orlianasthattemporarilyconnectedtheforeststrata.
303
provided
bugs
anoptimalmicroenvironmentforT.cruzitransmission.
Theknowledgeofthepossibleencountersofeachhost/reservoirspeciesiscrucialifanunderstandingof
304
thisepizootiologyisintended.Indeed,itwouldberathernaivetotrytoassociateasubpopulationorgeneticlinea
305
geofaparasitewithaparticularanimalspeciesbasedonlyononestudyinoneoccasionwhiledisregardingthenu
306
mberandtypesofinteractionsthisanimalspecieshashadwithotherspeciesandhabitats.
307 308
4. Theinfectionroutes
309
T.cruziinfectionroutesforhumansareverywellknownandstudied,butthisisnotthecaseindomesticor
310
freerangingmammals;
311
thedifficultiesin-
312
herenttosuchfieldwork.ThecontaminativerouteisaratherproblematicstrategyfordispersionofT.cruzi.Nouv
313
elletandcolleagues(2013)concludedthattheprobabilityoftransmissionpercontactwithaninfectedtriatomin
314
eis6x104.Thisisevenmorestrikinginwildfree-
315
rangingmammalswhosedensefurmostlikelyrepresentsanimportantbarrierthathindersthecontactbetween
316
metacyclicformsandtheskin.
317
however,thisisanimportantissuetobeconsidered,thoughverydifficultgiven
Thecongenitalroute,which,incertaingeographicalareas,isanimportantrouteofhumaninfection(Ca
318
rlier
319
livingwildanimals.Basically,doingfieldworkisexpensiveandnoteasy,especiallyconsideringstudiesofcong
320
enitaltransmission.First,itisnoteasytoaccessnewbornanimalsinnature.Additionally,itisverystressfulforan
321
ewbornanimaltobemanipulatedandhaveitsbloodcollected.Furthermore,becauseofananthropocentricbias,
322
congenitaltransmissionpossibilitiesinmammalsareoftendiscussedasifitwereonesingletaxon,asisthecasew
323
ithhumans.However,mammalspresentvarioustypes of placentawith differentdegrees ofintimacy with
324
themother’s
325
likely,withdifferenttransmissionrates.Todate,theonlyobservationofcongenitalT.cruzitransmissioninfree-
326
rangingwildmammalswas reportedinbats(Añez et al, 2009).However, under experimental conditions,
327
thereareplentyof
328
Oliveira et al, 2013).
329
et
al,
bodyand
2015)isnearlyunstudiedinfree-
therefore,most
seminalarticlesaboutcongenitaltransmissionindifferentmammalspecies(Alkimin-
Theoralroute(mostlikelytheearliestone)seemstousthemoreefficientdispersionstrategyofT.cruziin
330
thewild,andtheexperimentsofNobukoYoshidasupportthisview(Yoshida
331
2008).However,onemustconsidertheecologyofthedifferentgroupsofmammals.Thus,nomadicmammals,t
332
hosethatuseallforeststrataandthataregeneralistwithrespecttotheirdiet,aremorelikelyinfectedbythisroute.T
333
hesameistruefortheso-
2009;
334
calledhypercarnivores,mammalsthatpreyexclusivelyonothermammals,suchasthelargeFelidae.Smallrode
335
nts,onthecontrary,whicharemostlygranivoriusorherbivorousandtendtoremaininmorerestrictedareasthatm
336
aybesharedwithtriatominebugs,arethereforemorelikelytobeexposedtoinfectionbythecontaminativeroute.
337
Infact,infectionoffree-
338
rangingmammalianspeciesoccurindistinctwaysandbydistinctroutes,dependingontheirecology(Kribs-
339
Zaleta,
340
2014).Othervariablesthatdetermineinfectionroutesaretheratiobetweenthedensityofthevectorpopulationa
341
ndthedensityofhostpopulations(Pelosse and Kribs-Zaleta, 2012).
342
Underexperimentalconditions,wewereabletoinfectlaboratory-
343
rearedDidelphisauritaorally,byfeedingthemexperimentallyinfectedtriatominebugsandalsothroughexperi
344
mentallycontaminatedfooditemscontainingmetacyclicformsderivedfrominfectedscentglandmaterial(Jan
345
sen
346
1997)Theimportanceoftheoralrouteforcarnivoresandomnivoreswasalsosupportedbytheobservationthat
347
insectivorousCanidae showed higher positivity in serologicaltests compared to their non-
348
insectivorousrelatives(Rocha
349
2013a)Predationonmammalsasaneffectivetransmissionrouteisamatterofdebate(Roellig
350
2009);however,therecentisolationofT.cruziTcIfromapumaandpositiveserologicaltestsfromwild,free-
351
ranginghypercarnivorousFelidaeindicatethat
352
infectionrouteand
353
inatrophicnet.Thelargecarnivores(CanidaeandFelidae)arelong-
354
livinganimalsthatusehugelifeareas,comeintocontactwithalmostall existing fauna, andmay actasbio-
355
accumulators ofT.cruziDTUs (Rocha et al, 2013a; 2013b).
356
et
al,
et
predationof
al,
smallmammals
confirmsthe
insertionof
isalso
et
al,
aneffective T.cruzi
Mesopredatorssuchasthecoatisandraccoonsalsouselargelifeareasandalsopreyonsmallmammals(
357
Herrera
358
2011)Theyarefrequentlygeneralistfeeders,displaymuchlargerpopulationsincomparisontothegreatcarnivo
359
res,andusealldistinctforeststrata.Therefore,theymayalsoactasbio-
360
accumulatorsandasdispersersofT.cruziDTUs.Smallmammals(rodentsandmarsupials)thatareonalowerlev
361
elofthetrophicpyramiddisplaymuchlargerpopulationsthatundergoquickpopulation
et
al,
362
turnover.T.cruziinfectionoftheseshort-livingmammalsindicatesrecenttransmission.Inspiteof
363
beingmuchmorehabitatrestricted,rodentsalsomayactasdispersersofT.cruzsincetheyarefoodsourcesforani
364
ncrediblenumberofmammals.Marsupialspeciestendtobenomadicandaremuchmorehabitatandfoodgenera
365
listthanrodents,not
366
thebatsthatarecompetentflyersandconsequentlydisplayahighT.cruzidispersalcompetence.
forgetting
367 368
5. Diagnostictoolsandwhattheyindicateaboutinfectionprevalenceandinfectivitycompetence
369
ThediagnosisofT.cruziinfectioninwildanimalsisstilldifficultbecauseantibodiesarenotfoundinthes
370
pecificmarketforcombinedserologicaltestsformostwildmammalianspecies.Asaconsequence,mostofthea
371
uthorswhoworkwithwildanimalsuseonlyparasitologicalmethods(includingPCR)asdiagnosticmethodsof
372
detectingT.cruziinfection.Wecombineparasitologicalandserologicalmethodsbecausebothdeliverinformat
373
ionondifferentaspectsofinfection(Table1).Forexample,afreshbloodtestwithhighparasitemiaisindicativeof
374
highinfectivecompetence,butdoesnothaveenoughsensitivitytodetectparasitesbelow1x103.Lowerparasite
375
miathatissufficientlyhightoinfectthevector,i.e.,signalizinginfectivecompetence,isevidencedbybloodcult
376
ures
377
parasitemia).Xenodiagnosishasasimilarlevelofsensitivityasbloodcultures(Portela-Lindoso
378
Shikanai-Yasuda,
379
1966),butwepreferthelatterbecausethefirstmethodwouldinvolvethetransferandmaintenanceofliveinsectst
380
osmallanddistantstudyareasthatoffernoinfrastructuretoensuretheisolationofcontainerswiththetriatominei
381
nsectsfromthecuriosityoflocals.
382
(which
2003;
reflects
Chiari
host
and
and Brener,
PCRisahighlysensitiveandspecificmethodandunequivocallydemonstratesthepresenceoftheparas
383
iteintheanimal’sbody.However,thismethod
384
noinformationregardingtheinfectivecompetencebecauseitcannotdeterminetheviabilityoftheparasite.Add
385
itionally,itisimportanttorememberthatforthediagnosisofinfectionoftriatomines,almostalltheintestinalcon
386
tentisused,i.e.,atrulyrepresentativesample.Thediagnosisofinfectioninmammalsisbasedonlyonverysmallp
387
iecesofthetargettissuei.e.,non-representativesamples.Parasitedistributionintissuesisaggregated;thus,a
388
negativetestingfragmentdoesnotindicatethattheanimalisnotparasitized.Apromisingtechniqueintermsof
389
evaluatinginfectivitycompetence isRealTime-PCR (Melo et al, 2015; Moreira et al, 2013).However,this
gives
390
isa
391
trainedpersonnelandexpensiveequipment,whichhampersitsuseinpoorercountries,wheretheepidemiologi
392
calriskishigher.Additionally,thistechniqueisfarfrombeingstandardizedfordifferentmammalianhostspecie
393
s.
techniquethat
requireswell-
394
Antibodies,incontrast,arehomogeneouslydistributedintheseraandserologicaltestsareverysensitiv
395
e,thoughtheyfailsomewhatregardingspecificity.Moreover,thesignificantcontributionofserologicaltestsist
396
hattheycomplementtheenzootic
397
whoareinfectedbut presentlow infectivecompetence(undetectedparasitemia).
framework
beingstudiedbyidentifyingthe
individuals
398
Wehavealwayscombinedparasitologicalandserologicaltestingtoobtainamoreprecisediagnosisoft
399
heenzooticprofileofthestudyareatogaininformationonboththeprevalenceofinfectionandthetransmissibilit
400
ypotential,i.e.,thetransmissioncompetenceofaparticularanimal(Tables1and2).Theeffectofcross-
401
reactionscanbeminimizedbyassayingtheanimalseraagainstantigensfromphylogeneticallyrelatedparasites
402
,asourgrouproutinelydoes(Xavier et al, 2012; Rademaker et al, 2009).
403
Intheroutinelyusedserologicaltests(ELISAandIFA),weincludeinhouseintermediate
404
antibodyobtainedfromrabbitsimmunizedwiththetargetspeciesimmunoglobulin.Working
405
thisway,weincreasethespectrumofanimalspeciesthatcanbediagnosedandincreasetestsensitivity;however,t
406
hisapproachunfortunatelyalsoincreasesnonspecificreactions(Jansen
407
1985).Unfortunately,therearefewcommercialreagentsandkitsforsuchdiagnoses.Ourmethodofusinganinte
408
rmediateantibodyraisedinrabbitsorusingcommercialantibodiesfordomesticanimalsthatarephylogenetical
409
lyrelated(e.g.,anti-catforwildfelids)isfarfromideal.Evenso,therearemammaliantaxa
410
donothaveany possibilityof performingserologicaltests,suchasthe Cingulata, Pilosa and Chiroptera.
et
al,
forwhichwe
411
The need fora multidisciplinary approach for thestudy of health questions has
412
beenincreasinglyrecognized.TheOneHealthconcepthasbeengainingimpetus,andwithit,theneedfortoolsfo
413
rthediagnosisofparasiticinfectionsinwildanimals(Zinsstag
414
2011).Itislikelythatwewillhavemorereagentsinthenearfuturethatcanwidenserologicaldiagnosisforalarger
415
numberofspecies.
et
416 417
6. T.cruziparasitismassumespeculiarinfectionprofilesdependingonmammaliantaxa
al,
418
Dependingonthe
faunal
compositionofagiven
locality,
theenzootic
419
infectionwillhavedistinctscenarios.ThegeneralistcharacteristicsofT.cruziaremostlikelytheresultofthecon
420
servatismofphenotypiccharacteristicsacquiredduringitslongevolutionaryhistory.Trypanosomatidsofmam
421
malsareancienteukaryoticorganismsofdebatableorigin,althoughcurrently,thetrendistoaccepttheinsecthos
422
tastheprimevalone(Lukes
423
1904).Whethertheprimarysiteofcolonizationoftheseflagellateswasthedigestivetractofmammalsorinsects,
424
theprocessofadaptingtotheinternalenvironmentofboththemammalianhostand/orthevectormostlikelydem
425
andedalongadaptivetime.Irrespectiveofthesequenceofadaptiveevents(thedigestivetractofthemammalorv
426
ectorasthefirstcolonizationsite),eachnewniche(celltypeand/orextracellularenvironmentofmammalorinse
427
ct)requiredashift,aspilloverprocessoftheparasiteuntilitreachedandadaptedtothecirculatorysystemofthem
428
ammalianhost.
429
Theprocessofacquiringnewmammalianhostsmusthavehappenedcoincidingwiththearrivalofmammalians
430
peciesintheAmericasandtheconsequentincreaseinmammaldiversity(Carrillo
431
2015).ItisimportanttorememberthattheearlyfaunaofSouthAmericaconsistedprimarilyofCingulata,Pilosa
432
andDidelphimorphia(Voloch
433
2015).Allothermammaliantaxawereincludedandexpandedthetransmissioncyclewhentheyarrivedontheco
434
ntinent.Firstthecaviomorphrodentsandprimatesarrived,mostlikelybyislandhopping,35millionyearsbp(Fl
435
ynn and Wyss, 1998).Thisexplainswhywehaveneverfoundanyassociationbetween DTUT.cruziand
436
anyanimalspecies.Itislikelythatthedistinctpatternsofinfectionamongthedifferentspeciesofmammalsalrea
437
dybegantosettlethen.Therefore,theconstitutionofagivenenzooticscenarioaswellasthepredominantDTUw
438
illbegreatlydependentontheconstitutionofthelocaltrophicnet,whichisinconstantchange.Thetrophicnetevi
439
dentlyalsoincludesthetriatominevectorthatmayabsolutelybeconsideredamicropredator.Understandingthe
440
parasitetransferflowinagivenfoodwebisahighlydemandingtaskbecauseofthemanygapsintheknowledgeof
441
boththepossibilitiesofdifferentmammalianspeciesandvectorsmeetingandthelackofinformationaboutthec
442
ourseofinfectionofthemajorityofwildspeciesbythedifferentDTUs.
443
et
et
al,
al,
2014;
2013;
Leger,
et
Bond
al,
et
al,
ThegenusDidelphis,asitisnotablywell-known,isabletomaintainhighandlong-
444
lastingparasitemias(asexpressedbypositivehemocultures)andconsequentlyisanexcellentTcIdisperser(Ta
445
ble2).Moreover,DidelphisisabletorapidlycontrolandeveneliminateatleastsomesubpopulationsofTcII,aso
446
bservedbyDeaneandcolleagues(Deane
447
1984b)inT.cruziYstrainexperimentallyinfectedopossums.Incontrast,GoldenLionTamarinspeciesLeontopithecusro
448
saliaandalsoL.chrysomelasareabletomaintainlong-lastingandhighparasitemiascausedbyTcII(Lisboa
449
2015).Leontophitecusrosalia,andNasuanasuaareabletomaintainbothparentalT.cruziDTUsatdetectablelevels(Table
450
2).Incontrast,wildanddomesticcanidaeandhumansdisplayashortperiod(6-
451
8weeks)ofhighparasitemiaandconsequentlyashortperiodofinfectivepotential.Thesefindingsrepresentwh
452
atiscurrentlyknown,thoughthesefindingsonlyrepresentthetipoftheiceberg.
453
et
al,
et
al,
IfallthevariablesconcerningthespecificinteractionofT.cruziwithitsvertebrateandinvertebratehosts
454
andtheconstitutionofmammalianandtriatominefaunawereusedintheconstructionof
455
possiblearrangementsbycombinatorialanalysis,an
456
wouldemerge.Thiswouldnoteventakeintoaccounttheindividualhostvariablesrangingfrommixedinfections
457
withdifferentDTUsandmixedinfectionswithotherspeciesofparasites,hostgender,age,nutritionalstatus,am
458
ongothersand,veryimportantly,humanactivity.ThiscomplexmosaicexplainswhyoutbreaksofacuteChagas
459
diseasemayoccurinverydiversesituations,whichmakestheadoptionofstandardmeasuresofepidemiological
460
surveillanceandcontrolalmostimpossible(Roque
461
idiosyncrasies.
all
almostendlessrangeofepidemiologicalpossibilities
et
al,
2008).Infact,eachareadisplaysits
own
462
ApreviousstudyoftheT.cruzitransmissioncycleinthePantanalregion,locatedinthecentralpartofBra
463
zil,aratherpreservedareathatincludesallthecomponentsofthefoodweb,showedthatboththeoralrouteandcon
464
taminativeroutearelikelytooccur,dependingontheencounterpossibilitiesofthemammalsandvectors(Herrer
465
a
466
2011).Thus,theoralrouteismorepronetooccurbypredationoftriatominesorothermammals,especiallyincar
467
nivores.Agreaterpossibilityofacquiringtheinfectionbythecontaminativerouteispresentinmammalianshelt
468
ers,caves,treehollowsandotherrefugesusedmorepermanentlybytheanimals.Mesopredators,suchasthecarn
469
ivoreNasuanasuaandthenomadicDidelphismarsupialis,may
470
thecontaminative
471
studiedanimalgroupsarethecarnivoresthatarehighlydiverseandlong-
472
livedanimalsthatuselargelivingspaces,comeintocontactwithahugevarietyoffaunaandareatthetopofthetrop
473
hicpyramid.Infact,littleisknownregardingtheroleplayedbyNeotropicalwildcarnivoresintheT,cruzitransmi
et
andoral
al,
mostlikely
routes.Apropos,oneof
beinfected
byboth theless
474
ssioncycles.Ourpreviousstudies,whichincludedsixwild carnivore
475
wereinfected
476
fromwhatwasobservedinCanidae,respectively,redfoxes(Vulpesvulpes)andcoyotes(Canislatrans)intheUS
477
,whereonlytwocoyotesexaminedbyserologicalmethodshaveshowntobeinfectedbyT.cruzi(Rosypal et al,
478
2014).
byT.
cruzi(Rocha
et
al,
species,revealed
2013a).Our
resultsare
thatall
ofthem
quitedifferent
479
Moreover,thehighparasitemiasdetectablebyhemoculture,i.e.,thehighinfectivitycompetence,were
480
foundmainlyinProcyonidae.Thesemesopredators(ProcyoncancrivorusandNasuanasua)weredemonstrat
481
edtoharborTcI,TcII,TcIII/TcIVandTrypanosomarangeli,respectively,insingleandmixedinfections(Table
482
2).Moreover,itwasincoatis,anomadandgeneralist,thatweobservedT.cruziisolatesthatdisplayedoddbandpa
483
tternsintheMini-exonassay,reinforcingthenotionthatT.cruzidiversity
484
acknowledged.Additionally,
485
authorsconsistentlyobservedhighparasitemiasinMusteloideaspecies(Alves et al, 2011; Roellig et al,
486
2009;
487
1992).TcIwasalsoisolatedfromthefelidspeciesLeoparduspardalisaso-
488
calledhypercarnivorespecies,reinforcingtheoralroutebypredationofmammalsasimportantinthenaturalenv
489
ironment.Infact,thisfelidspeciesisnotinsectivorousatallandmostlikelyacquiredtheinfectionbypreyingonin
490
fectedmammals.
491
Herrera
et
mightbemuchhigherthancurrently other
al,
2008;
Pietrzak
et
al,
1998;
Karsten
et
al,
AninterestingexampleofhowknowledgeinecologycanhelptounderstandthetransmissionofT.cruzii
492
nthewildenvironmentispresentedbystudyingnestsofPhacellodomusrufifrons.Thisthornbirdspeciesbuilds
493
neststhathangfromthebranchesoftreesandthatare
494
easilydismantled.ThetriatominespeciesPsammolestescoreodesisassociatedwiththesebirdssuchthatahigh
495
numberofnestsinfestedbythistriatominespecieswereobservedinthearea(HerreraH,personalcommunicatio
496
n).However,noexampleofP.coreodeshasbeenfoundinfectedwithT.cruzi.Theexplanation?Itishighlyunlikel
497
ythatthefragileandpendantnestsofP.rufitronswillallowentryandpermanenceofsmallmammals;thus,noT.cr
498
uziinfectionwill occur, althoughP. coreodesissusceptibletoT.cruziinfection.
499
Whatvariables
500
determinetheinclusionofmanintheT.cruzitransmissioncyclecurrently?Peopleareathigherriskforinfection
501
whentheyspendmoretimeinthenaturalenvironment,forexample,byplayingsports,huntingorwhenbuildingi
502
nformerlywildareas,which
503
resultingreaterexposuretotheenzootictransmissioncycle.Thisexposurealsooccurswhentriatominesinvade
504
humandomiciles,attractedbylight,seekingfoodsourcesthattheforest,partiallydisturbedbyhumanaction,no
505
longeroffers.Itisknownthatexploratoryactivityofnaturecauseslossofbiodiversityand,consequently,lossoff
506
oodsourcesfortriatomines.
507
Itisnotnecessaryfortriatominestocolonizehumandwellingstoinfecthumans.Storing
508
orhandlingfoodininadequateconditionsfacilitatesitscontaminationbyinfectedtriatominebugs.Thisispartic
509
ularlystrikingintheAmazon,andinBrazilitislinkedmainlytotheingestionofaçaíorbacabajuice(Valente
510
al, 2002).IntheAmazon,theaçaí juice isprepared at leasttwice a day,atdusk and at dawn.Natural light,
511
still
512
makesthelocalsuseartificiallightinstalledjustabovethejuiceextractionequipment.Thelightmayattracttriato
513
minebugsthateventuallyfallinsidetheequipmentandarecrushedtogetherwiththefruitsandconsumed.Additi
514
onally,thefruit
515
collectionbasketsmayactasdispersersofinfectedtriatominebugsbecausethesemaybetransportedforconsu
516
mptioninremotelocationsand,ifthejuiceispreparedwithoutproperhygienicconditions,resultininfection(Xa
517
vier
518
2002).Inthesecases,Chagasdiseaseshouldbeconsideredasafoodbornedisease(Xavier
519
2014).Thus,thehigherdiseaseriskfactorformankindisignorance.Knowingthelocalenzooticscenarioandpas
520
singoninformationtothelocalpeopletodemonstrateriskbehaviorpatternsaretheonlyreallyeffectivemeasure
521
sofprevention.
scarce
et
atthese
al,
2014;
two
Valente
et
times,
et
al, et
al,
522 523
7.
524
Theconstitutionofthemammalianfaunamodelstheenzooticscenarioandfavorsorhampersthetransmissi
525
on of distinctT.cruziDTUs
526
ForT.cruzi,competenceforbeinginfectivetothevectordependsonparasitemia,i.e.,thenumberofpara
527
sitesingestedwiththebloodmeal.Thistrait,ofcourse,variesaccordingtothehostspeciesandT.cruziDTU.Mor
528
eover,infectivitycompetencemayvaryinspaceandtimeevenamongindividualsofthesamespeciesbecauseth
529
eabilitytocontrolparasitemiadependsonvariableslinkedtothehost(age,gender,infectionroute,nutritionand
530
healthstatus),aswellaswithconcomitantinfectionsbyotherparasitespeciesandthegenotypeofT.cruzi.Being
531
anefficientreservoiristhereforenotafixedattributeofagivenmammalianspecies.Thus,evenanuniversallyagr
532
eedmainreservoirspeciessuchastheopossumDidelphisauritamaynotactasamajorreservoireveninthesames
533
tateorinthesamebiome.Thus,theprevalenceofpositivehemocultures,i.e.,highparasitemia,inD.auritafrom6
534
distinctlocalitiesofRiodeJaneirostatevariedsignificantly,rangingbetween11%inItaguaand90%intheJagua
535
numisland.InSilvaJardim,isolationofT.cruzifromD.auritawaspossibleonlyin13%ofsamples(Fernandes
536
et al, 1999).Inthislocalityweobserveda robust and long-lastingtransmission cycle of TcIImaintainedby
537
L.rosalia,thegolden
538
upshowedthatthiscyclehasremainedstableandmaintainedthesameenzooticfeatures,with40%oftamarinsha
539
vingpositivebloodcultures(Lisboa
540
2015).Thisstabilityisfarfrombeingtherule.Infact,inonelocation,alsointherainforestofRiodeJaneiro,onesur
541
veyshowed40%ofopossumswithpositivebloodcultures,butshowedanentirelydifferentenzooticpictureduri
542
ngareevaluationtenyearslater,whenallanalyzedopossumswereshowntobeuninfected(Vaz et al, 2007;
543
Pinho
544
2000).Itislikelythatenvironmentaldisruptioncausedbytheincreaseinhumanintrusionresultedinacriticallos
545
sofbiodiversitythatimpairedT.cruzimaintenanceinthearea.Duetoitshighadaptabilitycompetence,D.aurita
546
stillresistedhumanactivityandremainedinthearea.
lionTamarin(Lisboa
et
al,
2000).A
ten-yearfollow-
et
al,
et
al,
547
OurstudiesofthecoatiNasuanasuainthesamePantanalregionexemplifyclearlyhowdynamictheenz
548
ooticscenarioinwhichthetransmissionofT.cruzioccursmaybe.Initially,thisProcyonidspecieswas shown to
549
betobeinfectedmainlybyT.evansi(Herrera
550
1999).Afewyearslater,webegantonoticeahighprevalenceofT.cruziinfection(singleormixedwithT.evansi).
551
Overtime,T.cruzibecamepredominantintheseanimals(Herrera
552
2005).Soon,wewerenolongerabletodetectT.evansiandthecoatisappearedto
553
T.cruzionly.Recently,
554
isolatedT.cruzibutstartedisolatingT.rangeli.
wereturned
et
al,
2004;
et
tothe
Silva
et
al,
2011; beinfectedby
Pantanal,andnolonger
555 556 557
al,
8. AreT.cruziDTUsassociatedwithmammalianhostspeciesorwithgeographicalareas? Asmentionedearlier,sevendiscretetypingunits(DTUs)inthetaxonarecurrentlyrecognized.
558
Nevertheless,allattemptsthathavebeenundertakensincethefirstresearchersattemptedtocorrelatethedistribu
559
tionandpossibleassociationoftheT.cruzisubpopulationswithitsmammalianhostsspecies,triatominespecies
560
orwithhumandiseasehaveledtocontroversialresults.However,certainassociationsofT.cruzigeneticlineages
561
togeographicalregionsareconsistentlybeingobserved(Llewellyn
562
2009).Theseobservations,addedtotheabsenceofrobustdataontheDTUsassociationwith
563
animalspecies,haveledauthorstoproposethatthediversificationprocessofT.cruziDTUshashappenedbyecol
564
ogicalfittingmorethanbyaco-evolutionaryprocess(Llewellyn et al, 2009).Evenso,therearestillmanygaps
565
intheknowledgeoftheecologyandbiologyofthe7T.
566
cruziDTUs:(1)Onemajordifficultyisthatwearemostlikelynotworkingwithtrulyrepresentativesamplesofth
567
epopulationsofT.cruzi.Certainly,oursamplesarenotrepresentativeofthevastdiversityofthisparasitetaxon;th
568
us,wearemostlikelyunderestimatingthenumberofT.
569
cruzivariants.(2)Eachhostspeciesactsasabiologicalfilter,positivelyselectingdistinctclonesoftheparasitesu
570
chthattheclonalassemblageoftheparasitediffersineachhostspeciesandeveneachindividual,accordingtothe
571
natureandkineticsoftheselectionprocessduringinfection.(3)Therearehostspeciesandhabitatsthathave
572
beeneither
573
notyetbeensampledatall.(4)WearenotconsideringandstudyingtheDTUsthatinfectthoseanimalsthatdispla
574
yonlypositiveserologicaltestsbutnegativeparasitologicaltests(themajority),asobservedinTable1.Therefor
575
e,wearelosingimportantinformationbecausewedonotevenknowbywhichDTUtheseanimalsareinfected.(5
576
)Conductingfollow-upstudiesoffree-
577
rangingwildmammalsisquitedifficult,andthemajorityofthestudiesincludeonlyonehemoculture
578
orxenodiagnosisofeachanimal.Oneevaluationrepresentsonlyafragment,asnapshot
579
ofthetotalityoftheparasiticinfrapopulationthatinfectsagivenspecimen.Certainly,itdoesnotincludethewhol
580
esetofclonesthatareinfectingthisgivenanimal.
581
(6)Theselectiveforcesexertedbytheisolationandamplificationmethodsoftheparasitealsohinder
582
thepossibilityofharvestingallclonespresent
583
Thedifficultiesoffieldworkandthebroaddispersionoftheparasitehostsalsolimitareliablesampling.(8)Finall
584
y,thereisnoclearerexamplethantherecentfindingofTcIIandhybridT.cruziinfectingtriatominebugsandmam
585
malsintwodifferentareasoftheBrazilianAmazon,abiomealwaysbeforequotedasfreefromTcII(Lima et al,
et
al,
under-sampledorhave
inonesinglespecimen.(7)
586
2014).
587
Overall,
thelikelihoodisthatweareonlyseeingapartofthewhole,thetipoftheiceberg,andthatnew
588
DTUsmaybereportedasmorestudiesonT.cruzitransmissioninsylvaticenvironmentsareperformed.Reinfor
589
cingthisprobabilityarethedescriptionsofoddpatternsofT.cruziisolatesthatcouldnotbeincludedinanyofthec
590
urrentlyacceptedDTUsderivedfrominfected coatis(Rocha et al, 2013a).
591 592
9. DistributionofT.cruziDTUsinBrazil:stateoftheart
593
Figure1showsthedistributionofT.cruziDTUsinwildmammalsofBrazilianbiomes.Thismapalsosho
594
wsthattherearelargeareasthathavenotbeensampledatallasyet.TheparentalDTUsarerepresentedbythepurpl
595
e(TcI)andbythelightblue(TcII)dots,andshowsthat,asinothersitesintheAmericas,isolationofTcIprevailsthr
596
oughoutinthesylvaticcycle.TcII,formerlyassociatedexclusivelywithhumaninfectionanddiseaseandsubse
597
quentlyassociatedwitharmadillos
598
2005),displaysthesecondlargestdistribution.TcIIalsodisplaysabroadwildhostrangeasithasbeenisolatedfro
599
mrodents,marsupials,primatesandcarnivoresinallofthebiomeswehavestudied(Table1).Moreover,thisDT
600
Uisisolatedfromasmallernumberofanimals,suggestingthatTcIIpresentsadistincttransmissionand
601
maintenancestrategy fromTcI inthe wildenvironment.
602
Like
(Yeo
matryoshkadolls,toolswith
et
al,
increasinganalyticalpower
have
603
demonstratedthatthereisalsointraDTUdiversity.ThisisthecasewithTcI,andassociationsofcertainhaplogro
604
ups ofTcI withwild ordomestic transmissioncycleshavealready beenrecognized (León et al, 2015;
605
Ramírez
606
2012).Moreover,asignificantdiversityofintraTcIhasalreadybeennotedbymicrosatelliteapproach,eveninth
607
esameisolatederivedfromonehostindividual,theopossumDidelphisaurita(Llewellyn
608
2009).RemarkableheterogeneityinintraDTUTcIIhasalsobeenobservedbyourgroup(VSLima,unpublished
609
data).
et
al,
et
al,
610
Our data include the examination of a total of 7,213 mammalian specimens from nine
611
mammalian orders by parasitological and serological diagnostic tests (Table 1). The obtained T. cruzi
612
isolates were characterized by miniexon gene sequence polymorphism and PCR RFLP
613
sequencepolymorphismandPCRRFLP(Lima
et
al,
2014;
Rocha
et
al,
614
2013a).InfectionbyT.cruziwasdetectedbyserologicalmethodsin20%(n=1413)oftheexamined
615
animals,andisolationoftheparasitebyhemocultures
616
wasachievedin547(39%)ofthese,correspondingto8%ofalltheexaminedmammals
617
(Table1).Consideringthatpositivehemoculturesindicatehighparasitemia
618
competence
619
inferthatdispersionandmaintenanceofT.cruziinthewildiswarrantedby40%ofinfectedmammals.
intransmitting
the
parasiteto
the
and
feeding
consequently, vectors,
we
high can
620
T.cruziinfectedmammalshavebeenfoundinallBrazilianbiomes(Tables1and2,Figures1and2).Inspi
621
teoftheparticipationofalmostallmammaliantaxaintheT.cruzireservoirsystem,Primates,Carnivora,andDid
622
elphimorphiapresentedhigherparasitemia,as
623
2,Figure3).Interestingly,
624
rodentsthatarehighlysusceptibletoT.cruziinfectionsinexperimentalconditionsapparentlyplayonlyasecond
625
aryroleinmaintenanceofT.cruziinthewild(Tables1and2,Figure3).Infactonly2.3%outofthe3,857examinedr
626
odentsdisplayedhighparasitemiaasexpressedbypositivehemocultures(Table1).Twopossiblescenariosmay
627
explainthisfact:(i)rodentsdonotsurviveT.cruziinfectioninthewild;and(ii)rodentsdisplayashortlifecyclean
628
dhomerangeandarethereforelessexposedtoT.cruziinfection.Thefirstscenariodoesnotseemveryplausiblebe
629
causeonly8.6%ofthecollectedrodentswere
630
demonstratedtobeinfected(seropositivity),aratiomuchlowerthanobservedforothertaxa.
631
expressedby
positivehemocultures(Table
ThesefindingsareapparentlyincontradictiontothehypothesisofOstfeldandcolleagues(Ostfeld
et
632
al,
633
2014),whopredictthatkeyreservoirsofmultihostparasitesarethosespeciesthatdisplayhighpopulationdensit
634
iesandsmallbodies.Actually,thelifehistorytraitsandpeculiaritiesthatdeterminethecompetenceofagivenani
635
malspeciesasareservoirofageneralistparasitespeciessuchasT.cruziisfarfrombeingknown.Oneofthesetraits
636
seemstobethegeneralisttraitofthehost.Infact,thespeciesthatdemonstratedhigherreservoircompetencewere,withex
637
ceptionofthegoldenLionTamarin,generalistconcerningtheirfeedinghabitsaswelltheircapacitytouseforeststrata:Dide
638
lphisspp.,Nasuanasua,Phylostomussp,CebuslibidinosusandPhilandersp.(Table2,Figure3).
639
T.cruziDTUdistributioninnaturedidnotdemonstrateanyassociationwithbiomeorhabitat(Table1;Fig
640
ure1).TcIpredominatesthroughout(58%oftheT.cruziisolates).Inspiteofbeingsignificantlylessfrequent(17
641
%),TcIIisalsowidelydistributed.AquestionthatemergesconcernstheecologyofthelessprevalentT.cruziDT
642
Ussuch
643
asthehybrids,whichinBrazildemonstratedtobeextremelyrare.AlsoTcIIIandTcIVarewidelydistributed,but
644
occuratsignificantlylowerrates(Figure1).Therearethreenon-
645
mutuallyexclusiveexplanations:(i)theseDTUsdependonsimultaneousinfectionwithotherDTUsorparasite
646
stobetransmitted;(ii)theyaremaintainedinnatureinverylowparasitemias,undetectablebyourmethods;and/
647
or(iii)wedidnotsucceedinsamplingtheirsuitablereservoirspecies.
648 649
10. MixedT.cruziDTUinfections
650
Veryrarely,ifithappens,animalsareparasitizedbyasinglespeciesorvarietyofagivenparasitictaxon.
651
WedetectedmixedDTUinfectionsin57(16%)ofhemoculture-
652
positivemammals,andthemostfrequentcombinationwasTcIwithTcII(Figures2and4).Thisisfarfrombeingc
653
omparabletothe48%mixedinfectionsobservedinhumanand
654
TcITcVI indogsin theGran Chaco(Argentina)(Monje-Rumi et al, 2015).
655
dogsamples.TcV/TcVIin
humansand
Itis
656
notdifficulttopresumehowwildmammalsacquireconcomitantinfectionsbyT.cruzigenotypes.Infact,wildan
657
imalsarealwaysbeingexposedtoinfection,andbothsequentialandsimultaneousinfectionsbydifferentDTUs
658
andinfectionroutesarehighlylikely.AsequentialinfectionispossiblebecauseitisknownthatpriorT.cruziinfec
659
tiondoesnotprotectagainstasubsequentinoculum,butonlypreventsanewacutephase(Guerreiro
660
2015).Thesecondpossibilitycaneasilyoccurbypredationontriatominebugswithmixedinfections,aconditio
661
nthatisnotuncommonlyobserved.Concerningmixedinfections,thecongenitalrouteseemslesslikely.
et
al,
662
ThemammalsthatdisplayedthelargestdiversityofDTUsonconcomitantinfectionswereProcyonida
663
e(Nasuanasua),Phyllostomidae(ArtibeusspandPhyllostomussp),Didelphidae(Monodelphissp.,Gracilina
664
nussp.,Philandersp.,andDidelphissp.)
665
andCebidae(Cebussp.)(Figures2and4).Themammaliangenerainwhichweobservedthehighestrateofmixed
666
infectionswereNasuasp.andDidelphissp.(Figure2).Theseresultsconfirmgeneralisttaxaasbioaccumulators
667
andprobabledispersersofT.cruziDTUsinnature, andsuggestthatone can make a fairly accurateassessment
668
ofDTU
669
areafocusingonthesemammaliantaxa.Furthermore,thereareseveralquestionsthatneedtobeevaluated:(i)for
diversity
ofT.cruzi
inacertain
670
howlongcanthesedistinctparasiteDTUs
671
DTUs?ItistemptingtospeculatethattheparentalDTU,namelyTcI,maybethemostcompetitiveDTU.
672
co-existwithinthehost?Whatarethemorecompetitive
Allmammalsthatdisplayedmixedinfectionshaveasacommontrait-
673
thattheyaregeneralistsinrelationtotheirdietandtheirhabitatandthattheyincludeinsectsintheirdiet.Ecologic
674
alpeculiaritiesofeachmammalspeciesmayturnthemmorepronetogetinfected.Thisis thecase of thenomad
675
andgeneralist
676
vastlivingareasandoftheChiropteransthatbesidestheirhighpossibilityofdisplacementalsohavealargelifesp
677
an.LessknownistheroleplayedbythehypercarnivoresthatareonthetopoffoodchaininrelationtomixedDTUi
678
nfection.Theseanimalsoccurinfewernumbersinthewild.Thisandtheinherentdifficultiesinhandlingthemres
679
ultedinoursamplesizebeingfairlysmall.However,weexpectthemtobehighlyexposedtoconcomitantDTUinf
680
ections.
didelphids,the
mesopradatorsNasua
nasuathat
alsouse
681
Theimpactofconcomitantinfectionsonthefitnessoffreelivingmammalsisabsolutelyunpredictable
682
becausetheseoccurinanimalsthatveryprobablydisplayinfectionsalsobyotherparasitetaxathatmayinteract.
683
RegardingsolelyconcomitantinfectionswithT.cruzidifferentDTUs,ithasalreadybeendescribedinexperime
684
ntalconditionsthatconcomitantinfectionswithisolatesthatdisplaydistinctbiologicalpropertiesresultedinan
685
ewinfectionpatternsuggestingtheoccurrenceofinteractionbetweentheseisolates(Ragone
686
2015).EvidenceofinteractionbetweendifferentgenotypesofT.
687
cruziatamolecularlevelhasbeenobservedbyMachinetal.(2014).We
688
arecertainlyunderestimatingthosemixedinfectionsthatmustbemuchmorefrequentinnaturethanwehavebee
689
nabletodetect.Indeed,weareonly
690
showingtheDTUsthatwesucceededinisolatingbyhemoculture,i.e.,thosethatwerepresentinsignificantamo
691
untsintheperipheralbloodattheexactmomentinwhichwedrewtheblood.Foritshighfrequencyinnaturalcondi
692
tions,probableresultsin
693
pathogenesis,hostfitnessandfinallytheepidemiologyofthedisease,mixedinfectionsdeservespecialattentio
694
n.
infective
competenceof
et
al,
reservoirs,
695 696 697
11. WherearetheotherT.cruziDTUshidden? OurdataclearlyshowthatthemajorityoftheT.cruziisolatesoffreerangingwildmammalsaretheparent
698
alDTUsTcIandTcII(Figure1).TheotherDTUsaremoresporadicallyisolated,buttheirwidedistributionandh
699
ostrangeshowthattheyaresuccessfullydispersedinthewild(Table2).
700
ItisworthquestioningwhatisthemaintenancestrategyofthemorerarelyisolatedDTUs,wheredothey
701
hideandhowtheypersistinnature.
702
ThefactthattheseDTUspersistinnatureinmammalsthatpresentlowparasitemiaisaquestionforwhichwehave
703
noanswer.PerhapstheseDTUsdependonthesimultaneouspresenceofotherparasitetaxaintheirhoststoachiev
704
eparasitemialevelssufficienttoinfectthefeedingvector,orperhapstheyonlycausetransientparasitemias(buts
705
ufficientastoensuretransmission)intheirmammalianhosts.Infact,highparasitemia(asexpressedbypositive
706
hemoculture)occursinlessthan10%oftheexaminedanimals(lessthan40%oftheinfectedones).Intheotherani
707
mals,theinfectioncouldonlybeevidencedbythepresenceofspecificantibodies(Table1).
708
TherecentfindingofLimaetal.(2014)onTcIIandahybrid(TcVandTcVI)intheAmazonbrokeadecad
709
e-oldparadigmthatthisDTUwasnon-
710
existentinthatbiome.AnotherveryimportantpointthatistherecoveryofparasiteDNAdirectlyfromserumfor
711
minimizingtheselectionpressuresinherenttotheamplificationoftheparasitepopulationsbytheparasitologic
712
almethods.Besides,serologicaltestsforwildanimalswere
713
demonstratedtobeextremelyusefultoolstoindicatesub-patentparasiticinfectionandshowthatobtaining
714
DNA
715
fromseraopensanunexploreduniverseofpossibilitiesforstudyofDTUdistribution,insingleormixedinfectio
716
ns,thathavebeenlargelydisregarded.
717 718 719
12. Openquestionsandfinalremarks ThevariablesthatruletheT.cruzitransmissioncycleinthewildarediverseanduniquetoeachecological
720
scenario.
721
Atleastparasiteandhostspeciesidiosyncrasies,environmentalcharacteristics,existingvectorspecies,chance
722
sfornumberandsortofencounters,
723
fromunderstandingtheinterplayofthesevariablesandthefactorsthatmodifythem.
724
Wewonderifitisnottimetoabandontheexpectationtosucceedinestablishingstrictassociationsbetweenhuma
725
ndisease,hostspecies(vectorormammalian)and a particular genotypeof T. cruzi.Parasitism by this
amongothers,
certainlymodulatetransmission.Wearestill
far
726
parasitespecies
727
phenomenon,andallattemptstoestablishepidemiologicalgeneralizationstodatewereratherunsatisfactory.T
728
hisisnottoinvalidateordisparagecontinuingeffortstodeepenthestudyofthisfascinatingtaxon.Itonlymeansth
729
atlowerexpectationsconcerningthechancesofdeterminingassociationwithhumandiseaseormammalhostm
730
ustbeheldandthatconsiderationoftheuniquenessofeachepidemiological/enzooticscenariomustbealwaysta
731
kenintoaccount.
732
constitutes
a
complexand
multivariate
Theprediction of transmission efficiency and epidemiologicalrisk of sucha complex
733
systemrequires
734
ofallvariablescollectivelyatthesametime,animpossibletask.Therefore,atleastweshouldtrytoassessriskfact
735
orsunderamorecomprehensivetask.Therefore,basingepidemiologicalsurveillanceanddefininganysanitary
736
measurebasedonlyon the presence/absence of triatominesis oversimplifying.For this purpose,
737
mathematical modeling provides arobustandpromisingtool(Nouvellet et al, 2015).
measurement
738
Inthelasttwodecades,anewconceptinhealthsciencesarosethatrecognizesadeepinterdependencebe
739
tweenenvironmentalhealth,animalhealth(wildanddomestic),andhumanhealth.Withinthisnewconcept,ter
740
medOneHealth,itisessentialtointegrateeffortsofexpertsofthesedifferentareasasawaytoachieveasustainabl
741
edevelopmentinourglobalizedworld(Lerner
742
2015).Moreandmoreitbecomesclearthatpreventingandcontrollingparasiticdiseasesinthecontemporarywo
743
rld,whichisincreasinglyandquicklychangingandwherethebordersofhuman-
744
animalinterfaceecosystemsarebecomingblurred,willonlybepossiblewiththejointcollaboration
745
ofallbranchesofknowledgeofthenaturalsciences.
746
and
Berg,
Asmentionedabove,thereisstillmuchtounderstandconcerningthisfascinatingmodel.Whatwewoul
747
dliketore-emphasizeisthattheparasiticphenomenon,especiallywhenitisamulti-
748
hostparasitesuchasT.cruzi,shouldbeaddressedusingamultidisciplinaryfocus.Thisisparticularlyimportant
749
whenthisparasitecancause
750
itisessentialtointegrateecologists,cartographers,anthropologists,mathematicians,andothersinsolvingthis
751
puzzle.
752 753
Acknowledgments
fatalities
oratleastadebilitatingdiseasesuchasis
Chagasdisease.Thus,
754
TheauthorsthankCarlosArdéandMarcosAntôniodosSantosLimafortechnicalsupport.Weofferspe
755
cialthankstoDr.Paulo
756
D’AndreaforhistechnicalsupportindatacollectionandtoDr.VeraBongertzformanyhelpfulcommentsonthe
757
Englishversionofthemanuscript.ThisstudywasfundedbyFundaçãoOswaldoCruz-
758
FIOCRUZ;VicePresidênciadePesquisaeLaboratóriosdeReferênciaVPPLR/FIOCRUZforinvestinginourr
759
esearch;Bio-
760
Manguinhos;ChagasDiseaseNationalControlProgramoftheBrazilianHealthMinistry.LaboratóriodeBiolo
761
giaeParasitologiadeMamíferosSilvestresReservatórios(LBPMSR/IOC);theEuropeanUnionSeventhFram
762
eworkPro-
763
gramGrant223034ChagasEpiNet.AllisolatesinthepresentstudyoriginatedfromCOLTRYP/IOC-
764
FIOCRUZ.
765
thankstoallworkersfromPDA/ICMBiooffice,totheGoldenLionTamarinConservationProgram,Pró-
766
carnívorosInstitute,WildlifeConservationSocietyOWOH2008-
767
001.NationalResearchCenterfortheConservationofNaturalPredatorsCENAP/ICMBio.ConselhoNaciona
768
ldeDesenvolvimentoCientíficoeTecnológico(CNPq);FundaçãodeAmparoa
769
PesquisadoEstadodoRiodeJaneiro(FAPERJ);CAPES.Thefundershadnoroleinstudydesign,datacollection
770
andanalysis,decisiontopublish,orpreparationofthemanuscript.Theauthorshavedeclaredthatnocompetingi
771
nterestsexist.
772
Sérgio
We
also
offer
773
References
774 Alkmim-OliveiraSM,Costa-MartinsAG,KappelHB,CorreiaD,RamírezLE,Lages-SilvaE 775
(2013).TrypanosomacruziexperimentalcongenitaltransmissionassociatedwithTcVandTcIsubpatentmate
776
rnalparasitemia.ParasitolRes112(2):671-678.
777 AlvesFM,OlifiersN,BianchiRC,DuarteAC,CotiasPM,D’AndreaPS,GompperME,MourãoGM,HerreraHM,J 778
ansenAM(2011).Modulating variables ofTrypanosoma cruzi andTrypanosomaevansi transmissionin
779
free-ranging Coati(Nasua nasua) fromthe BrazilianPantanalregion.VectorBorneZoonoticDis.11(7):
780
835-841.doi:10.1089/vbz.2010.0096.
781 Andrade
DV,Gollob
KJ,Dutra
782
WO(2014).AcuteChagasDisease:NewGlobalChallengesforanOldNeglectedDisease.PLoSNeglTropDis8
783
(7): e3010.doi:10.1371/journal.pntd.0003010.
784 Añez
N,Crisante
G,
S oriano
785
PJ(2009).Trypanosomacruzicongenitaltransmissioninwildbats.ActaTropica109:
786
80.doi:10.1016/j.actatropica.2008.08.009
78-
787 AraújoCA,WaniekPJ,JansenAM 788
(2009).AnoverviewofChagasdiseaseandtheroleoftriatominesonitsdistributioninBrazil.VectorBorneZoon
789
oticDis.9 (3): 227-234.doi: 10.1089/vbz.2008.0185.
790 Araujo CAC,Cabello PH,Jansen AM(2007). Growthbehaviour of twoTrypanosoma cruzistrains in single 791
andmixedinfections:Invitroandintheintestinaltractoftheblood-
792
suckingbug,Triatomabrasiliensis.ActaTropica 101 (3): 225-231.doi:10.1016/j.actatropica.2007.02.004.
793 AraujoCAC,WaniekPJ,Jansen
AM(2014).TcI/TcIIco-
794
infectioncanenhanceTrypanosomacruzigrowthinRhodniusprolixus.
795
7:94.doi:10.1186/1756-3305-7-94
ParasitVectors
796 AshfordRW (1996).Leishmaniasisreservoirsandtheirsignificanceincontrol.ClinDermatol 14: 523-532. 797 Ashford RW (2003).Whenisareservoirnotareservoir?EmergInfectDis9: 1495-1496. 798 AwmackCS,LeatherSR 799
(2002).Hostplantqualityandfecundityinherbivorousinsects.AnnuRevEntomol.47:817-844.
800 AzambujaP,
FederD,
GarciaES(2004)
IsolationofSerratia
marcescensin
themidgutof
801
Rhodniusprolixus:impactonthe
802
establishmentoftheparasiteTrypanosomacruziinthevector.ExpParasitol107 (1-2): 89-96.
803 BarretoMP,RibeiroRD(1979).ReservatóriossilvestresdoTrypanosoma(Schizotrypanum)cruzi,Chagas1909.R 804
evInstAdolfoLutz,39:2536pp.
805 BernC,KjosS,YabsleyMJ,MontgomerySP 806
(2011).Trypanosoma
cruziandChagas’
DiseaseintheUnitedStates.ClinMicrobiolRev.24 (4): 655-681.
807 BondM,TejedorMF,CampbellKEJr,ChornogubskyL,NovoN,GoinF(2015).EoceneprimatesofSouthAmerica 808
andtheAfricanoriginsofNewWorldmonkeys.Nature.520 (7548): 538-541.doi:10.1038/nature14120.
809 BrumptE(1936).PrecisdeParasitologie.volume,pg25,1084pp. 810 Burgos JM, Altcheh J, Bisio M, Duffy T, Valadares HM, Seidenstein ME, Piccinali R, Freitas JM, Levin 811
MJ,
812
(2007).DirectmolecularprofilingofminicirclesignaturesandlineagesofTrypanosomacruzibloodstreampo
813
pulationscausingcongenitalChagasdisease.IntJParasitol37: 1319-1327.
Macchi
L,
Macedo
AM,
Freilij
H,
Schijman
814 CarlierY,Sosa-EstaniS,LuquettiAO,BuekensP(2015)CongenitalChagasdisease:anupdate. 815
Mem
AG
Inst
OswaldoCruz110 (3):363-368.doi:10.1590/0074-02760140405.
816 Carrillo
JD,
Forasiepi
A,
Jaramillo
C,
Sánchez-Villagra
MR(2015).
817
NeotropicalmammaldiversityandtheGreatAmericanBioticInterchange:spatialandtemporalvariationinSo
818
uthAmerica’sfossilrecord.FrontGenet 5 (5): 451. doi: 10.3389/fgene.2014.00451.
819 ChagasC(1909)Novatripanozomiazehumana.EstudossobreamorfolojiaeocicloevolutivodoSchizotrypanumc 820
ruzin.gen.,n.sp.,ajenteetiolojicodenovaentidademorbidadohomem.MemInstOswaldoCruz1:159-218.
821 ChagasC(1912).PossibilidadedeserotatuumdepositáriodeTrypanosomacruzinomundoexterior(notaprévia).B 822
razil-Med.30,305-306.
823 ChiariE,BrenerZ 824
(1966).ContributiontotheparasitologicaldiagnosisofhumanChagas’diseaseinitschronicphase.RevInstMe
825
dTropSaoPaulo8(3):134-138.
826 CortezMR,PinhoAP,CuervoP,AlfaroF,SolanoM,XavierSC,D’AndreaPS,FernandesO,TorricoF,NoireauF,Jan 827
senAM(2006).Trypanosomacruzi(KinetoplastidaTrypanosomatidae):
828
ecologyofthetransmissioncycleinthewildenvironmentoftheAndeanvalleyof
829
Cochabamba,Bolivia.ExpParasitol114 (4):305-313.doi:10.1016/j.exppara.2006.04.010.
830 DeaneMP,LenziHL,JansenA. 831
(1984b).Trypanosomacruzi:vertebrateandinvertebratecyclesinthesamemammalhost,theopossumDidelph
832
ismarsupialis.MemInstOswaldoCruz79(4):513-515.
833 DeaneMP,SousaMA,PereiraNM,GonçalvesAM,MomenH,MorelCM 834
(1984a).Trypanosomacruzi:inoculationschedulesandre-isolationmethodsselect
835
strainsfromdoublyinfectedmice,
836
asdemonstratedbyschizodemeandzymodemeanalyses.JProtozool31(2):276-280.
individual
837 DesbiezALJ,KluyberD(2013).TheRoleofGiantArmadillos(Priodontesmaximus)asPhysicalEcosystemEngin 838
eersBiotropica45 (5): 537-540.
839 Dvorak
JA
840
(1984).ThenaturalheterogeneityofTrypanosomacruzi:biologicalandmedicalimplications.JCellBiochem2
841
4: 357-371.
842 Enriquez GF, Cardinal MV, Orozco MM, Lanati L, Schijman AG, Gurtler RE(2013).Discretetyping 843
unitsofTrypanosomacruziidentified
844
Chaco.Parasitology 140 (3): 303-308 doi:10.1017/S003118201200159X.
in
rural
dogs
and
cats
in
the
humid
Argentinean
845 Fernandes O,Mangia RH, Lisboa CV,Pinho AP,Morel CM,Zingales B,Campbell DA,Jansen AM 846
(1999).ThecomplexityofthesylvaticcycleofTrypanosomacruziinRiodeJaneirostate(Brazil)revealedbythe
847
non-transcribedspacerofthemini-exongene. Parasitology118(2):161-166.
848 Fernandes O, Souto RP, Castro JA, Pereira JB, Fernandes NC, Junqueira AC, Naiff RD, Barrett TV, 849
Degrave
850
BrazilianisolatesofTrypanosomacruzifromhumansandtriatominesclassifiedintotwolineagesusingmini-
851
exonandribosomalRNAsequences.AmJTropMedHyg58: 807-811.
W,
Zingales
B,
Campbell
DA,
Coura
JR
852 Flynn
(1998).
JJ,Wyss
853
AR(1998).RecentadvancesinSouthAmericanmammalianpaleontology.TrendsinEcology&Evolution 13
854
(11):449-454.
855 FriedG,PetitS,ReboudX 856
(2010).Aspecialist-
generalistclassificationofthearablefloraanditsresponsetochangesinagriculturalpractices.
857
BMCEcol.10:20.
858 GasconJ,BernC,PinazoMJ 859
(2010).ChagasdiseaseinSpain,theUnitedStatesandothernon-
endemiccountries.ActaTrop.115:22-27.
860 GauntM,MilesM 861
(2000).Theecotopesandevolutionoftriatominebugs(triatominae)andtheirassociatedtrypanosomes.MemI
862
nstOswaldoCruz95(4):557-565.
863 GiorgioS (1995).Modernavisãodaevoluçãodavirulência.RevSaudePublica29 (5): 398-402. 864 GuerreiroML,MoraisIR,AndradeSG(2015).Immunologicalresponsetore865
infectionswithclonesoftheColombianstrainofTrypanosomacruziwithdifferentdegreesofvirulence:influen
866
ceonpathologicalfeaturesduringchronicinfectioninmice.Mem Inst Oswaldo Cruz 110 (4): 500-506.
867 Guhl 868
F,
JaramilloC,VallejoGA,CárdenasA,
Arroyo
F,AufderheideA
(2000).Chagasdiseaseandhumanmigration.MemInstOswaldoCruz 95 (4): 553-555.
869 Hamilton
PB,Teixeira
MMG,Stevens
870
JR(2012).TheevolutionofTrypanosomacruzi:thebatseedinghypothesis.TrendsParasitol28
871
141.doi:10.1016/j.pt.2012.01.006.
872 Haydon 873
DT,Cleaveland
S,Taylor
LH,Laurenson
MK
(4):136-
(2002).Identifyingreservoirsofinfection:
aconceptualandpracticalchallenge.EmergInfectDis8:1468-1473.
874 Herrera
CP,Licon
MH,Nation
CS,Jameson
SB,Wesson
DM
(2015).
Genotypediversityof
875
TrypanosomacruziinsmallrodentsandTriatomasanguisugafromaruralareainNewOrleans,Louisiana.Para
876
sit Vectors 8: 123. doi: 10.1186/s13071-015-0730-8.
877 Herrera 878
HM,
Dávila
AMR,Norek
A,Abreu
UG,Souza
SS,D’Andrea
PS,Jansen
AM(2004).EnzootiologyofTrypanosoma evansi inPantanal,Brazil.VetParasitol 125 (34): 263-275.
879 HerreraHM,LisboaCV,PinhoAP,OlifiersN,BianchiRC,RochaFL,MourãoGM,JansenAM.(2008)Thecoati(N 880
asuanasua,Carnivora,Procyonidae)asa reservoirhostforthe mainlineagesof Trypanosomacruziinthe
881
Pantanalregion,Brazil.Trans
882
1139.doi:10.1016/j.trstmh.2008.04.041.
RSocTrop
MedHyg
102
(11):
1133-
883 HerreraHM,NorekA,FreitasTP,RademakerV,FernandesO,JansenAM(2005).Domesticandwildmammalsinfe 884
ctionbyTrypanosomaevansiinapristineareaoftheBrazilianPantanalregion.ParasitolRes.96 (2): 121-126.
885 HerreraHM,RochaFL,LisboaCV,RademakerV,MourãoGM,JansenAM.2011.Foodwebconnectionsandthetra 886
nsmissioncyclesofTrypanosomacruziandTrypanosomaevansi(Kinetoplastida,Trypanosomatidae)intheP
887
antanalRegion,Brazil.TransRSocTropMedHyg.105(7):380-387.
888 JansenAM,MadeiraF,CarreiraJC,Medina-AcostaE,DeaneMP 889
(1997).TrypanosomacruziintheopossumDidelphismarsupialis:astudyofthecorrelationsandkineticsofthes
890
ystemicandscentglandinfectionsinnaturallyandexperimentallyinfectedanimals.ExpParasitol86(1):37-44.
891 JansenAM,MorieartyPL,CastroBG,DeaneMP
(1985).Trypanosoma
892
cruziintheopossumDidelphismarsupialis:anindirectfluorescentantibodytestforthediagnosisandfollow-
893
upofnaturalandexperimentalinfections.TransRSocTropMedHyg79(4):474-477.
894 JansenAM,RoqueALR 895
(2010).Domesticandwildmammalianreservoirs.In:Telleria,J.,Tibyarenc,M.(Eds.),AmericanTrypanosom
896
iasisChagasDisease,1sted.Elsevier,London,p.249-276.
897 KarstenV, 898
DavisC,KuhnR.(1992).TrypanosomacruziinwildraccoonsandopossumsinNorthCarolina.JParasitol.78
899
(3): 547-549.
900 Kribs-Zaleta
CM(2014).Graphicalanalysisofevolutionarytrade-
901
offinsylvaticTrypanosomacruzitransmissionmodes.JTheoreticalBiology353:34-
902
43.doi:10.1016/j.jtbi.2014.03.002
903 LazzariCR,PereiraMH,LorenzoMG 904
(2013).BehaviouralbiologyofChagasdiseasevectors.MemInstOswaldoCruz108 (Suppl1):34-47.
905 LegerL 906
(1904).SurlesaffinitiesdelHerpetomonassubulataetlaphylogeniedestrypanosomes.CompRSancesSocBio
907
lSesFil56:615-617.
908 LenskiRE,MayRM 909
(1994).Theevolutionofvirulenceinparasitesandpathogens:reconciliationbetweentwocompetinghypothes
910
es.JTheorBiol.169 (3): 253-265.
911 Lent 912
H,Wygodzinsky
P
(1979).RevisonoftheTriatominae(Hemiptera,Reduviidae),andtheirsignificanceasvectorofChagasdisease
913
. Bull.AmericanMusNatHist163(3):125-520.
914 León
CM,
Hernández
C,
Montilla
M,
Ramírez
JD
915
(2015).RetrospectivedistributionofTrypanosomacruziIgenotypesinColombiaMemInstOswaldoCruz 110
916
(3):387-393.
917 Lermer
H,
Berg
C
918
(2015).TheconceptofhealthinOneHealthandsomepracticalimplicationsforresearchandeducation:whatis
919
OneHealth?Infect Ecol Epidemiol 5: 25300. doi: 10.3402/iee.v5.25300.
920 LimaVS,XavierSCC,MaldonadoIFR,RoqueALR,VicenteACP, Jansen AM (2014).Expandingthe k nowledge 921
ofthegeographic
922
d istributionofTrypanosomacruziTcIIandTcV/TcVIGenotypesintheBrazilianAmazon.PLoSONE9 (12):
923
e116137.doi:10.1371/journal.pone.0116137
924 Lisboa
CV,Dietz
J,Baker
AJ,Russel
NN,Jansen
925
AM(2000).TrypanosomacruziinfectioninLeontopithecusrosaliaattheReservaBiológicadePoçodasAntas,
926
RiodeJaneiro,Brazil. Mem Inst Oswaldo Cruz95 (4): 445-452.
927 LisboaCV,MonteiroRV,MartinsAF,XavierSC,LimaVD,JansenAM.(2015).InfectionwithTrypanosomacruzi 928
TcIIandTcIinfree-rangingpopulationofliontamarins(Leontopithecusspp):an11-yearfollow-
929
upMemInstOswaldoCruz110(3):394-402.
930 LlewellynMS,MilesMA,CarrascoHJ,LewisMD,YeoM,VargasJ,TorricoF,DiosqueP,ValenteV,ValenteSA,Ga 931
untMW(2009).Genome-scale multilocusmicrosatellite typingof Trypanosomacruzi discretetyping unitI
932
revealsphylogeographic
933
e1000410.doi: 10.1371/journal.ppat.1000410.
structureandspecificgenotypeslinkedtohumaninfection.PLoSPathog.5
(5):
934 LukesJ,SkalickyT,VotypkaaJ,YurchenkoaV 935
(2014).Evolutionofparasitisminkinetoplastidflagellates.MolBiochemParasitol195: 115-122.
936 Machin
A,Telleria
J,Brizard
JP,Demettre
E,Sveno
M,Ayala
F,Tibayrenc
937
M(2014).Trypanosomacruzi:geneexpression surveyedby proteomic analysis reveals interactionbetween
938
different genotypesin mixedin vitrocultures.PLoSOne9 (4): e95442.doi: 10.1371/journal.pone.0095442
939 MaloneyJ,NewsomeA,HuangJ,KirbyJ,KranzM,WateskaA,DunlapB,YabsleyMJ,DunnJR,JonesTF,Moncayo 940
AC(2010). SeroprevalenceofTrypanosomacruziinraccoonsfromTennessee.JParasitol96 (2): 353-358.
941 MazzocchiF
(2008).Complexityin
942
biology.Exceedingthelimitsofreductionismanddeterminismusingcomplexity
943
(1):1014.
944 Mazzocchi 945
F (2012).
Complexityand
thereductionism-holism
debatein
theory.EMBORep.9
systems
biology.Wiley
InterdiscipRev SystBiol Med4 (5):413-427.
946 Meja-JaramilloAM,PeñaVH,Triana-ChávezO 947
(2009).Trypanosomacruzi:BiologicalcharacterizationoflineagesIandIIsupportsthepredominanceoflinea
948
geIinColombia.ExpParasitol121(1):83-91.
949 MelloCB,AzambujaP,GarciaES,RatcliffeNA(1996).DifferentialinvitroandinvivobehaviorofthreestrainsofTr 950
ypanosomacruziinthegutandhemolymphofRhodniusprolixusExpParasitol82(2): 112-121.
951 MeloMF,
MoreiraOC,TenrioP,LorenaV,Lorena-
952
RezendeI,JúniorWO,GomesY,BrittoC.2015.UsefulnessofrealtimePCRtoquantifyparasiteloadinserumsa
953
mplesfromchronicChagasdiseasepatients.ParasitVectors12 (8):154.
954 MilesMA,Lanham
SM,deSouzaAA,PovoaM
955
(1980).FurtherenzymiccharactersofTrypanosomacruziandtheirevaluationforstrainidentification.TransR
956
SocTropMedHyg74: 221-237.
957 MilesMA,ToyPJ,OswaldSC,GodfreyDG 958
(1977).TheidentificationbyisoenzymepatternsoftwodistinctstrainsgroupsofTrypanosomacruzicirculatin
959
gindependentlyinaruralareaofBrazil.TransRSocTropMedHyg71:217-225.
960 Monje961
RumiMM,BrandnCP,RagonePG,TomasiniN,LauthierJJ,AlbertiD’AmatoAM,CiminoRO,OrellanaV,Bas
962
ombroMA,DiosqueP(2015).TrypanosomacruzidiversityintheGranChaco:mixedinfectionsanddifferentia
963
lhostdistributionofTcVandTcVI.InfectGenet Evol 29: 53-59.doi: 10.1016/j.meegid.2014
964 MontoyaJM,PimmSL,SolRV (2006).Ecologicalnetworksandtheirfragility.Nature442(7100):259-264 965 MoreiraOC,RamírezJD,VelázquezE,MeloMF,Lima-FerreiraC,GuhlF,Sosa-EstaniS,Marin966
NetoJA,MorilloCA,BrittoC.2013.Towardstheestablishmentofaconsensusreal-
967
timeqPCRtomonitorTrypanosomacruziparasitemiainpatientswithchronicChagasdiseasecardiomyopathy
968
:asubstudyfromtheBENEFITtrial.ActaTrop125(1):23-31.
969 NouvelletP,CucunubZM,GourbireS(2015).Ecology,evolutionandcontrolofChagasdisease:acenturyofneglect 970
edmodellingandapromisingfuture.AdvParasitol.87: 135-191.doi: 10.1016/bs.apar.2014.12.004.
971 NouvelletP,Dumonteil E,GourbireS (2013).The improbable transmission of Trypanosoma cruzi 972
tohuman:the missinglink inthedynamicsandcontrolofChagasdisease.PLoS Negl Trop Dis 7 (11):
973
e2505.
974 OlifiersN,BianchiRC,MourãoGM,GompperME 975
(2009).Constructionofarborealnestsbybrown-
nosedcoatis,Nasuanasua(Carnivora:Procyonidae)intheBrazilianPantanal.Zoologia26(3):571-574.
976 Ostfeld RS, Levi T, Jolles AE, Martin LB, Hosseini PR, Keesing F (2014)Life history and demographic 977
drivers
978
(9):e107387.doi:10.1371/journal.pone.0107387
of
reservoir
competence
for
three
tick-borne
zoonotic
pathogens.PLoSOne9
979 PelosseP,Kribs980
ZaletaCM(2012).Theroleoftheratioofvectorandhostdensitiesintheevolutionoftransmissionmodesinvecto
981
r-bornediseases.TheexampleofsylvaticTrypanosomacruzi.JTheorBiol7
982
42.doi:10.1016/j.jtbi.2012.07.028.
(312)
:133-
983 PercyKE,AwmackCS,LindrothRL,KubiskeME,KopperBJ,IsebrandsJG,PregitzerKS,HendreyGR,DicksonR 984
E,ZakDR,OksanenE,SoberJ,Harrington
985
pestsunder atmospheresenrichedby CO2and O3.Nature.420:403-407.
R,
Karnosky
DF
(2002).Altered
performanceofforest
986 PereiraKS,SchmidtFL,GuaraldoAM,FrancoRM,DiasVL,PassosLA 987
(2009).Chagas’diseaseasafoodborneillness.JFoodProt72(2):441-446.
988 PietrzakSM,PungOJ (1998).TrypanosomiasisinraccoonsfromGeorgia.JWildlDis 34 (1): 132-136. 989 PinhoAP,CupolilloE,MangiaRH,FernandesO,JansenAM(2000).Trypanosomacruziinthesylvaticenvironmen 990
t:distincttransmissioncyclesinvolvingtwosympatricmarsupials.TransR SocTropMedHyg94 (5): 509-
991
514.
992 Portela-LindosoAA,Shikanai-YasudaMA 993
(2003).ChronicChagas’disease:fromxenodiagnosisandhemoculturetopolymerasechainreaction.RevSaud
994
ePublica37(1):107-115.
995 RademakerV,HerreraHM,RaffelTR,D’AndreaPS,Freitas 996
TP,
AbreuUG,HudsonPJ,JansenAM
(2009).Whatistheroleofsmallrodents inthetransmission cycleofTrypanosoma cruziandTrypanosoma
997
evansi(Kinetoplastida
998
107.
Trypanosomatidae)
AstudycaseintheBrazilianPantanal.ActaTrop.111(2):102-
999 RagonePG,PrezBrandnC,MonjeRumiM,TomasiniN,LauthierJJ,CiminoRO,UncosA,RamosF,AlbertiD’Ama 1000
toAM,BasombroMA,Diosque
1001
InteractionsamongDifferentIsolates
1002
(3):e0119866.doi:10.1371/journal.pone.0119866.
P.(2015).Experimental of
Trypanosoma
cruzi
EvidenceofBiological fromthe
ChacoRegion.PlosOne10
1003 RamírezJD,DuqueMC,MontillaM,CucunubZM,GuhlF(2012).MultilocusPCR1004
RFLPprofilinginTrypanosomacruziIhighlightsanintraspecificgeneticvariationpattern.InfectGenetEvol
1005
12 (8): 1743-1750.doi:10.1016/j.meegid.2012.06.018.
1006 Ramírez
JD,Tapia-Calle
G,Muñoz-Cruz
G,Poveda
C,Rendón
LM,Hincapi
1007
E,GuhlF(2014).Trypanosomespeciesinneotropicalbats:Biological,evolutionaryandepidemiologicalimpli
1008
cations.Infect Genet Evol 22: 250-256.
1009 RochaFL,RoqueAL,ArraisRC,SantosJP,
LimaVS,XavierSCC,Cordeiro-
1010
EstrelaP,D’AndreaPS,JansenAM(2013a).TrypanosomacruziTcIandTcIItransmissionamongwildcarnivo
1011
res,smallmammalsanddogsinaconservationunitandsurroundingareas,Brazil.Parasitology 140 (2): 160-
1012
170.doi:10.1017/S0031182012001539.
1013 RochaFL,RoqueALR,deLimaJS,CheidaCC,LemosFG,deAzevedoFC,ArraisRC,BilacD,HerreraHM,Mouro 1014
G,JansenAM.(2013b).Trypanosomacruziinfectioninneotropicalwildcarnivores(Mammalia:Carnivora):a
1015
tthetopoftheT.cruzitransmissionchain.PLoSOne.8(7):e67463).
1016 RoelligDM,EllisAE,YabsleyMJ(2009).GeneticallydifferentisolatesofTrypanosomacruzielicitdifferentinfect 1017
iondynamicsinraccoons(Procyonlotor)andVirginiaopossums(Didelphisvirginiana).IntJParasitol
1018
(14): 1603-1610.doi: 10.1016/j.ijpara.2009.06.007.
1019 Roellig
DM,Ellis
39
AE,Yabsley
1020
MJ(2009).OraltransmissionofTrypanosomacruziwithopposingevidenceforthetheoryofcarnivory.JParasit
1021
ol95:360-364.doi:10.1645/GE-1740.1
1022 RoqueALR,XavierSCC,RochaMG,DuarteAC,D’AndreaPS,JansenAM(2008).Trypanosomacruzitransmissi 1023
oncycleamongwildanddomesticmammalsinthreeareasoforallytransmittedChagasdiseaseoutbreaks.AmJ
1024
TropMedHyg79:742-749.
1025 RosypalAC,SmithT,AlexanderA,WeaverM,StewartR,HoustonA,GerholdR,VanWhyK,DubeyJP(2014).Serol 1026
ogicsurveyofantibodiestoTrypanosomacruziincoyotesandredfoxesfromPennsylvaniaandTennessee.JZoo
1027
WildlMed 45 (4): 991-993.
1028 SchofieldCJ,GalvãoC.2009.Classification,evolution,andspeciesgroupswithintheTriatominae.ActaTrop.110( 1029
2-3):88-100.
1030 Shikanai-Yasuda MA,CarvalhoNB(2012).Oraltransmissionofchagasdisease.Clin Infect Dis 54 (6): 8451031
852. doi: 10.1093/cid/cir956.
1032 Silva
ES,Gontijo
CM,Melo
MN
1033
(2005).ContributionofmoleculartechniquestotheepidemiologyofneotropicalLeishmaniaspecies.
1034
TrendsParasitol21: 550-552.
1035 Silva
MB,BarretoAV,
Silva
HA,GalvãoC,RochaD,
Jurberg
J,
Gurgel-Gonçalves
1036
R(2012).Synanthropictriatomines(Hemiptera,
1037
Reduviidae)inthestateofPernambuco,Brazil:geographicaldistributionandnaturalTrypanosomainfectionra
1038
tesbetween2006and2007.RevSocBrasMedTrop45 (1): 60-65.
1039 SilvaRAMS,Victório
AM,RamirezL,DávilaAMR,Trajano
1040
V,JansenAM(1999).Hematologicalandbloodchemistryalterationsincoatis(Nasuanasua)naturallyinfecte
1041
dbyTrypanosomaevansiinthePantanal,Brazil.Mem Inst Oswaldo Cruz 52 (2): 119-122.
1042 Tanowitz HB,Weiss LM,Montgomery SP(2011).Chagasdiseasehasnowgoneglobal.PLoS Negl Trop Dis. 5 1043
(4): e1136. doi: 10.1371/journal.pntd.0001136.
1044 Tibayrenc
M,AyalaFJ
1045
(1988).IsoenzymevariabilityinTrypanosomacruzi,theagentofChagasdisease:genetical,taxonomicalande
1046
pidemiologicalsignificance.Evolution42: 277-292.
1047 ValenteSAS,ValenteVC,PintoAYN(2002).PorqueocorremepisódiosfamiliaresdedoençadeChagasassociadoà 1048
transmissãooralnaAmazôniabrasileira?RevSocBrasMedTrop35(I):165.In:Anaisdo38aCongressodaSoci
1049
edadeBrasileiradeMedicinaTropical.
1050 Vaz
VC,D’AndreaPS,Jansen
1051
AM(2007).EffectsofhabitatfragmentationonwildmammalinfectionbyTrypanosomacruzi.Parasitology13
1052
4:1785-1793.doi:10.1017/S003118200700323X.
1053 Voloch
CM,
Vilela
JF,
Loss-Oliveira
L,
Schrago
CG.
1054
(2013).PhylogenyandchronologyofthemajorlineagesofNewWorldhystricognathrodents:insightsonthebio
1055
geographyoftheEocene/OligocenearrivalofmammalsinSouthAmerica.BMC Res Notes 6: 160. doi:
1056
10.1186/1756-0500-6-160.
1057 Waniek
PJ,JansenAM,AraújoCA
1058
(2011).TrypanosomacruziinfectionmodulatestheexpressionofTriatomabrasiliensisdef1inthemidgut.
1059
VectorBorneZoonoticDis11(7):845-847.
1060 WoolhouseME,TaylorLH,Haydon DT (2001).Populationbiologyofmultihostpathogens.Science292 (5519): 1061
1109-1112.
1062 XavierSC,RoqueAL,LimaVS,MonteiroKJ,OtavianoJC,FerreiradaSilvaLF,JansenAM 1063
(2012).LowerrichnessofsmallwildmammalspeciesandChagasdiseaserisk.PLoSNeglTropDis.6(5):e1647
1064
.
1065 XavierSCC,RoqueALR,BilacD,deAraújoVAL,NetoSFC, Lorosa ES, Ferreira-da-Silva LFC, Jansen 1066
AM
1067
DistantiaeTransmissionofTrypanosomacruzi:ANewEpidemiologicalFeatureofAcuteChagasDiseaseinB
1068
razil.PLoSNeglTropDis8(5):e2878.doi:10.1371/journal.pntd.0002878.
(2014).
1069 Yeo M, Acosta N, Llewellyn M, Sánchez H, Adamson S, Miles GA, López E, González N, Patterson JS, 1070
Gaunt MW, de Arias AR, Miles MA (2005). Origins of Chagas disease: Didelphis species are natural
1071
hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids.Int J
1072
Parasitol35(2):225-233.
1073 YoshidaN 1074
(2008).Trypanosomacruziinfectionbyoralroute:howtheinterplaybetweenparasiteandhostcomponentsmo
1075
dulatesinfectivity. ParasitolInt.57(2):105-109.
1076 YoshidaN 1077
(2009).MolecularmechanismsofTrypanosomacruziinfectionbyoralroute.MemInstOswaldoCruz.104(Su
1078
ppl1):101-107.
1079 ZingalesB,AndradeSG,BrionesMRS,CampbellDA,ChiariE,FernandesO,GuhlF,Lages1080
SilvaE,MacedoAM,MachadoCR,MilesMA.RomanhaAJ,SturmNR,TibayrencM,Schijman(2009).Anew
1081
consensusforTrypanosomacruziintraspecificnomenclature:secondrevisionmeetingrecomendsTcItoTcVI
1082
.MemInstOswaldoCruz.104(7):1051-1054.
1083 ZingalesB,MilesMA,CampbellDA,TibayrencM,MacedoAM,TeixeiraMM,SchijmanAG,LlewellynMS,Lage 1084
s-
1085
SilvaE,MachadoCR,AndradeSG,SturmNR.(2012).TherevisedTrypanosomacruzisubspecificnomenclatu
1086
re:Rationale,epidemiologicalrelevanceand research applications. Infect Genet Evol. 12 (2): 240-253.
1087
doi: 10.1016/j.meegid.2011.12.009
1088 Zinsstag
J,Schelling
E,Waltner-
1089
ToewsD,TannerM(2011).Fromonemedicinetoonehealthandsystemicapproachestohealthandwell-
1090
being.PrevVetMed101:148-156.doi:10.1016/j.prevetmed.2010.07.003
1091 1092
1093
FIGURE LEGENDS:
1094 1095 1096
Figure1.MapofthespatialdistributionofTrypanosomacruziDTUsintheBrazilianBiomes:AmazonForest,A
1097
tlanticForest,Caatinga,CerradoandPantanal.
1098
Figure2.ThedistributionofTrypanosomacruzimixedDTUsamonginhostsintheBrazilianBiomes:Amazon
1099
Forest,AtlanticForest,Caatinga,CerradoandPantanal.
1100
Figure 3. Map of the infective competence of Trypanosoma cruzi(based on positivity of
1101
hemocultures) and DTU diversity in naturally infected hosts in the wild environment and in Brazilian
1102
Biomes: Amazon Forest, Atlantic Forest, Caatinga, Cerrado and Pantanal.
1103
Figure 4. The distribution of Trypanosoma cruzi mixed DTUs infections among in naturally infected
1104
hosts in the wild environment in Brazil.
1105
Table 1. Prevalence of Trypanosoma cruzi infection by IFAT and hemocultures among
1106
free ranging order of the wild mammals in the Brazilian Biomes: Amazon Forest,
1107
Atlantic Forest, Caatinga, Cerrado and Pantanal.
Biomes
Order
Amazon Artiodactyla Forest
Atlantic Forest
Genera Species specimens
Positive IFAT (%)
Positive Hemocultures (%)
Parasite characterization
1
1
11
8 (72)
0
Chiroptera
25
26
278
n.d
34/278 (12)
Cingulata
2
2
4
1/4 (25)
Didelphimorphia
9
9
220
n.d 113/220 (51)
Lagomorphia Pilosa
1 1
1 1
1 3
n.d n.d
0 2/3 (67)
Primates
2
3
57
18/57 (32)
28/57 (49)
Rodentia 8
15 56
8 51
117 691
29/117 (25) 168 (24.31)
8/117 (7) 130 (19)
TcI (5); TcI+T. rangeli; TcI+TcIV (1)
Carnivora
5
6
10
5/10 (50)
1/10 (10)
TcIII (1)
Chiroptera Cingulata
16 1
22 1
219 3
n.d n.d
6/219 (3) 0
TcI+TcIII/TcIV (1)
57/220 (26)
TcI (4); TcI+TcIII/TcIV (2); TcIV (1); TcI+T. range TcI+TcIV (1) TcIV (1) TcI (39); TcII (1); TcI+T. rangeli (2); TcI+TcIII (1 T. rangeli (2); TcI+TcIV (1); TcI+TcIII/TcIV TcI (1); TcI+T. rangeli (1)
TcI+TcIV (2); TcI (2); TcI+T. rangeli (10); T. rangel
Didelphimorphia
9
14
555
Lagomorphia
1
1
1
Primates
3
5
344
24 59 1 2 2 2
20 69 1 2 1 2
1396 2528 1 4 5 53
131/484 (27) n.d 272/344 (79) 52/1396 (4) 460 (19) 0 0 n.d n.d
Didelphimorphia
5
5
273
82/273 (30)
Rodentia
13
11
774
25 1 10 4 3 10 2 3 22 55 2
22 1 11 3 3 12 2 3 30 65 2
1110 1 253 20 9 515 5 45 1211 2059 41
Carnivora
4
4
380
264/380 (69)
91/380 (24)
Chiroptera cingulata Didelphimorphia Rodentia 6 Carnivora Didelphimorphia Primates Rodentia 4
2 4 4 7 27 3 1 1 5 10
2 4 4 6 28 3 1 1 4 9
3 30 49 285 788 7 26 2 74 109 7285
n.d n.d 3/49 (6) 35/285 (12) 330 (42) 4/7 (15) 8/26 (31) 0 4/74 (5) 16 (15) 1413 (20)
3/3 (100) 3/30 (33) 10/49 (20) 14/285 (5) 122 (15) 0 0 0 0 0 586 (8)
Rodentia 7 Caatinga Artiodactyla Carnivora Chiroptera Cingulata
6 Cerrado Artiodactyla Carnivora Chiroptera Cingulata Didelphimorphia Pilosa Primates Rodentia 8 Pantanal Artiodactyla
Pampa
Total 1108 1109
149/774 (19) 231 (21) 0 75/253 (30) n.d n.d 56/515 (11) n.d 12/45 (27) 65/1211 (5) 208 (10) 0
102/555 (18)
TcI (35); TcII (4); TcIV (2); TcI+TcII (3); TcI+TcI TcI + T. rangeli (2); TcIII/TcIV (1)
0 65/344 (19)
TcI (4); TcII (46); TcI+TcII (1)
5/1396 (0.4) 179 (7) 0 0 0 1/53 (2)
TcI (3)
56/273 (20) 42/774 (5) 99 (9) 0 5/253 (2) 8/20 (40) 0 23/515 (4) 0 0 20/1211 (2) 56 (3) 1/41 (2)
TcIII (1) TcI (35); TcII (1); TcIV (1); TcI+T. rangeli (2); TcII+V/VI (2); T. rangeli (1)
TcI (11); TcII (1); TcIII (1); TcIV (2); TcV (1); TcI+T (1); TcII/V/VI (1)
TcI (2); TcIII (2) TcI (1); TcII (2); TcI+TcII (2); T. rangeli (2) TcI (13); TcIII (1)
TcI (15) TcIII (1)
TcI (38); TcII (9); TcI+TcIII/TcIV (1); TcI+TcII (5 TcIII/TcIV (1); TcI+T. rangeli (4); TcII+T. rangeli ( T. rangeli (3) TcII (2); TcII+TcIII/TcIV (1) TcIV (1) TcI (6); TcI+TcII (2); TcI+TcIV (1) TcI (6); TcIV (1)
1110 1111 1112 1113
Table 2. The distribution infective competence of Trypanosoma cruzi in naturally infected hosts from the Brazilian Biomes: Amazon Forest, Atlantic Forest, Caatinga, Cerrado and Pantanal. BIOMES
ORDER
Amazon Forest
CHIROPTERA
>INFECTIVE COMPETENCE (+HC/Specimen N) Phylostomus hastatus (8/13) 61.5%
DIDELPHIMORPHIA Didelphis marsupialis (24/58) 41% Philander opossum (18/57) 31.5% PRIMATES Cebus libidinosus (25/46) 54% CINGULATA Dasypus novemcinctus (1/1) RODENTIA Hylaemus sp. (2/10) Proechimys sp. (3/55) Atlantic Forest
CARNIVORA CHIROPTERA
Caatinga
Cerrado
Pantanal
1114 1115
Galictis vittata (1/1)
T. cruzi DTU TcI; TcI + T. rangeli TcI; TcII; TcI + TcIII; TcI + T. rangeli; T. rangeli TcI; TcI + T.rangeli; T. rangeli TcI; TcI + T. rangeli; T. rangeli TcIV TcI TcI; TcI + TcIV TcIII
Artibeus planirostris (1/19) Carollia perspicillata (2/57) Micronycteris microtis (1/3) TcI + TcIII/TcIV DIDELPHIMORPHIA Didelphis aurita (66/258) 25.5% TcI; TcIII/TcIV; TcI + TcII; TcI + TcIV; TcI + T. rang Philander frenatus (19/66) 29% TcI; TcII PRIMATES Leontopithecus chrysomela (28/74) 38% TcI; TcII Leontopithecus rosalia (34/266) TcI; TcII; TcI + TcII RODENTIA Nectomys squamipes (1/28) TcI CINGULATA Dasypus novemcinctus (1/2) TcIII DIDELPHIMORPHIA Didelphis albiventris (49/134) 36.5% TcI; TcI + T. rangeli; TcII; TcII + TcV/TcVI; T. rang RODENTIA Thrichomy laurentius (23/519) 4% TcI; TcIII; TcIV; TcV ;TcI + TcIV; TcII/V/VI Rattus rattus (15/71) TcI; TcII CARNIVORA Leopardus pardalis (2/3) TcI Lycalopex vetulus (3/65) TcIII CHIROPTERA Phylostomus hastatus (8/10) 80% TcI; TcII; TcI + TcII; T. rangeli DIDELPHIMORPHIA Didelphis albiventris (9/101) TcI RODENTIA Cerradomys subflavus (5/15) TcI ARTIDACTYLA Sus scrofa (1/9) TcIII TcI; TcII; TcI + TcIII/TcIV; TcI + TcII; TcIII/TcIV; T CARNIVORA Nasua nasua (86/235) 36.5% + T. rangeli; TcII + T. rangel; T. rangeli CHIROPTERA Artibeus sp. (1/1) TcII + TcIII/TcIV Phyllostomus sp. (2/2) TcII CINGULATA Euphractus sexcinctus (1/15) TcIV Dasypus novemcinctus (2/2) DIDELPHIMORPHIA Gracilinanus agilis (4/15) TcI; TcI + TcII RODENTIA Oecomys mamorae (6/6) TcI
Formatted: Font: (Default) Times New Roman
1116 Formatted: Font: (Default) Times New Roman
1117 1118 1119
3
Formatted: Font: (Default) Times New Roman
1120 1121 1122
4
Formatted: Font: (Default) Times New Roman
1123 1124 1125
GA
Formatted: Font: (Default) Times New Roman
1126 1127 1128