Mathl. Camput. Mod&kg Vol. 22, No. 3, pp. 81-82, 1995 Copyright@1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0895-7177/95-$9.50 + 0.00
Pergamon
0895-7177(95)00122-O
The Nikolaevskiy Model for Nonlinear Seismic Waves G. ADOMIAN General Analytics Corporation 155 Clyde Road Athens, GA 30605, U.S.A. (Received December 1994; accepted January Abstract-The seismic waves.
decomposition method [l] is applied to the Nikolaevskiy model [2,3] for nonlinear
Keywords-Nonlinear
The model equation
where
u is particle
nonlinearity,
seismic waves, Decomposition method, Adomian polynomials.
for nonlinear
velocity,
seismic waves [2,3] proposed
x is a moving
space coordinate,
by V.N. Nikolaevskiy
n is a dimensionless
is given as
coefficient
of
and o, fi, r, 6, E are constants dv 8% a?J -~__n~-_~--~~_~--_-~6----~~~ ax2 dt &r
Define Lt = & and L,r(.)
v = v(0) - Lr’nv
Decompose
-
a
ax
3%
d%
d5v
8%
dzs
3x4
8x5
3x6
= s,“(.) dt. The nonlinear
the A, are Adomian’s polynomials generated we have v - v(0). Rearranging, we have
are given
1995)
term ‘u &V is written
for this specific nonlinearity.
a3
a2
as Cr?e Applying
a4
as v(0).
Then
components
of v for n = 1,2,3,.
by 12= -L,%zA,_~
21
- L,‘a
&
v,_~
V,_..l - L,%
a6 a5 G ?I,_1 - L,l& V,_l. 8x6
The m-term
approximant
to v will be
81
to Lp
a6
v - L;l a~v-L;la1173v-L~~7aZ41U-L;ls~21-L;~E~v.
v into Cc=‘=, 21, with vo identified
A, where Ltl
..
G. ADOMIAN
82
The A, are [I]
A2 =vo -
a
3X
A3 = vo 2
a
212 + 01 T& Vl + v2 z ~3 + VI g
a
v2 + u2 $
110,
v1 + v3 ;
vo,
Thus
vo = V(O), VI = -L;‘nAo
- L;‘a
a2
ds2 vo - L;l@ -
63
623
v.
a” 86 a4 - L;lr d24 vo - L,% - vo - LL% vo, dX6
dX5
v2
=
-L,'nAl
We can now form the approximant
a3
a2
- L&x a22 v1 - L,‘j3 m
pm which converges
quite rapidly
VI
and uniformly
to v as shown
in [I].
REFERENCES of Physics: The ~ecom~o~t~on method, Kluwer Acad. Publ., (1994). 1. G. Adomiau, Soiting Elmtier P~o~l~ 2. LA. Beresnev and V.N. Nikolaevskiy, A model for nonlinear seismic waves, Physic D. 66, 1-6 (1993). 3. V.N. Nikotsevskiy, Dynamics of viscoelastic media with internal oscillators, Lecture Notes in Eragineering, Vol. 39, Springer-Verlag, Berlin, (1989).