The Nonlinear Schrödinger Equation

The Nonlinear Schrödinger Equation

G.M. de La Penha, L.A. Medeiros (eds.) Contemporary Developments i n Continuum Mechanics and P a r t i a l D i f f e r e n t i a l Equations @North-Ho...

480KB Sizes 9 Downloads 113 Views

G.M. de La Penha, L.A. Medeiros (eds.) Contemporary Developments i n Continuum Mechanics and P a r t i a l D i f f e r e n t i a l Equations @North-Holland Publishing Conpany (1978)

THE NONLINEAR SCHR~DINGER EQUATION

WALTER A. STRAUSS Mathematics Department Brown University

A survey is presented o f some physical applications and recent mathematical results on the Schr6dinger equation with a power nonlinearity.

1. Trapping and focusing of laser beams.

Consider the electromagnetic wave equation

i 3a c

2 (gi)E)

at

4

-4

CIE = 0.

Assume a linearly polarized wave (E vector

-4

e)

parallel to a fixed unit

which is monochromatic with frequency

which propagates along the z-axis.

ul

and

Thus

and (1) reduces to (2)

2ik

3 Z aU

Au

+

2 (k

-

gw2/c2)u

= 0.

The high intensity of a laser beam can produce significant local changes in the density of the medium and hence i n the dielectric constant

g .

This work was supported by the National Science Foundation under Grant MCS75-08827.

453

THE N O N L I N E A R SCIIRdDINGER E Q U A T I O N

C h i a o , Garmire and Townes [ 2 ] l i n e a r dependence

+ c 2 1312

= €,

6

assume t h e s i m p l e non-

They show how t h e r e s u l t -

.

i n g n o n l i n e a r t e r m may g i v e r i s e t o a n e l e c t r o m a g n e t i c beam which p r o d u c e s i t s own waveguide and p r o p a g a t e s w i t h o u t spreading.

T h i s phenomenon i s c a l l e d " s e l f - t r a p p i n g " .

corresponds t o a s o l u t i o n of

-2-av b2u

(3)

a2u

Kelley

p a r t of called

( k2

2

-

c

IuI2 u = 0.

C

t h e beam a s a f u n c t i o n o f

Z.

W

~

~

~

/

(2)

b l o w s up a t a c e r t a i n v a l u e of

IuI2

If t h e " p a r a x i a l t t approximation k =

T h i s phenomenon i s

I t c o r r e s p o n d s t o a s o l u t i o n of

'+self-focusing".

and we c h o o s e

2

-

w c oW ~ ) u e 2 2

z:

can produce a b u i l d - u p i n t h e i n t e n s i t y o f

i n which t h e i n t e n s i t y z.

( 2 ) which i s i n d e p e n d e n t of

[8] and T a l a n o v [ 1 6 ] show how a n o n l i n e a r

c

dependehce o f

+

It

luzzl

<< \ k u Z l

i s used

eCq u, a t i o n ( 2 ) r e d u c e s t o

(4) Under a p p r o p r i a t e a s s u m p t i o n s a b o u t t h e n a t u r e of t h e a b s o r b i n g medium,

o r bent instead of blooming". Aitken

[71

t h e beam c a n b e s p r e a d o u t , d i s t o r t e d These phenomena a r e c a l l e d t l t h e r m a l

focused.

G e b h a r d t and Smith [ 31 and H a y e s , U l r i c h and t a k e i n t o account t h e e f f e c t s o f a s t e a d y t r a n s -

v e r s e wind a l o n g t h e y - a x i s . intensity

(5)

IuI

2

upstream.

-

So

-



co

d e p e n d s on t h e beam

I n t h e s i m p l e s t c a s e they have Y

c0

= const

T a n i u t i and Washimi

[ I 7 1 have found a s i m i l a r

e q u a t i o n t o d e s c r i b e t h e long-time b e h a v i o r of

one-dimensional

4 54

WALTER A .

STRAUSS

hydromagnetic waves i n a plasma:

-

ax where

a, b, c

are constants.

(a1u12

+

b)u =

o

Such an equation also occurs

in the Ginzburg-Landau theory of superconductivity [ ? I ] .

It

can also b e regarded as a simple non-relativistic quantum field equation.

2. Existence and blow-up.

We consider the problem

(7) where

@

p > 1

and

(0 E 8

is a nice function is real.

if not stated otherwise),

T h e two standard conservation laws

(7) by

are obtained by multiplying parts, and by multiplying by

Gt

ii

and taking imaginary

and taking real parts. They

are IuI E =

and

d x = constant

p+l x lulP+']dx

\(y 1 louIz +

= constant.

They would lead us to believe that solutions ought to exist globally and be stable i f

7

0, but that if

X < 0

instability may be possible. Theorem 1 val at

~x E

u = 0

-

There exists a unique solution in some time intelr

I R ~ , It of

integer it is

< tl].

the function

ern

It i s as smooth as the singularity /U(~-'U

allows; i f

p

is an odd

455

THE NONLINEAR SCIIRdDINGER EQUATION

This local existence result follows easily by the standard Picard method. Vela [

51

proof may be found in Ginibre and

A

.

Theorem 2

-

Let

X < 0

and

p

2

1 +

4/n.

Let

I$

satisfy

the condition

(7) can exist for all

Then no smooth solution o f

t.

This result is a variation o f one of Glassey C61, 0< T <

who shows under certain conditions that there exists

<

a

such that

n = 2,

[ lvu(t) I

2

dx + =

t

as

7

T.

p = 3,

In case

(4) and Theorem 2 provides a

the equation reduces to

precise initial condition for the self-focusing of an electromagnetic beam.

The opposite situation is described i n the

next theorem. Theorem 3 n > 2

-

If

assume

1 < 0 p < 1

p < 1

assume

+ 4/(n-2).

a unique solution o f

(7)

continuous function of regularity statement

If

f o r all

t

t

+ 4/n. @

If

E Hs(IRn),

h > 0

and

there exists

which is a bounded

with values in

H1(Rn).

of Theorem 1 is valid for all

The t.

In particular, equation (6) has global smooth solutions.

Theorem 3 has been proved by Ginibre and Velo [51

except for the regularity.

Particular cases have also been

proved by Baillon, Cazenave and Figueira [11, by Glassey [61 and by Lin and Strauss [ 9 ] .

A l l four proofs were done

independently. In the case

p=3,

n=2,

Baillon et al. also prove

the global existence and regularity provided

11 I

1 @ I2dx

< 2.

456

WALTER A .

STRAUSS

T h e i r r e s u l t d o e s n o t c o n t r a d i c t Theorem 2 b e c a u s e t h e inequality

\\@lL'

dx S

,f lv@l2

1]@I2

dx

dx

p < 1

+

4/n

Theorem

4 -

p

2

1

+ 4/n

>

3 , we c a l l

I n v i e w o f Theorems 2 and

1 < 0,

implies

and

0

< 0,

t h e s t a b l e c a s e s and we c a l l

the unstable case. Let

1

7

0

and

p < m.

If

@

E H1(!Rn) ,

there

e x i s t s a s o l u t i o n which i s a bounded, weakly c o n t i n u o u s f u n c -

t

tion of

with values i n

H1(Rn).

T h i s theorem i s p r o v e d below.

We d o n o t know

whether t h i s weak s o l u t i o n i s u n i q u e or smooth. B a i l l o n e t a l . [l] h a v e a l s o proved t h e f o l l o w i n g r e s u l t for equation

(5).

The i n t e g r a l i n t h e n o n l i n e a r term

p r e v e n t s blow-up, Theorem 5

-

F o r any

1 , t h e r e e x i s t s a u n i q u e smooth s o l u t i o n

_.

of

with

u(x,y,O) = @ ( x , y ) .

Proof

of Theorem 2 :

= Xlul

P+1 /(p+l).

r = 1x1 ) d

Write

F ( u ) = Xlul

u

M u l t i p l y e q u a t i o n ( 7 ) by

G(u) =

and

2r; r

+

n;

where

and t a k e r e a l p a r t s :

I m Jru,;

dx = -2 (lvuI2

dx

[(Zn+4)G(u)-n~F(u)]dx 2 Now multiply

(7)

by

2-

r u

+ -4E

n

I

[2G(u)-;F(u)ldx

since

p > 1

and t a k e imaginary p a r t s :

+

4/n.

THE N O N L I N E A R SC1lRe)DINGER EQUATION

457

Hence

the l a s t i n t e g r a l i s p o s i t i v e .

T h i s i s nonsense because

Proof p

o f Theorem

< 1 +lr/(n-Z),

3: We m e r e l y s k e t c h t h e i n g r e d i e n t s .

H1 c LP+'.

S o b o l e v ' s Theorem s t a t e s t h a t

( i i ) The e v o l u t i o n o p e r a t o r

Uo(t):

@I

( i )I f

-+ ~ ( t f) o r t h e f r e e

( l i n e a r ) Schrddinger equation s a t i s f i e s t h e e s t i m a t e

2 S

for

q S

+

l/q

m,

6 = n/2

= 1,

l/q'

o b t a i n e d by i n t e r p o l a t i o n f r o m t h e c a s e s Y

= p+l,

t = 0.

E

t-'

so that

a r e non-negative

X < 0,

q=2

dx 5:

C

+

n

2a = ( 2 - n ) p + 2

a >

we h a v e

and

q=m.

i s integrable a t

1 > 0 , both

If

and h e n c e bounded f o r a l l

uniqueness,

H1

u

let

and

ft

l l u ~ t ~ - v ( t ~ l l p + cl

\,I2

([

1

dxIa

B

and

$ < 1.

and

0

p r o v i d e a bound i n

and i n

v

= n(p-l)/h.

If

p

< 1 + 4/13,

Hence t h e c o n s e r v a t i o n l a w s

LP+'.

( i v ) To p r o v e t h e

be t w o s o l u t i o n s .

(t-sP

ft s c

II l u l p - l u -

IvIp-lvlI

By ( i i )

( p + l )(/s p )ds

I

(t-s)

-b

~ ~ u - ~ l ~ ~ + ~ ( s ) d s

'0

implies

u

t.

( 1VuI2 dx]'

0

since

If

Sobolev's inequality s t a t e s t h a t

\lulp+l where

6 < 1

as c a n b e

n/q,

( i i i ) We u s e t h e c o n s e r v a t i o n l a w s .

terms i n If

0 <

then

-

and u = v

v

a r e bounded i n because

6 < 1.

LP+',

by ( i i i ) . T h i s

( v ) The e x i s t e n c e and

458

WALTER A .

STRAUSS

r e g u l a r i t y a r e p r o v e d by combining ( i ) - ( i i iw ) i t h Theorem 1. Proof

4: L e t

of Theorem

approximate such t h a t g N ( s ) -+

g ( s ) = 1sP+ 1/ ( p + l

s 2 0.

by a s e q u e n c e of smooth f u n c t i ons

g(s)

gN(s) = c o n s t s 2

g(s)

for

for a l l

s.

= g~([u])u/lul. L e t

for Let

u,(x,t)

s

l a r g e and

0 5

F(U) = Xlu P- 1 u

We

gNb) g N (s )

5

4.1

FN(u)=

and

be t h e u n i q u e s o l u t i o n of

the

problem

-

iu

(8)

N t

riuN

It e x i s t s because

+

F ~ ( u = ~ 0 ) ,

FN(u)

= ~ ( x ) .

u,(x,o)

u

i s linear for large

e a s y v a r i a t i o n o f Theorem 3 i s a p p l i c a b l e .

s o t h a t an

Then we h a v e t h e

o b v i o u s a p r i o r i bounds

By c o m p a c t n e s s ,

t h e r e i s a subsequence ( s t i l l c a l l e d

which c o n v e r g e s

t o some

where.

Hence

L

locally i n

,

weakly i n

l u N l ) + g( I u I )

g,(

1

u

and

u

FN(uN) + F N ( u )

by Theorem 1.1 o f S t r a u s s [ 1 2 ] .

pass t o t h e l i m i t i n each term i n ( 8 ) . of

and a l m o s t e v e r y -

H1

a.e.

UN)

We may

The o t h e r p r o p e r t i e s

f o l l o w e a s i l y a s i n C121.

3. S o l i t o n s , I n t h i s s e c t i o n w e assume ion i n t o equation

( 7 ) shows t h a t ,

parameter f a m i l y o f

if

1 <

Direct substitut-

0.

n=l,

t h e r e i s a four-

ttsolitary-wavett solutions

459

THE N O N L I N E A R SCEIRbDINGEK E Q U A T I O N

u ( x , ~ )= f ( x - c t ) e x p ( i g ( x - b t ) )

I n any d i m e n s i o n

n,

u = @ ( x ) exp(iult)

s t a n d i n g wave s o l u t i o n s

( 7 ) s a t i s f y a n e l l i p t i c e q u a t i o n which i s t h e same as ( 3 )

of

except f o r c o n s t a n t s .

V a r i a t i o n a l methods

p < 1

show t h e e x i s t e n c e of s u c h s o l u t i o n s p r o v i d e d p <

n=l

if

m

2.

or

t r a p p e d l a s e r beams

T h i s proves

(the case

[l51)

(see Strauss

+

4/(n-2);

the existence of s e l f -

n = 2,

p =

3).

These s o l u t i o n s o b v i o u s l y do n o t d e c a y t o z e r o a s

t +

m.

O n t h e o t h e r hand,

if

t h e i n i t i a l datum

s m a l l enough ( i n some Sobolev norm) and

p 2

u(x,O)

3,

n

s o l u t i o n c a n b e shown t o d e c a y t o z e r o u n i f o r m l y

[l3]

or [ l 4 ] ) .

2

is

3,

the

( s e e Strauss

I n t h e u n s t a b l e c a s e w e t h u s have t h e

s i t u a t i o n t h a t c e r t a i n s o l u t i o n s go t o z e r o ,

others maintain

t h e i r a m p l i t u d e s and s t i l l o t h e r s blow up i n a f i n i t e t i m e . The s t a b l e c a s e

p =

n = 1,

3,

1 < 0

has been

s t u d i e d i n g r e a t d e t a i l s i n c e t h e i m p o r t a n t work of Zakharov and S h a b a t [ I S ] . properties.

We now o u t l i n e some o f i t s s t r i k i n g

The e q u a t i o n i s

(9) The s o l i t a r y waves m e n t i o n e d above a r e c a l l e d s o l i t o n s i n this case. f

u = feig,

They c a n b e w r i t t e n a s

= s e c h [ 211 (x-ll )

+ 8$ tl

and

I t i s e x p o n e n t i a l l y s m a l l as

g = -25x

1x1

-b

m

-

where

4(5 2-q 2 ) t +

for each

t.

V.

Its

460

WALTER A. STRAUSS

*Z.&'q

amplitude oscillates between

while traveling along

45.

the x-axis at speed

Zakharov and Shabat found that the solitons interact almost independently in a manner highly analogous t o that of The general solution of ( 9 )

the Korteweg de Vries equation.

breaks up into a finite number of solitons having a set of four parameters

(s,q,b,V),

component whose amplitude decays like

Ill,.

.. , uN ,

each

plus a spreading

It

as

I tI

+

m .

Certain solutions, the pure combinations o r a finite number of solitons

ul,

...,uN, can be

Suppose the speeds

They are the I1multisolitons". are distinct.

t

As

-b

written explicitly.

..

4C1,. ,4%N

the multisoliton breaks up into

m,

(single) solitons arranged s o that the fastest soliton is in front and the slowest is at the reararrangement is reversed,

As

t +

I n the passage from

each soliton is completely unchanged In shape.

Ej,

a phase shift:

The changes

:l.t

q j , CI-

j'

- b yJ

J

and

v: V+

j

J

-

goes into V-

j

-m,

t =

the to

-m

+m,

There is only

tj, n j ,

-b

b j , v:.

are given by a simple

formula which shows that the shifts are the same as i f the solitons collided only pairwise,

Thus triple collisions have

n o effect!

On the other hand, if some of the speeds coincide, the solitons do not separate.

u

multisoliton

5,

= I2 = 0

depends on

formed by a pair of solitons with parameters

and

t

F o r instance, consider the

ql

#

q2.

The formula shows that

only through the expression

lu(x,t)l

461

THE N O N L I N E A R S C I I R d D I N G E R E Q U A T I O N

and s o i t i s p e r i o d i c i n t i m e .

These s o l u t i o n s a r e c a l l e d

" b r e a t h e r s If. A couple o f important f e a t u r e s o f

u n d e r l i e t h e s e s t r i k i n g phenomena.

One i s t h e e x i s t e n c e o f

an i n f i n i t e number o f c o n s e r v a t i o n laws. association of

u,

The o t h e r i s t h e

( 9 ) w i t h a f a m i l y o f l i n e a r o p e r a t o r s , namely, Lt

Here

(9)

equation

[

= i

the eigenvalues o f and t h e o p e r a t o r s

[ 11.

i

( 9 ) , p l a y s t h e role o f a time-

t h e s o l u t i o n of

dependent p e r t u r b a t i o n .

-

A f t e r a minor change o f v a r i a b l e s , t u r n o u t t o b e i n d e p e n d e n t of

Lt Lt

t o be u n i t a r i l y e q u i v a l e n t .

time

A general

r e f e r e n c e on s o l i t o n s i s [11].

4.

Scattering. W e t u r n now t o t h e a s y m p t o t i c b e h a v i o r o f

k >

s o l u t i o n s i n the case

0.

A s with the case

s o l u t i o n decays t o z e r o u n i f o r m l y i f s m a l l enough i n some norm and

k <

the the

0,

the i n i t i a l data are

p 1 3

(n 2

3).

For

X > 0,

t h i s i s the general situation. Theorem

6

-

It1

4

m.

as

( b ) If

(a) If

n = 3

and

p

2

1

8/3 <

+

4/n,

'then

p

< 5,

then

dx = O(t-')

max

IuI

= O(lt1

- 3/'

)

X

as

It1

m.

Part

( a ) comes from t h e llpseudo-conformalll conserv-

a t i o n law o f G i n i b r e and Velo

L-51

which may b e w r i t t e n a s

4 62

WALTER A. STRAUSS

I t i s a c o m b i n a t i o n o f t h e i d e n t i t i e s i n t h e p r o o f of Theorem 2.

Note t h a t t h i s i s a n e x a c t c o n s e r v a t i o n law i n t h e c a s e

p =

3,

other

n = 2.

They have a l s o p r o v e d s t r o n g e r d e c a y r a t e s i n

Lq-norms

for

q

< 2 + 4/(n-2)

and f o r more g e n e r a l n o n l i n e a r t e r m s . of L i n and S t r a u s s Green's

p < 1

and Part

+

4/(n-2),

(h) is a result

C91, who u s e e x p l i c i t e s t i m a t e s o f t h e m

f u n c t i o n t o j a c k a n L P + l - e s t i m a t e up t o an L - e s t i m a t e .

U s i n g ( a ) , s i m i l a r r e s u l t s can h e d e r i v e d i n o t h e r d i m e n s i o n s . By a f r e e s o l u t i o n i s meant a s o l u t i o n o f t h e l i n e a r Schr6dinger equation

ivt

a s k s whether a s o l u t i o n o f free solution

as

t +

-a.

u

+

as

t +

= Av,

I n s c a t t e r i n g t h e o r y , one

( 7 ) looks a s y m p t o t i c a l l y l i k e a +m

u

and l i k e a f r e e s o l u t i o n

U s u a l l y one u s e s t h e e n e r g y norm

(L2

or

-

HI)

t o express the l i m i t . Theorem

7

-

(a) If

1

+ 2/n < p , u(t)

f r e e s o l u t i o n s such that

(b) If

1

+

4/n < p < 1

pair of f r e e solutions

+ u*

-

u,(t)

4/(n-2),

+ 0

weakly i n

uk of H1(fRn).

t h e r e e x i s t s a unique

such t h a t

where t h e norm i s t h e LP+l-norm, Uo(t)

there exists a p a i r

8 = n/2

-

n/(P+l),

and

i s the f r e e evolution operator.

( c ) If

n =

3 and

i n the

H1

norm.

8/3 < p < 5 ,

we h a v e

lIu(t)-uk(t)ll

+ 0

463

THE NONLINEAR SCHRdDINGER E Q U A T I O N

( a ) f o l l o w s f r o m the ideas o f I.E.

Part

Part

Matsumura [lo].

[5].

and Velo

Part

( b ) i s one o f

Remark:

vu

-

[91.

p < 1

2

+ ; ,

t h e r e do n o t

exist

u

+ 0.

u,(t)\l

The c o n s e r v a t i o n l a w a l s o i m p l i e s a r e g u l a r i z i n g

property: then

IIu(t)

t h e r e s u l t s of Ginibre

( c ) i s a r e s u l t o f L i n and S t r a u s s

I t c a n b e shown, t h a t , i f such t h a t

S e g a l and

if

p 2

1

is locally

+ 4/n, k > L

2 -

for t

0

and

$,

x@

are

L2,

> 0.

References

[l]

J.B.

B a i l l o n , T.

Cazenave and M.

F i g u e i r a , Equation de

SchrGdinger non l i n z a i r e , C.R.Acad.Sci. 284 (19771, 869-872. [2) R . Y .

Chiao, E.

G r m i r e and C . H .

o p t i c a l beams,

[ 3 ] F.G.

G e b h a r d t and D.C.

Phys.

Rev.

Tomes, Lett.

Self-trapping of

1 3 (1964), 479-482.

Smith, S e l f - i n d u c e d thermal d i s t o r -

t i o n i n t h e n e a r f i e l d f o r a l a s e r beam i n a moving medium IEEE, J .

Quantum E l e c t r o n i c s QS-7

(1971),

63-73.

[43

P.G.

deGennes, S u p e r c o n d u c t i v i t y of M e t a l s and A l l o y s , B e n j a m i n , New York,

1966, ch. 6.

[ 5 ] J . G i n i b r e and G , V e l o , On a c l a s s o f n o n l i n e a r Schrddinger e q u a t i o n s , I , I1 and 111, t o a p p e a r .

[ 6 ] R.T.

G l a s s e y , On t h e blowing-up

o f s o l u t i o n s t o t h e Cauchy

problem f o r n o n l i n e a r S c h r d d i n g e r e q u a t i o n s , Math.

Phys. 1 8 ( 1 9 7 7 ) ,

1794-7.

J.

464

C 71

WALTER A .

J.N. Hayes, P . B .

STRAUSS

Ulrich and A.H. Aitken, Effects o f the

atmosphere on the propagation o f 10.6 laser beams, Applied Optics 11 (1972), 257-260.

c 81

P.L.

Kelley, Self-focusing of optical beams, Phys. Rev. Lett. 15 (1965), 1005-1012.

[ 91

J.E. Lin and W.A.

Strauss, Decay and scattering o f

solutions o f a nonlinear Schr8dinger equation,

J. Funct. Anal., to appear.

r 101

A.

Matsumura, On the asymptotic behavior o f solutions o f semi-linear wave equations, Publ. Res. Inst. Math. Sci. Kyoto 12 (1976), 169-189.

I: 111

A.C.

Scott, F . Y . F .

Chu and D.W. McLaughlin, The soliton:

a new concept i n applied science, Proc. IEEE 61

(1973)9 1443-1483. [12] W.A.

Stranss, On weak solutions o f semi-linear hyperbolic equations, Anais Acad. Brasil. CiGncias 4 2 (1970) , 645-651.

[l3] W.A.

Strauss, Dispersion o f low-energy waves for two conservative equations, Arch. Rat. Mech. Anal. (1974)

55

86-92.

[14] W.A. Strauss, Nonlinear scattering theory, i n Scattering Theory i n Math. Physics, Reidel Publ. C o . ,

Dordrecht,

1974, 53-78. [l5] W.A.

Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 ( 1 9 7 7 ) ,

149-162.

THE N O N L I N E A R S C H R d D I N G E R E Q U A T I O N

[16] V . I .

465

Talanov, Self-focusing o f wave beams in nonlinear media, JETP Lett. 2 (1965), 138-141.

T. Taniuti and H . Washimi, Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma, Phys. R e v I Lett. 21 (1968), 209-212. [IS]

V.E. Zakharov and A.B.

Shabat, Exact theory of t w o -

dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media, JETP 34 (1972)

62-69.