Author's Accepted Manuscript
The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic Section Kristen N. Buck, Bettina Sohst, Peter N. Sedwick
www.elsevier.com/locate/dsr2
PII: DOI: Reference:
S0967-0645(14)00323-3 http://dx.doi.org/10.1016/j.dsr2.2014.11.016 DSRII3764
To appear in:
Deep-Sea Research II
Cite this article as: Kristen N. Buck, Bettina Sohst, Peter N. Sedwick, The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic Section, Deep-Sea Research II, http://dx.doi.org/10.1016/j. dsr2.2014.11.016 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic Section.
Kristen N. Bucka,*, Bettina Sohstb, Peter N. Sedwickb
a
Bermuda Institute of Ocean Sciences, 17 Biological Station, Ferry Reach, St. George’s GE01,
BERMUDA; Present address: University of South Florida, College of Marine Science, 140 7th Avenue S, St. Petersburg FL 33701 USA
b
Department of Ocean, Earth, and Atmospheric Sciences, Old Dominion University, Norfolk,
Virginia 23529, USA
*
corresponding author, email address:
[email protected] ; telephone: 1-727-553-1192
Keywords: iron, ligands, voltammetry, chemical speciation, North Atlantic Ocean
1
Abstract The organic complexation of dissolved iron was determined from full water column depth profile samples collected on the U.S. GEOTRACES North Atlantic Section cruises in 2010 and 2011 (GEOTRACES GA03). The concentrations of iron-binding ligands and their conditional stability constants were determined using competitive ligand exchange- adsorptive cathodic stripping voltammetry (CLE-ACSV) with salicylaldoxime as the added competitive ligand. Across the basin, iron-binding ligands were found in excess of dissolved iron concentrations in all samples except those with the highest dissolved iron in the Trans-Atlantic Geotraverse (TAG) hydrothermal vent plume, where dissolved iron concentrations exceeded ligand concentrations. Ligand results were categorized based on conditional stability constants into three ligand classes cond
cond
cond = 10-11). The stronger L1-type (L1: log K FeLi ,Fe′ > 12; L2: log K FeL2 ,Fe′ = 11-12; L3: log K FeL 3 , Fe′
ligand class tracked closely with dissolved iron, with the strongest ligands (i.e., highest log cond K FeL ) found in the vicinity of the Trans-Atlantic Geotraverse (TAG) hydrothermal vent plume. 1 , Fe ′
All three ligand classes, including the stronger L1-type ligands, were observed through the water column. These measurements indicate that iron-binding ligands are indeed a ubiquitous feature of iron speciation in the North Atlantic.
2
1. Introduction Iron (Fe) is an essential micronutrient to phytoplankton in the marine environment, limiting primary productivity in roughly 40% of the surface open ocean (e.g., Moore et al. 2002; Boyd et al. 2007). The bioavailability of iron to phytoplankton in the open ocean is complicated by the limited supply of iron to regions that are distant from continental sources (Duce and Tindale 1991), and by the low solubility of iron in seawater (Liu and Millero 2002). Unlike most other open ocean environments, the North Atlantic basin receives substantial aerosol loadings from desert dust deposition from North Africa (Jickells et al. 2005; Mahowald et al. 2005) and to a lesser extent from combustion-influenced aerosols from the North American and European continents (Mahowald et al. 2009). As a consequence of this heightened deposition of aerosols, which present a range of fractional iron solubility depending on aerosol source and composition (Sedwick et al. 2007), the North Atlantic is a relatively iron-replete basin, though iron concentrations in deep chlorophyll maxima in the NW Atlantic may be low enough to induce iron limitation of local phytoplankton communities (Sedwick et al. 2005). The presence of organic iron-binding ligands stabilizes dissolved iron against oxy-hydroxide formation and precipitation, and allows dissolved iron concentrations to exceed inorganic solubility limitations (Liu and Millero 2002; Hunter and Boyd 2007). Organic complexation of dissolved Fe appears increasingly to be a ubiquitous feature of iron biogeochemistry in the oceans, with >99.9% of dissolved Fe in seawater complexed by organic ligands in nearly all studies (reviewed by Hirose 2006; Hunter and Boyd 2007; Boyd and Ellwood 2010; Gledhill and Buck 2012). Organically complexed iron, thus, makes up the bulk of the dissolved iron pool in seawater and iron-ligand complexes have been shown to be of varying reactivity (Kuma et al. 1992; Powell and Wilson-Finelli 2003; Ussher et al. 2005; Barbeau 2006; Rijkenberg et al. 2006
3
a, b) and bioavailability (Hutchins et al. 1999 a, b; Maldonado and Price 1999, 2001; Maldonado et al. 2001; Weaver et al. 2003; Maldonado et al. 2005; Chen and Wang 2008; Hassler et al. 2011 a, b). While the sources and chemical structure of natural iron-binding ligands in the marine environment remains largely unknown, advances in mass spectrometry and electrochemistry techniques have allowed direct determination of siderophores and humic-like substances as components of the natural iron-binding ligand pool (McCormack et al. 2003; Gledhill et al. 2004; Laglera et al. 2007; Velasquez et al. 2011). Iron-binding ligands determined from CLE-ACSV titrations are commonly described as cond > 12) ligand classes, with ligand classes that bind iron relatively strongly (log K FeL i ,Fe′
characterized as L1-type ligands, and ligand classes with progressively weaker binding of iron denoted L2, L3, etc. (Gledhill and Buck 2012). Siderophores are exceptionally strong, L1-type, ligands produced by bacteria to acquire iron from the surrounding environment (reviewed by Butler 2005; Vraspir and Butler 2009; Hider and Kong 2010). Marine bacteria are known to produce siderophores (Martinez et al. 2000; Gledhill et al. 2004; Amin et al. 2009; Cabaj and Kosakowska 2009; Vraspir and Butler 2009), and studies have identified siderophores at picomolar concentrations in surface waters from the North Atlantic (Mawji et al. 2008) and other marine environments (Kosakowska et al. 1999; Velasquez et al. 2011; Boiteau et al. 2013), although siderophores may be more widespread than currently measured due to the inherent challenges of extracting these small compounds from seawater (Gledhill and Buck 2012). Humic-like substances, on the other hand, are typically considered to be weaker, L2-type (log cond cond = 11-12) or L3-type (log K FeL K FeL , Fe′ = 10-11), iron-binding ligands in seawater (Laglera 2 ,Fe′ 3
and van den Berg 2009; Batchelli et al. 2010), and have been suggested to be a substantial component of the iron-binding ligand pool in coastal and deep ocean samples (Laglera and van 4
den Berg 2009; Batchelli et al. 2010). Other weaker iron-binding ligands in seawater may include porphyrin compounds (Witter et al. 2000; Vong et al. 2007), exopolymeric substances (EPS; Hassler et al. 2011), and transparent exopolymer like substances (TEP; Stolpe and Hassellov 2010). Previous studies of iron-binding ligands in the North Atlantic basin have predominantly documented the presence of a single ligand class, largely found in excess of dissolved iron concentrations (Gledhill and van den Berg 1994; Wu and Luther 1995; Gledhill et al. 1998; Witter and Luther 1998; Powell and Donat 2001; Boye et al. 2003, 2006; Cullen et al. 2006; Gerringa et al. 2006; Rijkenberg et al. 2008; Thuroczy et al. 2010; Mohamed et al. 2011). The conditional stability constant for the single or stronger ligand class identified in these studies cond varied widely (log K FeL , Fe′ = 10.3 – 14.3; Gledhill and van den Berg 1994; Wu and Luther 1995;
Gledhill et al. 1998; Witter and Luther 1998; Powell and Donat 2001; Boye et al. 2003, 2006; Cullen et al. 2006; Gerringa et al. 2006; Rijkenberg et al. 2008; Thuroczy et al. 2010; Mohamed cond et al. 2011), and only one study reported the detection of a second ligand class, with log K FeL 2 ,Fe′
of 11.50-11.93 (Cullen et al. 2006). Of the North Atlantic studies that measured iron-binding ligands in waters below 1000 m (Witter and Luther 1998; Powell and Donat 2001; Boye et al. 2006; Cullen et al. 2006; Thuroczy et al. 2010; Mohamed et al. 2011), most reported excesses of ligand concentrations over dissolved iron concentrations, and consistent conditional stability constants for the iron-ligand complexes, through the profiles (Witter and Luther 1998; Powell and Donat 2001; Boye et al. 2006; Thuroczy et al. 2010; Mohamed et al. 2011) although in some cases the deeper iron-binding ligands may be better described as an L2-type or L3-type ligand cond class based on log K FeL values (Boye et al. 2006). i ,Fe′
5
Here we present the first cross-basin assessment of dissolved iron-binding ligand concentrations and conditional stability constants from full water column profiles in the North Atlantic Ocean basin. This work was accomplished as part of GEOTRACES GA03, which included both U.S. GEOTRACES North Atlantic Section cruises in 2010 and 2011.
2. Materials and Methods 2.1. Sample collection Samples for dissolved iron and iron-binding ligands were collected by a dedicated sampling team on the two U.S. GEOTRACES North Atlantic Section cruises in 2010 and 2011 (Figure 1). Samples were collected from the U.S. GEOTRACES rosette of 12 L Teflon coated GO-Flo (General Oceanics) bottles, which were transferred to a clean laboratory van for sub-sampling (Cutter and Bruland 2012). Samples were filtered within 12 hours of sampling through 0.2 µm pore size AcroPak 200 filter capsules (Supor membrane, Pall Corporation) into acid-cleaned and Milli-Q (>18 Mȍ cm) conditioned 500 mL fluorinated high-density polyethylene (FPE; Nalgene) bottles for organic complexation analyses (Buck et al. 2012), and into 125 mL acid cleaned wide mouth low density polyethylene (LDPE; Nalgene) bottles for total dissolved iron analyses. On the 2010 cruise, duplicate filtered seawater samples were collected for iron-binding ligands, with one sample stored in the refrigerator (4 ºC) for shipboard analyses and the second frozen (-20 ºC) for laboratory-based analyses for all stations except the last three (USGT10-10, 11, 12), which were both frozen. On the 2011 cruise, all samples were stored at -20 ºC until returned to the laboratory for analysis. Filtered samples for dissolved iron analyses were acidified upon collection to pH ~1.7 with ultrapure hydrochloric acid (Fisher Optima).
6
2.2. Total dissolved iron analyses The concentration of dissolved iron (dFe) in filtered seawater samples was determined by flow injection analysis with colorimetric detection following inline preconcentration on an 8hydroxyquinoline resin (Measures et al. 1995; Sedwick et al. 2005, 2008). The detection limit of this method, determined from three times the standard deviation of the manifold blank (Bowie et al. 2004; Sedwick et al. 2005), was estimated to be less than 0.04 nM dissolved iron. Blanks were subtracted from the iron concentration measurements. Analysis of the SAFe reference materials using this method resulted in dissolved iron concentrations of 0.122 ± 0.021 nM (n = 7; SAFe S) and 1.13 ± 0.19 (n=2; SAFe D2), comparable to the current community census values for the S and D2 sample series of 0.095 ± 0.008 nM (May 2013) and 0.955 ± 0.024 (May 2013), respectively (http://es.ucsc.edu/~kbruland/GeotracesSaFe/kwbGeotracesSaFe.html).
2.3. Organic complexation analyses An established competitive ligand exchange- adsorptive cathodic stripping voltammetry (CLE-ACSV) technique, using salicylaldoxime as the added ligand, was employed for the organic complexation of iron analyses (Rue and Bruland 1995; Buck et al. 2007, 2012). Sample analyses were accomplished as described for the GEOTRACES intercalibration effort for this method (Buck et al. 2012). The detection limit for this method, based on three times the standard deviation of a 0.05 nM addition of iron to UV-oxidized and chelexed seawater analyzed over a 600 s deposition time has been reported previously to be 0.01 nM for total dissolved iron (Buck et al. 2007). In terms of a detection limit for iron-binding ligand concentrations, two stations were analyzed on the 2010 cruise with triplicate titrations (36 samples, 108 titrations). The average standard deviation across all sample results with triplicate titrations was 0.11 nM for
7
ligand concentrations and 0.15 for log conditional stability constants. Using the lowest ligand concentration sample from this series ([L] = 1.03 ± 0.08 nM), the detection limit for ligand concentrations, calculated as three times the standard deviation of the results from the triplicate titrations, was 0.23 nM. Prior to analysis, frozen or refrigerated filtered seawater samples were brought to room temperature. Aliquots of 10 mL were pipetted into 10-12 acid-cleaned lidded Teflon vials (Savillex) that had been conditioned to Milli-Q and to planned iron and salicylaldoxime additions (Buck et al. 2007, 2012). Aliquots were buffered (pH 8.2, NBS) with a 1.5 M ammonium-borate (>99.99% boric acid, Alfa Aesar, VWR; 0.4 N ultrapure ammonium hydroxide, VWR Ultrex) buffer (final concentration 7.5 mM borate) and amended with iron additions (2010 samples: +0, 0, 0.25, 0.5, 1, 1.5, 2.5, 3.5, 5, 7.5 nM Fe; 2011 samples: +0, 0, 0.25, 0.5, 0.75, 1, 1.5, 2.5, 3.5, 5, 7.5, 10 nM Fe). Iron additions were allowed to equilibrate for at least 2 hours before 25 µM salicylaldoxime (SA: 98%, Acros Organics, VWR; 5 mM SA stock in LC-MS grade methanol, Honeywell, VWR) was added to all vials. At least 15 minutes of equilibration was then allowed between the added salicylaldoxime and ambient ligands before vials were sequentially analyzed by adsorptive cathodic stripping voltammetry (Rue and Bruland 1995; Buck et al. 2007, 2012). The resulting titrations from the CLE-ACSV analyses were interpreted using a custom Matlab program that combines the van den Berg/Ružiü (Ružiü 1982; van den Berg 1982) and Scatchard (Scatchard 1949; Mantoura and Riley 1975) results into an average value for ligand concentration and conditional stability constant (Buck et al. 2012). Standard deviations of these values are provided for samples where replicate titrations were conducted (Table 1). Sensitivity of the voltammetric response to iron additions was determined from the slope of the last two to
8
four titration data points (Rue and Bruland 1995; Buck et al 2007, 2012), and the slope that provided the best fit between the output of the two interpretation techniques was typically used for the results calculations. UV-oxidation of a subset of samples from the 2011 cruise resulted in indistinguishable sensitivity values between the UV-oxidized and natural seawater samples, suggesting that ambient ligands were sufficiently titrated with the iron additions employed. The distinction between one or two ligand classes in a given sample was determined from visual assessment of the Scatchard plots. In the Matlab program used for data interpretation, the Scatchard and van den Berg/Ružiü plots are shown for each dataset, and the user is queried to identify whether or not to split the data, and if so, where in the dataset. If no split is identified, then the data are fit with a single line and interpreted as one ligand class. If there is a break in the Scatchard plot of the data, the data are split at the kink and fit with two lines to determine two ligand classes from the data (e.g., Rue and Bruland 1995). Recently, studies have highlighted the need for at least 12 data points in a titration to meaningfully characterize two ligand classes from the dataset, given the number of parameters characterized from the data (Wu and Jin 2009). For this reason, titrations were expanded to 12 points each for the 2011 dataset, although it is recommended to further enhance titration data points in future studies (Gerringa et al. 2014).
3. Results All dissolved iron concentrations, iron-binding ligand concentrations and conditional stability constants resulting from this work are depicted in Table 1. These data have also been submitted to the Biological and Chemical Oceanography Data Management Office (www.bco-dmo.org) following GEOTRACES and National Science Foundation guidelines. Dissolved iron concentration data have also been included in the GEOTRACES Intermediate Data Product
9
(www.egeotraces.org). An overview of trends in dissolved iron concentrations are presented in separate papers (Hatta et al. this issue; Wu et al. submitted). A total of 550 samples were analyzed for iron-binding ligands from the two cruise legs in 727 independent titrations. Two ligand classes were observed within the titrations of 440 of the 550 samples analyzed, and ligand class designations (L1, L2, L3) were defined by conditional stability constants as suggested by cond cond cond = 10Gledhill and Buck (2012; L1: log K FeLi ,Fe′ > 12; L2: log K FeL2 ,Fe′ = 11-12; L3: log K FeL 3 , Fe′
11). Within these ligand class designations across this North Atlantic dataset, the conditional stability constant for the L1 ligand class averaged 12.38 ± 0.22 (n = 476) overall. For the L2 cond cond ligand class, log K FeL averaged 11.46 ± 0.27 (n = 450) and for the L3 ligand class, log K FeL 3 , Fe′ 2 ,Fe′
averaged 10.84 ± 0.14 (n = 54). Between the two cruise legs in 2010 and 2011, one station, the time-series station TENATSO was occupied during both cruises (2010 station 12, 2011 station 24; Figure 1). The profiles of dissolved iron, L1-type iron-binding ligands, L2-type ligand concentrations, total ligand concentrations ([Lt] = [L1] + [L2]) and conditional stability constants for the two occupations of this station are shown in Figure 2A-F. There was good agreement in all parameters between the two sampling periods, though dissolved iron and L1-type ligand concentrations from the 2010 sampling exhibited greater variability over the profile than measured in 2011 (Figure 2A,B). The variability in L1 observed in 2010 may have resulted from the fewer titration points in the 2010 dataset compared to 2011, or from the higher variability in dissolved iron concentrations measured in 2010 and used to calculate L1. Both the L1 and L2-type ligand classes were measured in the 2010 and 2011 profiles. Conditional stability constants for the two ligand classes were consistent with depth and between occupations of TENATSO (Figure 2C, F; Table 1), cond cond averaging 12.38 ± 0.18 for log K FeL and 11.45 ± 0.21 for log K FeL . There were no 2 ,Fe′ i ,Fe′
10
distinguishable differences in hydrography (e.g., temperature, salinity) data between the two cruises (data not shown). With the exception of the samples collected from the hydrothermal vent plume at the TransAtlantic Geotraverse (TAG; GT2011 Station-16) site, ligand concentrations along the U.S. GEOTRACES North Atlantic Section were found in excess of dissolved iron concentrations at all depths of all stations (Table 1). Contour plots of dissolved iron concentrations and the concentrations of the L1, L2 and L3-type ligands are shown in Figure 3A-D. Figure 4A-C depicts total ligand concentrations ([Lt] = [L1] + [L2] + [L3]), the concentrations of the ligands in excess of dissolved iron (e[Lt] = [Lt] – [Fe]) and the complexation capacity of the water column for iron, which is calculated from the excess ligand concentrations and their conditional stability constants (Figure 5A-C). Samples from the heart of the Trans-Atlantic Geotraverse (TAV) hydrothermal vent plume are not shown in these contour plots since the much higher dissolved iron and ironbinding ligand concentrations in these samples skew the plots. Instead, discrete profiles of the results from the hydrothermal vent station (USGT2011-16) and two surrounding stations (USGT2011-14 and 18) are plotted in Figure 6A-E. The relationship between ligand concentrations and apparent oxygen utilization are shown in Figure 7A-C, and between ligands and phosphate concentrations in Figure 7D-F.
4. Discussion 4.1. Ligand classes and distributions Stronger L1-type ligands were measured in the majority of samples (476 of 550) across both cruises, but in fewer samples on the 2010 cruise (116 of 181) than on the 2011 cruise (360 of 369; Table 1; Figure 3B). The L2-type ligands were more universally detected between the two
11
cruises (Figure 3C) and this ligand class was in some cases the only ligand class detected in a sample, while in others L2 was the stronger or weaker of two ligand classes present (Table 1). The L3 type ligands were measured in a fraction of the samples of both cruises (Figure 3D), and represent the weakest ligands detected in the samples. Figure 8A-B shows the range of excess iron-binding ligand concentrations and associated conditional stability constants measured in previous studies in the North Atlantic basin. Results from the U.S. GEOTRACES North Atlantic Section for excess L1 (circles, Figure 8B), L2 (squares, Figure 8B) and L3 (triangles, Figure 8B) fall within the range of previously published data (diamonds, Figure 8A-B) for this basin. Previous studies almost exclusively reported a single class of iron-binding ligands in their samples (Gledhill and van den Berg 1994; Wu and Luther 1995; Gledhill et al. 1998; Witter and Luther 1998; Powell and Donat 2001; Boye et al. 2003, 2006; Gerringa et al. 2006; Rijkenberg et al. 2008; Thuroczy et al. 2010; Mohamed et al. 2011), yet the range of values reported was wide enough to encompass all three of the ligand classes determined in our work (Figure 8A-B). As shown in Figure 3A-B, the concentration of stronger L1-type iron-binding ligands was closely linked to horizontal and vertical gradients in dissolved iron concentrations. The close ties between dissolved iron and L1 concentrations reflects, in part, how L1 is calculated in the titration interpretations. The dissolved iron concentration of each sample is used with the titration data to calculate ligand concentrations under the assumption that all of the dissolved iron is exchangeable with the added ligand unless bound to a stronger natural ligand. Thus, when ligands are in excess of dissolved iron, as observed in this dataset with the exception of the TAG plume sample, the dissolved iron concentration used to calculate L1 is inherently included in the total L1 concentration value such that L1 includes both the concentration of L1 bound to iron and
12
the additional L1 present in excess of iron. In samples where the dissolved iron is not reversibly bound to organic ligands, the assumption of exchangeability may lead to overestimations of L1cond type ligand concentrations and log K FeL values (Bruland and Rue 2001; Gledhill and Buck 1 ,Fe′
2012). This can also be true for L2 in the case where the L2-type ligand was the strongest ligand class detected in a sample. Excess ligand concentrations (e[Li] = [Li] – [Fe]) can be used to provide insight on the ligands titrated in the analyses and on the complexation capacity of the water column (Gledhill and Buck 2012), but ignore the ambient organically complexed iron.
4.1.1. Western Atlantic (North America to Bermuda) In the profiles sampled at the western boundary of the section (USGT11-01, 02, 03, 06, 08), L1-type ligands were detected in nearly every sample (Figure 5A), and L1 concentrations were relatively uniform with depth and across the profiles (average [L1] for these stations: 1.79 ± 0.29 nM; Table 1; Figure 3B). A second ligand class was also observed in most of these profile depths, which was largely comprised of an L2-type ligand class (Figure 5B), though an L3-type was detected in a small subset of samples (Figure 5C; 3D). As a result, total ligand concentrations were also relatively high and uniform through the water column at these stations (Figure 4B). The elevated total and excess ligand concentrations in this region of the section result in a higher complexation capacity for iron in these waters, particularly in the upper 2000 m where dissolved iron concentrations originating from non-reductive release by continental sediments of the North American shelf (Conway and John 2014) were also elevated. At the edge of this western region, the profile at the Bermuda Atlantic Time-series Station (BATS) site (USGT2011-10), stands out from the rest of the regional and basin profiles for ligand concentrations (Figure 3, 4). At this station, all three ligand types exhibited local minima 13
in concentrations, with roughly half the total ligand concentration in the BATS profile as determined in surrounding profiles (Figure 3B-D; Figure 4A-B), although USGT2011-08 also depicted similar minima in ligand concentrations at some depths (Figure 3B, Figure 4). It is not clear why the BATS profile was so distinct for ligand concentrations, although this station was somewhat unique in terms of a pronounced nepheloid layer extending ~1000 m from the seafloor here (P. Lam, pers. comm.). The BATS site was also occupied prior to the USGT2011 cruise by the Dutch GEOTRACES expedition along the NW Atlantic margin. An intercomparison of ironbinding ligands measured at this site between the two cruise programs found good agreement in ligand concentrations (data not shown). As BATS serves as a reference station for the GEOTRACES program, constraining temporal and spatial variability in this location may be worth focused attention in future studies.
4.1.2. Zonal cross-basin section (Bermuda to TENATSO) Moving east from BATS, ligand concentrations, and particularly L1-type ligand concentrations, continued to track dissolved iron concentrations closely (Figure 3). Dissolved iron concentrations were low in the upper water column, in waters identified as North Atlantic Central Water from a detailed water mass analysis of the cruise transect conducted by Jenkins et al. (this issue). As with dissolved iron, both L1-type and L2-type ligands displayed regional minima in these waters. Unlike with dissolved iron, however, the minima in L1 and L2 extended down through the water column at the BATS site (Figure 3). L3 ligands, which were only observed in 41 of the 369 samples collected in 2011, were detected in 36 samples of the zonal cross-basin section. This was the only ligand class determined in this datset to be either more or comparably abundant in the North Atlantic Central Water mass than surrounding waters.
14
Dissolved iron, L1, and to some extent L2, were higher in the upper 100 m of the water column across the basin than observed in the North Atlantic Central Water, and concentrations of iron and the two stronger ligand classes were also similarly elevated in Antarctic Intermediate Waters present below (Figure 3; Jenkins et al. this issue). The highest ligand, and especially L1type ligand, concentrations observed in this zonal section were associated with the TAG hydrothermal vent plume at the Mid-Atlantic Ridge (USGT2011-16). Further east at the TENATSO time-series station, ligand concentrations were also high in Atlantic Equatorial and underlying water masses (Figure 3; Jenkins et al. this issue), concomitant with elevated dissolved iron concentrations originating from aerosol dust deposition and reductive release from sediments at the eastern margin of the basin (Conway and John 2014).
4.1.3 Eastern margin (TENATSO to Mauritania to Portugal) This region of the dataset depicted the broadest (nearly full water column) maximum in dissolved iron concentrations (Figure 3A). Analysis of iron isotope ratios in samples collected from GEOTRACES GA03 overall found that 71-87% of dissolved iron along the entire section originated from Saharan dust deposition (Conway and John 2014), as did roughly 80% of the iron in the eastern margin. Ligand concentrations of all three types were elevated in these waters between TENATSO and the Mauritanian coast. Along the meridional section of the 2010 cruise, heading toward the European continent, dissolved iron and L1 ligand concentrations decreased in the upper water column, particularly at stations USGT2010-05 and 03, before increasing again slightly at USGT2010-01 (Figure 3). In the full North Atlantic Section dataset, an L1 ligand class was not identified in all samples, and the L2 ligand class was the strongest ligand measured in some samples (Table 1). This was
15
more common in the eastern margin of the cruise section, where L1 was identified in only 64% of samples east of TENATSO (2010), compared to 97% west of TENATSO (2011). Since these two cruise tracks were sampled in different years, it is worth looking into any distinctions in sample handling and analyses between the cruises. On the 2010 cruise, samples were largely analyzed shipboard, with a subset also frozen (-20 ºC) for analysis ashore. On the 2011 cruise, all samples were frozen and analyzed in the laboratory. A previous assessment of freezing on iron speciation results (Buck et al. 2012) found no significant difference in results before and after freezing, though only three depths were analyzed in the study. A more thorough investigation of the effect of freezing on iron speciation was conducted on the 2010 cruise and found that there was no more variability in ligand concentrations between frozen and unfrozen samples as cond between replicate shipboard analyses, though a slight offset toward higher log K FeL was 1 ,Fe′
observed after freezing (Buck unpubl.). Beyond freezing the 2010 samples, sample titrations on the 2010 cruise were shorter by two titration points (10 vs. 12) than samples analyzed from the 2011 cruise. Recent studies have noted the difficulty in constraining characteristics of a second ligand class in samples (Miller and Bruland 1997; Wu and Jin 2009; Ibisanmi et al. 2011), which are determined from the end points of titrations and highly influenced by changes in the slope of these points in the titrations. Thus, the additional titration points used for the 2011 samples may have enhanced the ability to constrain the second ligand class in these samples, though this feature did not seem to impact the measurements at TENATSO where both sets of titrations points were used. Indeed, iron speciation results from the dual occupation were in good agreement, with similar concentrations and conditional stability constants of ligands between the two datasets (Figure 2), suggesting that the difference in titration points between them did not dramatically impact results. However, 16
both sets of TENATSO samples (2010 and 2011) were frozen and analyzed in the laboratory ashore, so we cannot yet rule out freezing the samples as a contributor to the slightly higher conditional stability constants and more frequent occurrence of L1 observed in the 2011 samples compared to 2010 (Figure 3B, 5A). In previous studies of iron-binding ligands in the North Atlantic, only one has reported a second ligand class from CLE-ACSV titrations (Cullen et al. 2006). However, there was a wide cond range in log K FeL values (10.3 – 14.3; Figure 5A) reported for previous studies in the North i ,Fe′
Atlantic basin (Gledhill and van den Berg 1994; Wu and Luther 1995; Gledhill et al. 1998; Witter and Luther 1998; Powell and Donat 2001; Boye et al. 2003, 2006; Cullen et al. 2006; Gerringa et al. 2006; Rijkenberg et al. 2008; Thuroczy et al. 2010; Mohamed et al. 2011). Using the classification system outlined by Gledhill and Buck (2012), this range would include L1, L2, cond and L3-type ligand classes based on the log K FeL values reported. It is not clear why other i ,Fe′
CLE-ACSV studies have not identified a second ligand class, but may relate to the different analytical window provided by the salicylaldoxime method compared to other methods (Hunter and Boyd 2007; Buck et al. 2012; Bundy et al. 2014). In addition, many of these studies used a nonlinear approach to interpreting the data (Gerringa et al. 1995), in which a second ligand class may be less obvious than seen with Scatchard plots for datasets of limited titration points (Buck et al. 2012). Along the entire U.S. GEOTRACES North Atlantic Section, a narrower total range cond in log K FeL was found (10.4 – 13.3) compared to previous studies, and here this range has i ,Fe′
been classified into three ligand classes (Table 1, Figure 5A-C).
4.2. Trends in conditional stability constants of iron-binding ligand classes
17
cond values reported for the two ligand classes determined between The full range of log K FeL i ,Fe′
the 2010 and 2011 cruise legs was broad (10.4 – 13.3; Table 1; Figure 8), encompassing three different ligand classes and overlapping within the range of results from previous studies in the cond North Atlantic. The average log K FeL for the combined cruise legs was 12.38 ± 0.22 (n = 476), 1 ,Fe′
cond cond log K FeL averaged 11.46 ± 0.27 (n = 450) and log K FeL averaged 10.84 ± 0.14 (n = 54). 3 , Fe′ 2 ,Fe′
The depth profiles of these conditional stability constants indicated that the averages and cond variability in log K FeL values were fairly consistent with depth (Figure 5A-C). Of note, the i ,Fe′
stronger, L1-type ligand class was measured throughout the water column, and was not confined to the upper water column as has been reported by some studies (Rue and Bruland 1995; Cullen cond > 12) present through et al. 2006). The feature of stronger L1-type ligands (defined as log K FeL 1 ,Fe′
the water column has been exhibited by several other studies (van den Berg 1995; Witter and Luther 1998; Boye et al. 2001; Powell and Donat 2001; Croot et al. 2004; Boye et al. 2006; Gerringa et al. 2006, 2008; Boye et al. 2010; Thuroczy et al. 2010) as well, though this is the first study we know of to report multiple ligand classes persisting through the water column of the open ocean. The highest conditional stability constants in this dataset were measured within and around the TAG hydrothermal vent plume (Table 1; Figure 6). In the highest iron samples of the plume, dissolved iron concentrations exceeded ligand concentrations, while in adjacent samples, ligands were in relatively large excess of iron (Figure 6). The observation of dissolved iron concentrations in excess of iron-binding ligands in these plume samples appears to be consistent with previous measurements of iron complexation in hydrothermal vent plumes (Bennett et al. 2008; Hawkes et al. 2013). Given the very high concentrations of iron emanating from these
18
vents, on the order of 50-70 nM in the plume measured in this dataset, it is not surprising that iron concentrations exceeded ligand concentrations in these samples. Iron concentrations in excess of ligands are known to complicate interpretation of titration data (Boye et al. 2005; cond determined in the highest iron plume Bennett et al. 2008), and the high L1 and log K FeL 1 ,Fe′
samples may be overestimates, particularly if the dissolved iron in the heart of the plume (3224 m) was not fully exchangeable with the added ligand (see section 4.1 above). Redox speciation measurements conducted on the U.S. GEOTRACES cruise indicated that nearly all of the dissolved iron in the highest dissolved iron plume samples was reduced iron (Fe(II); Sedwick et al. this issue) which may suggest that dissolved iron in this sample at the heart of the plume may be present as stable inorganic colloids of Fe(II), rather than organic ligand complexes. The high proportion of reduced Fe in these plume samples is consistent with observations of iron sulfide nanoparticles in a Pacific vent system (Yücel et al. 2011). In the samples collected above and below 3224 m, and where Fe(II) made up a smaller fraction of the total dissolved iron (Sedwick et al. this issue), large excess concentrations of L1 were measured with the highest conditional stability constants determined along the section (Figure 3B, 5A, 6). In addition, L2-type ligands were also detected with higher conditional stability constants in and around the plume than in the surrounding waters (Figure 5B). The combination of both ligand classes present at elevated concentrations and higher than average conditional stability constants results in a particularly high complexation capacity (as described by log α FeL′ ; Figure 4C) for iron around the vent plume, higher than observed in the rest of the North Atlantic section. This feature of elevated complexation capacity in waters surrounding the plume supports the suggestion from modeling output that ligands in adjacent seawater may help stabilize dissolved iron transport from hydrothermal plumes (Sander and Koschinsky 2011). 19
4.3. Ligand sources Total and excess ligand concentrations were generally higher in upper water column samples near the surface and fluorescence maximum, around the phosphate maximum at ~1000 m, and in some near-bottom samples (Figure 3, 4). These observations are consistent with previous studies of iron-binding ligands, which have suggested ligand sources associated with chlorophyll or fluorescence maxima (Rue and Bruland 1995; van den Berg 1995; Boye et al. 2001; Croot et al. 2004; Boye et al. 2006; Gerringa et al. 2006; Tian et al. 2006; van den Berg 2006; Buck and Bruland 2007; Gerringa et al. 2008; Wagener et al. 2008; Ibisanmi et al. 2011), organic matter remineralization (Sato et al. 2007; Laglera and van den Berg 2009; Boyd et al. 2010; Poorvin et al. 2011) and benthic fluxes (Croot and Johansson 2000; Boye et al. 2003; Buck et al. 2007; Kondo et al. 2007; Gerringa et al. 2008). Sources of iron-binding ligands above the fluorescence maximum may include organic matter remineralization or grazing (Sato et al. 2007; Poorvin et al. 2011). Dust deposition has also been hypothesized as a ligand source to the surface ocean in the NE Atlantic near the Canary Islands (Gerringa et al. 2006) in a study nearly overlapping with the USGT2010-03 profile, where a surface maximum in [eLt] was observed (Figure 4A). Inshore of the USGT2010-09 profile, on the other hand, Rijkenberg et al. (2008) reported a decrease in excess ligand concentrations associated with dust deposition, where elevated L1 and Lt in the upper water column were still evident (Figure 3B, 4A). Grazing of phytoplankton by zooplankton and viruses has been shown to be a source of weaker (i.e., L2 or L3-type) iron-binding ligands (Sato et al. 2007; Poorvin et al. 2011), as has bacterial remineralization of sinking biogenic particles (Boyd et al. 2010). Along the U.S. GEOTRACES North Atlantic Section, only the L3-type ligand class, which was detected in a
20
small subset of section samples, showed any positive relationship with phosphate concentrations or apparent oxygen utilization, though the parameters were poorly correlated (Figure 7A-F). Total dissolved organic carbon was measured in select samples of the 2010 cruise leg (J. Chavez, NASA), but not in any of the 2011 samples due to changes in berthing availability on the second cruise leg. No correlations were found between dissolved organic carbon concentrations and total ligand class concentrations or excess ligand concentrations in the samples measured from 2010 (data not shown). However, only a small subset of samples (~70) were analyzed for both dissolved organic carbon and iron-binding ligands on the 2010 cruise, and further data is required to suitably investigate links between these parameters. Benthic sources of iron-binding ligands have largely been examined in estuary and coastal ocean systems (Croot and Johansson 2000; Gobler et al. 2002; Buck et al. 2007; Gerringa et al. 2008 Batchelli et al. 2010; Jones et al. 2011; Bundy et al. 2014), and open ocean profiles have also exhibited elevated excess ligand concentrations in near-bottom samples (Boye et al. 2006; Gerringa et al. 2008). Iron-binding ligand concentrations in bottom samples of some stations from GEOTRACES GA03 (USGT2011-08, 12, 14; USGT2010-05, 9, 10; Figure 3B-D, Figure 4A-B) were elevated, suggesting a possible benthic source of ligands, and especially of L1 and L2-type ligands, to these profiles. In the NE Atlantic, roughly south and east of USGT2010-03 and 05, Boye et al. (2006) observed similar increases in excess ligand concentrations in bottom samples of some profiles, but decreases in others. In the profile of USGT2011-14, a particularly high L2-type ligand concentration, and a corresponding local maximum in excess Lt concentration, was observed in the bottom sample (Figure 4A-B). This sample initially appeared to be an outlier, as the sample immediately above this one in the profile did not display elevated [eLt], and no distinct hydrographic features were
21
identified here (Jenkins et al. this issue). However, copper-binding ligands were also measured on these cruises, and this sample was found to be a local maximum in excess copper-binding ligands as well (Jacquot and Moffett, this issue). In fact, the magnitude of excess copper-binding ligands in this sample was close to that of the excess iron-binding ligand concentration measured (~2.3 nM for both; Jacquot and Moffett, this issue; Figure 4A; Table 1). Other near bottom maxima in excess iron-binding ligand concentrations also match up with the copper-binding ligand data, including USGT2010-05 and USGT2011-03, 12 and 22 (Jacquot and Moffett, this issue; Table 1; Figure 4A-B). This may suggest that some fraction of the iron-binding ligands measured in these deep samples were not iron-specific or that they are similar sources of ironand copper-binding ligands in these deep waters.
5. Conclusions Dissolved iron-binding ligands were found in excess of dissolved iron concentrations in all samples along the U.S. GEOTRACES North Atlantic Section, with the exception of a sample collected within the TAG hydrothermal vent plume, where dissolved iron exceeded ligand concentrations. Three ligand classes were defined from the iron speciation results based on conditional stability constants. All three of these ligand classes, including the stronger L1-type cond (log K FeL > 12), were found in samples throughout the water column. Two ligands were 1 ,Fe′
identified in the majority of the section samples, though in fewer of the 2010 cruise leg samples in the NE Atlantic, which sampled profiles east of the TENATSO time-series station. A comparison of the iron-binding ligand concentrations and conditional stability constants at TENATSO, which was occupied during both cruise legs, indicated good agreement between results. 22
Distributions of ligand concentrations suggest that the iron-binding ligand pool, which was consistently present in excess of dissolved iron concentrations even at depth, is in fact a complicated system. Possible ligand sources identified from these distributions include biological growth or atmospheric deposition in the upper water column, organic remineralization in upper and intermediate waters, and benthic fluxes near the seafloor and from continental margin sediments. There was some overlap observed between iron-binding ligand concentrations and copper-binding ligand concentrations measured on these cruises (see Jacquot and Moffett, this issue, for copper speciation results), suggesting that there may be a similar source for ironand copper-binding organic ligands, or that at least some fraction of the iron-binding ligand pool is not specific for iron.
6. Acknowledgements We thank chief scientists Bill Jenkins, Ed Boyle, and Greg Cutter, Captains Adam Seamans and Kent Sheasley and the crew of the R/V Knorr for the USGT2010 (KN199-4) and USGT2011 (KN204) cruises. In particular, we thank Pete Morton, Jessica Fitzsimmons, Ana Aguilar-Islas, Rachel Shelley and Randie Bundy for their service as the U.S. GEOTRACES clean rosette sampling team for these cruise legs. We thank Eric Hochberg for his invaluable assistance in writing a custom Matlab program for interpreting the CLE-ACSV titration data and Xiaoling Ding for creating the Ocean Data View plots used. We sincerely thank three anonymous reviewers whose insightful comments have improved the manuscript. This work was funded by National Science Foundation grants OCE-0927453 (KNB) and OCE-0927285 (PNS, BS). This manuscript constitutes contribution number 2044 for the Bermuda Institute of Ocean Sciences.
23
7. References Amin, S. A., D. H. Green, F. C. Küpper, and C. J. Carrano. 2009. Vibrioferrin, an unusual marine siderophore: Iron binding, photochemistry, and biological implications. Inorganic Chemistry 48: 11451-11458. Barbeau, K. 2006. Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochemistry and Photobiology 82: 1505-1516. Batchelli, S., F. L. L. Muller, K. C. Chang, and C. L. Lee. 2010. Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters. Environmental Science & Technology 44: 8485-8490. Bennett, S. A., E. P. Achterberg, D. P. Connelly, P. J. Statham, G. R. Fones, and C. R. German. 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters 270: 157-167. Boiteau, R. M., J. N. Fitzsimmons, D. J. Repeta, and E. A. Boyle. 2013. Detection of iron ligands in seawater and marine cyanobacteria cultures by High-Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry. Analytical Chemistry 85: 4357-4362. Bowie, A. R., P. N. Sedwick, and P. J. Worsfold. 2004. Analytical intercomparison between flow injection-chemiluminescence and flow injection-spectrophotometry for the determination of picomolar concentrations of iron in seawater. Limnology and Oceanography: Methods 2: 42-54. Boyd, P. W., and M. J. Ellwood. 2010. The biogeochemical cycle of iron in the ocean. Nature Geoscience 3: 675-682.
24
Boyd, P. W., E. Ibisanmi, S. G. Sander, K. A. Hunter, and G. A. Jackson. 2010. Remineralization of upper ocean particles: Implications for iron biogeochemistry. Limnology and Oceanography 55: 1271-1288. Boyd, P. W., T. Jickells, C. S. Law, S. Blain, E. A. Boyle, K. O. Buesseler, K. H. Coale, J. J. Cullen, H. J. W. De Baar, M. Follows, M. Harvey, C. Lancelot, M. Levasseur, N. P. J. Owens, R. Pollard, R. B. Rivkin, J. Sarmiento, V. Schoemann, V. Smetacek, S. Takeda, A. Tsuda, S. Turner, and A. J. Watson. 2007. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science 315: 612-617. Boye, M., A. Aldrich, C. M. G. van den Berg, J. T. M. De Jong, H. Nirmaier, M. Veldhuis, K. R. Timmermans, and H. J. W. De Baar. 2006. The chemical speciation of iron in the northeast Atlantic Ocean. Deep-Sea Research I 53: 667-683. Boye, M., C. M. G. van den Berg, J. T. M. De Jong, H. Leach, P. Croot, and H. J. W. De Baar. 2001. Organic complexation of iron in the Southern Ocean. Deep-Sea Research I. 48: 1477-1497. Boye, M. B., A. P. Aldrich, C. M. G. van den Berg, J. T. M. De Jong, M. J. W. Veldhuis, and H. J. W. De Baar. 2003. Horizontal gradient of the chemical speciation of iron in surface waters of N.E. Atlantic Ocean. Marine Chemistry 80: 129-143. Bruland, K. W., and E. L. Rue. 2001. Analytical methods for the determination of concentrations and speciation of iron, p. 255-290. In D. R. Turner and K. A. Hunter [eds.], The Biogeochemistry of Iron in Seawater. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. John Wiley & Sons Ltd. Buck, K. N., and K. W. Bruland. 2007. The physicochemical speciation of dissolved iron in the Bering Sea, Alaska. Limnology and Oceanography 52: 1800-1808.
25
Buck, K. N., M. C. Lohan, C. J. M. Berger, and K. W. Bruland. 2007. Dissolved iron speciation in two distinct river plumes and an estuary: Implications for riverine iron supply. Limnology and Oceanography 52: 843-855. Buck, K. N., J. W. Moffett, K. A. Barbeau, R. M. Bundy, Y. Kondo, and J. Wu. 2012. The organic complexation of iron and copper: an intercomparison of competitive ligand exchange- adsorptive cathodic stripping voltammetry (CLE-ACSV) techniques. Limnology and Oceanography: Methods 10: 496-515. Bundy, R. M., D. V. Biller, K. N. Buck, K. W. Bruland, and K. A. Barbeau. 2014. Distinct pools of dissolved iron-binding ligands in the surface and benthic boundary layer of the California Current. Limnology and Oceanography 59: 769-787. Butler, A. 2005. Marine siderophores and microbial iron mobilization. BioMetals 18: 369-374. Cabaj, A., and A. Kosakowska. 2009. Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea. Microbiological Research 164: 570-577. Chen, M., and W.-X. Wang. 2008. Accelerated uptake by phytoplankton of iron bound to humic acids. Aquatic Biology 3: 155-166. Conway, T. M., and S. G. John. 2014. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511: 212-215. Croot, P. L., K. Andersson, M. Öztürk, and D. R. Turner. 2004. The distribution and speciation of iron along 6ºE in the Southern Ocean. Deep-Sea Research II 51: 2857-2879. Croot, P. L., and M. Johansson. 2000. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC). Electroanalysis 12: 565-576.
26
Cullen, J. T., B. A. Bergquist, and J. W. Moffett. 2006. Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean. Marine Chemistry 98: 295-303. Cutter, G. A., and K. W. Bruland. 2012. Rapid and noncontaminating sampling system for trace elements in global ocean surveys. Limnology and Oceanography: Methods 10: 425-436. Duce, R. A., and N. W. Tindale. 1991. Atmospheric transport of iron and its deposition on the ocean. Limnology and Oceanography 36: 1715-1726. Gerringa, L. J. A., S. Blain, P. Laan, G. Sarthou, M. J. W. Veldhuis, C. P. D. Brussaard, E. Viollier, and K. R. Timmermans. 2008. Fe-binding dissolved organic ligands near the Kerguelen Archipelago in the Southern Ocean (Indian Sector). Deep-Sea Research I 55: 606-621. Gerringa, L. J. A., P. M. J. Herman, and T. C. W. Poortvliet. 1995. Comparison of the linear van den Berg/ Ružiü transformation and a non-linear fit of the Langmuir isotherm applied to Cu speciation data in the estuarine environment. Marine Chemistry 48: 131-142. Gerringa, L. J. A., M. J. A. Rijkenberg, C.-E. Thuróczy, and L. R. M. Maas. 2014. A critical look at the calculation of the binding characteristics and concentration of iron complexing ligands in seawater with suggested improvements. Environmental Chemistry 11: 114-136. Gerringa, L. J. A., M. J. W. Veldhuis, K. R. Timmermans, G. Sarthou, and H. J. W. De Baar. 2006. Co-variance of dissolved Fe-binding ligands with phytoplankton characteristics in the Canary Basin. Marine Chemistry 102: 276-290. Gledhill, M., and K. N. Buck. 2012. The organic complexation of iron in the marine environment: A review. Frontiers in Microbiology: Microbiological Chemistry 3: Article 69.
27
Gledhill, M., and C. M. G. van den Berg. 1994. Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Marine Chemistry 47: 41-54. Gledhill, M., C. M. G. van den Berg, R. F. Nolting, and K. R. Timmermans. 1998. Variability in the speciation of iron in the northern North Sea. Marine Chemistry 59: 283-300. Gobler, C. J., J. R. Donat, J. A. Consolvo Iii, and S. A. Sanudo-Whilhelmy. 2002. Physicochemical speciation of iron during coastal algal blooms. Marine Chemistry 77: 71-89. Hassler, C. S., E. Alasonati, C. a. M. Nichols, and V. I. Slaveykova. 2011a. Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean - Role in Fe binding, chemical reactivity, and bioavailability. Marine Chemistry 123: 88-98. Hassler, C. S., V. Schoemann, C. M. Nichols, E. C. V. Butler, and P. W. Boyd. 2011b. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proceedings of the National Academy of Sciences 108: 1076-1081. Hatta, M., C. I. Measures, J. Wu, J. Fitzsimmons, P. Sedwick, and P. Morton. this issue. Overview: Dissolved Fe and Mn concentrations in the North Atlantic Ocean during GEOTRACES 2010/2011 cruises. Deep-Sea Research II. Hawkes, J. A., D. P. Connelly, M. Gledhill, and E. P. Achterberg. 2013. The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems. Earth and Planetary Science Letters 375: 280-290. Hider, R. C., and X. L. Kong. 2010. Chemistry and biology of siderophores. Natural Product Reports 27: 637-657.
28
Hirose, K. 2006. Chemical speciation of trace metals in seawater: A review. Analytical Sciences 22: 1055-1063. Hunter, K. A., and P. W. Boyd. 2007. Iron-binding ligands and their role in the ocean biogeochemistry of iron. Environmental Chemistry 4: 221-232. Hutchins, D. A., V. M. Franck, M. A. Brzezinski, and K. W. Bruland. 1999a. Inducing phytoplankton iron limitation in iron-replete coastal waters with a strong chelating ligand. Limnology and Oceanography 44: 1009-1018. Hutchins, D. A., A. E. Witter, A. Butler, and G. W. Luther. 1999b. Competition among marine phytoplankton for different chelated iron species. Nature 400: 858-861. Ibisanmi, E., S. G. Sander, P. W. Boyd, A. R. Bowie, and K. A. Hunter. 2011. Vertical distributions of iron-(III) complexing ligands in the Southern Ocean. Deep-Sea Research II 58: 2113-2125. Jenkins, W. J., W. M. Smethie, E. A. Boyle, and G. A. Cutter. this issue. Water mass analysis for the U.S. GEOTRACES (GA03) North Atlantic Sections. Deep-Sea Research II. Jickells, T. D., Z. S. An, K. K. Andersen, A. R. Baker, G. Bergametti, N. Brooks, J. J. Cao, P. W. Boyd, R. A. Duce, K. A. Hunter, H. Kawahata, N. Kubilay, J. Laroche, P. S. Liss, N. Mahowald, J. M. Prospero, A. J. Ridgwell, I. Tegen, and R. Torres. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308: 6771. Jones, M. E., J. S. Beckler, and M. Taillefert. 2011. The flux of soluble organic-iron(III) complexes from sediments represents a source of stable iron(III) to estuarine waters and to the continental shelf. Limnology and Oceanography 56: 1811-1823.
29
Kondo, Y., S. Takeda, and K. Furuya. 2007. Distribution and speciation of dissolved iron in the Sulu Sea and its adjacent waters. Deep-Sea Research II 54: 60-80. Kosakowska, A., G. Kupryszewski, P. Mucha, P. Rekowski, J. Lewandowska, and K. Pazdro. 1999. Identification of selected siderophores in the Baltic Sea environment by the use of capillary electrophoresis Oceanologia 41: 573-587. Kuma, K., S. Nakabayashi, Y. Suzuki, I. Kudo, and M. Matsukiko. 1992. Photoreduction of Fe(III) by dissolved organic substances and existence of Fe(II) in seawater during spring blooms. Marine Chemistry 37: 15-27. Laglera, L. M., G. Battaglia, and C. M. G. van den Berg. 2007. Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron. Analytica Chimica Acta 599: 58-66. Laglera, L. M., and C. M. G. Van Den Berg. 2009. Evidence for geochemical control of iron by humic substances in seawater. Limnology and Oceanography 54: 610-619. Liu, X., and F. J. Millero. 2002. The solubility of iron in seawater. Marine Chemistry 77: 43-54. Mahowald, N., A. Baker, G. Bergametti, N. Brooks, R. Duce, T. Jickells, N. Kubilay, J. Prospero, and I. Tegen. 2005. Atmospheric glboal dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles 19: GB4025. Mahowald, N., S. Engelstaedter, C. Luo, A. Sealy, P. Artaxo, C. Benitez-Nelson, S. Bonnet, Y. Chen, P. Y. Chuang, D. D. Cohen, F. Dulac, B. Herut, A. M. Johansen, N. Kubilay, R. Losno, W. Maenhaut, A. Paytan, J. M. Prospero, L. M. Shank, and R. L. Siefert. 2009. Atmospheric iron deposition: Global distribution, variability and human perturbations. Annual Reviews of Marine Sciences 1: 245-278.
30
Maldonado, M. T., P. W. Boyd, J. Laroche, R. Strzepek, A. Waite, A. R. Bowie, P. L. Croot, R. L. Frew, and N. M. Price. 2001. Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment. Limnology and Oceanography 46: 1802-1808. Maldonado, M. T., and N. M. Price. 1999. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep-Sea Research II 46: 24472473. Maldonado, M. T., and N. M. Price. 2001. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). Journal of Phycology 37: 298-310. Maldonado, M. T., R. F. Strzepek, S. Sander, and P. W. Boyd. 2005. Acquisition of iron bound to strong organic complexes, with different Fe binding groups and photochemical reactivities, by plankton communities in Fe-limited subantarctic waters. Global Biogeochemical Cycles 19: GB4S23. Mantoura, R. F. C., and J. P. Riley. 1975. The use of gel filtration in the study of metal binding by humic acids and related compounds. Analytica Chimica Acta 78: 193-200. Martinez, J. S., G. P. Zhang, P. D. Holt, H.-T. Jung, C. J. Carrano, M. G. Haygood, and A. Butler. 2000. Self-assembling amphiphilic siderophores from marine bacteria. Science 287: 1245-1247. Mawji, E., M. Gledhill, J. A. Milton, G. A. Tarran, S. Ussher, A. Thompson, G. A. Wolff, P. J. Worsfold, and E. P. Achterberg. 2008. Hydroxamate siderophores: Occurrence and importance in the Atlantic Ocean. Environmental Science & Technology 42: 8675-8680.
31
Mccormack, P., P. J. Worsfold, and M. Gledhill. 2003. Separation and detection of siderophores produced by marine bacterioplankton using high-performance liquid chromatography with electrospray ionization mass spectrometry. Analytical Chemistry 75 2647-2652. Measures, C. I., J. Yuan, and J. A. Resing. 1995. Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection. Marine Chemistry 50: 3-12. Miller, L. A., and K. W. Bruland. 1997. Competitive equilibration techniques for determining transition metal speciation in natural waters: Evaluation using model data. Analytica Chimica Acta 343: 161-181. Mohamed, K. N., S. Steigenberger, M. C. Nielsdottir, M. Gledhill, and E. P. Achterberg. 2011. Dissolved iron(III) speciation in the high latitude North Atlantic Ocean. Deep-Sea Research I 58: 1049-1059. Moore, J. K., S. C. Doney, D. M. Glover, and I. Y. Fung. 2002. Iron cycling and nutrientlimitation patterns in surface waters of the World Ocean. Deep-Sea Research II 49: 463507. Poorvin, L., S. G. Sander, I. Velasquez, E. Ibisanmi, G. R. Lecleir, and S. W. Wilhelm. 2011. A comparison of Fe bioavailability and binding of a catecholate siderophore with virusmediated lysates from the marine bacterium Vibrio alginolyticus PWH3a. Journal of Experimental Marine Biology and Ecology 399: 43-47. Powell, R. T., and J. R. Donat. 2001. Organic complexation and speciation of iron in the South and Equatorial Atlantic. Deep-Sea Research II 48: 2877-2893. Powell, R. T., and A. Wilson-Finelli. 2003. Photochemical degradation of organic iron complexing ligands in seawater. Aquatic Sciences 65: 367-374.
32
Rijkenberg, M. J. A., L. J. A. Gerringa, V. E. Carolus, I. Velzeboer, and H. J. W. De Baar. 2006a. Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater. Geochimica et Cosmochimica Acta 70: 2790-2805. Rijkenberg, M. J. A., L. J. A. Gerringa, I. Velzeboer, K. R. Timmermans, A. G. J. Buma, and H. J. W. De Baar. 2006b. Iron-binding ligands in Dutch estuaries are not affected by UV induced photochemical degradation. Marine Chemistry 100: 11-23. Rijkenberg, M. J. A., C. F. Powell, M. Dall'osto, M. C. Nielsdottir, M. D. Patey, P. G. Hill, A. R. Baker, T. D. Jickells, R. M. Harrison, and E. P. Achterberg. 2008. Changes in iron speciation following a Saharan dust event in the tropical North Atlantic Ocean. Marine Chemistry 110: 56-67. Rue, E. L., and K. W. Bruland. 1995. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration adsorptive cathodic stripping voltammetric method. Marine Chemistry 50: 117-138. Ružiü, I. 1982. Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Analytica Chimica Acta 140: 99-113. Sander, S. G., and A. Koschinsky. 2011. Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience 4: 145-150. Sato, M., S. Takeda, and K. Furuya. 2007. Iron regeneration and organic iron(III)-binding ligand production during in situ zooplankton grazing experiment. Marine Chemistry 106: 471488. Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Annals of the New York Academy of Sciences 51: 660-672.
33
Sedwick, P. N., A. R. Bowie, and T. W. Trull. 2008. Dissolved iron in the Australian sector of the Southern Ocean (CLIVAR SR3 section): Meridional and seasonal trends. Deep-Sea Research I 55: 911-925. Sedwick, P. N., T. M. Church, A. R. Bowie, C. M. Marsay, S. J. Ussher, K. M. Achilles, P. J. Lethaby, R. J. Johnson, M. M. Sarin, and D. J. Mcgillicuddy. 2005. Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region) during summer: Eolian imprint, spatiotemporal variability, and ecological implications. Global Biogeochemical Cycles 19: GB4006. Sedwick, P. N., E. R. Sholkovitz, and T. M. Church. 2007. Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea. Geochemistry Geophysics Geosystems 8: Q10Q06. Sedwick, P. N., B. M. Sohst, and A. R. Bowie. this issue. A zonal picture of the water column distribution of dissolved iron(II) during the U.S. GEOTRACES North Atlantic Transect cruises. Deep-Sea Research II. Stolpe, B., and M. Hassellov. 2010. Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: Significance for variations in element size distributions. Limnology and Oceanography 55: 187-202. Thuróczy, C.-E., L. J. A. Gerringa, M. B. Klunder, R. Middag, P. Laan, K. R. Timmermans, and H. J. W. De Baar. 2010. Speciation of Fe in the Eastern North Atlantic Ocean. Deep-Sea Research I 57: 1444-1453. Tian, F., R. D. Frew, S. Sander, K. A. Hunter, and M. J. Ellwood. 2006. Organic iron(III) speciation in surface transects across a frontal zone: the Chatham Rise, New Zealand. Marine and Freshwater Research 57: 533-544.
34
Ussher, S. J., M. Yaqoob, E. P. Achterberg, A. Nabi, and P. J. Worsfold. 2005. Effect of model ligands on iron redox speciation in natural waters using flow injection with luminol chemiluminescence detection. Analytical Chemistry 77: 1971-1978. van den Berg, C. M. G. 1982. Determination of copper complexation with natural organic ligands in sea water by equilibrium with MnO2: I. Theory. Marine Chemistry 11: 307322. ---. 1995. Evidence for organic complexation of iron in seawater. Marine Chemistry 50: 139-157. ---. 2006. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Analytical Chemistry 78: 156-163. Velasquez, I., B. L. Nunn, E. Ibisanmi, D. R. Goodlet, K. A. Hunter, and S. G. Sander. 2011. Detection of hydroxamate siderophores in coastal and Sub-Antarctic waters off the South Eastern coast of New Zealand Marine Chemistry 126: 97-107. Vong, L., A. Laes, and S. Blain. 2007. Determination of iron-porphyrin-like complexes at nanomolar levels in seawater. Analytica Chimica Acta 588: 237-244. Vraspir, J. M., and A. Butler. 2009. Chemistry of marine ligands and siderophores. Annual Review of Marine Science 1: 43-63. Wagener, T., E. Pulido-Villena, and C. Guieu. 2008. Dust iron dissolution in seawater: Results from a one-year time-series in the Mediterranean Sea. Geophysical Research Letters 35: L16601. Weaver, R. S., D. L. Kirchman, and D. A. Hutchins. 2003. Utilization of iron/organic ligand complexes by marine bacterioplankton. Aquatic Microbial Ecology 31: 227-239.
35
Witter, A. E., D. A. Hutchins, A. Butler, and G. W. Luther Iii. 2000. Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Marine Chemistry 69: 1-17. Witter, A. E., and G. W. Luther Iii. 1998. Variation in Fe-organic complexation with depth in the Northwestern Atlantic Ocean as determined using a kinetic approach. Marine Chemistry 62: 241-258. Wu, J., and M. Jin. 2009. Competitive ligand exchange voltammetric determination of iron organic complexation in seawater in two-ligand case: Examination of accuracy using computer simulation and elimination of artifacts using iterative non-linear multiple regression. Marine Chemistry 114: 1-10. Wu, J., and G. W. Luther III. 1995. Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Marine Chemistry 50: 159-177. Yücel, M., A. Gartman, C. S. Chan, and G. W. Luther Iii. 2011. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nature Geoscience 4: 367-371.
8. Figure Captions Figure 1. Map of stations sampled along the U.S. GEOTRACES North Atlantic Section (GEOTRACES GA03) displayed over bathymetry. Two cruise legs are depicted: USGT2010 in open symbols along the NE Atlantic margin (USGT10-1 to USGT10-12) and USGT2011 in
36
closed symbols crossing the basin (USGT11-1 to USGT11-24) from west to east. Note that USGT2010-12 and USGT2011-24 are the same station, occupied during both cruises.
Figure 2. Iron speciation results in depth profiles from two occupations of the TENATSO timeseries station (USGT2010-12 in open circles and USGT2011-24 in closed circles). A) dissolved iron ([dFe]); B) L1-type ligand concentrations; C) conditional stability constant for L1-type cond ligand class (log K FeL abbreviated to log K1); D) total ligand concentrations ([Lt] = [L1] + [L2] 1 ,Fe′
+ [L3]); E) L2-type ligand concentrations; and F) conditional stability constant for L2-type ligand cond class (log K FeL abbreviated to log K2). Error bars represent standard deviations of results from 2 ,Fe′
replicate analyses.
Figure 3. Contour plots in Ocean Data View for A) dissolved iron (dFe) concentrations; B) L1type iron-binding ligand (L1) concentrations; C) L2-type ligand concentrations; and D) L3-type ligand concentrations. Plots are constructed from the stations depicted in the map inset, with the zonal section in the left panel (USGT2011-01 to 24 and USGT2010-09 to 11), and the meridional section in the right panel (USGT2010-01 to 10). Station numbers are noted above each panel, and samples where each parameter was determined are noted by the black dots in the profiles.
Figure 4. Contour plots in Ocean Data View for A) total iron-binding ligand concentrations ([Lt] = [L1] + [L2] + [L3]); B) excess total iron-binding ligand concentrations ([eLt] = [L1] + [L2] + [L3] – [dFe]); and C) log complexation capacity for dissolved iron, calculated from excess ligand concentrations and their conditional stability constants. Plots are constructed from the stations 37
depicted in the map inset, with the zonal section in the left panel (USGT2011-01 to 24 and USGT2010-09 to 11), and the meridional section in the right panel (USGT2010-01 to 10). Station numbers are noted above each panel, and samples where each parameter was determined are noted by the black dots in the profiles.
Figure 5. Contour plots in Ocean Data View for log conditional stability constants of A) L1-type cond
cond ligands (log K FeL abbreviated to log K1); B) L2-type ligands (log K FeL2 ,Fe′ abbreviated to log 1 ,Fe′ cond K2); and C) L3-type ligands (log K FeL abbreviated to log K3). Plots are constructed from the 3 , Fe′
stations depicted in the map inset, with the zonal section in the left panel (USGT2011-01 to 24 and USGT2010-09 to 11), and the meridional section in the right panel (USGT2010-01 to 10). Station numbers are noted above each panel, and samples where each parameter was determined are noted by the black dots in the profiles.
Figure 6. Iron speciation results from the station overlying the Trans-Atlantic Geotraverse hydrothermal vent plume (USGT2011-16; circles) and from a station to the west (USGT2011-14; squares) and to the east (USGT2011-18; triangles). A) dissolved iron ([dFe]); B) L1-type ligand concentrations; C) excess L1-type ligand concentrations (e[L1] = [L1] – [Fe]); D) total ligand concentrations ([Lt] = [L1] + [L2] + [L3]); E) conditional stability constant for L1-type ligand cond class (log K FeL abbreviated to log K1); and F) conditional stability constant for L2-type ligand 1 ,Fe′
cond class (log K FeL abbreviated to log K2). Error bars represent standard deviations of results from 2 ,Fe′
replicate analyses.
38
Figure 7. Excess ligand concentrations (e[L1] = [L1] – [Fe], circles; e[L2] = [L2] – [Fe] if strongest ligand class in sample, otherwise e[L2] = [L2], squares; e[L3] = [L3], triangles) from the full U.S. GEOTRACES (GA03) North Atlantic Section plotted against A-C) apparent oxygen utilization; and D-F) phosphate concentrations. Apparent oxygen utilization was calculated from potential temperature, salinity, and dissolved oxygen concentrations. Phosphate concentrations were determined shipboard by the Ocean Data Facility group at Scripps Institution of Oceanography. The solid black line represents the best fit line for the e[L3] vs. apparent oxygen utilization data from the cruise.
Figure 8. Previously published iron-binding ligand concentration and conditional stability constant data from the North Equatorial Atlantic (medium blue diamonds; Powell and Donat 2001), the Northeast Atlantic (light blue diamonds; Gledhill and van den Berg 1994; Gledhill et al. 1998; Boye et al. 2003, 2006; Gerringa et al. 2006; Rijkenberg et al. 2008; Thuroczy et al. 2010; Mohamed et al. 2011) and the Northwest Atlantic (dark blue diamonds; Wu and Luther 1995; Witter and Luther 1998; Cullen et al. 2006). A) Excess iron-binding ligand concentrations from previous studies plotted against conditional stability constants for these ligands. The generic subscript i is used since one of the previous studies (Cullen et al. 2006) identified two ligand classes; and B) the same previously published data overlaid with L1-type (circles), L2-type (squares), and L3-type (triangles) ligand classes from the U.S. GEOTRACES (GA03) North Atlantic Section cruises in 2010 (open symbols) and 2011 (grey symbols).
39
!
"#
! ! %% $%#% #
$
%&' $ %(( &
&(&$ %% $%#% # )
,**% $&, %'& $ %,' $
&(&$ %# $%#% # )
,**% &)+ %(& $ #&, &
&(&$ %# $%#% # )
,**% &,* #%) $ #*+ %
&(&$ %# $%#% # )
,**% *( %$& $ %($ ,
&(&$ %% $%#% # )
,**% #&'' %'# $ ##& $
&(&$ $%#% # )
,**% #,,& %)& $
&(&$ $%#% # )
,**% &%%$ %') $
&(&$ %% $%#% # )
,**% )%%+ %,& $ #&( '
&(&$ %% $%#% # )
,**% '%#, %++ $ #$) (
&(&$ $%#% # )
,**% *)$# %+) $
&(&$ %% $%#% # )
,**% ++*+ %+# $ #)* #
&(&$ $%#% # (
,**% (+*) %++
&(&$ $%#% # (
,**% ,%%$ %+)
&(&$ %# $%#% # (
,**% ,,%& %+# $ #$$ *
&(&$ ##'% $%#% # (
,**% &
%+'
&(&$ #$,& $%#% # (
,**% &
%($
&(&$ #)(% $%#% # (
,**% #
%+,
&(&$ #+%% $%#% # (
,**% +
#%#
$%#% # &(&$ ,**% #,%% %,&
%# #$)* $
%% #&%* &
%# #$*% ,
%& #$*# ,
%$ #$*# *
%$ #$$, &
%' +
%) $
%( %
%$ %$ $ ##&$ *
%# %$ $ #$%% +
%$ %$ * ##** (
%) %# %& ) + ##(' (
#$ ,
#$ ,
%$ #$#+ )
%# #$ *
#& $
%% %+ #$#% & (
%# %, #$'# * )
%% %% $ ##,) '
%# %# # ##,, +
%% (
%% (
%' ,
%$ ##,( +
%% ##%( '
%* ##*& '
## %'& #)' %
%( %)$ #&+ )
#& %'* $#, +
%* %*$ #*+ $
#% %', #$' &
%* %*$ ##& $
%(
#$, *
%+
#$, '
%) %)' #&( '
%) %)( #$) (
%'
#&$ +
#' %+' $$& $
#) %'# $#* '
40
$%#% #
$%#% #
$%#% #
$%#% #
$%#% #
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
(
*
&(&$ (
,**% $#%# %,&
&(&$ $&%% ,**% *
%,)
(
&(&$ $'%% (
,**% ,
%(#
&(&$ (
,**% $*%# %+*
&(&$ $+%% %# (
,**% +
%*, $ #)) %
$
%$%
&'$% #
#*%%) &'& %#* $
&'$% #*%%) '%' %#& $
#
&'$% %$ #*%%) +*' %%+ $ %,, )
#
&'$% %% #*%%) ,,' %#, $ #'$ $
#
&'$% %% #
#*%%) #&', %$) $ %(( &
&'$% %% #
#*%%) #,## %$* $ %'' $
&'$% #
#*%%) &%%+ %&,
&'$% #
#*%%) )%%' %$( $
&'$% %% #
#*%%) )(,( %'$ $ #++ *
&'$% %% #*%%) *#%+ %'+ $ #'* '
#
&'$% #
#*%%) ++*' %*# $
&'$% %% #
#*%%) (+'( %+* $ #&( $
&'%# %% (
#',,+ ,,&( %+# $ #)# &
&'%# #%'% (
#',,+ *
%*(
&'%# #$%% (
#',,+ '
%+%
&'%# #&'% %# (
#',,+ '
%+% $ #)' (
&'%# #'%% (
#',,+ (
%*(
&'%# #+%% %% (
#',,+ +
%+% $ #$, )
&'%# #',,+ #,%% %*,
%# #$#% +
%, *
$' &
#& '
%) #$#) +
%# ## #$'% + %
%% %, #$$+ ' +
%$ %) #$$$ # (
## )
%# %' #$$& ' *
%% #$$& (
#+ %
%% #$'* (
%% %& #$$' ' %
%& %, #$+# , '
%% %' #$&( ) *
%$ +
%# %
%$ )
%# ##%) &
%% ##(% '
%' ##'( %
%$ )
%$ #
%% +
%% #
%# &
%% $
%% )
%$ *
%% )
%# ##)' $
%# ###' +
%$ ##)& $
%% ##(& (
%$ ##$' '
%, #
%$ '
#( %$ & &
%% ##(, )
#% %# % '
%# ##'( '
%$ ##%& *
%% ##)% *
#+ %+' $)% #
$& $'& +
#$ #&' $
%, %,$ %,, $
$) #&& $*$ &
#* %*) #(' #
%+ %$, #%& +
%# #+ #%(( % $%' *
#( #$* $&& $
%# $( #%,+ & %,, &&, $
#% #+% ,
%% #* #%,$ * %*$ $&( $
%, %*, #+% ,
#+ %+' $)% %
## %', #(' '
41
$%#% &
$%#% &
$%#% &
$%#% &
$%#% &
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
(
*
&'%# $#%# %% (
#',,+ $
%*, $ #)) ,
&'%# $&%% %# #',,+ &
%*# $ #)* %
(
&'%# $'%# %# (
#',,+ $
%'( $ #'& *
&'%# $*%% (
#',,+ *
%*'
&'%# $*(% (
#',,+ ,
%*'
$
% &
%% $
$$%%% &%+ %&% &
%% $$%%% '#' %#, &
$
%% %# $$%%% (%, %#' $ #%) $
$
%% $$%%% #%#& %#+ &
$
%% $
$$%%% #&'* %$& &
%% $
$$%%% #(*( % &
%% $
$$%%% $'## %&$ &
%% $
$$%%% &'%* %)+ &
%% %% $
$$%%% ''& %)* & #$+ $
%% $$%%% (%$# %+# #
$
%% $
$$%%% ,*$( %+% # $)+
%% #$%# %% $
$$%%% (
%+% $ #$, $
%% #'%% *
$$%%) ,
%(+ &
%% #(%% *
$$%%) &
%*$ &
%% $#%% *
$$%%) &
%() &
%% $)%% *
$$%%) (
%(& # #,&
%% $+%% %$ *
$$%%) *
%*' & #*& #
%% &%%% *
$$%%) *
%** # #(*
%% $$%%) &&%# %*' #
%# #$$$ %
%# #$&% $
%# #$%$ #
%( )
%' ,
%+ ,
#* '
#& (
#& )
%$ #$$& )
## '
#) (
#) %
## *
#' '
%# #$#, ,
$) $
%& %
%# ,
%& #
%% ,
%% &
%% #
%% *
%% )
%% +
%% $
%% )
#$%$
%% #$#, +
$# %% ( )
#* %% # &
#( %% # ,
#$#&
%# #$%# &
#$$$
$$
%$ ##$% (
%$ ##&+ #
%& #### +
%% ##,$ +
%# ##(' $
%# ##(+ #
#' %+' $$( ,
#) %(* $%' '
#+ %,* $&& '
#& #*' )
#% #&( (
## #&) )
%( %(, #%) ,
%# %, ##(* ) ##' (
%% #$ ##** + #)( '
%$ ## ##,% ( #)% %
%# %( ##(, * ##* )
%& #% ##+) # #'' (
%( %(# #$+ #
#+ ##,)
$)$ #
#+ #+* $)+ *
%' %', #$, ,
%# #& ##+# & $#( $
%# %, ##+% ' #*# ,
%$ %, ##,' ' #(# +
## ##% #,& %
%, %,+ #*& +
#$ #$% #(* %
##,$
$$$ #'
42
$%#% '
$%#% '
$%#% '
$%#% '
$%#% '
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
*
%% &*%% *
$$%%) #
%*$ #
%% &(,, $$%%) $
%*# &
*
%% )#,, %% *
$$%%) #
%*# # $$+ (
%% )')( *
$$%%) +
%', #
%% )(,( *
$$%%) *
%'* &
$
%)+ $
$)%% %
$$%%% &' % $
$)%% $$%%% )'* %$) # ##'
%
$)%% $$%%% +%* %$% $
%
$)%% $$%%% #'#$ #$' $
%
$)%% %
$$%%% $%## #$# $
$)%% %
$$%%% &'## ### $
$)%% %$ %
$$%%% &,+' ##* $ #,) %
$)%% %
$$%%% )'%' #$& #
$)%% %
$$%%% '%## #$& $
$)%% $$%%% +'## # # &$*
%
$)%% #%%% %
$$%%% +
##$ #
$)%% #$%% %$ %
$$%%% ,
##& $ #() *
$)%% #),( &
$#,,* ,
#%% $
$)%% #+), %# &
$#,,* *
#%& $ #,# #
$)%% #,,( &
$#,,* '
%,' $
$)%% $$)+ &
$#,,* (
%,* #
$)%% $),, &
$#,,* )
%(* $
$)%% $+), %% &
$#,,* #
%(+ $ #'+ $
$)%% $#,,* $,,( %($ #
$
#, &
#( %% ( +
%% #$%' *
$# *
#' %% ( *
#* %# $ *
#$ %# ) $
#$%*
#$ &
$) +
#, ,
#+ +
%# #$%' %
#( #
$# +
#$%*
##(,
%$ ##+' &
#$%%
%# ##,, &
%% ##($ (
%% ##($ )
##,)
%# %% % ##(( *
%# $
%# #
%$ %
%# '
%% ##+, '
%# ##+' +
%# ##(' %
%# ##,, %
$) *
##+&
%# #$%' #
#+ %% %# * $ ##(' $
%% #$%) &
#, %% %# ' * ##,' #
$& +
##*&
#, %$ %$ , + ##() '
%% #$%+ +
#,
##**
+
#& #,& #
#$ #(( +
#* #** $$+ *
#' $#* (
#% #'( $
## #*$ '
%, #$) &
%, %,# ##' #
#% #$& &
#$ $)+ #
%+ #,, (
%* #++ *
%+ %+( #,) (
%' #(# (
%, $#+ )
#, #,' &$* '
#& $)* )
%+ %+# #() #
%+ #+* *
%( %(( #,# (
%, #,' ,
#) $&+ #
## #,, &
%+ %+% #'+ %
#,% #%
43
$%#% +
$%#% +
$%#% +
$%#% +
$%#% +
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
$%#% ,
&
#
$)%% &$)+ &
$#,,* ,
%(% #
$)%% &),+ $#,,* *
%() $
&
$)%% &($* &
$#,,* *
%+% $
$)%% )#'* &
$#,,* ,
%'( $
$)%% )),* &
$#,,* $
%+* $
$
%,) # $#(
#+&' %# #
#($'' $( ##' & $$& +
#+&' #($'' ), %&$ &
#
#+&' %# #($'' (, #), & $'* #
#
#+&' #($'' #%,) #$( &
#
#+&' %% #
#($'' #&'$ #)* & #() *
#+&' %% #
#($'' #()( #)( & $&) (
#+&' %# #
#($'' $$%( #*# $ $&& *
#+&' #
#($'' $('$ #+$ &
#+&' %% #
#($'' &*## #)* & $#' &
#+&' %% #($'' **), #&, $ $%$ $
#
#+&' (
#($'% +,+& #)% # $#(
#+&' %% #
#($'' ,*' #'& & $&+ +
#+&' #%,) %$ (
#($'% *
#*% & $'& #
#+&' ##,, %% #
#($'' +
#)( & $%# +
#+&' #$&' (
#($'% *
#*% # $+'
#+&' #&() (
#($'% *
#'% $
#+&' (
#($'% #'&( #'' $
#+&' #+(+ %% (
#($'% #
#'& & $*& +
#+&' #($'% #(($ #'& # $',
#$
%# #$&+ %
%
#* ,
$% *
#+ $
#* $
#* $
%* %
#% #
#) +
%# #$$# %
$* &
%# #$'( (
%$ #$%( #
%& #$)% %
&& $
%$ #$$% &
%% %* #$(* + $
%* #$#*
$
%$ #$$+ %
%# #$#( *
%$ #$#+ $
#$$%
$+ #
$' &
%# #$%) &
#$$'
%% )
%% +
%% *
%% '
##,*
%# ##(( )
%# ##*, '
%# ##(, #
%# ##(( )
##+*
%$ %% ( ##'( ,
%% %# ) ##,+ $
%% %# , ##,( #
%% %% * ##+* ,
%% %% ) ##*( (
%$ %# ' ##(, +
%% %% ( ##,* ,
##&(
(
%( #*, ,
#$ $%* &
#% #+$ $
#% #*$ )
%( #*$ *
#( #$' $+, '
$% #%+ &$) (
## #)+ )
#% #%+ $'* +
#& $*& '
%& %&( #() (
%( %(* $&) *
%+ %+& $&& &
#* &&$ %
%+ %+% $#' %
#$ %*& $*) '
#) %+( $(% %
%( %(' $&+ '
%, %,& $'& &
%' %') $%# )
## ##) $+' )
#$ $+# #
%, $'& +
## ##% $*& %
#%* $', #%
44
(
+
#+&' $%(+ $%#% , (
#($'% ,
#)) &
#+&' $$,) $%#% , (
#($'% )
#&+ &
#+&' %% $%#% , (
#($'% $'(' #&+ & $%* ,
#+&' $,%% $%#% , (
#($'% &
%,* &
#+&' $,,, $%#% , (
#($'% )
#&& &
%% $%#% #%
$
%)) $ #$# &
#+&' %% $%#% #% #
$%(#* ' %') $ #&' )
#+&' $%#% #% #
$%(#* '%* %)& #
#+&' %% $%#% #% #
$%(#* ()* #)) $ $#' *
#+&' $%#% #% #
$%(#* #%%+ #&' # $*'
#+&' $%#% #% #
$%(#* #)%* #&( # $#+
#+&' $%#% #% #
$%(#* #(*& #&* # #'%
#+&' $%#% #% #
$%(#* $&'$ #)$ # $%$
#+&' $%#% #% #
$%(#* $,%' #'' # $&%
#+&' $%#% #% #
$%(#* )$#& #)' # $$%
#+&' $%#% #% #
$%(#* ),,$ #*' # $*(
#+&' $%#% #% #
$%(#* **)( #)$ # $))
#+&' $%#% #% #
$%(#* +,,+ #)) #
#+&' $%#% #% &
$%($+ ,*&, #'% #
#+&' #%,, $%#% #% &
$%($+ *
#)$ # $&*
#+&' #$), $%#% #% &
$%($+ #
#&) #
#+&' #),+ $%#% #% &
$%($+ +
#&& #
#+&' #+'% $%#% #% &
$%($+ #
# # #,,
#+&' #,,( $%#% #% &
$%($+ '
#$' # $%%
$%#% #% #+&' $%($+ $$), ##& # $#%
$) (
$) '
%& #$&% '
$) &
$( $
%% #$ #$'# + %
%# #' #$#& ) (
#) &
%% #$ #$$+ * ,
%, #$#*
)
%+ #$'(
$
%% %# * ##,* )
%% %# * ##,' *
%& #
%$ (
%$ (
%& +
%& ##,$ )
%$ ##*$ ,
%# ##&$ +
%# ###& #
##,'
%# %# * ##$+ %
##$*
##$&
#$#%
#$#(
%+ '
##*'
%, $
##$*
#$%)
#$%%
') $
$' +
%' #$))
#
%, #$&&
*
#$$(
%(
&( ,
#%++
$# *
##('
&( *
##(+
#$%*
#) #
#%(*
$& +
#%(*
#$''
#$#+
##+'
##(,
##'+
##+$
##)&
*
#% $)( )
#% $)' (
%* %*, $%* ,
#) $)& (
#) $($ ,
#, %+( $)# (
$& %(# $,& ,
#% #)& #
#, %+% &)) ,
$$ #)( &'' %
#' %(% $(, #
#' %#) $,$ '
$, %*% )&, +
#' %+' &%) %
#* %+' &#$ +
#% #%& $*( &
), #%$ *&& #
%+ $#* $
$& &(* *
%, %,' $&* '
)% ')$ (
#$ $'+ )
#$ %*( $'# %
#+ %+' $,* #
%,* $,* #(
45
&
#+&' $),( $%#% #% &
$%($+ '
##& # $$*
#+&' $*,( $%#% #% &
$%($+ &
%,( #
#+&' $,,, $%#% #% &
$%($+ #
%,# #
#+&' &$+( $%#% #% &
$%($+ &
%,$ # #+(
#+&' &&$% $%#% #% &
$%($+ ,
%,& # $#,
$%#% ##
$
%)) $
#+&' $%#% ## $
$$+(& $,+ %*+ #
#+&' $%#% ## $
$$+(& *#( %$& $
#+&' %% $%#% ## $
$$+(& (') %') $ #$% #
#+&' $%#% ## $
$$+(& #&'( %,( #
#+&' %% $%#% ## $
$$+(& #+,+ #$) $ #,, &
#+&' $%#% ## $
$$+(& #,,* %,, # #),
#+&' %% $%#% ## $
$$+(& $'%& #&$ $ #** $
#+&' $%#% ## $
$$+(& &%%+ #%' # #')
#+&' %% $%#% ## $
$$+(& &'#& #$# $ #&) #
#+&' $%#% ## $
$$+(& )),, ##$ # #)+
#+&' $%#% ## $
$$+(& *%%) #$) # #'&
#+&' $%#% ## $
$$+(& (%%' ##* # #$+
#+&' $%#% ## %
$$+() ,*)# ##) # #''
#+&' #%,( %% $%#% ## %
$$+() #
#%+ $ #'* '
#+&' #$)( $%#% ## %
$$+() #
#&, # #*+
#+&' #),( $%#% ## %
$$+() '
#%) #
#+&' #+)( $%#% ## %
$$+() )
# # #+&
#+&' #,,( $%#% ## %
$$+() #
#$$ # #))
$%#% ## #+&' $$+() $$)+ %(+ $ #') %%
+
%, '
#$$(
$) $
$& (
#$$+
#$%&
%% #$%, (
%% #$&* '
#$&)
%% #$'' *
#$)(
%% #$+( '
#$&(
#$,'
#$&$
%' )
%, ,
#& )
#* $
%' %
$' ,
%& *
## *
#+ (
%) %
%' #
%+ $
%* '
##)%
##*$
##+(
#+ +
#%,+
##*)
%% %% ( ###, )
#) $
##+,
%% %# , ###, $
%$ %# & ##$% )
#%''
##))
%# %$ % ##+% #
####
%& %# # ## *
##(,
%% %% # ##+& &
##*)
###+
#' ,
#%**
%$ *
##**
#$)+
%% #$$) *
%+ #$)(
%
$% )
%( #$*)
+
$& #$**
)
#$%$ %% ##
#$ %# %# $ + ##%% %
##*%
##(%
#* '
#%*&
##(*
##$)
%# ###& %%
&
$% ##& &$$ (
#) $)$ )
#) $&( +
$* %(+ &'* )
#( #$* $+& #
%' %,, )
$% $+* ,
#& #*$ ,
## %** #+# +
#* $', $
## %+' $&' %
#* %'# $** +
$# %&) &)) $
%( %), #,) ,
%* %#) #(' '
#% %&' $#, +
%, %$, $#( '
#+ %## $(* %
%* %)$ #($ (
#+ %), $+( #
%, %$( $&+ (
$* &*, '
#$ %)$ $', ,
$' %$# &++ '
%*+ $*' #+
46
%
*
'
#+&' $),, $%#% ## %
$$+() )
#%' # #''
#+&' $+)+ $%#% ## %
$$+() (
%(& # #$+
#+&' $,,+ $%#% ## %
$$+() ,
%(' #
#+&' ,( $%#% ## %
$$+() )
%(, # #+)
#+&' &$,( $%#% ## %
$$+() )
%,# # #**
%% $%#% #$
$
%)+ $ %,# *
#+)% $%#% #$ %
$)'%% &+' %'# # #%*
#+)% %# $%#% #$ %
$)'%% )(# %#( $ %,% )
#+)% %% $%#% #$ %
$)'%% +#, %#+ $ ### *
#+)% %$ $%#% #$ %
$)'%% ,%$ %&( $ #$, #
#+)% %% $%#% #$ %
$)'%% #&') %*' $ #&$ &
#+)% %% $%#% #$ %
$)'%% #(' %(( $ #*$ %
#+)% $%#% #$ %
$)'%% $&') #$+ # #''
#+)% $%#% #$ %
$)'%% $('* #)( # #*,
#+)% $%#% #$ %
$)'%% &'## #$% # #)*
#+)% $%#% #$ %
$)'%% )'%* ##* # #&+
#+)% $%#% #$ %
$)'%% *%#& #)% # #,%
#+)% $%#% #$ %
$)'%% (%%( ##, # #$'
#+)% %% $%#% #$ )
$)),* ,*)# #$% & $#' #
#+)% #%,, $%#% #$ )
$)),* &
#)' # #(,
#+)% #$'* $%#% #$ )
$)),* '
#$' # #(%
#+)% #),( %% $%#% #$ )
$)),* (
#&* $ $%$ '
#+)% #+), $%#% #$ )
$)),* &
%,$ # #'%
#+)% #,,( %& $%#% #$ )
$)),* (
%,+ & $#& (
$%#% #$ #+)% $)),* $$)( #%$ # #'*
% % #
$
+
%+ #$ ,
#$#'
##$$
%'% $&) ,
#% #' #$&(
(
#%*#
%)) $&* &
#& %( #& #
##,+
,
#%,'
$$% '
%( #$%%
%(' #+) '
%) ## #$#)
)
##&*
%+' $#% ,
%# %+ %% %# ## #$$& % # , ###( % %)) #*$ '
%' #% #
#$'#
##**
%'' #'+ *
%% %* %% %# #& #$$, # & & ##&* # %+$ #'& )
%% #) %& %% $& #$)$ & # & ##$( , %,) $'$ '
%# %+ %# %& #* #$'' ) % * ##&' $ %,# #,, #
%% %' %% %# ## #$&) ( # , ##*# & %*+ #(& (
%% %' %# %# #$ #$$& # & % ##&+ * %+) $#' +
%( #% #$)%
$
##*#
%$( $&+ ,
%, ## #$*(
'
##+#
%$# $*) *
%$ %' #$&&
(
##&,
%$* #+) )
%+ %, #$)$
##&)
%$# $#' ,
(
#' $# #$$(
,
##$)
%'# &), %
%( %, #$*'
+
##&)
%%* $## $
%% #% %$ %$ $% #$)& # * * ##)& ' %,' &$$ $
%+ #$ #$'#
,
##)#
%)) $*, &
%( #) #$),
(
##)(
%'' $*( &
%# %* %% %% #& #$#( % * + ##&) * %*' $*( #
%( #) #$%&
,
##
%'( $&, +
%# %* %% %% #( #$%# ( , + ###, & ##* $($ '
#$%&
###*
%') $#( ##
%*
47
)
#+)% $%#% #$ )
#+)% $%#% #$ )
#+)% $%#% #$ )
#+)% $%#% #$ )
#+)% $%#% #$ )
$)),*
$)),*
$)),*
$)),*
$)),*
#
$),, &
%(, # $%#
$+)( %(' # #&'
+
$,,( %# &
%+, $ $$+ %
,( $
%+( # $#)
&),+ %% (
%($ $ #+# )
%# $%## #
$
##$ $ #*+ %
&(*( $%## # ,
*,(%* &% %+$ # $%'
&(*( $%## # ,
*,(%* '( %++ # $#+
&(*( $%## # ,
*,(%* ,% %+* # #(+
&(*( $%## # ,
*,(%* ##% %(# # $%$
&(*( $%## # ,
*,(%* #&' %(# # #(#
&(*( $%## # ,
*,(%* #(, %++ # #),
&(*( $%## # ,
*,(%* $&' %*+
&(*( $%## # ,
*,(%* $(' %+$ # $$)
&(*( $%## # ,
*,(%* &$' %+) # $%#
&(*( $%## # ,
*,(%* )$% %($ # $%#
&(*( $%## # ,
*,(%* )+' ##$ # #(#
&(*( $%## # ,
*,(%* '$' ##& # #*$
&,+% %% $%## # %
*,(%# *%% #$# $ #++ #
&,+% %% $%## # %
*,(%# **' #)* $ #,, ,
&,+% $%## # %
*,(%# ($' #)& # #,+
&,+% %# $%## # %
*,(%# ,*' #&( $ $%( %
&,+% $%## # %
*,(%# #%+' #$# # #,%
&,+% %% $%## # %
*,(%# #$%% ##+ $ #+% (
$%## # &,+% *,(%# #&'% ##' # #*&
#$#'
#$$(
%% #$%* )
#$%)
%% #$%( (
$
%+ )
#) +
#+ #
## *
#% '
##),
%# %% # ##$' (
##))
%$ %# , ###, ,
%& %+ %# #$+% & , )
%& #$&)
*
%$ #$$,
,
%) #$$+
#
%* #$$+
%
%( #
#$'#
%, #$
,
#$#&
#$$+
#$#'
#$)%
#$')
%% #$*' $
%# #$*# '
#$)&
%$ #$&) $
#$')
%& #$'( %
#$**
##'+
*
#( ##$ $+) *
#, %'% $($ +
&# #)( &,( ,
$' #&+ & &
#, %(( $+' &
%# ##&$ #
##,)
##,*
##$'
##*+
##$*
##%)
#' &
#( )
##%#
#' '
#) ,
###$
#+ )
## %% %% ' ' ###) '
%( %# %$ ' $ ##)( &
%+ ,
##'(
%+ %# %# ' ( ##&) )
%( #
##$#
%( %' %+ , ( ##*, $
##))
%'
#& %'' $)* )
#* #&& $)# ,
#* #)% $)* ,
#' ### $$( $
#( #$# $*# %
#( #%% $*$ #
#+ %+& $)( #
&% #%+)
#'$ &+( *
&# #$( &(' $
$+ #%()
##, &'' )
$# %*, & ,
$$ #%,*
%'% &&* &
#+ %'* $,$ #
#& %'& $(& +
#& %'& $+' $
#) %+% $() *
#' %*, $+# %
#) %') $', $
%)( $#, #%
48
$%## #
$%## #
$%## #
$%## #
$%## #
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
$%## $
%
&,+% %% %
*,(%# #'%% #&$ $ #(+ $
&,+% *,(%# #*'% ##, # #,$
%
&,+% %% %
*,(%# #(%% %,' $ #'# &
&,+% %% %
*,(%# $%%% %(* $ #&& '
&,+% %% %
*,(%# $%'% %(' $ #$+ +
$
%+* # #+*
&,&' %
*,')% &' %*+ # #'+
&,&' *,')% )* %+$ # #+'
%
&,&' *,')% +% %() # #,#
%
&,&' *,')% #%% %,) # $##
%
&,&' %
*,')% #&' %(# # #*'
&,&' %
*,')% #(+ %+* # #+&
&,&' %
*,')% $&' %,$ # #,)
&,&' %
*,')% $(' %,% # $##
&,&' %
*,')% &$' %,$ # #,+
&,&' *,')% )$% ##* # $%,
%
&,&' %
*,')% )+' ##% # #,'
&,&' %
*,')% '$' #$$ # #,)
&,&' %
*,')% *%% #$, # $%%
&,&' %
*,')% **' ##* # #($
&,&' %
*,')% ($' %,# # #,+
&,&' %
*,')% ,*' #$& # $%(
&,&' %
*,')% #$%% %,%
&,&' %
*,')% #&'% #%& # $%&
&,&' *,')% #'%% %(& # #,#
%% #$*' *
#$'*
%& #$'( #
%$ #$*' &
%# #$($ &
#$($
#&%$
#$()
#$)$
#$)%
#$)%
#$*+
#$*+
#$*(
#$+'
#$+&
#$''
#$*'
#$*+
#$(%
#$*,
#$*+
#$+%
#$,%
*
%& (
%* '
%+ #
%$ (
%$ $
%( '
%+ %
%+ *
%+ #
%' ,
%) ,
%' %
%, *
%( )
%, *
%, )
#) %
## '
## %
%+ #
%* ,
%* #
#) (
%# %$ % ##(% #
%# *
%# )
%% ,
##*+
%# ##$+ &
%& ##'' &
%# ##*$ '
##)+
##(%
##*$
##'+
##*%
##&(
##*$
##()
##+'
##+#
##((
##'$
##*#
##'*
##((
##+*
)
%, %'' $$' &
#& %+) $'+ ,
#$ %'' $$$ *
%+ %)+ #*# *
%* %)& #), '
#( #%% $*# '
#* %,# $$+ #
#+ #%$ $'# (
#+ #%* $*$ +
#+ ##+ $+# +
#& %() $#) &
#) %,+ $$& +
#, #%# $(, +
$% #$# $,' '
$% #%' $,& #
#( %,& &%& +
$$ %(' &&' )
#( %+$ &%, +
#( %+# &#% #
#& %** $'& +
#+ #%* $** '
#) %(' $*, *
##+&
$)
##&+
%,, &'# +
##)#
#%+ &$% $&
#$
49
$%## $
$%## $
$%## $
$%## $
$%## $
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
$%## &
%
&,&' %
&,&' %
&,&' %
&,&' %
&,&' %
&(*( &
&(*( &
&(*( &
&(*( &
&(*( &
&(*( &
&(*( &
&(*( &
&(*( &
&(*( &
&(*( &
&(*( &
&(*+ $
&(*+ $
&(*+ $
&(*+ $
&(*+ $
&(*+ $
&(*+ $
,
#$ ,
*,')% #*'% %,& # $%%
#$(*
#+ *,')% #(%% %(& # #,$
#$+#
)
%* *,')% $%%% %,$ # #*$
#$&+
$
#$ *,')% $$%% %+( # #'$
#$*+
#
%, *,')% $)*% %,% # #*(
#$)$
#
## *,#%+ $( %*% # $%,
#$))
&
%* #
*,#%+ *% %'' # #,$
#$)(
#$ *,#%+ (' %'& # #()
#$),
'
%' *,#%+ ##% %*) # #+%
#$))
(
%* *,#%+ #&' %'% # #*%
#$'(
%
%+ *,#%+ #(' %&* # #$%
#$
#
%, *,#%+ $&' %&, # #
#$+$
'
## *,#%+ $(' %&( # ##'
#$)(
$
*,#%+ )#+ %)+
%) *,#%+ '&+ %+* # #+&
#$%)
#
%, *,#%+ **' %,% # $$)
#$%*
(
#% *,#%+ (%% ##& # $$#
#$)%
%
%' *,#%' ,*' #$& # $%#
#$)*
#
*,#%' #%+' #$& # $)#
#$$%
*,#%' #$%% ##( # $#*
#$&'
*,#%' #&'% %(& # #,)
#$%+
*,#%' #'%% %+* # #*,
#$&+
*,#%' #(%% %() # $%$
#$#$
$%## &
*,#%' $#%% %,# # $#,
$%## & &(*+ *,#%' $)%% %+( # #,)
#$$&
#$&(
$%## &
$%## &
$%## &
$%## &
#$ )
%, &
%& '
%' (
%' '
##
##&$
##))
##$*
##$'
##&,
##+$
##((
##++
##'*
##+*
##''
##+#
*
$& #%+ &$, *
$( #%( &** $
#& %+% $$) $
#, %+' $+& '
#* %+( $', ,
$* #), &$$ $
#, #&+ $'& (
$' # &%, *
#* #%* $$( )
#+ ### $$% %
#' %() #,# '
#( %,$ $$* +
#( %++ $$+ ,
##&,
#&
##))
%,+ $#) (
$&
###*
#&' &$& &
$%
##&%
#%( &$% +
#$
##)*
%+, $'$ ,
## ##( $)# (
$$
##$(
%,( &)% $
$%
##&+
##% $(+ &
#$
##*$
%,) $%) ,
#+
##''
##( $*% *
#(
##&'
#$( $+) &
###*
##* &%( $&
50
$%## &
$%## &
$%## &
$%## &
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$
&(*+ $
&(*+ $
&(*+ $
&(*+ $
&+*% (
&+*% (
&+*% (
&+*% (
&+*% (
&+*% (
&+*% (
&+*% (
&+*% (
&+*% (
&+*% (
&+*% (
&+'' $
&+'' $
&+'' $
&+'' $
&+'' $
&+'' $
&+'' $
&+'' $
*,#%' $+%% %+( # #++
#$&%
)
#$ *
*,#%' $,%% %+, # #(*
#$#*
*,#%' $' %(# # #*(
#$$)
*,#%' &$+' %++ # $%&
#$##
*(&(& )%
%'$ # #*(
#$&+
#, +
##%#
%, (
##)(
*(&(& *'
%'& # #(*
#$&,
*(&(& ,%
%'& # #(+
#$&&
*(&(& ##% %*+ # $#+
#$$&
*(&(& #)# %*& # #,+
#$%$
*(&(& #** %++ # $&,
#$#+
*(&(& $&' %++ # #++
#$$,
*(&(& $(' %*( # #(,
#$#(
*(&(& &'% %** # $&(
#$%$
*(&(& )$% %(# # #($
#$%*
*(&(& )(' %++ #
###+
##$*
##+#
##&*
##)%
$% &
##,)
*())( ('% #%& # #*,
#$+%
*())( ,*' #%& # #(+
#$&)
*())( #%(' #%$ # #,#
#$'#
*())( #$%# #%) # #(,
#$&,
*())( #&%% #%) # #'(
#$*(
$%## *
*())( #)%% #%# # #*$
$%## * &+'' *())( #'%% %,+ # #(+
#$&(
#$)+
$%## *
##+'
#$*%
$%## *
*())( +'% #%# # #,&
$%## *
#$$,
$%## *
*())( **' %($ # #+&
$%## *
##$#
#$%$
$%## *
## $
#%(,
#+ %
#%()
*(&(& *%% %,) # $'*
$%## *
#( #
%( #
#% (
%* *
%& +
%) %
#$ '
###)
%* &
%( '
%* (
%* (
%+ $
%, &
%* &
%$ +
##)+
##)$
##)#
##&*
##)#
##)%
###,
%+
##**
##'&
%
$$ %,, &%& *
$# #%+ $,( ,
$' %(+ &&, +
&$ #$' )%% $
$# ##* $*' )
#& #&& #(* &
&# #&' &*( '
$& #'% $,( #
$) #&& &%) #
$$ #*$ &%' (
#& #%% $#) +
#* #$# $$( #
$, #+$ &*) (
#% #%% #($ %
#$ $%& *
#* #*$ $'* $
#' %,# $&* )
#+ %,# $+( +
#& %** $&+ )
#' %() $'' $
#* %(, $*& %
#+ %(' $($ (
## %') $$# +
%( %*# #(, (
%,% $*$ #*
51
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## *
$%## (
$%## (
$%## (
$%## (
$%## (
$%## (
$%## (
$%## (
$%## (
$%## (
$
&+'' $
*())( #*%% %,' # #()
&+'' *())( #+%% %+# # #&,
$
&+'' $
*())( #(%% %+* # #*%
&+*% (
*(&(* #,'% %(# # #('
&+*% (
*(&(* $#%% %+# # #*,
&+*% (
*(&(* $)%% %+( # #)'
&+*% (
*(&(* $+%% %+* # #+%
&+*% *(&(* &%%% %+, # #,%
(
&+*% *(&(* &&%% %+# # #+)
(
&+*% *(&(* &*%% %+$ # #*&
(
&+*% (
*(&(* &(%% %+# # #(#
&+*% (
*(&(* )%%% %*+ # #'#
&+*% (
*(&(* )$%% %+$ # #'%
&+*% (
*(&(* ))&' %*% # #'*
&+*% (
*(&(* )'&' %+$ # #*#
$
%+$ # #$+
&')# (
**'$$ &% %*# # #+$
&')# (
**'$$ *' %'% # #+$
&')# (
**'$$ ##% %'* # #&$
&')# (
**'$$ #&' %&+ # #)&
&')# (
**'$$ #(' %'# # #$)
&')# (
**'$$ $&' %&' # %(*
&')# (
**'$$ $(' %&+ # #$'
&')# (
**'$$ )$% %$, # ##%
&')# **'$$ ''% %)% # ##(
#$*+
'
%+ %
%, (
%+ *
%' *
%* *
#$$(
#$&+
#$)'
## *
%* %
## #
#& $
%, %
%* *
%$ %
%) $
%+ *
%* &
%+ %
%# (
%) '
#$*(
#$+%
#$&)
#$'#
#$)$
#$$%
#$)%
#$$(
#$$(
#$&'
#$''
#$+'
#$*%
#$'&
#$+%
#$'(
#$++
#$'*
#$&*
#$'(
#$$,
##'+
##%+
##)$
##*)
##)*
##
##)%
##)$
###+
###%
##'$
##*,
##++
##**
##,+
##*#
##,%
##',
%& &
##*$
##*&
%'
'
#' %(, $') ,
#* %*( $&+ *
#' %() $&* ,
#* #%) $)% %
#* %,( $&' )
%* %*+ #)' +
%, %,) #+% )
## ### #,% #
$# #%& $(, (
#' %,# $$& #
$$ ##% $,$ #
$# %(& $(& *
%+ %+( #'% (
#( %,+ $)* +
#' %(, $$+ '
%+ %'' #)+ '
#' ##% $#) &
#, #$$ $), ,
#& %+* #,' ,
#+ #%* $#& *
%, %+) #)& $
%, %'# # *
%( %(( #$' (
## %($ #)& '
%+( #+% #&
52
(
&')# $%## ( (
**'$$ (%% %+' # #)&
&')# $%## ( (
**'$$ #%%% #%' # #+&
&')# $%## ( (
**'$$ #$%% #$% # #+*
&''$ $%## ( %
**)#' #'%% ##& # $%$
&''$ $%## ( %
**)#' #(%% %(( # #(+
&''$ $%## ( %
**)#' $#%% %,% # #,$
&''$ $%## ( %
**)#' $)%% %+, # #&'
&''$ $%## ( %
**)#' $+%% %(& # #*,
&''$ $%## ( %
**)#' &%%% %++ # #('
&''$ $%## ( %
**)#' &&%% %($ # #,#
&''$ $%## ( %
**)#' &*%% %+& #
&''$ $%## ( %
**)#' &,%% %+( # #((
&''$ $%## ( %
**)#' )$'% %+& # #(#
&''$ $%## ( %
**)#' )'+' %*& #
&''$ $%## ( %
**)#' )(%% %*( # $%,
$%## #%
$
%*+ # #'#
+' $%## #% #
*)#+# )% %'( # ##&
+' $%## #% #
*)#+# *' %*& # #&,
+' $%## #% #
*)#+# () %*& # #&'
+' $%## #% #
*)#+# ,* %&% # %($
+' $%## #% #
*)#+# #&' %#) # %($
+' $%## #% #
*)#+# #(' %$% # %($
+' $%## #% #
*)#+# $&' %&$ # %(,
+' $%## #% #
*)#+# $(' %&$ # %,(
$%## #% +' *)#+# &)' %$+ # %,&
#$++
$
%) ,
%' &
%+ )
%( (
#& %
##)#
###$
##
##)*
##''
#$+)
%( '
##)%
#$(%
#$%&
#, &
##,+
%, #$#,
&
##&(
#$#+
#$+*
#$+(
#$'(
#$&(
#$)*
#$$$
$$ %
##,#
#$%$
#$$,
#$&+
#$#)
#$$#
#$&,
#$#,
#$$+
#$#+
#$%'
#$##
%+ #
%* +
%) ,
%+ ,
%, *
%* (
%+ $
%* ,
%* )
##
##$'
##$#
##&$
###*
##$$
##%%
##)$
%*
##$*
##
%
## %*( #,$ +
#$ %*, $$* $
#$ %'' $'% ,
#+ %(, $,% +
$$ %,, &#+ ,
#% #%$ #,$ $
#) %'* $#, #
%( %(* #*, *
#% #%+ #(' +
#% #%, #,# ,
#$ #,& %
$% ##% $(# &
#% #%( #(# (
#' $$% +
#) #)# $%, #
#' %() $$$ '
#$ %'' #(% $
#$ %+* #(( '
#' %+$ $#) #
#) %'$ #+( (
#& %*( #'% *
#& %*# #'& &
#$ %'+ #'( *
#& %** #*$ %
%** #'* #$
53
#
+' $%## #% #
+' $%## #% #
+' $%## #% #
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
%( $%## #% &
+' $%## #% %
+' $%## #% %
+' $%## #% %
+' $%## #% %
+' $%## #% %
+' $%## #% %
+' $%## #% %
+' $%## #% %
+' $%## #% %
$%## #% +'
&
%, *
#% &
*)#+# )$% %&$ # %,$
#$%&
*)#+# '%% %&* # %(*
#$),
*)#+# '+' %&, # #%%
#$&)
%+ %
##%&
*)#'% *** %*& # #%+
#$*$
*)#'% (%% %(& # ##(
#$(&
*)#'% (+) %(& # #%'
#$*'
*)#'% ,+# %($ # #%)
#$)$
*)#'% #%+' %++ # #$'
#$)#
*)#'% #$%% #%& # #&*
#&%$
*)#'% #&'% #%& # #'%
#$)(
*)#'% #'%% %,+ # #))
#$)'
*)#'% #*'% %,% # #'%
#$&(
*)#'% #(%% %(& # ##)
#$&$
*)#'% #,'% %(+ # ###
#$'#
*)#'% $#%# %(% # ##+
#$$&
*)#*+ $&%% %,* # #)&
#$'&
*)#*+ $'%% %(& # #$#
#$'&
*)#*+ $+%% %+# # #$+
#$$'
*)#*+ &%%% %+* # ##,
#$&%
*)#*+ &&%% %+* # ###
#&%)
*)#*+ &*%# %+$ # #%,
#$+$
*)#*+ &,%% %*( # ###
#$'$
*)#*+ )$%% %(# # #&%
#$$&
*)#*+ )&'% %+, # #)#
*)#*+ )))% %+* # #$*
#$&'
#$'#
%, %
%' $
%' &
%' $
%+ '
%) #
%* +
%, #
##%%
#%+)
%* +
#%()
##$(
##),
##&'
##$'
##&+
##$&
##(#
##%)
%+ $
#%,#
%) %
##$%
%' ,
%' $
%$ #
%) '
%+ '
%+ &
%' #
%* )
%' +
%' ,
#%,$
##*%
##)(
##(&
##*,
##$)
##&&
##&,
##$&
%*
##''
##&+
,
#' %*% #(( *
#' %'% #(, &
#& %*# #+% $
## %)& #+) %
#$ %&' $%( '
%+ %$& #'( '
%+ %$$ #'+ *
#% %)( #++ %
#% %&& $## (
%( %)+ #,# (
## %)* $#% &
#' %*% $)# #
#% %&$ #(+ )
%* %$) #'# )
%, %&+ #+* *
#% %)+ $%$ *
%, %&+ #+& %
%+ %'* #)( (
%( %)& #*) (
## %&' #(* %
## %&( #($ %
%, %)) #*& '
## %'% #,' )
## %*# #,+ (
%'% #(( ##
54
%
+' $%## #% %
*)#*+ )),% %*+ # #&+
+' $%## #% %
*)#*+ )' %+% # #%)
$%## #$
$
%+& # $%&
$,+% $%## #$ %
'*(#* )% %+* # #'+
$,+% $%## #$ %
'*(#* *' %#* # #*$
$,+% $%## #$ %
'*(#* ,, %(& # #,)
$,+% $%## #$ %
'*(#* #&* %$) # #%*
$,+% $%## #$ %
'*(#* #(' %$( # #&'
$,+% $%## #$ %
'*(#* $&) %$, # ##,
$,+% $%## #$ %
'*(#* $(' %&$ # %,%
$,+% $%## #$ %
'*(#* &'# %&$ # %++
$,+% $%## #$ %
'*(#* )$# %&$ # %,&
$,+% $%## #$ %
'*(#* '%% %&& # ##%
$,+% $%## #$ %
'*(#* *** %'# # #$*
$,+% $%## #$ %
'*(#* +'% %'' # #)(
$,+% $%## #$ %
'*(#+ (+' %+, # #&,
$,+% $%## #$ %
'*(#+ #%%% %*% # #'#
$,+% $%## #$ %
'*(#+ ##%% %+# # #*%
$,+% $%## #$ %
'*(#+ #$%% %*& # #'$
$,+% $%## #$ %
'*(#+ #&%% %*, # #(#
$,+% $%## #$ %
'*(#+ #&'% %(% # #+'
$,+% $%## #$ %
'*(#+ #'%% %+' # #'(
$,+% $%## #$ %
'*(#+ #*'# %++ # #*)
$,+% $%## #$ %
'*(#+ #,'% %+, # #*%
$%## #$ $,+% '*(#+ $#%% %($ # #(,
#$)*
#$*$
#$&%
#$&'
#$$#
#$)*
#$##
#$#'
#$'(
#$)'
#$&$
#$)&
#$&)
#$*)
#$'%
#$*(
#$#+
#$$#
#$#)
#$&(
#$&(
#$$)
#$$)
#$$+
#$&'
$
%, %
%) &
#( &
#* %
#& %
#+ $
#% *
%( )
%+ ,
%& $
%& #
%' +
%) &
%' &
%( *
%) %
#( ,
#) $
%( $
%* *
%, (
%, )
%+ *
## &
##&+
##$&
###$
##%$
###&
##%)
##$,
##*'
##*'
##+'
##)#
##&%
##),
##'(
##&,
##)*
##)(
##&)
##%$
##'%
##)%
##&$
##),
#%
##*(
##)'
&
#' %*, $$+ ,
%+ %&' #)+ +
&# #&% &(* &
$) %(# &#+ #
$+ #)* $,$ *
$( ### &** &
#( %($ $#$ (
#, #%* $#, %
#* %,# #,( ,
%, %'( #$$ %
%+ %)' #%( *
## %*# #'% (
#$ %++ #'$ %
#$ %+' #+, (
#+ %,& $&& ,
#% %*% #+, %
$+ %,% &&, ,
$& %(, &%$ #
#+ %(, $&& %
#+ ##$ $)( (
#, %,' $+& &
#+ %($ $'$ *
#* %(+ $)# )
#, %(# $+& )
#%+ $,+ $#
55
%
$,+% $%## #$ %
'*(#+ $$'% %(* # #,*
$,+% $%## #$ %
'*(#+ $)%% %(* # #*,
$,+% $%## #$ %
'*(#+ $''% %(& # #'#
$,+% $%## #$ %
'*(#+ $+%% %++ # #*%
$,+% $%## #$ %
'*(#+ &%%% %+& # #*(
$,+% $%## #$ %
'*(#+ &&%% %*) # #')
$,+% $%## #$ %
'*(#+ &*%% %*% # #)%
$,+% $%## #$ %
'*(#+ &,%% %*$ # #),
$,+% $%## #$ %
'*(#+ )&%% %*# # #&*
$,+% $%## #$ %
'*(#+ )+%% %'$ # #&'
$,+% $%## #$ %
'*(#+ '#%% %'( # #$+
$,+% $%## #$ %
'*(#+ ')%% %'% # #%)
$,+% $%## #$ %
'*(#+ ')*$ %)( # #$$
$,+% $%## #$ %
'*(#+ '*#' %'& # #$*
$%## #)
$
##$ # $&,
$+'( $%## #) &
),*&& )% ##% #
$+'( $%## #) &
),*&& #%% %#( # #$)
$+'( $%## #) &
),*&& ##' %#+ # #)+
$+'( $%## #) &
),*&& #&' %#) #
$+'( $%## #) &
),*&& #(' % # #&$
$+'( $%## #) &
),*&& $&' %)' # #%,
$+'( $%## #) &
),*&& $(' %&( # #$#
$+'( $%## #) &
),*&& &'% %&( # %,)
$+'( $%## #) &
),*&& )&% %&& # %,)
$%## #) $+'( ),*&& ''% %)% # ##*
#$&)
#$&+
#$&(
#$)%
#$$(
#$$+
#$&&
#$&'
(
## '
#% #
%, (
#) (
###&
##$'
###&
###$
#+ '
#%,,
#+ %
##%+
#) )
##&%
#) '
#) ,
#* ,
#) #$&$
)
#) #$&(
$
%, #$$)
,
$* +
## #$##
'
#$&'
#$&'
#$$%
#$&(
#) &
#%,$
###'
##&)
##$&
#& #
#%+,
##%&
##%'
##$'
##,(
## #%,*
%
###'
#( #$#$
+
#%,(
#$ #' #
##((
'
#%+#
%, #$%*
$
###(
%+ #$)&
#
##%,
#( #$#)
#
#%,+
$& #$&)
%
#%)$
$* #$#*
+
#%)&
#$%+
###(
#*
'
$$ ##% &## '
#( %($ $+% &
#* %*( $), '
$& %(& &%( #
$* %,) &)& ,
$* %,% &$) %
$$ %(% $() )
$& %(( $,$ #
$$ %+' $(# %
$& %(& $(& $
$& %*, $,+ (
#( %') $&* '
$# %+) $** (
$# %+$ $*( '
$$ #$+ &&( *
$* &++ +
$$ #%* $)% #
&# #&% &&' (
$* $++ $
#, #%% $$) $
#& %*) #(% '
$* %(& &%$ )
$( %'* &$) *
&$ %*# &*# (
%+* $() $)
56
&
$+'( $%## #) &
),*&& *'% %'& # ##(
$+'( $%## #) &
),*&& ++' %*+ # #*&
$+'( $%## #) &
),*&& ,*' %*& # #+,
$+'( $%## #) &
),*&& #$%% %*$ # #)#
$+'( $%## #) &
),*&& #)), %*, # #'%
$+'( $%## #) &
),*&& #(%% %+) # #*%
$+'( $%## #) &
),*&& $#%% %(% # #'&
$+'( $%## #) &
),*&& $)%% ##* # #*$
$+'( $%## #) &
),*&& $+%% #$% # #*,
$+'( $%## #) &
),*&& &%%% #%+ # #+(
$+'( $%## #) &
),*&& &)%% %*' # #'&
$+'( $%## #) &
),*&& &(%% %*+ # #'&
$+'( $%## #) &
),*&& )$$' %*% #
$%## #*
$
%,& # #'*
$*#& $%## #* +
))($* )% #%# # #+&
$*#& $%## #* +
))($* '* %++ # #)&
$*#& $%## #* +
))($* ,$ %$% # %+(
$*#& $%## #* +
))($* #%( %$' # %(#
$*#& $%## #* +
))($* #&' % # #%#
$*#& $%## #* +
))($* #(' %), # #%%
$*#& $%## #* +
))($* $&' %)+ # %,#
$*#& $%## #* +
))($* $(' %)# # %('
$*#& $%## #* +
))($* &&( %&( # %(%
$*#& $%## #* +
))($* )$% %)$ # %(*
$%## #* $*#& ))($* '#% %'& # %,&
(
%, ,
$$ #
#$)$
#$$(
#$%&
#* '
##%,
#$$(
#%+%
#$&)
#%++
#$$&
#%,+
#$ %
#$)+
#$ #$)&
+
#) #$&$
%
#' #$&$
'
#& #$#&
,
#& #$&&
#
$) $
%* #$'*
+
%+ #$'+
$
%+ #$)*
'
#% #$)+
$
%( #$&%
)
#% #$*$
&
%* #$*#
$
%' #$$+
(
#$##
#$&&
#$$'
#$'#
$% +
#' %
#& &
#%+)
#%+'
##$$
##)#
###+
##$$
##$)
##%&
##('
#) )
#%,$
##+)
##*$
##)&
##$&
##$,
##$$
##$+
###)
%* $
#%,*
%* ,
###%
%+ &
#%,&
##%+
%+
)
#* %*' $#+ )
&# %,* &() +
$( ##* &)) #
$( %+, &)( *
$& %(# &%% #
$# %(* $,$ ,
#, %+) $+& &
#+ %)* $(, &
#, %), &%, %
$$ %+# &&) +
$$ %(( $,$ +
$# %(+ $() +
&$ &(* *
#& %*& $$& %
#) %+$ $)' )
#) %** $#, #
#* %'( #(% %
#) %'* #*' %
#+ %+% $%) $
## %'$ #*& )
#% %)& #), $
#% %)) #)+ *
## %)$ #), #
## %)) #', +
%)% #*+ ##
57
+
$*#& $%## #* +
))($* *%# %', # %,'
$*#& $%## #* +
))($+ (%% %+# # #&(
$*#& $%## #* +
))($+ ,*' %++ # #'$
$*#& $%## #* +
))($+ #$%% %+# # #'&
$*#& $%## #* +
))($+ #'%% %+# # #&'
$*#& $%## #* +
))($+ #*'% %*& # #)+
$*#& $%## #* +
))($+ #(%% %*+ # #)#
$*#& $%## #* +
))($+ #,'% %+& # #+&
$*#& $%## #* +
))($+ $#%% %,$ # #,&
$*#& $%## #* +
))($+ $$'% #%$ # #,)
$*#& $%## #* +
))($+ $)%% ##( # $%*
$*#& $%## #* +
))($+ $+%% #+, # $)$
$*#& $%## #* +
))($+ &%%% &)$ # )%%
$*#& +++ $%## #* *
))($* &$$) +(# # '
$*#& $%## #* *
))($* &$'' '')
$*#& $%## #* *
))($* &&$+ )#)
$*#& $%## #* *
))($* &&&& *')
$*#& *%( %& $%## #* *
))($* &&,& '+' $ * (
$*#& %$ $%## #* *
))($* &'(, '*, $ *,+ +
$%## #(
$
%+) # #*&
$)#) $%## #( ,
)%$$$ )% %+, # #*,
$)#) $%## #( ,
)%$$$ *' %+, # #(+
$)#) $%## #( ,
)%$$$ +' %+& # #,$
$)#) $%## #( ,
)%$$$ ##% %$' # #$$
$%## #( $)#) )%$$$ #&' %&% # #$%
)
%+ $
#$'+
%+ #$)+
%
%* #$+*
%
%) #$+$
#
%& ,
#$+(
%* #$+&
(
%+ $
#$+'
%) #$''
(
%) #$)#
$
%& #$')
$
%' #$*$
*
%& #&%*
+
%+ #&#*
'
$, #&
#
%# #$%# '
%% #$#, (
%$ #$),
#
#* #$&'
*
#* #$&,
&
#) #$$'
'
%, #$))
&
#$'*
%'
##$#
###&
##)$
##')
##&*
##&&
##*&
##*)
##'#
##)+
##)&
##((
##,(
##,*
#* %) ) %
##*&
##$)
##%(
###$
###&
##&+
)
#% %&' #*+ +
#& %*+ $%( +
#& %+' $#$ '
#$ %($ #,) &
#% %*) #+) &
#' %() $#' $
#) %+) $#) +
#) #%% $$# (
#) #%# $&) $
#$ %,$ $$* )
#) %(( $*& '
#% %*& $+, %
#& %'( )+) &
(%* $' %&' * *
*%( && &&* * *
%# $, #%,) % #$( (*# $
## %(, #() %
$' %,% &&' *
$+ #%( &'% #
$* ##, &&+ )
#, %,+ $#' %
%,% #+$ #)
58
,
$)#) $%## #( ,
$)#) $%## #( ,
$)#) $%## #( ,
$)#) $%## #( ,
$)#) $%## #( ,
$)#) $%## #( ,
$)#) $%## #( ,
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$)#' $%## #( %
$$&& $%## $% +
$$&& $%## $% +
$$&& $%## $% +
$$&& $%## $% +
$$&& $%## $% +
$%## $% $$&&
$
%' #
%+ +
## )
#& %
## ,
#) +
)%$$$ #(' %&( # ##+
#$'#
)%$$$ $&' %&, # ##,
#$&%
)%$$$ $(* %)# # #$#
#$)#
)%$$$ &'% %)+ # ##'
#$))
)%$$$ )$# %*% # #$&
#$'(
)%$$$ '#% %*' # #'+
#$)%
)%$$$ *%% %*' # #+&
#$)(
)%$#+ ++' %(& # #(*
#$$(
)%$#+ ,** %+) # #,%
#$$+
)%$#+ ##), %+* # #+$
#$&*
)%$#+ #&$' %+% # #&*
#$)#
)%$#+ #),, %+% # #*$
#$&*
#( %
#' +
%( *
%) ,
%* (
)%$#+ #(%% %+& # #',
#$*)
)%$#+ $#%% %+, # #),
#$'(
)%$#+ $''% %'( # #',
#$&$
)%$#+ &%%% %'+ # #**
#$&,
)%$#+ &)%% %+* # #',
#$'(
)%$#+ &(%% %'( # #'#
#$&,
#( ,
#* $
#& ,
## *
)%$#+ )&%% %+( # #+)
#$&'
%( #
%+ $
#% *
%+ $
&'(*( )%
##*#
##$#
####
##$,
##%+
##$,
#* %
#%(*
##%%
###*
##$(
##
##%)
#( (
#%((
#, +
#%,)
###&
##%*
##%#
###)
#( )
#%,+
##))
%# %# , ##$) (
#$ %' + ##$, #
&'(*( #&' %$( # %,$
#$&%
&'(*( #(' %)& $ #%& %% #$$, %% %' %% ##$& %$
&'(*( *'
&'(*( +'
%+* # #**
#$)$
%% %% %&+ $ ### * #$ (
%% %% %$( $ #%, ( #$%( '
&'(*( #%' %#) # %+#
#$##
##$+
#
#& %+, #*, %
#' %+, #,' *
#, %(% $&' &
#, %*( $)' (
#( %*& $)$ $
$& %,$ &%) ,
$* #%, &&& (
$( #%) &** &
$+ ##* &)+ &
#( %,+ $'( &
## %*' #(' '
#* %,& $&% %
$+ %(* &)* &
$* %+% &)' *
$, #%# &)( %
$+ #%( &$( %
$$ %() $,, &
$% %,& $*+ ,
$( %,* &'( %
#+ %,% $)* #
#) %+& #(& '
#( %(# $#' +
#& %'( #)) %
%* %*) %,$ )
%*% #'+ ##
59
+
$$&& $%## $% +
$$&& $%## $% +
$$&& $%## $% +
$$&& $%## $% +
$$&& $%## $% +
$$&& $%## $% +
$$&+ $%## $% *
$$&+ $%## $% *
$$&+ $%## $% *
$$&+ $%## $% *
$$&+ $%## $% *
$$&+ $%## $% *
$$&+ $%## $% *
$$&+ $%## $% *
$$&+ $%## $% *
$$&& $%## $% &
$$&& $%## $% &
$$&& $%## $% &
$$&& $%## $% &
$$&& $%## $% &
$$&& $%## $% &
$$&& $%## $% &
$$&& $%## $% &
$$&& $%## $% &
$%## $% $$&+
$
' ' ,
%
%* )
&'(*( $&' %), # #%'
#$$+
##$&
%% %# &'(*( &%* %'% $ %,& * #$ +
%( &'(*( &+' %'* # #%,
#$&*
*
%% %% %* %% %% &'(*( ))% %*% $ ##' # #$#, $ & + ##$' *
%% %% &'(*( '%% %'( $ #$# # #$#) (
%% %% %' %$ %# &'(*( *%% %+$ $ ##+ ' #$$' , & * ###) &
## )
&'(*( +%% %(% # #',
#$%'
##$$
#+ #& &'(*( (#% %++ # #
##,(
$
#$ &'(*( ,$* %+) # #+$
#$),
##)*
%
## &'(*( #%*# %+% # #+#
#$&)
##
,
%, &'(*( #$%% %*' # #'&
#$$+
(
##$*
#% &'(*( #&'% %*% # #'&
#$#*
+
###'
%, &'(*( #'%% %', # #)$
#$$*
(
##)'
#% &'(*( #*$' %*% # #&(
#$#*
$
##'*
%, &'(*( #+'% %'* # #$#
#$&%
#
%# %# %) %% %# &'(*+ #,%% %'* $ #$, $ #$%* ( & , ##)) &
%& &'(*+ $#%% %'' # #$%
#$%+
*
##&)
%* &'(*+ $&%# %'+ # ##*
#$$#
(
##&&
%) &'(*+ $'%% %'( # ##)
#$&+
,
##$#
%% %% %* %$ %$ &'(*+ $+%% %'( $ #)% $ #$)# + ' % ##&* %
%% %% %* %$ %# &'(*+ %% %'+ $ %,' $ #$#, & * # ###$ ,
#% &'(*+ &'%% %'* # #$%
#$&$
,
##)+
%% %# ## %# &'(*+ &,%% %'* $ #%+ * #$ ) & (
#% &'(*+ )&%% %') # #&'
#$$(
(
###'
&'(*( )+%# %'+ # #&'
#$)&
##%#
#%
#%,$
#%,#
#%,+
%# #%(' %
)
#$ %'* #*, %
%) %)& %,& &
#& %'& #,' ,
## %'' #+( (
%* %*& #$# &
%, %)) #+% (
#, %+, $+& &
$$ &%& *
$# %,( $,& (
$$ #%# $,% %
#( %(( $'$ +
$% %,& $', %
#( %(& $&, #
#( %+( $)% %
#' %*' $#$ *
## %+& #+$ *
#% %*' #'* #
#$ %', #() +
#% %'* #*& '
#) %(& $%* (
#% %&+ #*# &
#+ %*' $$, &
#* %'# $$% )
#( %(# $)& ,
%+( $&, #(
60
*
$$&& $%## $% &
&'(*+ ),%% %'* # #&&
$$&+ $%## $% *
&'(*( '#%% %*, # #&*
$$&& %% $%## $% &
&'(*+ '$'% %'( $ #)$ &
$$&+ $%## $% *
&'(*( '&,# %*% # #$+
$$&& $%## $% &
&'(*+ '(%% %*+ #
$%## $$
$
%&(
#,)& $%## $$ &
$,&(& '# %') # #&(
#,)& $%## $$ &
$,&(& (% %)) # #&(
#,)& $%## $$ &
$,&(& ,' %#, # #%#
#,)& $%## $$ &
$,&(& #$' %&' # #),
#,)& $%## $$ &
$,&(& #(* %*) # #&$
#,)& $%## $$ &
$,&(& $&* %+# # #)$
#,)& $%## $$ &
$,&(& $(' %+, # #'$
#,)& $%## $$ &
$,&(& &,% %,% # #*%
#,)& $%## $$ &
$,&(& ''& #%# # $%%
#,)& $%## $$ &
$,&(& **' %,% # #,&
#,)& $%## $$ &
$,&(& ,%% %(+ # #*+
#,)& $%## $$ &
$,&(& #$%% %+# # #',
#,)& $%## $$ &
$,&(& #'%% %++ # #'(
#,)& $%## $$ &
$,&(& #(%% %+$ # #')
#,)& $%## $$ &
$,&(& $#%% %** # #&,
#,)& $%## $$ &
$,&(& $)%% %'* # #&*
#,)& $%## $$ &
$,&(& $+%% %'* # #)#
#,)& $%## $$ &
$,&(& &%%% %+$ # #)*
$%## $$ #,)& $,&(& &&%% %*' # #'#
)
#$%,
#$$)
%% #$&$ (
#$$+
#$#,
#$$*
#$#'
#$#$
#$&$
#$&+
#$&'
#$)'
#$$'
#$*#
#$)+
#$&,
#$'*
#$&,
#$'(
#$
#$)%
#$')
#$),
#% '
%, (
#* $
#* #
%' +
%( &
%) *
%* %
%( +
%, )
#) $
#) &
#* #
%( %$ ( *
##&)
%& %$ ) ##$+ *
##%&
#+
##,'
'
##&(
##)*
##$,
##&,
##%(
##$)
##$)
##%)
##&*
#( %
#, ,
###%
#% (
## $
%, (
#& %
#$ *
#) )
%# )
#( $
##'+
###(
##))
##$,
##&,
##%*
#&
$
#* %+* $$# )
#+ %*+ $)# $
#( %(& $)% #
$$ %*+ $(, (
$* &&* ,
#%()
#) %(& #,' %
#+ %,) $$# +
#$ %($ #)+ ,
#+ ##) $%, )
#' %*( $#, '
#* %+# $&* '
$# %+& $,) *
$# %+% &%& &
$' %,( &*% ,
$(
#%+&
#%& &+& &
$+ %(% &** ,
$*
#%+&
%(+ &)% ,
#( %(# $** ,
#, %(& $** '
#+ %+& $&+ #
$# %(% $** %
$# %(* $*( $
$# %+) $,% (
#%,(
%(* $(' $$
61
&
#,)& $%## $$ &
$,&(& &*%% %+% # #&*
#,)& $%## $$ &
$,&(& &,%% %'$ # #)&
#,)& $%## $$ &
$,&(& )$%% %*( # #*$
#,)& $%## $$ &
$,&(& )*%% %'$ # #*+
#,)& $%## $$ &
$,&(& ),(' %'* # #*#
$%## $)
$
%&& # #
#+)% $%## $) %
$)'%% )% %'( # #')
#+)% $%## $) %
$)'%% '% %') # #)$
#+)% $%## $) %
$)'%% +# %$& # %,,
#+)% $%## $) %
$)'%% ,% %&' # #$%
#+)% $%## $) %
$)'%% #&' %*' # #)+
#+)% $%## $) %
$)'%% #(' %(& # #)&
#+)% $%## $) %
$)'%% $&' #$% # $%%
#+)% $%## $) %
$)'%% $(* #&% # $%#
#+)% %% $%## $) %
$)'%% &'# # $ $#) '
#+)% $%## $) %
$)'%% )'# #&% # $%#
#+)% %% $%## $) %
$)'%% *%# #$' $ $%' %
#+)% $%## $) %
$)'%% (%# %,' # #*,
#+)% $%## $) %
$)'%% ,*) ##+ # #'&
#+)% $%## $) %
$)'%% #%,, %,( # #()
#+)% $%## $) %
$)'%% #$'+ %,* # #+%
#+)% $%## $) %
$)'%% #),, %(( # #+&
#+)% %% $%## $) %
$)'%% #+'% %(+ $ #'* '
#+)% %# $%## $) %
$)'%% $%%% %(+ $ #), '
$%## $) #+)% $)'%% $$'% %(% $ #+% %%
)
#* #
#' #$&*
#
#$ #$
+
## #$$+
)
#% #$#&
#
%+ #$$,
%
%' %
#$)%
%' #$*'
'
%, #$),
&
%, #$)(
,
#$ #$'(
%
%$ #$''
+
%* #$''
$
%& #$))
&
%# %+ #$*# % &
#$'#
###&
##))
###,
##$)
##&%
##&&
##+)
##'(
##
##(+
##&(
##(+
##&%
##**
%% %% ) ##+) '
#$&,
%% ## %+ %) #$'# & # % ##&, +
%( #$'*
%
##,%
%, #$&+
%
##*$
%) #$)&
,
##,,
%, #$),
*
##',
## #$*)
,
##*+
%% ## %$ %# #$$, + % ' ##&$ (
%# ## %& %$ #$'* , + * ##$# #
#$&* %% %, %% ##'# %#
%
$$ %*+ $,+ (
$) %,$ $,) &
$$ %,) $(, #
$$ ##' $(# ,
$% #%' $*$ *
#* %,, $%$ ,
#) %,* $%) *
#) %(, #,+ )
#+ %+* #,$ %
#( %(' $#, )
$% %($ $*+ $
%( %*% #+% +
#) %(# $*$ $
#% %+$ $&' '
#' %(& $(+ *
%+ %+# $%# #
#, %(% &#* #
#' %+' $), )
#$ %&* $)& *
#& %(* $&) *
#+ %+) $** %
$% %(' $,$ )
#+ %*, $*+ ,
#+ %*$ $** (
%,% $*+ #(
62
%
#+)% $%## $) %
#+)% $%## $) %
#+)% $%## $) %
#+)% $%## $) %
#+)% $%## $) %
$)'%%
#
%% $'%% %+* $ #)' )
%# $+'% %*) $ #$( #
%% &%%% %+# $ #)+ #
%% &$%% %*) $ #&+ '
%% &'$% %*( $ #'' $
$
%# #$&+ #
%# #$$+ ,
%% #$&+ )
%# #$), #
%% #$$+ &
+
## $
%, %
## )
## )
## ,
*
%$ )
%' *
%# $
%$ $
%# *
)
%% ##%' ,
%& ##$' (
%# ##)$ %
%$ ##)$ +
%# ##)* )
$)'%%
$)'%%
$)'%%
$)'%%
+
#( %*, $'( $
#' %*) $#( )
#, %+* $*# %
#( %+& $'# +
$% %(+ $+) *
63
Figure 1.
!"#$%&'()*!'
!"#$%&'+,')*-
!"#$%&'.,')*-'
!"#$%&'/,')*!
!"#$%&'0)*!'
!"#$%&'1),2'
A)
B)
!"#$%&'(