The Point Defect

The Point Defect

The point defect 40 charge-compensation for a divalent cation sub-lattice would be the foUowing defect equation: : 2 M 2+ -% 2.1.I.where M...

4MB Sizes 282 Downloads 410 Views

The point defect

40 charge-compensation

for

a divalent

cation

sub-lattice

would

be

the

foUowing defect equation: : 2 M 2+ -%

2.1.I.where

M+

+

M 3+

t h e M 3+ a n d M + are s i t u a t e d on n e a r e s t

neighbor

cation sites,

which were originally divalent.

Thus, the charge compensation mechan/sm represents the single most important mechAnlsrn which operates withln the defect solid. B e c a u s e of this, th e n u m b e r a n d t y p e s of defects, w h i c h c a n a p p e a r in t h e solid, are limited. T h i s r e s t r i c t s t h e n u m b e r of d e f e c t t y p e s we n e e d to c o n s i d e r , in b o t h e l e m e n t a l (all th e s a m e k i n d of atom) a n d ionic l a t t i c e s (having b o t h c a t i o n s a n d a n i o n s p r e s e n t ) . We have s h o w n t h a t by s t a c k i n g a t o m s or p r o p a g a t i o n

units

together,

a solid w i t h

specific

synm~etry

r e s u l t s . If w e have d o n e t h i s properly, a p e r f e c t solid s h o u l d r e s u l t w i t h no holes or d e f e c t s in it. Yet, th e 2 n d law of t h e r m o d y n a m i c s d e m a n d s t h a t a c e r t a i n n u m b e r of p o i n t d efects (vacancies) a p p e a r in t h e lattice. It is i m p o s s i b l e to o b t a i n a solid w i t h o u t s o m e sort of defects. A p e r f e c t solid w o u l d violate t h i s law. T h e possible

at

absolute

zero

2nd

law s t a t e s t h a t zero entropy is only

temperature.

Since

most

solids

exist

at

t e m p e r a t u r e s far f r o m a b s o l u t e zero, t h o s e t h a t we e n c o u n t e r eu~e d e f e c t solids. It is n a t u r a l to a s k w h a t th e n a t u r e of t h e s e d e f e c t s m i g h t be, p a r t i c u l a r l y w h e n we a d d a foreign c a t i o n (activator) to a solid to f o r m a phosphor. C o n s i d e r t h e s u r f a c e of a solid. In th e in terior, we see a c e r t a i n s y m m e t r y which

depends

upon the

surface from the interior,

structure

of t h e

solid. As we a p p r o a c h

the

t h e s y m m e t r y b e g i n s to c h a n g e . At the v e r y

surface, t h e s u r f a c e a t o m s see only h a l f t h e s y m m e t r y t h a t the i n t e r i o r a t o m s do. R e a c t i o n s b e t w e e n solids t a k e place at t h e surface. T h u s , t h e s u r f a c e of a solid r e p r e s e n t s

a defect in itself s i n c e it is not like t h e

i n t e r i o r of t h e solid. In a t h r e e - d i m e n s i o n a l solid, we c a n p o s t u l a t e t h a t t h e r e o u g h t to be

2.1 Types of point defects three

major

types

of defects,

having

41

either

one-,

two-

or

three-

d i m e n s i o n s . Indeed, this is exactly t h e case found for defects in solids, as we briefly d e s c r i b e d in the p r e c e d i n g

chapter.

We have a l r e a d y given

n a m e s to e a c h of t h e s e t h r e e t y p e s of defects. T h u s a o n e - d i m e n s i o n a l defect of t h e lattice is called a "point" defect, a t w o - d i m e n s i o n a l defect a "line" or "edge" defect a n d a t h r e e - d i m e n s i o n a l defect is called a "plane" or "volume" defect. We have a l r e a d y d e s c r i b e d , in an e l e m e n t a r y way, l i n e a n d v o l u m e defects a n d will not a d d r e s s t h e m f u r t h e r e x c e p t to point out h o w t h e y m a y arise w h e n c e r t a i n point defects are p r e s e n t . It is sufficient to realize t h a t t h e y exist a n d are i m p o r t a n t

for a n y o n e w h o

studies

h o m o g e n e o u s m a t e r i a l s s u c h as m e t a l s . Point defects

are c h a n g e s at a t o m i s t i c levels, while

line

and volume

defects are c h a n g e s in s t a c k i n g of p l a n e s or g r o u p s of a t o m s ( m o l e c u l e s ) in t h e s t r u c t u r e . The former affect t h e c h e m i c a l p r o p e r t i e s of the solid w h e r e a s the l a t t e r affect t h e p h y s i c a l p r o p e r t i e s of t h e solid. Note t h a t t h e a r r a n g e m e n t ( s t r u c t u r e ) of the individual a t o m s (ions) are not affected, only the m e t h o d in w h i c h the s t r u c t u r e u n i t s are a s s e m b l e d . T h a t is, t h e s t r u c t u r e of t h e solid r e m a i n s i n t a c t in spite of t h e p r e s e n c e of d e f e c t s . Let us n o w e x a m i n e e a c h of t h e s e defects in m o r e detail, s t a r t i n g w i t h t h e one-dimensional

lattice

defect

and

then

with

the

multi-dimensional

defects. We will find t h a t specific types have b e e n found to be a s s o c i a t e d w i t h e a c h type of d i m e n s i o n a l defect w h i c h have specific effects u p o n t h e stability of the solid s t r u c t u r e . It s h o u l d be clear t h a t t h e type of p o i n t defect

prevalent

homogenous

in any given

(same

atoms)

or

solid will d e p e n d heterogeneous

upon whether

(composed

it is

of differing

atoms). I. The Po'mt Defect in H o m o g e n e o u s Solids We begin by identifying t h e various defects w h i c h c a n arise in solids a n d later will s h o w how t h e y c a n be m a n i p u l a t e d to o b t a i n d e s i r a b l e p r o p e r t i e s not found in naturally f o r m e d solids. Let us look first at t h e h o m o g e n e o u s type of solid. We will first r e s t r i c t o u r d i s c u s s i o n to solids w h i c h stoichiometric,

are

a n d later will e x a m i n e solids w h i c h c a n be classified as

" n o n - s t o i c h i o m e t r i c " , or having a n excess of one or a n o t h e r of one of t h e

The point defect

42

b u i l d i n g b l o c k s of t h e solid. T h e s e o c c u r in s e m i - c o n d u c t o r s as well as o t h e r t y p e s of e l e c t r o n i c a l l y or optically active solids. Suppose

you w e r e

given

the

problem

of identifying

defects

in

a

h o m o g e n e o u s solid. Since all of t h e a t o m s in t h i s type of solid are t h e s a m e , t h e p r o b l e m is s o m e w h a t simplified over t h a t of the h e t e r o g e n e o u s solid (that is- a solid c o n t a i n i n g m o r e t h a n one type of a t o m or ion). After s o m e i n t r o s p e c t i o n , you could s p e c u l a t e t h a t t h e h o m o g e n e o u s solid c o u l d have t h e following t y p e s of p o i n t d e f e c t s : 2 . 1 . 2 . - Types of Point Defects E x p e c t e d in a H o m o g e n e o u s S o l i d Vacancies

Substitutional Impurities

Self-interstitial

Interstitial Impurities

On t h e left are t h e two types of p o i n t defects w h i c h involve the lattice itself, while t h e o t h e r s involve i m p u r i t y a t o m s (Note t h a t i n t e r s t i t i a l a t o m s c a n involve e i t h e r a n i m p u r i t y a t o m or the s a m e a t o m t h a t m a k e s up t h e lattice s t r u c t u r e itself). Indeed, t h e r e do n o t s e e m to any m o r e t h a n t h e s e four, a n d indubitably, no o t h e r s have b e e n observed. Note t h a t we are l i m i t i n g o u r defect family to p o i n t defects in t h e lattice a n d are i g n o r i n g line a n d v o l u m e defects

of t h e lattice. T h e s e

four p o i n t defects, given

above, are i l l u s t r a t e d in the following diagram, given as 2.1.3. o n the n e x t page. Note t h a t w h a t we m e a n by an "interstitial" is a n a t o m t h a t c a n fit into t h e s p a c e s b e t w e e n t h e m a i n a t o m s in the c r y s t a l l i n e array. In this case, w e have s h o w n a h e x a g o n a l lattice a n d have labeled e a c h type of p o i n t defect. O b s e r v e t h a t we have s h o w n a v a c a n c y in o u r h e x a g o n a l lattice, as well as a foreign i n t e r s t i t i a l a t o m w h i c h is small e n o u g h to fit into t h e i n t e r s t i c e between

the

atoms

of the

structure.

Also

shown

are

two

types

of

s u b s t i t u t i o n a l a t o m s , one larger a n d the o t h e r s m a l l e r t h a n the a t o m s c o m p o s i n g the p r i n c i p a l h e x a g o n a l lattice. In b o t h cases, t h e h e x a g o n a l p a c k i n g is d i s r u p t e d due to a "non-fit" of t h e s e a t o m s in t h e s t r u c t u r e . Additionally, we have i l l u s t r a t e d a n o t h e r type of defect t h a t c a n arise

2.1 Types of point defects

43

I Defects Which Can Occur in a Homogeneous Hexagonal Lattice I

within

the

homogeneous

lattice

(in

addition

to

the

vacancy

and

s u b s t i t u t i o n a l i m p u r i t i e s t h a t are b o u n d to arise). This is called t h e "selfinterstitial". Note t h a t it h a s a decisive effect on t h e defect.

Since

the

atoms

are

all t h e

same

size,

the

structure

at t h e

self-interstitial

i n t r o d u c e s a l l n e - d e f e c t in the overall s t r u c t u r e . It s h o u l d be e v i d e n t t h a t t h e l i n e - d e f e c t i n t r o d u c e s a difference in p a c k i n g o r d e r since t h e c l o s e p a c k i n g a t t h e a r r o w s h a s c h a n g e d to cubic a n d t h e n r e v e r t s to h e x a g o n a l in b o t h lower a n d u p p e r rows of a t o m s . It m a y be t h a t this type of d e f e c t is a m a j o r c a u s e of t h e line or edge type of defects t h a t a p p e a r in m o s t homogeneous

solids.

In c o n t r a s t ,

the

other

defects

produce

only

a

d i s r u p t i o n in the l o c a l i z e d p a c k i n g o r d e r of t h e h e x a g o n a l lattice, i.e.- t h e defect

does not extend

t h r o u g h o u t t h e lattice,

b u t only close

to t h e

The point defect

44 specific defect.

It s h o u l d be evident

t h a t m e t a l s or solid solutions of

m e t a l s (alloys) show s u c h behavior in c o n t r a s t to h e t e r o g e n e o u s l a t t i c e s w h i c h involve c o m p o u n d s s u c h as ZnS. This a c c o u n t s for the t r e m e n d o u s d i s c r e p a n c y b e t w e e n t h e o r e t i c a l a n d actual s t r e n g t h of c e r t a i n alloys in p r a c t i c a l a p p l i c a t i o n s due to "fatigue" failure w h e n the object is b e i n g used. Now, s u p p o s e t h a t we have a solid solution of two (2) e l e m e n t a l solids. Would t h e point defects be the same, or not? An easy way to visualize s u c h point defects is s h o w n in the following d i a g r a m : 2.1.4.- Defects in the H o m o g e n e o u s Solid C o n t a i n i n g 2 Solids in Solution

..~i~~

vm=

Interstitial 1~

Int e rst it .

.

.

.

Vacancy

,IInterstitial cog e n e o u ~ g o n a/ Structure -- Same Size Atoms

Homogeneous Solid Solution Differing Size Atoms

-

Here, we u s e a h e x a g o n a l l y - p a c k e d r e p r e s e n t a t i o n of a t o m s to depict t h e c l o s e - p a c k e d solid. Both types of h o m o g e n e o u s solids are shown, w h e r e one solid is c o m p o s e d

of the

same

sized

atoms while

the

other

is

c o m p o s e d of two different sized atoms. On the right are the types of p o i n t

2.1 Types of point defects

45

d e f e c t s t h a t c o u l d o c c u r for t h e s a m e sized a t o m s in t h e lattice. T h a t is, given a n a r r a y of a t o m s in a t h r e e d i m e n s i o n a l lattice, only t h e s e two t y p e s of lattice p o i n t d e f e c t s could o c c u r w h e r e t h e size of t h e a t o m s are t h e s a m e . T h e t e r m " v a c a n c y " is s e l f - e x p l a n a t o r y b u t " s e l f - i n t e r s t i t i a l " m e a n s t h a t o n e a t o m h a s s l i p p e d into a s p a c e b e t w e e n t h e rows of a t o m s . In a lattice w h e r e t h e a t o m s are all of t h e s a m e size, s u c h b e h a v i o r is e n e r g e t i c a l l y v e r y difficult u n l e s s a severe d i s r u p t i o n of t h e lattice o c c u r s (usually a " l i n e - d e f e c t " results). T h i s b e h a v i o r is q u i t e c o m m o n in c e r t a i n t y p e s of h o m o g e n e o u s solids. In a like m a n n e r , if t h e m e t a l - a t o m w e r e to have b e c o m e m i s p l a c e d in t h e lattice a n d w e r e to have o c c u p i e d o n e of t h e i n t e r s t i t i a l p o s i t i o n s , as s h o w n in t h e different sized a t o m solid ( s e e 2.1.4.)

t h e n t h e lattice is d i s r u p t e d by its p r e s e n c e

at t h e i n t e r s t i t i a l

position. T h i s type of defect h a s also b e e n o b s e r v e d . Note t h a t t h e a t o m s are usually n o t c h a r g e d in t h e h o m o g e n e o u s l a t t i c e . S u m m a r i z i n g , t h r e e t y p e s of p o i n t defects are e v i d e n t in a h o m o g e n e o u s lattice. In a d d i t i o n to t h e Vacancy, two t y p e s of s u b s t i t u t i o n a l defects c a n also be

delineated.

Both are

direct

substitutions

in t h e

"lattice",

or

a r r a n g e m e n t of t h e a t o m s . One is a s m a l l e r a t o m , w h i l e t h e o t h e r is l a r g e r than

the

atoms

comprising

the

lattice.

In

both

cases,

the

lattice

a r r a n g e m e n t affects t h e h e x a g o n a l o r d e r i n g of t h e lattice a t o m s a r o u n d it. T h e lattice p a c k i n g is s e e n to be affected for m a n y lattice d i s t a n c e s . It is for t h i s r e a s o n t h a t c o m p o u n d s c o n t a i n i n g i m p u r i t i e s s o m e t i m e s have q u i t e different c h e m i c a l r e a c t i v i t i e s t h a n t h e p u r e s t ones. However, t h e i n t e r s t i t i a l i m p u r i t y does not affect t h e lattice o r d e r i n g at all. Now, let us look at t h e h e t e r o g e n e o u s l a t t i c e II. T h e Point Defect in H e t e r o g e n e o u s S o l i d s The

situation concerning

defects

in h e t e r o g e n e o u s

inorganic

solids is

s i m i l a r to t h a t given above, e x c e p t for one v e r y i m p o r t a n t factor, t h a t of c h a r g o o n t h e a t o m s . Covalent i n o r g a n i c solids a r e a r a r i t y while i o n i c i t y or p a r t i a l ionicity s e e m s to be t h e n o r m . T h u s , h e t e r o g e n e o u s solids are usually c o m p o s e d of c h a r g e d m o i e t i e s , half of w h i c h are positive ( c a t i o n s ) a n d half negative (anions). In g e n e r a l , t h e total c h a r g e of t h e c a t i o n s will

The point defect

46

e q u a l t h a t of t h e a n i o n s (Even in the case of s e m i - c o n d u c t o r s , w h e r e t h e total of the c h a r g e s is n o t zero, the excess c h a r g e (n- or p- type) is s p r e a d over t h e w h o l e lattice so t h a t no single atom, or g r o u p of a t o m s , ever has a c h a r g e different from its n e i g h b o r s . Note also t h a t m o s t of the s e m i conductors

that

we

use

are

homogeneous

in

nature,

modified

by

h o m o g e n e o u s a d d i t i o n s to form p- or n - t y p e electrically c h a r g e d areas). In a given s t r u c t u r e , c a t i o n s are usually s u r r o u n d e d by anions, a n d vice-versa. B e c a u s e of this, we c a n r e g a r d the lattice as being c o m p o s e d of a c a t i o n s u b - l a t t i c e a n d an a n i o n mab-lattice. ( R e m e m b e r w h a t w a s stated in Chapter

1

concerning

the

fact

that

most

structures

are

oxygen-

d o m i n a t e d ) . W h a t we m e a n by a "sub-lattice" is i l l u s t r a t e d in the following diagram: 2.1.5.-

IA Cubic LatticeShowing the Cation and Anion Sub-Lattices I

Cation Sub-Lattice

Anion Sub-Lattice

Combined Lattice

In this case, we have s h o w n b o t h the cubic cation a n d a n i o n "sub-lattices s e p a r a t e l y , a n d t h e n t h e c o m b i n a t i o n . It s h o u l d be clear t h a t all positive c h a r g e s in t h e c a t i o n s u b - l a t t i c e will be b a l a n c e d by a like n u m b e r of negative c h a r g e s in the a n i o n sub-lattice, even if excess c h a r g e exists in o n e or the o t h e r of the sub-lattices. If an a t o m is m i s s i n g , t h e n the overall lattice

r e a d j u s t s to c o m p e n s a t e

different

atom

compensation

present,

for this loss of c h a r g e .

having

a

differing

charge,

If t h e r e the

is a

charge-

m e c h a n i s m again m a n i f e s t s itself. T h u s , a cation with an

e x t r a c h a r g e n e e d s to be c o m p e n s a t e d by a like anion, or by a n e a r e s t n e i g h b o r c a t i o n w i t h a l e s s e r charge. An e x a m p l e of this type of c h a r g e -

2.1 Types of point defects compensation mechanism

47

for a divalent c a t i o n s u b - l a t t i c e w o u l d be t h e

following defect equation: 2.1.6.-

2 C a 2+ ~

Li +

+

Sb 3+

w h e r e t h e Sb 3+ a n d Li + are s i t u a t e d on n e a r e s t n e i g h b o r c a t i o n s u b - l a t t i c e sites, in t h e d i v a l e n t Ca 2+ s u b - l a t t i c e . Note t h a t a total c h a r g e of 4+ e x i s t s on b o t h s i d e s of t h e above e q u a t i o n .

Thus, the charge compensation mechR:nlsm represents the single most important mechanism which operates withln the d e f e c t ~ solid. We find t h a t t h e n u m b e r a n d t y p e s of defects, w h i c h c a n a p p e a r in t h e h e t e r o g e n e o u s solid, are l i m i t e d b e c a u s e of two factors: 1) T h e c h a r g e - c o m p e n s a t i o n f a c t o r 2) T h e p r e s e n c e of two s u b - l a t t i c e s in t h e ionic solid. These

factors

restrict

the

number

of p o i n t

defect t y p e s

we

need

to

c o n s i d e r in ionic h e t e r o g e n e o u s l a t t i c e s (having b o t h c a t i o n s a n d a n i o n s p r e s e n t ) . For ionic s o l i d s , t h e following t y p e s of d e f e c t s h a v e b e e n f o u n d to exist: S c h o t t k y d e f e c t s ( a b s e n c e of b o t h c a t i o n a n d a n i o n ) Cation v a c a n c i e s Anion v a c a n c i e s F r e n k e l defects (Cation v a c a n c y p l u s s a m e c a t i o n as interstitial) I n t e r s t i t i a l i m p u r i t y a t o m s (both c a t i o n a n d a n i o n ) Substitutional impurity atoms(both cation and anion) T h e s e d e f e c t s are i l l u s t r a t e d in t h e following d i a g r a m , given as 2.1.7. o n the next page. Note t h a t , in g e n e r a l , a n i o n s are l a r g e r in size t h a n c a t i o n s d u e to t h e e x t r a e l e c t r o n s p r e s e n t in t h e former. A h e x a g o n a l lattice is s h o w n in

The point defect

48

2.1.7.] P o i n t Defects Which Can Occur in the Heterogeneous Ionic Solid]

Schottky Defect

Frenkel Defect

Anion Vacancy

Cation Vacancy

Substitutional Cation InterstitialCation Substitutional Anion

2.1.7. w i t h b o t h F r e n k e l a n d S c h o t t k y defects, as well as s u b s t i t u t i o n a l defects. T h u s , if a c a t i o n is m i s s i n g (cation vacancy) in the cation sublattice, a like a n i o n will be m i s s i n g in the a n i o n sub-lattice. T h i s is k n o w n as a S c h o t t k y

defect

(after

the

first i n v e s t i g a t o r

(1935)

to note

its

where

the

existence). In t h e c a s e of t h e F r e n k e l defect, cation was supposed

to r e s i d e

th e

in th e

"square" r e p r e s e n t s lattice

before

it m o v e d

to its

i n t e r s t i t i a l p o s i t i o n in t h e cation sub-lattice. Additionally, "A nti-Fre nke l" d e f e c t s c a n exist in t h e an io n sub-lattice. T h e s u b s t i t u t i o n a l defects are s h o w n as t h e s a m e size as th e c a t i o n or a n i o n it displaced. Note t h a t if

49

2.2 The plane net

t h e y w e r e not, t h e lattice s t r u c t u r e w o u l d b e d i s r u p t e d f r o m r e g u l a r i t y at t h e p o i n t s of i n s e r t i o n of t h e foreign ion. To s u m m a r i z e , t h e c a t e g o r i e s of p o i n t d e f e c t s p o s s i b l e for t h e s e two t y p e s of l a t t i c e s are i l l u s t r a t e d are: 1). In a n e l e m e n t a l solid, we m a y have: Vacancies Self-interstitial Interstitial Impurities Substitutional Impurities 2). In t h e ionic solid, i.e.- h e t e r o g e n e o u s solid, we m a y have: S c h o t t k y d e f e c t s ( a b s e n c e of b o t h c a t i o n a n d a n i o n ) Cation or a n i o n v a c a n c i e s F r e n k e l d e f e c t s (Cation v a c a n c y p l u s t h e s a m e c a t i o n as interstitial) I n t e r s t i t i a l i m p u r i t y a t o m s (both c a t i o n a n d anion) Substitutional impurity atoms(both cation and anion) All of t h e s e

point

defects

are

intrinsic

to

the

solid.

The

factors

r e s p o n s i b l e for t h e i r f o r m a t i o n are e n t r o p y effects (point d e f e c t faults) a n d i m p u r i t y effects. At t h e p r e s e n t time, t h e h i g h e s t - p u r i t y m a t e r i a l s available still c o n t a i n about 1.0 p a r t p e r billion of various i m p u r i t i e s , y e t are 9 9 . 9 9 9 9 9 9 9

% p u r e . S u c h a solid will c o n t a i n about 1014

impurity

a t o m s p e r mole. So it is safe to say t h a t all solids c o n t a i n i m p u r i t y a t o m s , a n d t h a t it is u n l i k e l y t h a t we shall ever b e able to o b t a i n a solid w h i c h is

c o m p l e t e l y pure and d o e s not contain defects. 2.2. - T H E PLANE N E T Now, let u s c o n s i d e r h o w s u c h d e f e c t s arise in a n y given solid. T h e e a s i e s t w a y to visualize h o w i n t r i n s i c d e f e c t s o c c u r in t h e solid is to s t u d y t h e PLANE N E T . I m a g i n e t h a t we have M as c a t i o n s a n d X as a n i o n s (we shall

The point defect

50

i g n o r e formal c h a r g e for the m o m e n t ) . This is s h o w n in the following diagram:

[The Pl one Net'l

2.2.1.-

X M g M X M xMI~x M M X MXx M X M X M X

x

x

,.(,(~._.~~ M XM M X X M

x

,__

x i i,•

M X M X X M X M X M X M X

M M X M

X M X X M X M M X M X X M X M

It is easy to see t h a t we c a n stack a series of t h e s e

"NETS" to form a

t h r e e - d i m e n s i o n a l solid. Note t h a t we have u s e d t h e labeling: V = vacancy; i = i n t e r s t i t i a l ; m = c a t i o n site; x= a n i o n site a n d s = surface site. One m i g h t t h i n k t h a t p e r h a p s V-m a n d V+x o u g h t to be i n c l u d e d in o u r list of v a c a n c i e s . However, a n e g a t i v e l y - c h a r g e d c a t i o n v a c a n c y alone, p a r t i c u l a r l y when

it is s u r r o u n d e d b y negative a n i o n s , w o u l d

Neither Either

n o t be very stable.

s h o u l d a p o s i t i v e l y - c h a r g e d a n i o n v a c a n c y be any m o r e arrangement

would

require

high

energy

stable.

stabilization to exist.

T h e r e f o r e , we do n o t i n c l u d e t h e m in o u r listing. However,

a Vm

c o u l d c a p t u r e a positive c h a r g e

likewise for t h e Vx w h i c h t h e n b e c o m e s a V'x

to b e c o m e

V+m

and

Both of t h e s e are stable

w h e n s u r r o u n d e d by o p p o s i t e l y c h a r g e d sites. We have a l r e a d y s t a t e d t h a t s u r f a c e sites are special. intrinsic

defects.

The

Hence,

they

same criteria

are i n c l u d e d

in o u r listing

apply concerning

charge

of

on t h e

defect. For t h e p l a n e net, we c a n e x p e c t the following types of i n t r i n s i c defects:

2.2 The plane net 2.2 . 2 . -

Vacancies

51 Charged Particles

VM, V x , V+M , V x

e,

Surface Sites

Interstitials

Ms,Xs,

M i , ~- , M+i, X'i The

positive

hole

requires

e q u i v a l e n t of t h e e l e c t r o n ,

n+

more

explanation,

n + is

the

M+i , X s electronic

e- , in s o l i d s a n d t h e y a n n i h i l a t e e a c h o t h e r

upon reaction2.2.3.-

e-

+

n+

=

energy.

T h e following d i a g r a m s h o w s h o w t h e positive hole c a n exist in t h e solid: 2.2.4-

The Germanium Lattice Containing a Positive Hole [

+

73

- G e a 2 = A r C ore" 4s 2 4 p 2 -- G a a l7o =

Here, w e r e p r e s e n t

A r C o r e " 4s 2 4 p ~

Ge w h i c h h a s 32 e l e c t r o n s .

In t h e solid, it f o r m s

4 ( s p ) 3 h y b r i d b o n d s as t h e s e m i - c o n d u c t o r . Ga h a s only 31 e l e c t r o n s a n d c a n f o r m b u t t h r e e b o n d s . If it is i n c o r p o r a t e d into t h e s t r u c t u r e , t h e

The point defect

52

lattice responds by forming a positive electronic "hole", i.e.- =+. Still another type of electronic defect is the color-center, following diagram: 2.2.5.-

shown in the

] A n E l e c t r o n T r a p p e d a t A n A n i o n V a c a n c y ]'

(E) e (E) e (E) e

~G ~ Q $ Q

@e e@

e

(E) e @ e (E) e ]Absorption as a Function of Cation Present in Lattice] 8500 4000 I

4000

6000

i

I

I

I

I

I

6000 I

I

NaC1

LiC1

4000 I

6000 |

I

4000 I

KCI

6000 8000 A

m

m

Rb

-

,

m m

'

"

4-~

D-. 0 [8

,j

I

4

3

24

3

2

3

, 2

3

2

Energy in Electron Volts In order to compensate for the loss of negative charge, the lattice has captured an electron and charge-compensation has resulted at the anion vacancy. This combination is called an "F-center". This is a special case where an electron is localized at the vacancy and is optically active. That

53

2.2 The plane net

is, it a b s o r b s light w i t h i n a w e l l - d e f i n e d b a n d a n d is called a c o l o r - c e n t e r s i n c e it i m p a r t s a specific color to t h e crystal. Note t h a t t h e p e a k of t h e b a n d c h a n g e s as t h e size of t h e c a t i o n in t h e alkali h a l i d e s i n c r e a s e s . There

a p p e a r s to be an i n v e r s e r e l a t i o n b e t w e e n

(actually, t h e

polarizability of t h e

cation)

t h e size of t h e c a t i o n

and the peak

e n e r g y of t h e

a b s o r p t i o n b a n d of t h e s e F - c e n t e r s . We c a n n o w p r o c e e d to w r i t e a s e r i e s of d e f e c t r e a c t i o n s for o u r p l a n e n e t in t e r m s of specific defects, i n c l u d i n g t h a t of t h e F - C e n t e r , w h e r e we u s e 5 as a s m a l l f r a c t i o n : 2.2.6.-

SCHOTII~

:

MX = M1. s X 1 . 5

FRENKEL :

+ 5Vm

MX = M 1-5 X

+ 5 Mi +

ANTI-FRENKEL:

MX = M X I - 6

+ 6Vx

F - CENTER:

MX = M X I - + { V x / e }

+

+ 6Vx 5Vm 5Xi

+8/2

X2

T h e s e e q u a t i o n s are valid for t h e d e f e c t s in a h e t e r o g e n e o u s lattice w h e r e , for t h e F - C e n t e r , t h e b r a c k e t s e n c l o s e t h e c o m p l e x c o n s i s t i n g of an e l e c t r o n c a p t u r e d a t a n a n i o n v a c a n c y , i.e.- {Vx/e-}. Actually, t h e f o r m a t i o n of a n

F-center

is

more

complicated

than

this.

A more

complete

e x p l a n a t i o n is given as follows. It is well k n o w n t h a t F - c e n t e r s c a n b e f o r m e d by e x p o s i n g t h e NaCI c r y s t a l to s o d i u m m e t a l vapor. T h e following d e f e c t r e a c t i o n s t a k e p l a c e : 2.2.7.-

Na ~

=

Na +

Na +

+

{ N a +,C1-}

VC1

+

e-

=

+ =

e

-

2{Na +[CI-,VCll}

[Vcl/e-]

T h e s e e q u a t i o n s i l l u s t r a t e h o w t h e c r y s t a l r e s p o n d s to t h e p r e s e n c e of s o d i u m v a p o r , i.e.- e x c e s s N a + , by f o r m i n g a n i o n v a c a n c i e s , to f o r m t h e Fc e n t e r . However, if o n e a n i o n v a c a n c y c a n be f o r m e d w h i c h c a p t u r e s an e l e c t r o n w h i c h is optically active, t h e n you m i g h t t h i n k t h a t m o r e t h a n

The point defect

54

one anion-vacancy c o m p l e x m i g h t be possible. Indeed, this is the case. This is illustrated in the following diagram: 2.2.8.-

+-+-+-+-+2-+

- ~ -

!

-I-- -k t -I--

- .i._ .~.~@__i_ -+--l---l-y-l---l--

4--

-I---I--

-I-~-I--

-I---I-

[II0]

F-Center A better diagram:

representation

of the

M-Center M-center

is s h o w n

in

the

following

2.2.9.-

An "M-Center" Shown on T w o Planes of a Cubic LatticeI

(2)

U n d e r c e r t a i n precise e x p e r i m e n t a l conditions, two anion sites can be conjoined (in the s a l t - s t r u c t u r e , along the {i,I,0} plane) to form what is

55

2.2 The plane net

t e r m e d t h e "M-Center" as s h o w n above in t h e two d i a g r a m s , 2.2.8. a n d 2.2.9. The

optical p r o p e r t i e s

of t h e s e two t y p e s of c e n t e r s

are given in t h e

following d i a g r a m : 2.2.10.-

Absorption Spectra at 77 ~ for a KCI Crystal with F-and M-Centers Present i

I

1.0

~

i

F-Center M-Center Absorption

0.8

0-.0.4

0,:2

0

400

500

600 700 800 Wavelength in Nanometers

900

T h e defect e q u a t i o n for f o r m a t i o n of t h e M - c e n t e r is also given as follows: 2.2.11.-

M-center:

KC1 = KCll.5 + ib/2 C12 t" + 5 / 4 [ V-C1 ] VC1 ]

Note t h a t e a c h v a c a n c y in 2.2.9. h a s c a p t u r e d a n e l e c t r o n , in r e s p o n s e to

The point defect

56

t h e c h a r g e - c o m p e n s a t i o n m e c h a n i s m w h i c h is o p e r a t i v e for t h e d e f e c t reactions.

These

associated,

negatively-charged,

vacancies

have

quite

different a b s o r p t i o n p r o p e r t i e s t h a n t h a t of the F - c e n t e r . T h e r e are o t h e r i m p u r i t y s y s t e m s to w h i c h this n o t a t i o n c a n b e applied. For t h e case of an AgCI crystal c o n t a i n i n g the Cd 2+ c a t i o n as an i m p u r i t y , w e have: 2Ag +

2.2.12.-

~

[Cd 2+,vAg

T h i s is an e x a m p l e of a h e t ~ r o ~

]

s y s t e m . A n o t h e r s u c h s y s t e m is CdC12

c o n t a i n i n g Sb 3+ . Here, we c a n w r i t e at least t h r e e

different

e q u a t i o n s involving d e f e c t

equilibria: 2.2.13.-

2 Cd 2+

z..

2 Cd 2+

z.._7

Sb3+ + Sb3+ +

2 Cd 2+

-7~

Sb3+

+

p+

+

VCd

V+Cd Li+

In t h e last e q u a t i o n , c h a r g e - c o m p e n s a t i o n h a s o c c u r r e d due to i n c l u s i o n of a m o n o v a l e n t cation. All of t h e s e

equations

are c a s e s of i m p u r i t y

substitutions. A n o t h e r type is t h e so-called h o m o t y p e i m p u r i t y s y s t e m . The s u b s t a n c e , n i c k e l o u s oxide, is a p a l e - g r e e n

insulator, when

prepared

in an i n e r t

a t m o s p h e r e . If it is r e h e a t e d in air, or if a m i x t u r e of NiO a n d Li+ is reheated

in

an

inert

atmosphere,

the

NiO

becomes

a black

semi-

c o n d u c t o r . T h i s is a classical e x a m p l e of t h e effect of defect r e a c t i o n s u p o n t h e i n t r i n s i c p r o p e r t i e s of a solid: 2.2.14.-

2 Ni 2+ 2 Ni 2+

--7 L_ .-I

[ N i3+ / V N i ] N i 3+ + Li +

+

P+

T h i s b e h a v i o r is typical for t r a n s i t i o n m e t a l s w h i c h easily u n d e r g o c h a n g e s in v a l e n c e in the solid state.

2.3 Defect equation symbolism

57

Up to t h i s point, we have only i n v e s t i g a t e d s t o i c h i o m e t r i c lattices 9 Let us now

examine

non-stoichiometric

Consider the semi-conductor,

lattices

Ge. T h e

in

light

of o u r

symbolism.

defect reactions associated w i t h

t h e f o r m a t i o n of p - t y p e a n d n - t y p e l a t t i c e s are. 2.2.15. -

n-type:

Ge+6As

=

[GelAs~]

+

6e-

p-type:

Ge+6Ga

=

[Ge/Ga~]

+

6p+

T h e e x c e s s c h a r g e s s h o w n are s p r e a d over t h e e n t i r e

lattice,

as s t a t e d

before. 2 . 3 . - D E F E C T EQUATION SYMBOLISM Whether

you realize

it or not,

we

have

already developed

our

own

s y m b o l i s m for d e f e c t s a n d defect r e a c t i o n s b a s e d on t h e P l a n e Net.

It

m i g h t b e well to c o m p a r e o u r s y s t e m to t h o s e of o t h e r a u t h o r s , w h o h a v e also c o n s i d e r e d t h e s a m e p r o b l e m in t h e p a s t . It w a s p r o b a b l y R e e s (1930) w h o w r o t e t h e first m o n o g r a p h on d e f e c t s in solids. Rees u s e d nM to r e p r e s e n t t h e c a t i o n vacancy, as did Libowitz (1974). T h i s h a s c e r t a i n a d v a n t a g e s si n c e we c a n w r i t e t h e first e q u a t i o n in 2 . 2 . 1 2 . as:

K-l }+

+ +

2 3 1 9

.

2 Cd 2+

-

" 7

Col

"

p+

Cd

Likewise, t h e o t h e r e q u a t i o n s b e c o m e :

2.3.2.-

2 C d 2+

~

~-I +c d

and:

K~ 9 .

.-

-7

"

+ Cd

+

"

V ~ +col

+

+ p Cd

A l t h o u g h t h e r e s u l t s are e q u a l as far as utility is c o n c e r n e d ,

we

s ha ll

c o n t i n u e to u s e o u r s y m b o l i s m , for r e a s o n s w h i c h will b e c o m e c le a r l a t e r .

The point defect

58

T h e following c o m p a r e s defect s y m b o l i s m , as u s e d by p r i o r A u t h o r s . N o t e t h a t o u r s y m b o l i s m m o s t r e s e m b l e s t h a t of Krc~ger, b u t n o t in all a s p e c t s . 2.3.4-

Rees[1930]

Kruger [1954]

Libowitz [1974}

C a t i o n Site Vacancy:

I-]JIM

VM

~VI

Anion Site V a c a n c y

D[k

Vx

U] x

Cation Interstitial

AM

M i , M+i

Mi

Anion I n t e r s t i t i a l

Ax

Xi , X~

Xi

Negative Free C h a r g e

e

e ~

e-

Positive Free C h a r g e

p

h+

h+

Interstices

---

a V.

a V.

Unoccupied Interstitial

---

Vi

A

1

I

Anti-structure Occupation---

M M , X x , MX,XM

T h e s e prior a u t h o r s have c o n s i d e r e d s o m e i n t r i n s i c d e f e c t s t h a t we have n o t t o u c h e d , n a m e l y i n t e r s t i c e s a n d t h e so-called " a n t i - s t r u c t u r e " o c c u p a t i o n . T h e l a t t e r deals w i t h a n i m p u r i t y a n i o n o n a cation s i t e c o u p l e d w i t h a n i m p u r i t y c a t i o n on a n a n i o n site, b o t h w i t h t h e p r o p e r charge. We have m e n t i o n e d i n t e r s t i c e s b u t not in detail. T h e y a p p e a r as a f u n c t i o n of s t r u c t u r e . T h e r e is one site in a t e t r a h e d r o n , four in a b o d y - c e n t e r e d cube, a n d six in a s i m p l e cube. T h u s , a in {a Vi} is I, 4 or 6, r e s p e c t i v e l y . We shall n e e d t h i s s y m b o l later, as well as V i , t h e u n o c c u p i e d i n t e r s t i t i a l . 2 . 4 . - S O M E APPLICATIONS FOR D E F E C T CHEMISTRY Before

we

proceed

to

analyze

defect

reactions

by a m a t h e m a t i c a l

a p p r o a c h , let u s c o n s i d e r two a p p l i c a t i o n s of solid s t a t e c h e m i s t r y . We b e g i n w i t h a d e s c r i p t i o n of s o m e p h o s p h o r d e f e c t c h e m i s t r y .

2.4 Some applications for defect chemistry

59

I. - P h o s o h 0 r s In t h e prior l i t e r a t u r e , it w a s f o u n d (Kinney- 1955) t h a t Ca2 P2 07 c o u l d b e a c t i v a t e d b y Sb 3+ to form t h e p h o s p h o r : Ca2P207:Sb.02

(this f o r m a l i s m

actually m e a n s a solid-solution of two p y r o p h o s p h a t e c o m p o u n d s , [(Ca.99,Sb.ol)2P2OT]). T h e b r i g h t n e s s r e s p o n s e of t h i s p h o s p h o r

i.e.was

m o d e r a t e w h e n e x c i t e d by ultraviolet r a d i a t i o n b u t w a s i m p r o v e d four t i m e s by t h e a d d i t i o n of Li + . T h e o p t i m u m a m o u n t p r o v e d to be t h a t e x a c t l y e q u a l to t h e a m o u n t of Sb 3+ p r e s e n t in the p h o s p h o r . The d e f e c t reactions occurring were. 2.4.1.- Defect R e a c t i o n s O c c u r r i n g in C a l c i u m P y r o p h o s p h a t e P h o s p h o r PHOSPHOR BRIGHTNESS 2 Ca 2+ or (2 Ca 2+ 2 Ca 2+

~ Sb3+Ca

"--7

+

Sb3+Ca

z_.

Sb3+Ca

V+Ca +

25 %

VCa + P+ ) +

Li+ca

100

It is well k n o w n t h a t p h o s p h o r b r i g h t n e s s in a p h o s p h o r is p r o p o r t i o n a l to t h e n u m b e r s of activator ions, i.e.- Sb 3+ i o n s , actually i n c o r p o r a t e d i n t o t h e p y r o p h o s p h a t e s t r u c t u r e . P h o s p h o r s are p r e p a r e d b y h e a t i n g t h e i n g r e d i e n t s at h i g h t e m p e r a t u r e (> 1000 ~ C . ) t o o b t a i n a c o m p o u n d h a v i n g high

crystallinity.

The

sintering

process

decreases

entropy

and

is

counterproductive to t h e f o r m a t i o n of v a c a n c i e s in t h e p y r o p h o s p h a t e lattice. In t h e a b s e n c e of Li+, l a c k of v a c a n c y - f o r m a t i o n actually d e c r e a s e s t h e a m o u n t of Sb 3+ i n c o r p o r a t e d into activator sites. A p p a r e n t l y , four t i m e s as m a n y activator ions w e r e i n c o r p o r a t e d into t h e lattice w h e n t h e c h a r g e - c o m p e n s a t i n g Li+ ions w e r e p r e s e n t on n e a r e s t n e i g h b o r sites. Note t h a t we have w r i t t e n two defect r e a c t i o n s for t h e c a s e of v a c a n c y f o r m a t i o n in 2.4.1. P y r o p h o s p h a t e is a n i n s u l a t o r a n d t h e f o r m a t i o n of a p o s i t i v e l y - c h a r g e d v a c a n c y is m u c h m o r e ~likely t h a n t h e v a c a n c y p l u s a free positive c h a r g e .

The point defect

60

THUS, ALTHOUGH MORE THAN ONE DEFECT REACTION MAY BE APPLICABLE TO A GIVEN SITUATION, ONLY ONE IS USUALLY FAVORED BY THE PREVAILING THERMO DYNAMIC AND ELECTRICAL CONDITIONS. II.- L i t h i u m Ni0b~tr L i t h i u m niobate, LiNbOs, is a photorefractive material, discovered in 1 9 6 6 (Ashkin et al). T h a t is, it is an electroSptic m a t e r i a l in w h i c h the indices of refraction c a n be c h a n g e d by an applied electric field. It is used in optical devices w h i c h employ its nonlinear optical a n d e l e c t r o S p t i c p r o p e r t i e s . As a single crystal, LiNb03 has high t r a n s p a r e n c y to e l e c t r o m a g n e t i c radiation. If a laser b e a m is d i r e c t e d down the length of s u c h a crystal, its f r e q u e n c y is doubled. YAG:Nd 3§ i.e.- Y3A15OI2:Nds+, is a c o m m o n l y u s e d laser crystal, w h o s e emission lies at 10,600 A. (near-infrar e d radiation). The c o m b i n a t i o n of a LiNbO3 crystal a n d YAG:Nd s§ p r o d u c e s a laser b e a m at 5,300 A (green light). If a second crystal is also i n c o r p o r a t e d in the optical setup, radiation at 2 , 6 5 0 A (ultraviolet radiation) is obtained. Although the radiation f r e q u e n c y c h a n g e s , so does the i n t e n s i t y of light p r o d u c e d . Losses of 100 times or more are c o m m o n . However, this d e t r i m e n t a l factor is overcome by i n c r e a s i n g the power of the laser b e a m . Fortunately, LiNbOs has a high r e s i s t a n c e to d a m a g e by a laser b e a m , unlike m a n y o t h e r similar crystals. It gains its unique c h a r a c t e r i s t i c s b e c a u s e the crystal s t r u c t u r e has "ouflt-in" d e f e c t s . LiNbOs is a ferroelectric s t r u c t u r e related to t h a t of the cubic p e r o v s k i t e (CaTiOs) s t r u c t u r e . T h a t is, electric polarization of the lattice e l e c t r o n s o c c u r s u p o n application of an electric field. Although a voltage will i n d u c e s u c h polarization, so will the electric vectors of a b e a m of light, p a r t i c u l a r l y t h a t of a laser beam. However, LiNbOa consists of d i s t o r t e d o x y g e n - o c t a h e d r a s h a r i n g faces so t h a t a p l a n a r hexagonal a r r a n g e m e n t results. The pile-up of the o c t a h e d r a along the p e r p e n d i c u l a r direction, caxis, follows the cation s e q u e n c e "Li, Nb a n d v a c a n t alte". The p o i n t s y n m l e t r y group is C~ (see 1.4.14. a n d 1.4.16 of the first chapter) w i t h the trigonal axis along the cation rows. It is very close to a C3v (3m) configuration.

2.4 Some applications for defect chemistry

61

The following d i a g r a m s h o w s t h e a r r a n g e m e n t of t h e t h r e e LiNbOa s t r u c t u r e .

ions in t h e

2.4.2.-

Note t h a t we have a s t r u c t u r e w i t h a '~)uilt-in" c r y s t a l defect, a vacancy. B o t h t h e l i t h i u m a n d n i o b i u m c a t i o n s are in a n o c t a h e d r a l c o o r d i n a t i o n . In fact, t h e two ions, Li § a n d Nb 5+, have n e a r l y the s a m e r a d i u s a n d o c c u p y o c t a h e d r a l sites w i t h t h e s a m e Csv s y m m e t r y . The l i t h i u m d e f i c i e n c y in c o n g r u e n t c r y s t a l s is a c c o m m o d a t e d b y m e a n s of Nbu a n t i - s i t e s a n d Nb 5+ v a c a n c i e s in a relative c o n c e n t r a t i o n neutrality.

Note

that

many

t h a t g u a r a n t i e s overall

electrical

physical

properties

depend

upon

s t o i c h i o m e t r y , e.g.- Curie t e m p e r a t u r e , p a r a m e t e r s a n d p h o t o r e f r a c t i v e yield.

absorption

spectra,

lattice

However, it h a s b e e n f o u n d t h a t i m p u r i t i e s play a m a j o r role in t h e o p e r a t i o n of a f r e q u e n c y - d o u b l i n g c r y s t a l like LiNbOs. M a n y i m p u r i t i e s have ionic radii similar to t h a t of l i t h i u m . T h e y s u b s t i t u t e at Li§ s i t e s r a t h e r t h a n Nb s§ sites (possibly b e c a u s e t h e NbO 4 c o o r d i n a t i o n is s t r o n g e r at t h e n i o b i u m site). A m o n g t h e s e are: M n 2+, Fe 3+ a n d N i 2+. As we have a l r e a d y seen, s u b s t i t u t i o n of s u c h m u l t i v a l e n t c a t i o n s on a m o n o v a l e n t s i t e results

in

lattice

compensation

such

as

oxygen

vacancies

and

the

f o r m a t i o n of c o l o r - c e n t e r s at t h e o x y g e n v a c a n c i e s . T h e s e i n t e r f e r e w i t h the photorefractive properties

of s u c h defect c r y s t a l s since t h e e a s e of

electric p o l a r i z a t i o n of t h e l a t t i c e is i m p a i r e d d u r i n g use. A l t h o u g h , as w e

The point defect

62

will see, the crystal-growing p ro ces s is also a purification process, it is not able to exclude all of t h e i m p u r i t i e s as the crystal grows. III. Bubble M e m o r i e s "Bubble m e m o r y " is the t e r m applied to the device w h i c h uses a "soft" m a g n e t i c m a t e r i a l to carry information. If a f e r r o m a g n e t i c film s u c h as e u r o p i u m gallium g a r n e t is grown epitaxially u p o n a suitable s u b s t r a t e s u c h as gadolinium gallium garnet, i.e.- Gd3 Ga5 O11 (= GGG), it f o r m s m a g n e t i c d o m a i n s in w h i c h the electron spins of the cations are aligned in the s a m e direction in the s a m e domain. This is s h o w n in the following: 2.4.3.- A F e r r o m a g n e t i c Film Grown EpitaxiaUy on

r

ARROWS DIRECTION

INDICATE

9 ....

l;~.; ~

IS/~4

r/ss/4

"'""

"

~,,,,

I~.;./I

9 ....

v##/si WsS~'~l v////I

rr // ///Z/ 4/ ~ l "

"

.... "

i;T:I

Ir162 MAGNETIZATION

|V /.... I ///I

IT#~##4 r/s//4 ITSSSS4

.... " "

OF

.... 9 99 I T. s. .s.s / 4 4

4

V/##4

4

r ....4

1

I;~;I Ir r////,l

1.....

I./.~././I

Ws//4 v,,~4 VSSS4 v/l/4

V/ss'4

rf~I.~m r;m;~

1

I~l;l

I:~1~3

v////m

Vss/,T

Magnetic F iIm

I

rd~ir11,F,r1,r162 SubstPate

The following diagram, given as 2.4.4. on the next page, illustrates how t h e s e would look u n d e r polarized light (the Faraday effect) using c r o s s e d Nicol polarizers. (The b lack an d white polarity).

p a r t s are d o m a i n s of o p p o s i t e

W h e n a m a g n e t i c field is applied, with the field vector horizontal to t h e film, the d o m a i n s collapse to form s e p a r a t e d cylinders within the film, as shown. T h e s e a p p e a r to be "bubbles" w h e n viewed from the top, h e n c e the n a m e . The bubbles t h e n b e c o m e mobile u n d e r the influence of a s e p a r a t e electric field a n d will move. Actually, the electric field causes t h e dom a i n - wa l l to collapse by a spin-flip m e c h a n i s m , while the c y l i n d e r volume is m a i n t a i n e d by the m a g n e t i c field.

2.4 Some applicationsfor defect chemistry

2.4.4.[M~gnetic

I ~ b b l e s as V i ~ d

63

f r o m t h e T o p of t h e Film in P o l a r i z e d L i g h t i

00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 ~-- 50~ ---o Magnetic Domains

Magnetic Bubbles

T h i s c a u s e s t h e a p p a r e n t m o v e m e n t of t h e wall. Bubbles d e n s i t i e s as h i g h as 107 p e r c m 2, a n d bubble velocities of u p to 10 3 - 1 0 4 c m . / s e c , h a v e b e e n r e p o r t e d . Obviously, b u b b l e velocity d e p e n d s u p o n E, t h e e l e c t r i c field s t r e n g t h , as well as t h e c o m p o s i t i o n of t h e epitaxially g r o w n film. T h e u s e of a v a p o r - p h a s e - d e p o s i t e d m e t a l grid u p o n t h e s u r f a c e of t h e film s e r v e s to s w i t c h b u b b l e s from site to site. T h e p r e s e n c e (1) or a b s e n c e (0) of a b u b b l e is d e t e c t e d b y p o l a r i z e d light b e a m s . T h u s , i n f o r m a t i o n s t o r e d , a n d r e t r i e v e d , on a "chip" in b i n a r y language. However, t h e epitaxial film m u s t be defect-free. ~

c a n be

is difficult to grow as

a defect-free single crystal. F r e n k e l defects a p p e a r , a n d give rise to l i n e dislocations. W h e n t h e c r y s t a l is c u t into wafers,

t h e line d i s l o c a t i o n s

r e m a i n a n d c a n be r e v e a l e d by c h e m i c a l p o l i s h i n g in h o t p h o s p h o r i c acid. T h e r e is a s t r o n g c h a n c e t h a t t h e s e d i s l o c a t i o n s will be p r o p a g a t e d i n t o t h e epitaxial Film w h e n it is d e p o s i t e d .

The

resulting film-defects

then

"pin" one or m o r e b u b b l e s to one location on t h e film, m a k i n g it ( t h e m )

The point defect

64

unusable. In addition, a lattice m i s m a t c h t e n d s to a c c e n t u a t e the defects of the ~ s u b s t r a t e onto the Film grown on it. The ao lattice p a r a m e t e r for ~ is 12.53 A (this is the length of the side of the cube enclosing t h e 19 a t o m s ) w h i l e t h a t of Eu3 Ga5 O l l is 12.48 A. This m i s m a t c h of lattice p a r a m e t e r is about 50x g r e a t e r t h a n t h a t d e s i r e d so t h a t a c o m p o s i t i o n s u c h as Y2.45 Eu5.5 Fe3.8 Gal.2 O12 is generally m o r e suitable to c o r r e c t l y m a t c h t h e lattice p a r a m e t e r of CW_~. In this way, defects p r e s e n t in t h e s u b s t r a t e c a n be avoided in the epitaxially grown • m , if p r o p e r g r o w t h c o n d i t i o n s are m a i n t a i n e d . Nevertheless, a l t h o u g h the "bubble-memory" a p p r o a c h to h i g h e r d e n s i t y m e m o r i e s in c o m p u t e r s was t h o u g h t to hold m u c h promise, the p r o b l e m s a s s o c i a t e d with intrinsic defects in the film a n d those involving the s u b s t r a t e proved to be too d a u n t i n g a n d today t h e b u b b l e - m e m o r y a p p r o a c h h a s b e e n a b a n d o n e d in favor of m o r e advantageous m e t h o d s . IV. Calcium Sulfide P h o s p h o r L e n a r d in 1928 r e p o r t e d

on a c a l c i u m sulfide p h o s p h o r ,

having

Actually,

a blue

emission.

he

probably

i.e.- CaS:Bi 3+,

prepared:

CaS:Bi3§

initially. As you c a n see, the divalent cation site would have to be o c c u p i e d by a negative vacancy since charge c o m p e n s a t i o n dictates t h a t the vacancy will appear. L e n a r d found t h a t the emission i n t e n s i t y of CaS:Bia§ was very low. It is likely t h a t the V site is a color c e n t e r w h i c h d i s s i p a t e d m o s t of the excitation energy. He found t h a t the use of chloride fluxes greatly i m p r o v e d t h e emission i n t e n s i t y a n d t h a t the use of KCI p r o d u c e d the b r i g h t e s t p h o s p h o r . He c o n c l u d e d t h a t K§ was a coactivator, i.e.- as CaS:Bia§

+ , since he u s e d first u s e d NaCI as a flux d u r i n g its p r e p a r a t i o n

a n d t h e n KCI. Even today, the p h o s p h o r is r e f e r r e d to in t h a t m a n n e r a l t h o u g h it is obvious t h a t the c h a r g e c o m p e n s a t i o n m e c h a n i s m is m o s t likely the c o r r e c t m e c h a n i s m in the formation of the p h o s p h o r . This c o n c l u d e s o u r c o n s i d e r a t i o n of defect applications. Let us now c o n s i d e r a m o r e m a t h e m a t i c a l a p p r o a c h to the d e s c r i p t i o n of p o i n t defects. It h a s b e e n said: "If you c a n n o t calculate the p r o p e r t i e s of any given theory, you really do not u n d e r s t a n d it".

2.5 Thermodynamics of the point defect

65

2.5. -THERMODYNAMICS OF THE POINT D E F E C T We shall u s e two a p p r o a c h e s to derive s o m e w o r k i n g values for t h e p o i n t defect in solids, n a m e l y t h a t of S t a t i s t i c a l M e c h a n i c s Thermodynamics

of Defects. T h e r e

a n d t h a t of t h e

are t h o s e w h o have s o m e f a m i l i a r i t y

w i t h s t a t i s t i c a l m e c h a n i c s . For o t h e r s , s o m e e x p l a n a t i o n is due. S t a t i s t i c a l M e c h a n i c s as a discipline w a s originally d e r i v e d in t h e early 1920's w h e n it w a s realized t h a t one h a d to deal w i t h large p o p u l a t i o n s of a t o m s o r m o l e c u l e s in various e n e r g y s t a t e s ( p a r t i c u l a r l y g a s e s at t h a t time). T h e s e s t a t e s arise b e c a u s e e a c h m o l e c u l e , for e x a m p l e , is v i b r a t i n g in a m a n n e r slightly different t h a n its n e i g h b o r . W h a t we d e s c r i b e

as t h e e n e r g y s t a t e for a given set of c o n d i t i o n s

is

actually t h e average of t h a t of a B o l t z m a n n p o p u l a t i o n . The discipline b e s t s u i t e d for h a n d l i n g s u c h a s y s t e m is s t a t i s t i c s , h e n c e t h e n a m e . T h e approach

used

for

manipulating

molecular

populations

in

Statistical

M e c h a n i c s is quite involved, a n d we shall t o u c h very briefly on t h e m a t h e m a t i c s involved. We will first d e s c r i b e e a c h of t h e s e a p p r o a c h e s s e p a r a t e l y a n d t h e n a c o m b i n e d version. Hopefully, t h i s will aid in y o u r u n d e r s t a n d i n g of t h e two m e t h o d s of d e t e r m i n i n g the effect of the p o i n t defect u p o n t h e p r o p e r t i e s of t h e solid. I. S t a t i s t i c a l M e c h a n i c s A p p r o a c h T h e l a n g u a g e of S t a t i s t i c a l M e c h a n i c s evolved over a c o n s i d e r a b l e p e r i o d of time. For e x a m p l e , t h e t e r m " e n s e m b l e " is u s e d to d e n o t e a s t a t i s t i c a l p o p u l a t i o n of m o l e c u l e s ; "partition function" is t h e integral, over p h a s e s p a c e of a s y s t e m , of t h e e x p o n e n t i a l of {-E I kT} [where E is t h e e n e r g y of t h e s y s t e m , k is B o l t z m a n n ' s c o n s t a n t , a n d T is t h e t e m p e r a t u r e in ~ F r o m t h i s "function", all of t h e t h e r m o d y n a m i c f u n c t i o n s c a n be d e r i v e d . T h e definitions t h a t we shall n e e d are given as follows in 2.5.1. on t h e n e x t page. Here, Nj is t h e s u m of t h e individual a t o m s t i m e s a n e n t r o p y factor a n d 1~I is t h e s u m of all of t h e N j 's.

The point defect

66

2 . 5 . 1 . - S t a t i s t i c a l M e c h a n i c s Definitions N e e d e d W

_

thermodynamic probability

G

----

e n s e m b l e of r e l a t e d a t o m s ( m o l e c u l e s )

Nj

----

~ m

1~I

----

~. Nj

Q

--

Partition Function

U s i n g t h e s e , we c a n derive t h e following e q u a t i o n for t h e total e n e r g y of a n y given s y s t e m : E T = total e n e r g y of s y s t e m = 1~I E(ave.) = ~ Nj Ej

2.5.2.-

where

Nj

is t h e total n u m b e r of a t o m s (molecules)

involved. Using t h e

m e t h o d s of S t a t i s t i c a l M e c h a n i c s , we c a n derive b y p r o b a b i l i t y r e l a t i o n s : 2.5.3.-

In

these

W

=

Q

=

Q

=

equations,

F is

A F/h3 ~ r

Nj !

exp- Ej / k T

{for s t a t e s )

]~ exp- Ej / k T {for levels)

a so-called

"partition

coefficient",

~

is

a

d e g e n e r a c y , k is B o l t z s m a n n ' s c o n s t a n t , a n d T is in d e g r e e s Kelvin. T h e first e q u a t i o n in 2.5.3. is a s t a t i s t i c a l m e c h a n i c a l definition of w o r k , w h e r e a s t h e l a s t two d e s c r i b e total e n e r g y s t a t e s . Having t h e s e d e f i n i t i o n s and

equations

allows

us

to

define

point

defects

from

a Statistical

Mechanical viewpoint. II, S c h o t t k y a n d F r ~ n k e l D e f e c t s C o n s i d e r a p l a n e n e t h a v i n g N sites, of w h i c h N L are lattice sites, Nv are v a c a n c i e s , a n d N i are I n t e r s t i t i a l s . (Note t h a t we do not c o n s i d e r c h a r g e at t h e sites for t h e m o m e n t ) . equations:

U s i n g t h e s e , we have the following two

2.5 Thermodynamics of the point defect 2.5.4.-

NL

=

2.5.5.-

~ Ni

=

N + Nv

67

- Ni

ct N L

E q u a t i o n 2.5.4. h o l d s if s o m e fraction of Ni

is a s s o c i a t e d w i t h N L , t h e

n u m b e r of lattice sites, i.e.- F r e n k e l defects. A c c o r d i n g to t h e B i n o m i a l T h e o r e m , we c a n c o m b i n e p a i r s of t h e s e sites as: 2.5.6.-

W ( N v , NI)

=

Nit /Nv!(NL-NV)

2.5.7.-

W i ( N i , aNl)

=

r

Note

that

these

equations

are

simply the

! / (r

!

[

Combinatorial Equation

as

a p p l i e d to t h e s e two s e t s of defects. We c a n set u p a p a r t i t i o n f u n c t i o n ( s e e t h e above definition), u s i n g e q u a t i o n 2.5.3. We a p p l y t h i s to t h e S c h o t t k y a n d F r e n k e l defects as e x a m p l e s : 2.5.8.- SCHOTTKY:

Qv (T)

=

2.5.9.- FRENKEL:

Qi (T)

=

Wi(Nv, NL) exp -Nv Ev / k T W i ( N i , aNL} exp -Ni Ei ! k T

We n o w solve t h e s e e q u a t i o n s u s i n g c e r t a i n a p p r o x i m a t i o n s e m p l o y e d in Statistical

Mechanics,

including

n u m b e r s . If t h e e n e r g y r e q u i r e d

Stirling's

Approximation

for

large

to f o r m v a c a n c i e s a n d I n t e r s t i t i a l s

is

g r e a t e r t h a n kT, a n d ff t h e defects are only a fraction of t h e total n u m b e r of lattice sites, t h e n we get: 2.5.10.-

SCHO~-

Nv

=

N exp -Ev / k T

2.5.1 I.-

FRENKEL-

Ni

=

r N exp - Ei / k T

Note t h a t we n o w have B o l t z m a n n d i s t r i b u t i o n e q u a t i o n s for e a c h type of defect., a n d t h a t t h e energy, E, to f o r m t h e defect is like a n a c t i v a t i o n energy. T h e fraction of defects p r e s e n t , e i t h e r Nv / N e x p o n e n t i a l f u n c t i o n of t h i s activation e n e r g y .

or

N i / N , is an

The point defect

68

This l e a d s to t h e following c o n c l u s i o n : It is c l e a r w i t h o u t a doubt t h a t b o t h S c h o t t k y a n d F r e n k e l d e f e c t s are t h e r m a l in origin. Although

you

may

have

wondered

why

we

considered

Statistical

M e c h a n i c s at all in r e l a t i o n to the p o i n t defect, the above o b s e r v a t i o n is critical to o u r u n d e r s t a n d i n g of the f o r m a t i o n of p o i n t defects in solids. It is a fact t h a t in m a n y c a s e s the activation e n e r g y r e q u i r e d

to f o r m

v a c a n c i e s a n d / o r i n t e r s t i a l s is a p p r o x i m a t e l y t h a t of r o o m t e m p e r a t u r e : 2.5.12.-

E v , Ei

,,

kT

It is t h i s m e c h a n i s m w h i c h p r o d u c e s defects in the lattice. T e m p e r a t u r e s slightly above r o o m t e m p e r a t u r e will p r o d u c e defects in the solid, e v e n t h o u g h t h e r a t e of p r o d u c t i o n m a y be e x t r e m e l y slow b e l o w about 500 ~ K. T h e c o n c l u s i o n t h a t w e r e a c h is t h a t d e f e c t f o r m a t i o n is favored in t h e solid. It is m u c h m o r e difficult to obtain a ' ~ e r f e c t " solid, so t h a t the defect-solid results. We c a n s u m m a r i z e this statistical m e c h a n i c a l a p p r o a c h to the solid s t a t e in t h a t it gives u s a m e t h o d to evaluate the fraction of i n t r i n s i c d e f e c t s p r e s e n t u n d e r specified c o n d i t i o n s , a n d also gives u s a m e a s u r e of t h e deviation f r o m absolute s t o i c h i o m e t r y . If we c a n evaluate the energy of f o r m a t i o n of v a c a n c i e s a n d i n t e r s t i t i a l s at a given t e m p e r a t u r e for a given c r y s t a l lattice, t h e n we c a n calculate t h e n u m b e r s of defects f o r m e d at any other temperature. III - Defect T h e r m o d y n a m i c s The r e a s o n w h y we first i n v e s t i g a t e d t h e Statistical M e c h a n i c s a p p r o a c h to defect f o r m a t i o n is t h a t it gives u s a good basis for u n d e r s t a n d i n g t h e a p p l i c a t i o n of c h e m i c a l t h e r m o d y n a m i c s to the defect solid state.

2.5 Thermodynamics of the point defect

69

We begin this a p p r o a c h by defining the total n u m b e r s of defects p r e s e n t as N d. In addition, we n e e d t h e following definitions2.5.13.-

Definitions N e e d e d to Define the T h e r m o d y n a m i c A p p r o a c h ENTROPY OF DEFEC'I~ ENTHALPY OF DEFECTS FREE ENERGY OF DEFECTS

= =

Sd

=

Gd

Hd

According to t h e laws of t h e r m o d y n a m i c s , we c a n write2.5.14.-

AG

=

AH

- ATS

Note t h a t we are u s i n g the G ~ b s free e n e r g y r a t h e r t h a n t h e H e l m h o l t z free e n e r g y at this point. For the defect solid, we m u s t define f r e e - e n e r g y in t e r m s of the f r e e - e n e r g y of t h e p e r f e c t solid, G o , as r e l a t e d to t h e f r e e - e n e r g y of t h e d e f e c t solid, vis: 2.5.15.-

AG

=

Gd

-

Go

Note t h a t due to i n c r e a s e d entropy, the e n e r g y of the defect

s t a t e is

h i g h e r t h a n t h a t of the perfect solid. For this reason, we m u s t d i s t i n g u i s h b e t w e e n t h e s o u r c e s w h i c h c o n t r i b u t e to the total entropy, a n d m u l t i p l y by t h e n u m b e r of defects p r e s e n t . The applicable e q u a t i o n is: 2.5.16.-

Gd

= Go +

Nd Hd - T Nd A Svib. - T A Sconfig.

where

ASmb. is t h e e n t r o p y c h a n g e c a u s e d by c h a n g e s in vIlmatlomal f r e q u e n c y w i t h i n t h e solid by t h e p r e s e n c e of d e f e c t s and A Sconfig. is t h e c h a n g e of e n t r o p y c a u s e d b y c o n f l ~ ~ t i o n a l

c h a n g e s in t h e vicqniW

defects. This a s p e c t of defect solid s t a t e c h e m i s t r y h a s b e e n t h o r o u g h l y s t u d i e d a n d the c h a n g e in the various q u a n t i t i e s of 2.5.16., as a function of n u m b e r s of defects, is s h o w n in t h e foUowing d i a g r a m :

The point defect

70

2.5.17.Numbers of Defects as a Function of Gibbs Free Energy

Nd&H

ol

-NdT ~

d

Config.

Gd I I

~ - Hlntr|nsi

I

Nd

c IL

"

You will n o t e t h a t w h e n it is possible to plot G d as a f u n c t i o n of G, t h e Gibbs free energy, a m i n i m u m o c c u r s w h i c h is the n u m b e r of defects at t h e given t e m p e r a t u r e for t h e given solid. Note also t h a t t h e e n t h a l p y of d e f e c t s i n c r e a s e s c o n t i n u o u s l y as a f u n c t i o n of N d while b o t h of t h e e n t r o p y - c o n t r i b u t i o n s d e c r e a s e . The n e t effect is a m i n i m u m value for G d , at w h i c h p o i n t we c a n get t h e n u m b e r of i n t r i n s i c defects p r e s e n t . T h u s , we have s h o w n again t h a t t h e r e is a specific n u m b e r of i n t r i n s i c d e f e c t s present

in

the

solid

at

any

given

temperature,

this

time

by

Thermodynamics. Let u s n o w consider a combined (Statistical Mechanics and T h e r m o d y n a m i c ) a p p r o a c h to t h e p r o b l e m of c a l c u l a t i n g defect n u m b e r s . IV,- C o m b i n e d A o o r o a c h to Defect F o r m a t i o n In t h i s m e t h o d , we will d e l i n e a t e the e x a c t p r o c e d u r e u s e d to d e r i v e

2.5 Thermodynamics of the point defect equations

for

specific

defects

in

the

solid.

To

71 show

how

this

is

a c c o m p l i s h e d , we let N L be t h e t o t a l n u m b e r of lattice sites a n d Nv t h e n u m b e r of v a c a n c i e s . T h e w a y t h a t N v v a c a n c i e s c a n b e a r r a n g e d u p o n N L lattice s i t e s is given b y c o m b i n a t o r i a l s t a t i s t i c s as: 2.5.18.-

W =

~ N L

! ~

Nv!(Nv-Nv)

!

The cortfigurational or m i x i n g e n t r o p y will be d e f i n e d by: 2.5.19.-

ASM= k l n W

U s i n g S t i r l i n g ' s a p p r o x i m a t i o n for large n u m b e r s (this m e t h o d is u s e d e x t e n s i v e l y in S t a t i s t i c a l M e c h a n i c s ) , we c a n get: 2.5.20.-

AS M = k [N L I n N L - N v l n N v - ( N L - N v) In (N L - N v) ]

You will n o t e t h a t we h a v e t h e c h a n g e in e n t r o p y as a f u n c t i o n of t h e d i f f e r e n c e s b e t w e e n n o r m a l lattice s i t e s a n d v a c a n c i e s . S i n c e we k n o w t h a t N L >> N v, we c a n w r i t e for t h e e n t r o p y of m i x i n g : 2.5.21.and

AS M ~ [N L I n N L - N v l n N v ] ASM=- k[N v InNv/NLI=-RXv

InXv

w h e r e X v is t h e f r a c t i o n of defects actually p r e s e n t . As e x p e c t e d , for n o n i n t e r a c t i n g defects, t h e e n t r o p y of m i x i n g is ideal so t h a t t h e free e n e r g y of t h e s y s t e m c a n be w r i t t e n as: 2.5.22.-

AFv = N v (AE v - T ASVv) + RT [N L- N v / N L (In N L- N v / N L ) + N v /N L I n - N v / N O ]

w h e r e AShy is t h e c h a n g e in v i b r a t i o n a l e n e r g y of t h e lattice a r i s i n g f r o m t h e c h a n g e in v i b r a t i o n a l f r e q u e n c y a r o u n d t h e v a c a n t lattice site. If w e m i n i m i z e t h e free energy, i.e.2.5.23.and:

0Fv/ON v = 0 = A E v - T A S v v ) + R T I n ( N v / N L - N v) l n ( N v / N L - N v} = l n X v = A E v - T A S ~ v ) / R T

The point defect

72

T h u s , we c a n w r i t e for t h e atomic fraction of v a c a n c i e s p r e s e n t : 2.5.24.-

Xv = exp - AF~ /RT

You m a y w o n d e r

w h y we

= e ' a E v / RT

have e x a m i n e d

this m e t h o d

for specifying

v a c a n c i e s in g e n e r a l t e r m s . The r e a s o n is t h a t we c a n apply the s a m e m e t h o d to t h e p r o b l e m of p o i n t - d e f e c t pairs. This is i n t e n d e d to help you u n d e r s t a n d h o w t h e s e v a r i o u s types of defects in the solid arise. a. IntErstitial A t o m s The p r o c e s s of c r e a t i n g a n i n t e r s t i t i a l is j u s t the o p p o s i t e of c r e a t i n g a vacancy. If t h e r e are N, possible i n t e r s t i t i a l p o s i t i o n s in t h e lattice, a n d if AFi is t h e free e n e r g y n e e d e d to m o v e the a t o m into its i n t e r s t i t i a l position, t h e n t h e i n t e r s t i t i a l c o n c e n t r a t i o n at e q u i l i b r i u m will be: 2.5.25.-

N~ / N, = X~ = exp (- AF~ / k T )

The s a m e a p p r o a c h applies to F r e n k e l pairs. b. F r e n k e l p a i r s We have, in this case, b o t h a v a c a n c y a s s o c i a t e d with an i n t e r s t i t i a l atom. Using t h e a p p r o a c h s h o w n in 2.5.18., we have: 2.5.26.-

W =

NL~ N v ! ( N L - N v) !

X

NIJ N i ! ( N x - N i) 7

Now, we have two c o m b i n a t o r i a l f u n c t i o n s , one for the v a c a n c i e s and o n e for the i n t e r s t i t i a l s . Since the n u m b e r s of vacancies a n d interstials are equal, i.e.- N F = N L = N i , we c a n use the s a m e s t e p s given in 2.5.19., ,20, 21., a n d 2 . 5 . 2 2 . to get: 2.5.27.-

ASM= RT [(NLIn NL) " (2NF InNv) + (Nxln N~) - { ( N L - N F) l n ( N ~ - N F) ln(N L-NF)}]

2.5 Thermodynamics of the point defect

73

Minimizing t h e free e n e r g y as before, we c a n w r i t e for t h e F r e n k e l pairs: 2.5.28.-

NF = (N L Nx )112 exp (- ttFiv ! 2RT)

Note t h a t ZkF applies to b o t h i n t e r s t i t i a l a n d v a c a n c y sites. Using 2 . 5 . 2 3 . a n d 2 . 5 . 2 4 . , we c a n get the fraction of F r e n k e l defects as: 2.5.29.-

X~ --- exp (AFI v 12RT

since the free e n e r g i e s are a p p r o x i m a t e l y t h e s a m e , i.e.- ttF i v ~- ZXFI + ~ v

c. S c h o t t ~ The

Defects

c a l c u l a t i o n of S c h o t t l ~

defects

follows the

same method

given. We u s e cv for c a t i o n - v a c a n c y a n d av for t h e

associated

already anion

vacancy. The free e n e r g y of this defect is t h e n -

V

2 . 5 . 3 0 . - AFsh = Ncv AEcv + NAV AEAv - T (Ncv ASVcv + NAy AS Av) RT In

N

~

X

N c v [ ( N -Ncv) [

N

!

NAv!(N -N^v) [

Again, we have two c o m b i n a t o r i a l factors, o n e e a c h for t h e a s s o c i a t e d c a t i o n v a c a n c i e s . Here, t h e total n u m b e r of lattices sites, N >> Nsh = Ncv = N^v. Minimizing t h e free e n e r g y gives: 2.5.31.and:

Nsh / (N - Nsh )

= exp (-AFsh I 2 R T )

Xsh = exp (-AFsh I 2 R T )

You wiU n o t e t h a t this a p p r o a c h u s e s Statistical M e c h a n i c s to a p p r o x i m a t e t h e t h e r m o d y n a m i c c o n s t a n t s for t h e n u m b e r of defects p r e s e n t . V. Defect E q u i l i b r i a J u s t as c h e m i c a l r e a c t i o n s c a n be d e s c r i b e d a n d c a l c u l a t e d in t e r m s of

The point defect

74 thermodynamic

constants

and

chemical

equilibria,

so

can

we

also

d e s c r i b e d e f e c t f o r m a t i o n in t e r m s of e q u i l i b r i a . T h i s is g i v e n as follows: 2.5.32-

L a w of M a s s A c t i o n :

bB+cC

K =

-~ dD + e E 9

adD aeE / ~tbB acc

Using this equation, we can calculate the numbers

of d e f e c t s for v a r i o u s

d e f e c t s in t h e MX c r y s t a l as: 2.5.33.-

F r e n k e l D e f e c t s [for t h e MX c r y s t a l ] Mx

2.5.34.-

~

Mi

+

VM

"

KF

-

~tMi a v M [ aM

S c h o t t ~ y D e f e c t s tfor t h e MX c r y s t a l ] MX

~

VM + V x

Note that we have specified

,

KSh

- a v M a v M / aM X

the equilibrium constants

activity, a, of t h e m m o c ~ t e d defe 9

in t e r m s

of t h e

W e c a n also w r i t e t h e r m o d y n a m i c

e q u a t i o n s for t h e s e d e f e c t s 2.5.36.-

Chemical Thermodynamics AG = AH - T AS = - RT In K 9 K =

2.5.37.-

exp

AS / R 9 e x p - AH / R T

Defect Thermodynamics Kd = e x p

ASd I R " e x p - AHd I R T

w h e r e d r e f e r s to t h e specific d e f e c t . We may summarize

the knowledge

we have already developed

for t h e

Schottky and Frenkel defects: I. W e h a v e s h o w n b y S t a t i s t i c a l

Mechanics

that we can calculate

n u m b e r s of d e f e c t s p r e s e n t at a g i v e n t e m p e r a t u r e .

2.6 Defect equilibria in various types of compounds 2. T h e r e

is a n Activation E n e r g y for defect

75

formation.

In m a n y

c a s e s , t h i s e n e r g y is low e n o u g h t h a t defect f o r m a t i o n o c c u r s at, o r slightly above, r o o m t e m p e r a t u r e . 3. Defects m a y be d e s c r i b e d in t e r m s of t h e r m o d y n a m i c

constants

a n d equilibria. T h e

the

presence

vibrational frequencies

of d e f e c t s

changes

both

local

in t h e vicinity of t h e defect a n d t h e local

lattice c o n f i g u r a t i o n a r o u n d t h e d e f e c t . One q u e s t i o n we m a y logically a s k is h o w are we to k n o w w h a t t y p e s of defects will a p p e a r in a given solid? T h e a n s w e r to t h i s q u e s t i o n is g i v e n as follows: IT HAS B E E N FOUND:

"Yhere are t w o a s s o c i a t e d effects on a given solid w h i c h have o p p o s i t e e f f e c t s on s t o i c h i o m e t r y . U ~ R U y , o n e involves t h e cation site and t h e o t h e r t h e Rnlon site. B e c a u s e of t h e d i f f e r e n c e s in d e f e c t - f o r m a t i o n e n e r g i e s , t h e c o n c e n t r a t i o n of o t h e r d e f e c t s is usually n e g l i g ~ l e ' . T h u s , if F r e n k e l Defects p r e d o m i n a t e usually n o t p r e s e n t . applies for a,~ociater types

of

defects

in a given solid, o t h e r d e f e c t s a r e

Likewise, for t h e

Schottky

Defect.

Note

that this

d e f e c t s . If t h e s e are n o t p r e s e n t , t h e r e will still b e 2 present,

each

having

an

opposite

effect

upon

s t o i c h i o m e t r y . Thus, w e c o n c l u d e that i n t r i n s i c d e f e c t s usually o c c u r i n patl~,

This

conclusion

cannot

be

overemphasized.

The

following

d i s c u s s i o n s h o w s h o w t h i s o c c u r s in t h e r e a l w o r l d of d e f e c t s in solids. 2.6.Up

D E F E C T EQUILIBRIA IN VARIOUS TYPES OF COMPOUNDS to now,

we

have b e e n

concerned

with

the

MX c o m p o u n d

h y p o t h e t i c a l e x a m p l e of t h e solid state. We will n o w u n d e r t a k e concrete

examples

as f o u n d in

the

real

world,

using

the

as a more

concepts

d e v e l o p e d for t h e s i m p l e MX c o m p o u n d . For t h e s a k e of simplicity, w e r e s t r i c t o u r s e l v e s to b i n a r y c o m p o u n d s , t h a t is- o n e c a t i o n a n d o n e anion. An e x a m p l e of a t e r n a r y c o m p o u n d is ~ , w h e r e A a n d B are d i f f e r e n t cations, a n d S is a s m a l l w h o l e n u m b e r .

76

The point defect

Our example of a b i n a r y c o m p o u n d will be:

MXs We will d i s t i n g u i s h b e t w e e n four states for this h y p o t h e t i c a l c o m p o u n d , to wit: s t o i c h i o m e t r i c vs: n o n - s t o i c h i o m e t r i c non-ionized vs: ionized I. S t o i c h i o m e t r i c Bini~ry C o m p o u n d s of M ~ In the real world of defect chemistry, we find t h a t in addition to t h e simple defects, o t h e r types of defects appear, d e p e n d i n g u p o n the type of crystal we are dealing with. These m a y be s u m m a r i z e d as s h o w n in t h e following. According to o u r n o m e n c l a t u r e , VM is a vacancy at an M cation site, etc. The first five pairs of defects given above have b e e n o b s e r v e d e x p e r i m e n t a l l y in solids, w h e r e a s the last four have not. 2.6.1-

Defects in the MXs C o m p o u n d Schottky Frenkel Anti-Frenkel Anti-Structure Vacancy-Structure Structure-Vacancy Interstitial Interstitial-Structure Structure-Interstitial

P~$ OF D E F E C T S VM + V x VM + Mi

~q XM

+

+

Vx MX

VM + MX Vx + XM Mi + Xi MX +

Xi

Mi

XM

+

This a n s w e r s the h y p o t h e s i s p o s e d above, namely t h a t d e f e c t s in s o l i d s o c c u r in pairs. S t u d y these defect-pairs carefully so t h a t you b e c o m e familiar with them. T h e y r e p r e s e n t the type of s t r u c t u r e defects found in m o s t solids. We have now i n t r o d u c e d into our n o m e n c l a t u r e a d i s t i n c t i o n b e t w e e n s t r u c t u r e a n d a n t i - s t r u c t u r e defects. What this m e a n s is that s t a c k i n g faults can s o m e t i m e s result in XM a n d Mx defects, which are

]

CHAPTER 2 The Point Defect

There

are two types of defects a s s o c i a t e d w i t h p h o s p h o r s . One involves

controlled

point

defects

in

which

a

foreign

activator

cation

is

i n c o r p o r a t e d in the solid in defined a m o u n t s . The o t h e r involves line a n d point defects i n a d v e r t e n t l y f o r m e d in the solid s t r u c t u r e b e c a u s e of i m p u r i t y a n d e n t r o p y effects. This c h a p t e r will define a n d c h a r a c t e r i z e the n a t u r e of all of t h e s e p o i n t defects in the solid, t h e i r t h e r m o d y n a m i c s a n d equilibria. It will b e c o m e a p p a r e n t t h a t the type of defect p r e s e n t will d e p e n d u p o n the n a t u r e of the solid in w h i c h they are i n c o r p o r a t e d . T h a t is, the c h a r a c t e r i s t i c s

of the p o i n t defects

in a given p h o s p h o r

will

d e p e n d u p o n its c h e m i c a l c o m p o s i t i o n . Of necessity, this c h a p t e r is n o t i n t e n d e d to be exhaustive, a n d the r e a d e r is r e f e r r e d to the m a n y t r e a t i s e s c o n c e r n e d w i t h the p o i n t defect. 2.1. - TYPES OF POINT DEFECTS Let us n o w c o n s i d e r the defect solid from a g e n e r a l p e r s p e c t i v e . C o n s i d e r the case of s e m i - c o n d u c t o r s , w h e r e m o s t of the a t o m s are the same, b u t t h e total of the c h a r g e s is not zero. In t h a t case, the excess charge (n- o r p- type) is s p r e a d over the whole lattice so t h a t no single atom, or g r o u p of atoms, h a s a c h a r g e different from its n e i g h b o r s . However, m o s t inorganic solids are c o m p o s e d of c h a r g e d moieties, half of w h i c h are positive (cations) a n d half negative (anions). The total charge of t h e c a t i o n s equals, in general, t h a t of the anions. If an a t o m is missing, t h e lattice r e a d j u s t s to c o m p e n s a t e for this loss of charge. If t h e r e is an e x t r a a t o m p r e s e n t , the c h a r g e - c o m p e n s a t i o n m e c h a n i s m again m a n i f e s t s itself. A n o t h e r possibility is the p r e s e n c e of an a t o m w i t h a c h a r g e larger or s m a l l e r t h a n t h a t of its neighbors. In a given s t r u c t u r e , c a t i o n s are usually s u r r o u n d e d by anions, a n d vice-versa ( R e m e m b e r w h a t we said in C h a p t e r 1 wherein

it w a s s t a t e d t h a t m o s t s t r u c t u r e s

are o x y g e n - d o m i n a t e d ) .

T h u s , a cation w i t h an e x t r a c h a r g e n e e d s to be c o m p e n s a t e d by a like anion, or by a n e a r e s t n e i g h b o r cation w i t h a lesser charge. An e x a m p l e of

39

The point defect

78 number number

of s i t e s , w h e r e a s t h e l a s t five a r e b a s e d u p o n a n e x c e s s in t h e of s i t e s available. T h i s e x c e s s w e call "5". Note t h a t w e are n o t

s p e a k i n g of t h e r a t i o of c a t i o n s t o a n i o n s , i . e . - s t o i c h i o m e t r y , e x c e s s of c a t i o n s or a n i o n s to t h e n o r m a l

concentration

but0f

an

of c a t i o n s o r

anions. II. D e f e c t C o n c e n t r a t i o n s in M ~ s _ _ C o m p o u n d s It is of i n t e r e s t to b e able to d e t e r m i n e

t h e n u m b e r of i n t r i n s i c d e f e c t s in

a g i v e n solid. As w e h a v e s h o w n , p a i r s of d e f e c t s p r e d o m i n a t e in a n y g i v e n solid. T h u s , t h e n u m b e r of e a c h t y p e of i n t r i n s i c d e f e c t s , N i (M) or N i (X), will e q u a l e a c h o t h e r , F o r S c h o t t k y d e f e c t s in t h e MXs c r y s t a l , w e have: 2.6.2.-

Ni {VM )

=

This makes our mathematics

NI ( S V x ) simpler since we can rewrite

the Schottky

e q u a t i o n of T a b l e 2-1 as: 2.6.3.-

0 ~-~ Ni(VM) + SNi(VM)

Here, we have e x p r e s s e d the c o n c e n t r a t i o n

4- ctVi as t h e ratio of d e f e c t s to t h e

n u m b e r of M- a t o m s i t e s (this h a s c e r t a i n a d v a n t a g e s , as w e will see). We c a n t h a n r e w r i t e t h e d e f e c t e q u i l i b r i a e q u a t i o n s of T a b l e 2-1 in t e r m s of n u m b e r s of i n t r i n s i c d e f e c t c o n c e n t r a t i o n s . T h e s e are given as follows: 2 . 6 . 4 . - Eq~ilibri~tm C o n s t a n t s = F u n c t i o n of N u m b e r s of I n t r i n s i c D e f e c t s SCHO~:

KSh = Ni {S N i ) 2 = S s Ni S+I

FRENKEL:

KF

ANTI-FRENKEL:

KAF = Ni 2 / (S- Ni){cx- N i )

ANTI-STRUCT:

KAS = Ni 2 1 ( l - N i ) ( S - N i ) S KVS = S s (S + I )s+1. Ni2S+l i (S-Ni -S Ni )S

VAC. -STRUCT:

= Ni 2 / (I- Ni){cx- N i )

STRUCT-VAC:

KSV

= ( S + I ) S + I NiS+2 / (S - Ni - S Ni)

INTERSTITIAL:

KI

= S S Ni S+l / (r - N i - SNi) %S+I

S o m e of t h e s e e q u a t i o n s a r e c o m p l i c a t e d a n d w e n e e d to e x a m i n e t h e m in

2.6 Defect equilibria in various types of compounds m o r e d e t a i l so as to d e t e r m i n e

79

h o w t h e y a r e to b e u s e d . E q u a t i o n 2 . 5 . 1 6 .

given above shows that intrinsic defect concentrations

will i n c r e a s e w i t h

increasing temperature

a n d t h a t t h e y wiU b e low for h i g h e n t h a l p i e s

defect

arises because

formation.

This

the

entropy

effect

of

is a p o s i t i v e

e x p o n e n t i a l w h i l e t h e e n t h a l p y effect is a n e g a t i v e e x p o n e n t i a l . C o n s i d e r the following practical e x a m p l e : TI0

is c u b i c w i t h t h e NaCl s t r u c t u r e . A s a m p l e w a s a n n e a l e d at 1 3 0 0 ~

Density and X-ray measurements revealed that the intrinsic defects were S c h o t t k y in n a t u r e (VTi + V 0 ) a n d t h a t t h e i r c o n c e n t r a t i o n w a s 0 . 1 4 0 . I n t h i s c a s e , S = 1 so t h a t : KSh

2.6.5.-

- 0 . 0 1 9 6 = 2 x 1 0 -2

T h i s c r y s t a l is q u i t e d e f e c t i v e s i n c e 1 o u t of 7 Ti- a t o m - s i t e s

( 0 . 1 4 -I) is a

v a c a n c y , a n d l i k e w i s e for t h e o x y g e n - a t o m - s i t e s . A n o t h e r e x a m p l e is: CcI-I2

.

intrinsic

From

thermodynamic

defects

were

measurements,

Anti-Frenkel

it w a s

in n a t u r e ,

i.e.-

{Hi

has

the

found

that

the

+ VH ). A n

e q u i l i b r i u m c o n s t a n t w a s c a l c u l a t e d as: 2.6.6.-

KAF

at a t e m p e r a t u r e

=

3 . 0 X I 0 -4

of 6 0 0

~

This

compound

cubic

s t r u c t u r e w i t h o n e o c t a h e d r a l i n t e r s t i c e p e r Ce a t o m . T h e r e f o r e , a n d S = 2 for C e l l 2 . W e c a n t h e r e f o r e w r i t e : 2.6.7.-

kAF

=

Ni

=

or

Ni 2 /

(2-Ni)(1-Ni

2 . 4 x 10 -2

)

=

3.0

is v a c a n t .

a

= I,

x 1 0 -4

(600 ~

T h i s m e a n s t h a t 1 o u t of 4 2 h y d r i d e a t o m s is i n t e r s t i t i a l , hydride-atom-sites

fluorite

a n d 1 o u t of 8 4

The point defect

80

Let us review w h a t we have covered

concerning

stoichiometric

binary

compounds: I. We have s h o w n t h a t defects occur in pairs. The r e a s o n for this lies in t h e c h a r g e - c o m p e n s a t i o n principle w h i c h o c c u r s in all solids. 2.

Of

the

nine

defect-pairs

possible,

only

5

have

actuaUy

been

e x p e r i m e n t a l l y o b s e r v e d in solids. T h e s e are: Schottky, F r e n k e l , Anti- Frenkel, A n t i - S t r u c t u r e , V a c a n c y - S t r u c t u r e . 3. We have given d e f e c t - e q u a t i o n s for all nine types of defects, a n d t h e E q u i l i b r i u m C o n s t a n t (EC) t h e r e b y associated. However, t h e s e equilibria would r e q u i r e values in t e r m s

calculation of

of e n e r g y at each site,

values w h i c h are s o m e t i m e s difficult to d e t e r m i n e . A better

method

is to c o n v e r t

these

EC e q u a t i o n s to t h o s e involving

n u m b e r s of e a c h t y p e of i n t r i n s i c defect, as a ratio to an intrinsic cation o r anion. This allows us to calculate the actual n u m b e r of intrinsic d e f e c t s p r e s e n t in t h e crystal, at a specified t e m p e r a t u r e . III. Non-StoiChiomctri~ Binary C o m p o u n d ~ we

will now

extend

our treatment

of i n t r i n s i c

defects

to the

non-

s t o i c h i o m e t r i c n o n - i o n i z e d c o m p o u n d s , as r e p r e s e n t e d by: 2.6.9.-

MXs+

6

w h e r e 8 is a small i n c r e m e n t . The q u e s t i o n is: "How do we obtain nons t o i c h i o m e t r y in t h e solid?". Consider a c o m p o u n d g o v e r n e d by either or b o t h t h e following equilibria: 2.6.10.-

Xx

2.6.11.-

M(external phase) ~

One

example

might

~

be

I / 2 X2{gas)~

a halide

+ Vx

MM crystal

+ S V X + VMi which

has

become

non-

s t o i c h i o m e t r i c due to its being h e a t e d to a t e m p e r a t u r e sufficient to cause a small a m o u n t of the halide to b e c o m e volatile.

2.6 Defect equilibria in various types of compounds

81

A n o t h e r c a s e m i g h t be an oxide, h e a t e d in t h e p r e s e n c e of e x c e s s m e t a l , e.g.- ZnO + Zn. For a n o n - s t o i c h i o m e t r i c crystal, the c o n c e n t r a t i o n of e a c h point d e f e c t , in e a c h c o n j u g a t e pair, is no l o n g e r equal. If t h e r e is an e x c e s s of V M , X i , or XX, t h e n the c o m p o u n d will have a s u r p l u s of X (or deficiency of M, w h i c h is the s a m e thing) over t h e ideal s t o i c h i o m e t r i c c o m p o s i t i o n . T h i s is called a positive deviation from s t o i c h i o m e t r y . Conversely, for a n e g a t i v e deviation, t h e r e will be an e x c e s s of V x , M i , or M M . T h i s explains t h e p l u s a n d m i n u s in e q u a t i o n 2.6.9. In t e r m s of the above given defects, m a y be e x p r e s s e d as s h o w n in t h e following Table: TABLE 2-2. N o n - S t o i c h i o m e t r y , 8 , as a F u n c t i o n of Specific T y p e s of D e f e c t s in MXs + 5 Binary C o m p o u n d s Vacancy Formation Vx f r o m e x t e r n a l M

Defect E q u a t i o n M -~ MM + S[Vx] + (~Vi

Equilibrium Constant KV X= MM[Vx] s Vi a /M

VM froIn go~eotlk$ X

1 / 2X 2 --~ S i x + [VM] +(xVi

KVM=XxS[VM]Vi a / %

{if Xx ~ 1 a n d Vi =a,

then

1 / 2 X2 +(~VI ~ [Xi]

K m = [Xi] / ( ~- X4) p x 21/2

X-Interstitials

5 = S[VM]/

1/2S

1- VM}

or: {Px21/2 =1/Kxi- 8/(~-5} M-Interstitlals

M M + S X x + ( I +(~) Vi [Mil + S / 2 X2

KMi= [Ui ]px2S/2/MMXX S [(~ - M~ (t+a) or: Px2 S = KMi ((~(S + 6) + 5) 1+5 /(. ~) (S+6)a) l/S (from g a s e o u s X2)

X-Substituttonals

1 / 2(S+ 1)X2 -% SXx +r

Kx M =[XM] (~a / PX2 (S+1/2)

(from g a s e o u s X2 on

. Vi(l+a)

{or: p x 2(S+1/2) = 1/ KXM 9

( S + 1 ) X x + MM + a Vi

6/(l+S+ti) I/S+I } KMx= PX2((S+I)/2)

((S+I)/2) X2 + Mx

(1-Mx) S+I eta

an M-site) M-Substitutionals (gaseous X2 f o r m e d )

{or:

[Mx] /

Px2((S+l)/2)

(KMx) I/S+I

=

(S+ 1 )(S+d) /

[(-5)(S+ 1+6) s ] I/S+I )

The point defect

82

Note t h e various m e c h a n i s m s w h i c h give rise to the specific c o m b i n a t i o n s of defects. T h e s e m e c h a n i s m s have b e e n t h o r o u g h l y s t u d i e d as a function of specific c o m p o u n d s .

It is sufficient for us, at t h i s point, to observe

w h i c h defect e q u a t i o n s govern b o t h t h e equilibria s t o i c h i o m e t r y of the g e n e r a l c o m p o u n d , MXs + 8.

and

the

non-

The e q u a t i o n u s e d to calculate the n o n - s t o i c h i o m e t r y factor, 8 , in t h e g e n e r a l case is: 2 . 6 . 1 2 . - 8 = (Xi-Vx)+ S(VM-Mi) + ( S + I ) ( X M - M x ) / I + Mi + Mx - V M - XM We c a n e x p r e s s r e l a t i o n s h i p s b e t w e e n defect formation, the influence of various ext 9 factors, a n d the e q u i l i b r i u m c o n s t a n t t h e r e b y related. We do this in t e r m s of 8, the degree of n o n - s t o i c h i o m e t r y , as given in Table 22. Even t h o u g h t h e s e e q u a t i o n s are r a t h e r formidable-looking, we shall be able to u s e t h e m to good advantage. Note t h a t e a c h case c o r r e s p o n d s to the influence of a r e a c t i n g e x t e r n a l factor on a s t o i c h i o m e t r i c solid, w h i c h c o n t a i n s intrinsic defects. T h e s e

additional d e f e c t s b e c a u s e of n o n s t o i c h i o m e t r y a n d c h a r g e - c o m p e n s a t i o n . The d e f e c t p r o d u c e d is e n c l o s e d in b r a c k e t s in Table 2-2. factors

produce

C o n s i d e r this factor carefully by again e x a m i n i n g Table 2-2. Also given is t h e r e a c t i o n p r o d u c i n g t h e defect, with its c o r r e s p o n d i n g e q u i l i b r i u m c o n s t a n t . In m o s t cases, the deviation, 8, is p r e s e n t e d in t e r m s of t h e e q u i l i b r i u m c o n s t a n t a n d the partial p r e s s u r e

of the e x t e r n a l gaseous

reactant. T h u s , if the n u m b e r of d e f e c t s p r o d u c e d can be m e a s u r e d and an e q u i l i b r i u m c o n s t a n t calculated, t h e n 8 c a n be d e t e r m i n e d both as a f u n c t i o n of partial p r e s s u r e , p x 2 , a n d t e m p e r a t u r e (see 2 . 5 . 2 2 . ) . IV. Defect t~oncentration~ in MX,s• We now p r o c e e d as we did for the s t o i c h i o m e t r i c - c a s e , n a m e l y to develop

2.6 Defect equilibria in various types of compounds

83

d e f e c t - c o n c e n t r a t i o n e q u a t i o n s for t h e n o n - s t o i c h i o m e t r i c case, i.e.MXS• C o n s i d e r t h e effect of A n t i - F r e n k e l defect p r o d u c t i o n . F r o m T a b l e 2-1, we get KAF, w i t h its a s s o c i a t e d e q u a t i o n , kAF 9 In T a b l e 2-2, we u s e Kxi for X - i n t e r s t i t i a l s . 2.6.13.-

When

C o m b i n i n g t h e s e , w e get:

KAF = KVx " Kxi

both

Vx

and

Xi

coexist

=

Ni 2 I ( S - N i ) ( a - N i )

in

the

lattice,

the

deviation

from

s t o i c h i o m e t r y (from 2 . 6 . 1 2 . ) b e c o m e s : 2.6.14.-

5

= [Xi] -

[Vx]

U s i n g t h e e q u i l i b r i u m c o n s t a n t of 2 . 6 . 1 3 . , i.e. 2.6.15.-

Kv x _

p x 2112 [Vx ] /Xx

_

p x 2112 [Vx] [ S - [Vx ]

a n d t h e a p p r o p r i a t e o n e f r o m T a b l e 2 - 2 (i.e.- Kxi ), we get ( a s s u m e for simplicity that S = r = 1): 2.6.16.-

5

= a Px21/2 Kxi/Px~2Kxi + 1

-

S K v x / KVx+ Px2 I/2

We c a n r e a r r a n g e t e r m s in 2 . 6 . 1 6 . to o b t a i n : Kxa (1- 8 ) p x 2 - 8( K v x K x i + 1 ) Px2 I/2 a n d i f - KVx 2 (1- 8 ) = 0, w e c a n , b y u s i n g 2 . 6 . 1 3 . a n d Ni ~1, o b t a i n : 2.6.17.-

Ni 2 ( i - 5 ) p x 2 - 5 Kv x Px2 I / 2 -

KVx 2 (I- 8} = 0 .

S o l v i n g for p x 2 yields 9 2.6.18.- px 2 = KVx2(82+

Since

at s t o i c h i o m e t r i c

2Ni(1-

composition,

f o r m i d a b l e e q u a t i o n r e d u c e s to: 2.6.19.-

52 ) • 8 1 5 2 + 4 N i ( 1 - 8 2 ) ] 1 / 2 / 2 N i 4 ( I - 5 ) 2

Px2 o = KVx 2 ! Ni 2

8 must

e q u a l zero,

this

rather

The point defect

84 where

Px2 o

is the p r e s s u r e of X2

gas in equilibrium w i t h the MXs

crystal at the s t o i c h i o m e t r i c composition. This gives us the o p p o r t u n i t y to divide 2.6.18. b y 2 . 6 . 1 9 , to obtain: 2.6.20.- Px2 / Px2 o

=

82 +2 Ni (I- 62 ) •

6[62 + 4 Ni ( I - 6 2 ) 1 2 N i 2 ( I - 6 ) 2

We c a n therefore calculate 8 in t e r m s of the ratio of Px2 to Px2 o a n d N i , s h o w n as follows2.6.21.Effect of E x t e r n a l P r e s s u r e of X 2 G a s o n N o n - S t o i c h i o m e t r y of t h e H y p o t h e t i c a l C o m p o u n d , M X S_+8

N i = 10-4

J

Ni = 10 -3

PX 2

I~

-

0.06

= 1 0 -2

0

+ 0.06

~, C h a n g e in S t o i c h i o m e t r y Although we will not t r e a t the o t h e r types of pairs of defects, it is well to note t h a t similar e q u a t i o n s c a n also be derived for the o t h e r intrinsic defects. What we have shown is t h a t ezlmnml z~Letmats can cause f u r t h e r c h a n g e s in the n o n - s t o i c h i o m e t r y of the solid.

2.6 Defect equilibria in various types of compounds

85

V. Ionization Of D e f e c t s We have a l r e a d y covered,

albeit briefly, n o n - i o n i z e d

stoichiometric

and

n o n - i o n i z e d n o n - s t o i c h i o m e t r i c i n t r i n s i c - d e f e c t c o m p o u n d s . Let u s n o w c o n s i d e r t h e ionization of defects in t h e s e c o m p o u n d s . In t h e MXs c o m p o u n d , if we r e m o v e s o m e of t h e X - a t o m s to f o r m Vx~ t h e e l e c t r o n s f r o m t h e r e m o v e d X - a t o m (or f r o m t h e b o n d h o l d i n g t h e X - a t o m in t h e crystal)

are

left

behind

for

charge

compensation

reasons.

At

low

t e m p e r a t u r e s , t h e s e e l e c t r o n s are localized n e a r t h e v a c a n c y b u t b e c o m e d i s s o c i a t e d f r o m t h e p o i n t defect at h i g h e r t e m p e r a t u r e s . T h e y b e c o m e free to m o v e t h r o u g h t h e crystal, a n d we say t h a t t h e i n t r i n s i c defect h a s b e c o m e ionized. We c a n w r i t e t h e following e q u a t i o n s for t h i s m e c h a n i s m : 2.6.22.-

VACANCIES 8

Vx ~

Vx + + e

KVx

VM --~ VM" + p+ In

the

equilibrium

constant

=

IV x [ +

=

I VM- I I P + I / VM

s

KVM

equations,

each

symbol

le

is

I/Vx

actually

a

c o n c e n t r a t i o n , i.e.- n u m b e r s of specified defects a n d e l e c t r o n s , e t c . In a like m a n n e r , we w r i t e for i n t e r s t i t i a l s a n d a n t i - s t r u c t u r e d e f e c t s 2.6.23.-

INTERSTITIALS Mi

--~ Mi + + e-

Xi-+p +

Xi ~

2.6.24.-

A useful

KMi* = I Mi+l I e l

/ Mi

Kxi* =

IX~l I p + l / X ~

IXM + I I e

ANTI-STRUCTURE XM ~ X M +

+ e -

KXM =

Mx

+ p+

KM X

understanding

the

~

example

Mx

for

ionization of defects,

=

IMx" [ [P + I/ MX

above

is t h a t of c o b a l t o u s oxide,

I/XM

equations,

and

the

CoO. E x t e r n a l o x y g e n

The point defect

86

p r e s s u r e will affect s t o i c h i o m e t r y a n d p r o d u c e c o b a l t v a c a n c i e s , b u t t h e v a c a n c i e s a r e ionized at r o o m t e m p e r a t u r e :

1 / 2 0 2 ~ Oo + V C o

2.6.25.-

+n + +aVi

T h e n + is free to m i g r a t e t h r o u g h o u t t h e lattice. However, at p r e s s u r e s b e l o w 10 .6 ( o b t a i n e d by a p p l i c a t i o n of a v a c u u m ) , t h e Co v a c a n c i e s b e c o m e

doubly-ionized: 2.6.26.-

VCo

~

Vco 2

+~+

T h i s i l l u s t r a t e s h o w t h e ionized defect a r i s e s . We h a v e a l r e a d y i l l u s t r a t e d h o w v a c a n c i e s arise t h r o u g h PLANE ~ .

the us e of a

( S E E 2.2.1.). T h e r e i n , we u s e d MX as t h e m o l e c u l e to b u i l d

t h e NET. Let u s n o w r e t u r n , u s i n g t h e ions, M 2+ a n d X 2-

as the i o n i c

f o r m s w i t h w h i c h to b u i l d t h e NET. T h i s is s h o w n as follows: 2.6.27.-

[A Plane I 2+ •

Net fo r the Ionized MX Compound

X 2 - M 2+ X 2 - i~t 2 . X 2x2-r vl ' ~ + X =- M 2 . X 2 - M 2+ X 2 - M 2 § I M~'x~-r'12"• ~- H 2 " X ~ M2+X2-

I

I Ioo,~d I ! x_~i Mz'IX2- M 2 + X j . ~ ~ ' I ~ . ~ X Hole

. p'r--M2 + X 2 - M 2+ 2 ~ ~

M 2+

22"-- M 2 + X 2 _

JX

I Vacancy Hole Complex

I I x~- M~'x~--~N~_s~ ~- H ~" x ~- H ~*

El

x

2-IMP'Ix =- M 2+ X 2- M 2 "

Electron

I

.~IM " I X 2- M 2+ M 2 - X2-1~t 2~ X 2 X 2 - M 2+ X 2- M 2+ M 2 + X 2- M2+X2 -



§ •

X 2- M ""

l.x2M~_IM [M 2+

M 2" X 2- p,12 " X 2- M 2- X

2-]M +

X 2rVl2 . )(;2 + x 2~l~2- M 2" X2- M 2+ M2+ X 2- M Z - X 2 -

H ~§ x 2 - M ~" X 2- M 2.

M 2+ X 2 - M 2 + X 2- M 2 + X 2 - pvl2+ X 2 X 2 - M 2 + X2-. M2+ X2- M 2§ X 2- M 2 §

VacancyTrapped Electron Complex

2.6 Defect equilibria in various types of compounds

87

A v a c a n c y - h o l e c o m p l e x is s h o w n , as weU as a v a c a n c y - t r a p p e d e l e c t r o n complex.

In addition,

an example

of a n ionized

hole

and

an ionized

e l e c t r o n - s i t e is also given. We m u s t t h e r e f o r e a d d to o u r list of i o n i z a t i o n e q u a t i o n s t h e following: 2.6.28.-

MM+Z -.~

MM+Z-1 + p+

MM+Z ~

MM+Z+I + e-

B e c a u s e of t h e w a y t h a t we h a v e d e f i n e d o u r MXs crystal, t h e analogous ionization of t h e anion, X, does n o t o c c u r . Let u s n o w s u m m a r i z e w h a t we h a v e c o v e r e d : 1. We h a v e s h o w n t h a t defect e q u a t i o n s a n d e q u i l i b r i a c a n b e w r i t t e n for t h e MXs c o m p o u n d , b o t h for t h e s t o i c h i o m e t r i c a n d non-stoichiometric cases. 2. In a d d i t i o n , we h a v e s h o w n t h a t f u r t h e r defect f o r m a t i o n c a n b e i n d u c e d b y e x t e r n a l r e a c t i n g s p e c i e s , a n d t h a t t h e s e a c t to f o r m specific t y p e s of defects, d e p e n d i n g u p o n t h e c h e m i c a l n a t u r e of t h e crystal lattice. 3. We have also s h o w n

that the

intrinsic

defects

can

become

ionized. B e c a u s e m o s t of w h a t we have c o v e r e d to t h i s p o i n t h a s a s s u m e d l a c k of ionization, we n e e d to p r o c e e d f u r t h e r so as to develop e q u a t i o n s m o r e suitable for t h e real w o r l d . Most of t h e c a s e s we e n c o u n t e r in t h e real w o r l d involve ionic l a t t i c e s containing

charged

considered

simple hypothetical compounds

various k i n d s

cations and charged

of n o n - i o n i z e d

intrinsic

a n i o n s . Up to now, we

have

s u c h as MX a n d d e l i n e a t e d

defects

that would be p r e s e n t .

S e c t i o n 2 - 6 w a s c o n c e r n e d w i t h various t y p e s of d e f e c t s i n t r i n s i c to t h e s t o i c h i o m e t r i c MXs c o m p o u n d a n d t h e n o n - s t o i c h i o m e t r i c c o m p o u n d ,

The point defect

88 MXs•

Additionally, we e x a m i n e d the ionized MXs c o m p o u n d . The n o n -

ionized types are the easiest to illustrate, including the

mathematics

involved. Nevertheless, even those e q u a t i o n s (see Tables 2-1 and 2-2) b e c a m e s o m e w h a t c u m b e r s o m e at t i m e s . S u c h e q u a t i o n s are applicable to metallic, a n d possible s o m e covalent, crystals. E q u a t i o n s i n c l u d i n g ionization a n d electric charge are n e e d e d for ionic crystals a n d semic o n d u c t o r s . But, the m a t h e m a t i c s involved s t a r t s to b e c o m e uasolvablc. The m a i n p r o b l e m is the need to have a complete description, utilizing e q u a t i o n s d e s c r i b i n g all possible p r o c e s s e s , including: Intrinsic defect f o r m a t i o n Effect of extrinsic factors Ionization of intrinsic d e f e c t s Effects of c h a r g e - c o m p e n s a t i o n . By the time we are finished, we find t h a t we have derived a set of multiv a r i a n t e q u a t i o n s in several u n k n o w n s . Brouwer (1954) c o n s i d e r e d this case a n d was able to formulate a m e t h o d of solution. The following is a s u m m a r y of t h a t m e t h o d . 2.7. - BROUWER'S APPROXIMATION METHOD Let us c o n s i d e r an MXs crystal with S c h o t t l ~ defects (this is one of t h e m o r e easily defined types, mathematically). We define S=1. The types of intrinsic defects was given in 2.6.1., the equilibrium c o n s t a n t s of i n t r i n s i c defects was given in Table 2-1, n u m b e r s of intrinsic defects was given in 2.6.4., ionization of vacancies in 2.6.22, 2.6.23 & 2.6.24, and 2.6.21. gave the effect of an external factor (X2 gas) on the p r o d u c t i o n of n o n s t o i c h i o m e t r y . We can rewrite these equilibrium c o n s t a n t equations for the MX c o m p o u n d in the form given in 2.7.1. on the next page.

This set of equations completely defines the defect concentrations in 8n MX crystal conta/n/ng S c h o t ~ defects.

89

2.7 Brouwer' s approximation method

2.7.1-

a.

In KS = In VM + In VX

b.

InKvx* -Ine+InVx*

C.

In KVM* = In p + In VM" - In VM

d.

In KVx

e.

lnKVM = I n V M

=

-lnVx

1 / 2 In P x9 + In Vx - 1/2inPx 2

The i n t r i n s i c ionization c o n s t a n t is: f.

In Kion = In e + In p ( w h e r e Kion is t h e i o n i z a t i o n equilibrium constant)

and the electroneutrality condition i s . g.

e +VM-

=

p

+ VX+

It is i m p o r t a n t to realize t h a t e is t h e s u m of t h e e l e c t r o n s ,

not a s i n g l e

n e g a t i v e c h a r g e , i.e.2.7.2-

e = E e

and p

= Y p+

This set of equations c o m p l e t e l y defines the d e f e c t c o n c e n t r a t i o n s in an MX crystal cont~Inlng S c h o t t ~ defects. T h e r e a r e staten e q u a t i o n s in 2.7. I. a n d if t h e e q u i l i b r i u m c o n s t a n t s a r e k n o w n , t h e r e r e m a i n s e v e n u n k n o w n s in t h e s e s i m u l t a n e o u s e q u a t i o n s , i.e.- T h e s e involve- VM, Vx

, V M - , VX+ , e , p , a n d px 2. T h e first six

e q u a t i o n s are l i n e a r r e l a t i o n s b e t w e e n l o g a r i t h m s of c o n c e n t r a t i o n s ,

and

l o g a r i t h m s of e q u i l i b r i u m c o n s t a n t s , b u t t h e l a s t e q u a t i o n is not. T h e s o l u t i o n to t h i s set of e q u a t i o n s c a n be a c c o m p l i s h e d , b u t t h e m e t h o d s a r e c o m p l e x . However, if t h e r e is f u r t h e r ionization of d e f e c t s , where

more

than one pair

of d e f e c t s

results,

the

or t h e c a s e

situation becomes

h o p e l e s s . T h e e q u a t i o n s c a n b e w r i t t e n , b u t t h e set of e q u a t i o n s c a n n o t b e easily solved. In

1954,

Brouwer

proposed

a

graphical

method

for

solving

these

e q u a t i o n s . T h e m e t h o d h a s b e e n a d o p t e d b e c a u s e of f u r t h e r d e v e l o p m e n t b y Kroeger a n d Vink (1956).

The method

e n t a i l s dividing t h e r a n g e of

The point defect

90

defect c o n c e n t r a t i o n s into regions, s u c h t h a t c h a r g e - c o m p e n s a t i o n involves only two defects, so t h a t the e l e c t r o - n e u t r a l i t y equation (2.7.1-g.) is simplified. Brouwer's Method h a s b e e n applied to the case of silver chloride w h e r e i m p u r i t i e s like c a d m i u m chloride m a y be p r e s e n t . T h e p h o t o g r a p h i c p r o p e r t i e s can be e n h a n c e d or deteriorated, d e p e n d i n g u p o n the state of the i m p u r i t y added, i n a d v e r t e n t l y or not. For

a large

negative

stoichiometry

deviation,

VM-

and

p+ b e c o m e

negligible c o m p a r e d to Vx + and e - - T h e n , Equation 2.7.1.- g. b e c o m e s : In e = In Vx + . By using this relation, all defect c o n c e n t r a t i o n s can be plotted in t e r m s of X2 p r e s s u r e a n d the equilibrium c o n s t a n t s . This is s h o w n as a Brouwer plot, given as 2.7.3. on the next page. It is m o r e c o n v e n i e n t to use N d , the n u m b e r s of a given defect, and to define a quantity, R, as: 2.7.4.-

R = KVM Px21/2

for the MX c o m p o u n d c o n t a i n i n g S c h o t t l ~ defects. We can t h e n e x p r e s s Nd in p o w e r s of R, so that: 2.7.5.-

InNd

= 01nR

+C

We find t h a t 0, the slope, is either + 1 / 2

or + I. This simplifies m a t t e r s

greatly, as c a n be seen in 2.7.3. Here, the defect e q u a t i o n s for o u r MX c o m p o u n d {containing S c h o t t k y defects) are plotted for the case: Kion > KSh . In obtaining this plot, we have derived the following equations from equations 2.7.1. and 2.7.2.: 2.7.6.-

VM = R Vx = K s / R e=Vx + ={KvxVx}

1/2

= ( K v x.

Ks / R } 1 / 2

p = Ki ( R /KV X 9 KS)1/2 VM

$

= KVx*. VM / p = (R KVx* KS) KVM ) /

Kion

91

2.7 Brouwer' s approximation method 2.7.3.-

B r o u w e r Plot for Schottky Defects in the Hypothetical Compound,

MX.

for the

Case:

[Kion

le

'

KSh

i

i

I,

§ -" "X

"

''= I

i I

,'I

'n...,

I

. . j

I

I I I

^

I I

~,,,

. /

Z

i

11[

"0

%,

~ 9 - ,,v

"~ %, "~

I

.i,II''' .i,r

"Jill/,, .111'

.'~L'

I

I

imam

,,li"'~i,

i ~'l-'i t''" I ~ M I' I .'' i ,#" I .d# I .,d' I .li If'

%

.,nr

_

. ,,i'""'l ..,,,"" I .,,,,,,,'"' !

V M ,,,,,'"'"'

i

I Hi

jlllililliillilllllll

-i-

v;, . V

r

-"-"'-~i, +++"

I I

V

I

-+-'-

_.

I

,t:

+

--++ +4M

i

M "~1111

Jlej~T

V,-, l ++T "%, X I,.§ % +'lz.~ ~ -+ I '%.+-'- I -+-%. I • "T "~i~l ,+~

+" ~. ~r +++ Y M 4-

I I !

§247 "

',

++ ,+++

~

.. +

~-~Vx

i Hi

"',,,,..

a! i

I

I

We can readily see that concentrations and that by taking logarithms we

el

} ', +++":{in R - 1/2 lnl p + in KVM. .~l,.++ iI X 2 i +++

2.7.3.,

~

I

V M

concentrations,

~

.

.,i' ",i%

Yv

I I I

c

>

I

I

V__

]

can

now

II

are now expressed

in powers

o f R,

, w e g e t s l o p e s o f _+ 1 / 2 o r + 1. A s s h o w n

differentiate

between

namely: REGION I

-

VX + > VM

REGIONII

-

VX +

-

R E G I O N III -

VM

> VX +

VM-

3

regions

of

in

defect

The point defect

92

At l a r g e p o s i t i v e d e v i a t i o n s f r o m t h e s t o i c h i o m e t r i c c o m p o s i t i o n ( R E G I O N III), V M >> e a n d p >> V x + . In t h i s R E G I O N , 2 . 7 . 1 . - g b e c o m e s : 2.7.7. -

In V M "

=

In p

In t h e v i c i n i t y of t h e s t o i c h i o m e t r i c c o m p o s i t i o n c o n c e n t r a t i o n of d e f e c t s d e p e n d s u p o n w h e t h e r KS

(REGION II), t h e > Kion , or v i c e -

versa. The

ionic

former

usually holds

for l a r g e b a n d - g a p

compounds.

Then, 2.7.1.- g becomes: 2.7.8.-

VM-

=

+

W e c a n also s h o w t h a t t h e c h a n g e f r o m n e a r s t o i c h i o m e t r y to a n e g a t i v e d e v i a t i o n of s t o i c h i o m e t r y (REGION I) o c c u r s w h e n :

(R KS KVx* /Kion )112

2.7.9.-

=

(Ks

Kion / K v X

R) 1/2

T h i s gives us: 2.7.10.-

RII -- I

=

Kion / KVx*

-

KS

a n d in a l i k e m a n n e r : 2.7.11.-

Because

RII - Ill

the

stoichiometry

is

/ Kv X

rigidly

defined

in

REGION

II

by

the

condition: 2.7.12.-

VM

c h a n g e s in R or Px2

+ VM"

-

VX

+

VX +

do n o t g r e a t l y affect d e v i a t i o n f r o m s t o i c h i o m e t r y .

But, t h e r e a r e l a r g e c h a n g e s in b o t h Z e- a n d Y p+ in t h i s r e g i o n . T h u s , t h e s t o i c h i o m e t r i c c o m p o s i t i o n is p r o b a b l y b e s t d e f i n e d w h e n e = p . T h i s o c c u r s , as s h o w n in 2 . 7 . 3 . , at t h e value:

93

2.7 Brouwer' s approximation method

2.7.13.-

Ro

= {Ks Kion )1/2 / KVx

An e x a m p l e of a c o m p o u n d w h e r e KS o b t a i n e d values (at 6 0 0 ~

>> Kion

is IEBr. Kroeger {I 9 6 4 )

of:

KS = 8 x 1 0

"14

Kion = 3 x 10 -35 If we s u b t r a c t 2.7.9. f r o m 2 . 7 . 1 0 . , we find t h a t t h e Br2 g a s - p r e s s u r e c h a n g e s b y 1043 (since R ~ PBr2 I/2 ) over Region II. Moreover, t h e deviation

from

stoichiometry, 8 , changes

e s s e n t i a l l y c o n s t a n t . However,

only b y

10 -3, or

remains

Z e- (or Z p+ ) c h a n g e s b y a factor of

a p p r o x i m a t e l y 1021 over Region II. In e l e c t r o n i c s e m i - c o n d u c t o r s , t h e c o n d i t i o n : Kion >> KS , usually prevails. We usually get a B r o u w e r analysis like t h a t of 2 . 7 . 3 . Now, c o n s i d e r t h e c a s e w h e r e ionization is t h e n o r m . T h i s case, s h o w n i n 2.7.14.

(next

page),

is for t h e

hypothetical

semi-conductor

alloy MX,

w h e r e M a c t s as a c a t i o n , a n d X a c t s m o r e like a n anion. T h a t is, w h e n w e get i o n i z a t i o n of defects, M loses a n e l e c t r o n a n d X is positively i o n i z e d . An e x a m p l e c o u l d be GaAs. In t h i s case, e l e c t r o n i c insensitive

(Region

II)

to

composition,

whereas

c h a r g e is r e l a t i v e l y the

deviation

from

s t o i c h i o m e t r y , d , v a r i e s c o n s i d e r a b l y . In t h e p o s i t i v e - d e v i a t i o n d i r e c t i o n (Region III), t h e m a j o r d e f e c t s are VM" , p , a n d VM. T h i s gives t h e r e l a t i o n : 2.7.15.-

VM ~

VM"

+

p+

In t h e n e g a t i v e - d e v i a t i o n d i r e c t i o n (Region I), e a n d VM" p r e d o m i n a t e . For t h e m a j o r d e f e c t s of t h i s s y s t e m , we h a v e t h e c o n d i t i o n s 2 . 7 . 1 6 . o n t h e n e x t page.

shown in

The point defect

94 2.7.14.-

Brouwer Plot for S c h o t t k y D e f e c t s in the H y p o t h e t i c a l Compound. M X . W h e n I o n i z a t i o n of D e f e c t s is the N o r m i.e.-

I

[ Kion > K s h ]

I,'

le,-I

I]

le = ~I

le,

-i

k l

-~.e

1-

+ , V X

I m I

I a I

-

,i

,

V

I I

I I

..f'

,' aJmm~

-

I

,p."

N

dRiP! V

I ~ at,. I ,,i" "qirmnmmmnmmmmnnmmmmmmmmmmmmmmmmmmnmmmid,

,,,,' 'm"'"'"',.

_

".,,,'"

Z

,,,,'

J

,me"

_pm 9,,' ,,,"

m 'II. m ',,. m '%

..+ VX

Ii

-mJ""

'",,,.'%~

i "'mmm.f

I

!

im /v./

i

:/

I i m

~r'

/

_ r '

i/ ,

2.7.16.

m

I

K__ion >> Region I

-

R e g i o n II

-

R e g i o n III -

jr r

'lllm

l

mmmmm

'Im'"",,,,,,,,, V x

1 '

using

'"',,.

m

Immll

l

InlPx i

m

2

+ in Kv_ ,

rl

Ksh

e>

p

e ~ p

p

> e

Note that we have rather well defined the defects present semi-conductor,

~..~e

'1

,-.

I [lnR = 1 / 2

_/ r"-

. % '

~...._r j-,--~

I

X. M

-,m,.

Iv../ i _Fro i./

~r'rm i

v

i m n I

V -..r r'

r

~ M /

~

"'"',,,,. Ai ")b~

m I

~

/

I

rl ..rm

/!------__e

/,,,,,,.

I

I

~

r .F

relationships

defined

for t h i s t y p e o f

by Brouwer's

method.

It

2.8 Analyses of real crystals using Brouwer's method

95

s h o u l d be a p p a r e n t t h a t this m e t h o d a d d s c o n s i d e r a b l e power ability to analyze intrinsic defects w h e r e ionization is the n o r m . .8.-

to our

ANALYSES OF REAL CRYSTAI~ USING BROUWER'S METHODCOMPARISON TO THE THERMODYNAMIC METHOD

The silver halide series of c o m p o u n d s have b e e n extensively s t u d i e d b e c a u s e of their usage in p h o t o g r a p h i c Film. In particular, it is k n o w n t h a t if silver b r o m i d e is i n c o r p o r a t e d into a p h o t o g r a p h i c emulsion, any i n c i d e n t p h o t o n will create a F r e n k e l defect. W h e n the • m is d e v e l o p e d , the Agi + is r e d u c e d to Ag metal. T h e s e localized a t o m s act as nuclei to c a u s e m e t a l .....crystal formation at the p o i n t s "sensitized" by the p h o t o n action. (Note t h a t this d e s c r i p t i o n is an oversimplification of the actual m e c h a n i s m . Nevertheless, it s h o u l d be a p p a r e n t t h a t a k n o w l e d g e of defect c h e m i s t r y of the c o m p o u n d , AgBr, s h o u l d prove to be very i m p o r t a n t in u n d e r s t a n d i n g the c h e m i s t r y of p h o t o g r a p h i c films). I. The AgBr Crystal with a Divalent Impurity, Cd 2+ Consider the crystal, AgBr. Both cation a n d anion are m o n o v a l e n t , i.e.- Ag+ a n d B r - . The addition of a divalent cation s u c h as Cd 2+ s h o u l d i n t r o d u c e v a c a n c i e s , WAg , into the crystal, b e c a u s e of the c h a r g e - c o m p e n s a t i o n mechanism. s y s t e m as: 2.8.1.-

To m a i n t a i n

electro-neutrality,

we

prefer

to

define

the

(1-5) Ag +Br- - 5 C d 2+ S =

Fortunately, AgBr is easy to grow as a single crystal, u s i n g S t o c k b a r g e r T e c h n i q u e s . P o s s e s s i o n a n d m e a s u r e m e n t of a single crystal g r e a t l y facilitates o u r m e a s u r e m e n t of defects. The i m p e r f e c t i o n s we expect to find are: 2.8.2.-

VAg ,Agi , e - , p + , C d A g , a n d

[CdAg,VAg]

The last defect is one involving two n e a r e s t n e i g h b o r cation sites in t h e lattice.

The point defect

96

The following table gives the defect r e a c t i o n s governing this case:

DEFECT REACTIONS IN THE AgBr (~RYSTAL CONTAINING Cd 2 + _ e"

ao

0

~

b. C.

gAg

+ctVi

d. e.

f. g. h.

AgAg lgi

+ (xVi

--, ~

+ -~ ~_

p@

+ hgi

WAg WAg

+ Agi +

Agi + + e

1 / 2 B r 2 ~ BrBr + VBr CdAg--7~-CdAg+ + eCdAg + WAg"

[CdAg, VAgl

CdAg+ +VAg"

[CdAg, VAgl

i. For C o n s t a n t Cd CdT = CdAg +CdAg + + [CdAg ,VAg] = K j. For E l e c t r 0 - n e u t r a l i t y e- + W A g = P + + A g i +

+ CdAg+

We w o u l d normally plot In N d vs: In KAgi + In KVAg 9 However, we find it m o r e c o n v e n i e n t to plot In N d vs: 1 / T . The r e a s o n for this is as follows. E x p e r i m e n t a l l y , we fund t h a t if we fLx the Cd 2+ c o n t e n t at s o m e c o n v e n i e n t level, it is n e c e s s a r y to anneal the AgBr crystals at a fLxed t e m p e r a t u r e for t i m e s long e n o u g h to achieve c o m p l e t e equilibrium. If the t e m p e r a t u r e is c h a n g e d , t h e n b o t h type a n d relative n u m b e r s of defects m a y also change. T h u s , we plot In Nd vs: 1/T, as in the Brouwer d i a g r a m of 2.8.3., given on the next page. At low t e m p e r a t u r e s (Region III), s i n g l y - c h a r g e d d e f e c t s p r e d o m i n a t e , i.e.- 2 WAg = Agi + + CdAg+. At the j u n c t i o n of III II, the c h a r g e d moieties begin to c l u s t e r to form CdAg+ and Vag-. T h e s e in t u r n m a y form the c o m p l e x : 2.8.4.-

CdAg+ +

VAg

~

[CdAg

, VAg]

At the s a m e time, the c o n c e n t r a t i o n of Agl + d r o p s dramatically.

2.8 Analyses of real crystals using Brouwer's method

97

2.8.3.-

,,

I

IBrouwer Diagram for the AgBr Crystal Containing Cd2+I I

I

I

,I

IP,EGION I I

I

I REGION III

,I

I v

[Cd Ag, V.~q] "0

Z

~, t %.l'[Cd Ag,..,V,~g ' 4-

I REGION IIII

!

. Ag

I

,'; A g i

Ecd;,g,v,...,. ............ g] I ......... ...,." . . . . .I- " " ' ......... .,:,-'

~.,'

-'

I [Cd~

] ,,' '~Ag .,'

,'

V

..

l I LIII r I II F I dl

9 CdAg i iiiiii

iii

i iiii

iii

iii

ii i

I

'

I

II II iiI II IIIIII

+ ,,,' Ag~.,

iIII

I

A iiiiII IIIII

[Cd Ag, VAgl

Ol 0

In, P.

.~,t' I i.~ I

IRE0tON I!

I i

-

f[ l..,,'T)

i,

I RE01ONIII

'I I I 1 'I!

,,

| iI |

IREGiON lltl ~LJ / "

,

I ! I

em

I ,

I

I o

/

I I I l9

I

'

I

~ i i.

I'I

J d

!I

J

II1"

At t h e j u n c t u r e of II - I in t h e B r o u w e r d i a g r a m , t h e c o m p l e x c l e a r l y dominates.

The point defect

98 While

the

above r e s u l t s

show

how

intrinsic

defects

are

affected

by

t e m p e r a t u r e , we still do n o t k n o w h o w t h e e l e c t r o n s a n d h o l e s vary as a function

of t e m p e r a t u r e .

(Note

that

temperature,

as specified,

is

a

preparation t e m p e r a t u r e , not measurement t e m p e r a t u r e . M e a s u r e m e n t of i n t r i n s i c c o n d u c t i v i t y , o , is s h o w n at t h e b o t t o m of 2.8.3. At low t e m p e r a t u r e s , c o n d u c t i v i t y d u e to v a c a n c i e s , o v , a p p e a r s to be the m a j o r contributor: 2.8.5.-

WAg --~ WAg-

Conductivity concentrations

decreases decrease.

at

+ p+ higher

temperatures

because

FinaUy, at t h e v e r y high t e m p e r a t u r e

Agi + region

(Region I), c o n d u c t i v i t y is relatively low, a n d a p p r o a c h e s zero, b e c a u s e t h e c o m p l e x [CdAg, WAg] p r e d o m i n a t e s as t h e n u m b e r of c h a r g e d m o i e t i e s , (CdAg + + WAg) d e c r e a s e s . V a r y i n g t h e Cd 2+ c o n t e n t in t h e AgBr c r y s t a l affects t h e relative d e f e c t ratios, as s h o w n in t h e foUowing d i a g r a m , s h o w n as 2.8.6. on the n e x t page. Again, we c a n identify 3 Regions as a f u n c t i o n of C d - c o n c e n t r a t i o n : 2.8.7.-

REGION I -

Agi + > VAg

REGION II -

Agi + @ WAg

REGION III -

WAg > Agi +

R e g i o n I of 2 . 8 . 7 . c o r r e s p o n d s

closely to t h a t of R e g i o n III of 2 . 8 . 5 .

T e l t o w (1949) also s t u d i e d t h i s crystal. He m e a s u r e d c o n d u c t i v i t y of AgBr c r y s t a l c o n t a i n i n g various a m o u n t s of Cd 2+ , as a f u n c t i o n of m e a s u r e m e n t temperature. those

Up to 175 ~

of t h e m i d d l e

h e o b t a i n e d c o n d u c t i v i t y c u r v e s similar to

of 2.8.6.

But, as t h e

measurement

temperature

i n c r e a s e d , t h e p r o n o u n c e d dip s e e n in 2.8.6. t e n d e d t o f l a t t e n out. At t h e h i g h e s t m e a s u r e m e n t t e m p e r a t u r e of 4 1 0 ~ t h e c o n d u c t i v i t y w a s fiat. He c o n c l u d e d t h a t e l e v a t e d t e m p e r a t u r e s p r e c l u d e t h e f o r m a t i o n of c l u s t e r s a n d / o r c o m p l e x e s , so t h a t c o n d u c t i v i t y d u e to Agi + r e m a i n s t h e

2.8 Analyses of real crystals using Brouwer's method

99

2.8.6.-

Brouwer Diagram Showing Effect of Cd Concentration on Defect Formation in AgBr Crystal

[ Cd

I n Cd

I

4-

~g

i! i I

s' J

VJI! ,r=

u 9

Z e~

-A g +

u-

IL~U

lr

Aa.

n

n

~

m

............. ~. . . . . . . . . . . . . . . %. . . . . . . . . . . . . . b , , " -

....~'-

C:d

.I

+ _

Ag .I

I

,,'"

/

I n I

=liP'

I

.r o" .

dr

, V _

CCd.

J/

,,I

/ f

2~ u ^ g

".n~,,

/ A-'J"

g

~

t

n

u I

/

I

i .

I

",,,.Ag_ .,,,.,,,,, I

In

'.,,,

l "'nhn

9

1

]

.4=

, A g .,,i, ......................

...... "

in [ca] i

a i

i

I/

m r .,air

410~ 325 ~ C

I

.am-.

n

In [CA]]

9

Is. hi"

I

I

t~_..__L.,..--..,.-

i

225 ~

n 175

ti

~

n

I

l

...............n

I

J l "mr

/

v~]

ir

D

r

]

I~a~pd m

.,Ir

I

A,!]

2g.,r F I

..~.,,'-

_-,,,--"

./I'"',..,, A"%.g"i ,e I

Iii

n, J-.'" .

f

V

/[c.~ g ' 11

I r,+

~,g '

n-

---~

The point defect

100

m a j o r c o n t r i b u t o r to t h e conductivity, as a c c o r d i n g to t h e defect r e a c t i o n "5" of Table 2-3. LET US NOW SUMMARIZE WHAT WE HAVE COVERED TO DATE: 1. By r e w r i t i n g t h e e q u i l i b r i u m c o n s t a n t s of Table 2-1 a n d 2 . 7 . 2 0 . (ionization of vacancies) as l o g a r i t h m s , we o b t a i n e d linear r e l a t i o n s a m o n g t h e set of defect e q u a t i o n s . 2. By defining s e t s of defects as a ratio, R, we c a n t h e n plot t h e r a t i o s so as to s h o w h o w t h e relative n u m b e r s vary as a f u n c t i o n of t h e type of defect p r e s e n t in t h e c h o s e n c r y s t a l lattice. This is t h e Brouwer Method. 3. We also i11ustrated the m e t h o d for a AgBr c r y s t a l c o n t a i n i n g Cd 2+ . The

set of defect

reactions were

given,

so as to illustrate

the

p o s s i b l e defects p r e s e n t . T h e n , a B r o u w e r d i a g r a m i l l u s t r a t e d t h e n u m b e r s a n d t y p e s of defects actuaUy p r e s e n t as a f u n c t i o n of Cd 2+ c o n t e n t in t h e crystal. II. Defec~ D i s o r d e r in A g B r - A T h e r m o d y n a m i c AoDroach TO i l l u s t r a t e yet a n o t h e r a p p r o a c h to analysis of defect formation, c o n s i d e r the i n f l u e n c e of Br2 - gas u p o n defect f o r m a t i o n in AgBr. The free e n e r g y of f o r m a t i o n , ~G, is r e l a t e d to the r e a c t i o n . 2.8.8.-

Ag ~ + 112 Br2 {g) ~

AgBr{g)

{ A G A g B}r

This c a n be r e w r i t t e n as: 2.8.9.-

gAg p l / 2

Br 2

=

exp AGAgBr / R T

It m a k e s no difference as to w h i c h of t h e activities we use. If we n o w fix PBr 2 at s o m e low value, we find t h a t the i~os~ble defects in o u r AgBr crystal, as i n f l u e n c e d by t h e ~ I f ~ ,

PBr 2, will be:

2.8 Analyses of real crystals using Brouwer's method 2.8.10.-

Agi +

, WAg

,

Bri-

, VBr +

, e

and

101

~+

w h e r e w e u s e ~ for t h e positive c h a r g e to d i f f e r e n t i a t e b e t w e e n p r e s s u r e , p, of t h e e x t e r n a l gas. B e c a u s e of t h e h i g h e l e c t r o s t a t i c e n e r g y r e q u i r e d to m a i n t a i n t h e m in a n ionic c r y s t a l s u c h as AgBr, w e c a n safely i g n o r e t h e foUowing p o s s i b l e d e f e c t s : 2.8.11.-

AgBr + , AgBr ++ ,

BrAg"

, BrAg-- .

If w e h a v e t h e r m a l d i s o r d e r a t r o o m t e m p e r a t u r e

(I do n o t k n o w of a n y

c r y s t a l for w h i c h t h i s is n o t t h e case), t h e n w e c a n e x p e c t t h e f o l l o w i n g defect reaction relations: 2.8.12.-

Agi +

=

WAg"

Bri-

=

Agi +

WAg"

=

VBr +

Bri-

=

VBr +

At e q u i l i b r i u m , t h e following e q u a t i o n s a r i s e : 2.8.13.-

Ag~ Kd

+ 1 / 2 Br2 tg) ~ =

AgBr(s)

+

VAg"

+ g+

V A g - ' ~ + / p 112 Br

2

T h i s gives u s a t o t a l of e i g h t (8) c o n c e n t r a t i o n s

to c a l c u l a t e . T h e y involve

t h e foUowing c r y s t a l d e f e c t s 2.8.14.-

Ag~,

Our procedure i.e.- for AgBr:

BrBr , A g i ,

Bri

, WAg , VBr + , e-

, n+

is to s e t u p a site b a l a n c e in t e r m s of l a t t i c e m o l e c u l e s ,

The point defect

102 2.8.15.-

AgAg , + V a g BrBr

+ e-

+ VBr + + ~+

= 1

( e-

=

(~+ ~

1

--

Ag'Ag) Br+Br)

S i n c e Br2 {gas) is t h e d r i v i n g f o r c e for d e f e c t f o r m a t i o n , w e n e e d also to consider

deviation from stoichiometry,

6 . T h u s , w e also s e t a Agl-8 Br

balance: 2.8.16.-

Ag~

+Agi +

+e-

BrBr + Bri-

=

+u+

1+8

=

1

To m a i n t a i n e l e c t r o n e u t r a l i t y : 2.8.17.-

Agi +

+ VBr +

+ ~+

=

Bri-

+ WAg

+ e-

W e also s e t u p t h e f o l l o w i n g e q u a t i o n s : 2.8.18.-

AgAg

+

~xVl ~

Agi +

2.8.19.-

BrBr

+

r

Bri-

and 2.8.20.-

e-

~

+ p+ ~

+ VAg"

Ke

= Agi + V A g

VBr +

Kg

=

+

0

Kb =

/ Vi a

Bri- VBr + / Vi a

(e)

(~+)

N o t e t h a t w e h a v e d i s t i n g u i s h e d b e t w e e n t h r e e (3) s i t u a t i o n s , to wit. a. E l e c t r o n e u t r a l i t y b. T h e r m a l D i s o r d e r c. N o n - s t o i c h i o m e t r y These

(excess cation)

are the eight equations (2.8.12.

to 2 . 8 . 2 0 . )

required

to c a l c u l a t e

t h e d e f e c t c o n c e n t r a t i o n s a r i s i n g f r o m t h e e f f e c t s of t h e e x t e r n a l f a c t o r , PBr2 9 F r o m measurements of c o n d u c t i v i t i e s , transfer numbers ( e l e c t r o m i g r a t i o n of c h a r g e d s p e c i e s ) , l a t t i c e c o n s t a n t s a n d e x p e r i m e n t a l

2.8 Analyses of real crystals using Brouwer's method

103

d e n s i t i e s , it h a s b e e n s h o w n t h a t F r e n k e l d e f e c t s p r e d o m i n a t e

(Lidiard -

1957). T h i s m e a n s t h a t : 2.8.21.-

Agi + , VAg"

Furthermore,

>>

Bri

,

VBr +

Agi + so t h a t in t e r m s of o u r e q u i l i b r i u m c o n s t a n t s

VAg-

we get: 2.8.22.-

FOR FRENKEL DEFECTS:

Ke >> Kg

a n d Ke

T h u s , w e n e e d o n l y to c o n s i d e r t h e a b o v e two (2) d e f e c t s ,

>> Kd n a m e l y - VAg"

a n d Agi + , s i n c e t h e y a r e t h e m a j o r c o n t r i b u t o r s to n o n - s t o i c h i o m e t r y . c a l c u l a t i n g pO

Br 2

as b e f o r e ( w h e n 6 = 0 , s e e 2 . 7 . 2 2

& 2.7.23.),

By

we can

e x p r e s s o u r o v e r a l l d e f e c t e q u a t i o n as: 2 . 8 . 2 3 . - p I/2Br2 / (P~

1/2 = {6/2g +[( 1 +6/2~)2] I/2 } {6/2~+[ 1 +(6/2~) 2] I/2 }

B e c a u s e of t h e c o n d i t i o n s g i v e n in 2 . 8 . 1 6 . , t h e f i r s t h a l f of t h e e q u a t i o n c a n b e s e t e q u a l to o n e . N o t e t h a t w e a r e u s i n g ~ , ~ , a n d u a s t h e

eqnillhrium c o n s t a n t s 2.8.24.-

. i.e. -

~ ~. Ke 1/2

~

~

K~ 1/2

y -~Z Ky 112

5 >> 13 9 By t a k i n g l o g a r i t h m s , w e

In t h e r e m a i n i n g p a r t of t h e e q u a t i o n , can then obtain: 2.8 25.9

l121n

PBr 2

lpO

Br 2

=

In6

-

In

T h i s r e s u l t t h e n l e a d s u s to a p l o t of t h e effect of p a r t i a l p r e s s u r e

of Br2

o n t h e d e v i a t i o n f r o m s t o i c h i o m e t r y , d , for t h e AgBr c r y s t a l , a s s h o w n i n 2 . 8 . 2 6 . o n t h e n e x t p a g e (this w o r k is d u e to G r e e n w o o d - 1 9 6 8 ) . F o r ~ = 0 , t h e r e is a p o i n t of i n f l e c t i o n w h e r e t h e s l o p e o f t h e line is d e f i n e d b y t h e e q u i l i b r i u m c o n s t a n t , i.e.- [3 = K~ I12 .

The point defect

104 2.8.26.-

Effect of Partial Pressure of BrzGas on Deviation from Stoichiometry of the AgBr Crystal

99 - ~

A

+8

f

log p Br z

T h e larger this value, the flatter is the curve. All r e l a t i o n s r e g a r d i n g t h e defects c a n n o w be d e r i v e d . T h e m a j o r defects t u r n o u t to be: 2.8.27.-

WAg

-7

~+

~--

e-

~

Agi+ K~ {liKe} 1/2

pl/2

Br2

(Ke) I/2 (1/Ke) Kb( 1/ PBr2) I/2

T h i s s h o w s t h a t b o t h P+ a n d e- are m i n o r i t y defects d e p e n d e n t on

PBr 2

The following gives the s t a n d a r d e n t h a l p i e s a n d e n t r o p i e s of these d e f e c t r e a c t i o n s , a c c o r d i n g to Krosger ( 1 9 6 5 ) -

105

2.9 Summary and conclusions 2.8.28.-

D E F E C T REACTION

AS

AH

Cal. / mol I ~ AgAg ~

Agi +

+ WAg" ( F r e n k e l )

-7 AgAg + BrBr ~-

0~..

e

WAg-

25.6

+ VBr +

+ p+

I I 2 Br2 + A-gag-~ It is a p p a r e n t

AgBr + WAg- + P+

that the

Frenkel

process

Kcal. ! mol. 29.3

- 13.3

36

25

78

4.9

25.4

coupled

with

the

electronic

p r o c e s s a r e t h e p r e d o m i n a t i n g m e c h a n i s m s in f o r m i n g d e f e c t s in AgBr t h r o u g h t h e a g e n c y of e x t e r n a l r e a c t i o n w i t h Br2 gas. A final c o m m e n t : we c a n u s e t h e s e t h e r m o d y n a m i c v a l u e s to c a l c u l a t e t h e e q u i l i b r i u m c o n s t a n t s a c c o r d i n g to: 2.8.29.-

Ki

=

exp-

AGi o I R T

a n d c a n also o b t a i n t h e activity of t h e silver a t o m in AgBr f r o m 2 . 8 . 2 9 . By u s i n g e q u a t i o n 2.8.9., w e c a n s h o w 9 For aAg = 1 ,

@ T = 277 ~

For PBr2 = 1 a t m .

@ 277 ~

8

= + 1012

9 8 = - 10 -7

w h e r e t h e p l u s or m i n u s i n d i c a t e a n e x c e s s or deficit of t h e silver a t o m in AgBr. T h i s r e s u l t is d u e to W a g n e r ( 1 9 5 9 ) . 2.9.- SUMMARY AND CONCLUSIONS Let u s n o w s u m m a r i z e t h e m a j o r c o n c l u s i o n s r e a c h e d r e g a r d i n g t h e defect solid. You will n o t e t h a t w e h a v e i n v e s t i g a t e d t h e f o l l o w i n g h y p o t h e t i c a l c o m p o u n d s : MX, MXs a n d MXs+ 8- But, w h e n we i n v e s t i g a t e d c r y s t a l s in t h e r e a l world, w e f o u n d t h a t a c t u a l d e f e c t s in s u c h solids d i d

The point defect

106

not c o n f o r m e n t i r e l y to t h o s e of o u r h y p o t h e t i c a l c o m p o u n d s . Nonetheless, understand

in

order

to

how defects

comprehend

and

affect the p r o p e r t i e s

form

a

foundation

of actual solids,

n e c e s s a r y to s t u d y t h o s e h y p o t h e t i c a l c o m p o u n d s .

The

to

it was

following

is a

s u m m a r y of the c o n c l u s i o n s we r e a c h e d r e g a r d i n g t h e defect solid state: I. The c h a r g e c o m p e n s a t i o n m e c h a n i s m r e p r e s e n t s the single m o s t i m p o r t a n t m e c h a n i s m w h i c h o p e r a t e s w i t h i n the defect solid. 2. We have s h o w n t h a t defect e q u a t i o n s a n d equilibria c a n be w r i t t e n for t h e MXs c o m p o u n d , b o t h for the s t o i c h i o m e t r i c a n d n o n - s t o i c h i o m e t r i c cases. 3. The c o n c l u s i o n t h a t we r e a c h is t h a t defect formation is favored in the solid b e c a u s e of the e n t r o p y factor. difficult

to o b t a i n a "perfect"

solid,

It is m u c h m o r e

so t h a t the

defect-solid

r e s u l t s . We have also s h o w n t h a t the i n t r i n s i c defects c a n b e c o m e ionized. 4. Although m o r e t h a n one defect r e a c t i o n m a y be applicable to a given situation, only one thermodynamic that intrinsic

is usually favored by the

a n d electrical defects

conditions.

usually occur

Thus,

in pairs.

we

This

prevailing conclude conclusion

c a n n o t be o v e r e m p h a s i z e d . 5. We have s h o w n t h a t defects o c c u r in pairs. The r e a s o n for t h i s lies in t h e c h a r g e - c o m p e n s a t i o n p r i n c i p l e w h i c h o c c u r s in all solids. 6. Of the

nine

defect-pairs

possible,

only 5 have actually b e e n

e x p e r i m e n t a l l y observed in solids. T h e s e are: Schottky, F r e n k e l , Anti- Frenkel, A n t i - S t r u c t u r e , V a c a n c y - S t r u c t u r e . 7. T h e r e c a n be no doubt t h a t b o t h S c h o t t k y a n d F r e n k e l d e f e c t s are t h e r m a l in origin. 8. We have s h o w n by Statistical M e c h a n i c s t h a t we c a n calculate n u m b e r s of defects p r e s e n t at a given t e m p e r a t u r e . 9. T h e r e

is an Activation E n e r g y for defect

formation.

In m a n y

cases, this e n e r g y is low e n o u g h t h a t defect formation o c c u r s at, or slightly above, r o o m t e m p e r a t u r e .

2.10 The effects of purity

107

10 .Defects m a y be d e s c r i b e d in t e r m s of t h e r m o d y n a m i c a n d equilibria. T h e p r e s e n c e

constants

of d e f e c t s c h a n g e s b o t h t h e local

v i b r a t i o n a l f r e q u e n c i e s in t h e vicinity of t h e defect a n d t h e local lattice c o n f i g u r a t i o n a r o u n d t h e d e f e c t . 11 .There

are two a s s o c i a t e d effects on a given solid w h i c h

opposite cation

effects on site

differences

and

stoichiometry.

the

other

the

Usually, anion

site.

in d e f e c t - f o r m a t i o n - e n e r g i e s ,

the

one

have

involves

Because

the

of

the

concentration

of

o t h e r d e f e c t s is usually n e g l i g i b l e . 12 9 In e x a m i n i n g t h e defect s t a t e of real c r y s t a l s s u c h as AgBr, w e find t h a t we c a n write, u s i n g e q u i l i b r i u m c o n s t a n t s a n d d e f e c t t h e r m o d y n a m i c s derived from Statistical Mechanics and classical Thermodynamics,

valid e q u a t i o n s for t h e n u m b e r s a n d t y p e s of

various a s s o c i a t e d d e f e c t s p r e s e n t . However, we also find t h a t w e c a n n o t solve for t h e value of t h e u n k n o w n q u a n t i t i e s in a set of simultaneous

equations

since

the

equations

are

not

linearly

solvable. T h e e q u a t i o n s c a n b e w r i t t e n , b u t t h e set of e q u a t i o n s c a n n o t b e easily solved. It is for t h i s r e a s o n t h a t we have r e s o r t e d to g r a p h i c a l m e t h o d like t h a t of B r o u w e r , e v e n t h o u g h it is n o t e n t i r e l y s a t i s f a c t o r y in its s o l u t i o n s to t h e n u m b e r s a n d t y p e s of d e f e c t s p r e s e n t in real c r y s t a l s . T h u s , it s h o u l d b e clear t h a t lattice d e f e c t s in t h e solid s t a t e is t h e n o r m a l s t a t e of affairs a n d t h a t it is t h e d e f e c t s w h i c h affect t h e p h y s i c a l a n d c h e m i c a l p r o p e r t i e s of t h e solid. 2.10. -

T H E E F F E C T S OF PURITY (AND I M P U R I T I E S )

Our s t u d y h a s led u s to t h e p o i n t w h e r e we c a n realize t h a t t h e p r i m a r y effect of i m p u r i t i e s in a solid is t h e f o r m a t i o n of defects, p a r t i c u l a r l y t h e F r e n k e l a n d S c h o t t l ~ t y p e s of a s s o c i a t e d defects. T h u s , t h e p r i m a r y e f f e c t o b t a i n e d in p u r i f y i n g a solid is t h e m d m l m L ~ t i o n of defects.

Impurities,

p a r t i c u l a r l y t h o s e of differing v a l e n c e s t h a n t h o s e of t h e lattice,

cause

c h a r g e d v a c a n c i e s a n d / o r i n t e r s t i t i a l s . We c a n also i n c r e a s e t h e r e a c t i v i t y of a solid to a c e r t a i n e x t e n t b y m a k i n g it m o r e of a d e f e c t c r y s t a l b y t h e a d d i t i o n of s e l e c t e d i m p u r i t i e s .

The point defect

108

It is not so a p p a r e n t as to w h a t h a p p e n s to a solid as we c o n t i n u e to purify it. To u n d e r s t a n d this, we n e e d to examine the various g r a d e s of purity as we n o r m a l l y e n c o u n t e r them. Although we have e m p h a s i z e d inorganic c o m p o u n d s t h u s far (and will c o n t i n u e to do so), the s a m e p r i n c i p l e s apply to organic crystals as well. COMMERCIAL GRADE is usually about 95% p u r i t y (to o r i e n t ourselves, w h a t we m e a n is t h a t 95% of the m a t e r i a l is t h a t specified, with 5% being different (unwanted-?) material. Laboratory or "ACS-REAGENT GRADE" averages about 9 9 . 8 % in purity. 2.11.1.-

GRADES OF PURITY FOR COMMON CHEMICAI~

GRADE

%

opm IMPURITIES

IMPURITY ATOMS PER MOLE OF

Commercial Laboratory Luminescent Semi-conductor

95 99.8 99.99 99.999

50,000 2000 100 10

Crystal G r o w t h Fiber-Optics

99.9999 99.999999

1 0.01

~QMPQUND. 3.0 x 1022 1.2 x 1021 6 x 1019 6 x 1018 6 x 1017 6 x 1015

The GRADES listed above are n a m e d for the usage to w h i c h they are i n t e n d e d , a n d are usually m i n i m u m purities r e q u i r e d for the particular application. Fiber-optic m a t e r i a l s are c u r r e n t l y p r e p a r e d by c h e m i c a l v a p o r deposition t e c h n i q u e s b e c a u s e any h a n d l i n g of m a t e r i a l s i n t r o d u c e s impurities. F u r t h e r m o r e , this is the only way found to date to p r e p a r e t h e r e q u i r e d m a t e r i a l s at this level of purity. The frontiers of p u r i t y a c h i e v e m e n t of solids p r e s e n t l y lie at the fraction of p a r t s per billion level. However, b e c a u s e of E n v i r o n m e n t a l Demands, analytical m e t h o d o l o g y p r e s e n t l y available far exceeds this. We can now analyze m e t a l s a n d anions at the femto level (parts per quadrillion= 10 -15 ) if we w i s h to do so.

Nevertheless, it is becoming apparent that as h/gh purity inorganic solids are being obtained, we observe that their physical properties may be

2.11 Nanotechnology and the solid state

109

different than t h o s e usually a c c e p t e d for the s a m e c o m p o u n d of lower

purity. The h i g h e r - p u r i t y c o m p o u n d m a y u n d e r g o solid state r e a c t i o n s s o m e w h a t differently t h a n t h o s e c o n s i d e r e d "normal" for the c o m p o u n d . If w e reflect b u t a m o m e n t , we realize t h a t this is w h a t we m i g h t expect to o c c u r as we obtain c o m p o u n d s (crystals) c o n t a i n i n g far fewer i n t r i n s i c defects. It is u n d o u b t e d l y true t h a t m a n y of the d e s c r i p t i o n s of physical a n d solid state reaction m e c h a n i s m s now existing in the literature are only partially correct. It s e e m s t h a t p a r t of the frontier of k n o w l e d g e for C h e m i s t r y of The Solid State lies in m e a s u r e m e n t of physical a n d chemical p r o p e r t i e s of inorganic c o m p o u n d s as a function of purity. A case in point is t h a t of the so-called "Nano-Technology", the v a n g u a r d of r e s e a r c h into c h e m i c a l a n d physical p r o p e r t i e s of m a t e r i a l s in the r e s e a r c h c o m m u n i t y today. 2.11.-

N a n o t e c h n o l o g y a n d The Solid S t a t e

In the next c h a p t e r , we shall e x a m i n e the m e t h o d s of c h a r a c t e r i z i n g solids including: the p r o p e r t i e s of individual particles (including single crystals); the solid state r e a c t i o n s t h a t are u s e d to form various solids; a n d m e t h o d s u s e d to describe an a s s e m b l y of particles (particle size). We will find t h a t m o s t solid m a t e r i a l s are c o m p o s e d of particles in the 1- 3 0 0 ~m. range. This is 1-300 x 10 -6 m e t e r s . Most inorganic m a t e r i a l s are p r o d u c e d having particles in this size range. T h e s e are the familiar p o w d e r s s u c h as coal dust, inorganic chemicals, silt a n d fine sand, a n d even bacteria. C u r r e n t r e s e a r c h defines n a n o - t e c h n o l o g y as the use of m a t e r i a l s a n d s y s t e m s w h o s e s t r u c t u r e s and c o m p o n e n t s exhibit novel a n d significantly c h a n g e d p r o p e r t i e s w h e n control is achieved at the atomic a n d / o r m o l e c u l a r level. What this m e a n s is t h a t w h e n a given m a t e r i a l is p r o d u c e d having particle sizes at fractions of a ~rn (micron), it displays novel p r o p e r t i e s not found in the s a m e material w h o s e particles are l a r g e r t h a n 1.0 ~ n (micron). N a n o t e c h n o l o g y involves d i m e n s i o n s w h e r e a t o m s a n d molecules, a n d i n t e r a c t i o n s b e t w e e n them, influence their c h e m i c a l

110

The point defect

a n d p h y s i c a l b e h a v i o r . A u t h e n t i c n a n o - p a r t i c l e s are so s m a l l that~there are m a n y m o r e a t o m s o n t h e surface of e a c h p a r t i c l e t h a n t h e n o r m a l p a r t i c l e of 1.0 ~ma. P a r t i c l e s of 1.0 ~rn, i.e.- 1000 n m or 1000 x 10 -9 m, m a y s e e m small but those

atoms on the

surface of e a c h p a r t i c l e

are only about

0 . 0 0 1 5 % or 15 in a million of t h e a t o m s c o m p o s i n g t h e lattice. A n a n o p a r t i c l e w i t h d i m e n s i o n s of 10 n m . b r i n g s t h e surface a t o m s to about 1 5 % of t h e total a t o m s c o m p o s i n g the particle. At this size range, q u a n t u m p h y s i c s a n d q u a n t u m effects d e t e r m i n e s

t h e p r i m a r y b e h a v i o r of s u c h

particles. C o n s i d e r t h a t a t o m s have a size r a n g e of about 1-2 A. Most i n o r g a n i c solids, w i t h t h e e x c e p t i o n of halides, sulfides (and o t h e r pnictides),

are

D

b a s e d u p o n t h e oxygen a t o m , i.e.- oxide = O- , w h o s e a t o m i c r a d i u s d o e s not change

even w h e n

sulfates, p h o s p h a t e s

a n d silicates

are f o r m e d .

Oxide h a s a n a t o m i c d i a m e t e r of 1.5 A or 0 . 1 5 nm. = 0 . 0 0 0 1 5 ~m. Nanoparticles particle

are c l u m p s of 1000 to 1 0 , 0 0 0 of 0 . 1 5

~n.

in d i a m e t e r .

They

a t o m s . The l a t t e r w o u l d be a c a n be m e t a l

oxides,

semi-

c o n d u c t o r s , or m e t a l s w i t h novel p r o p e r t i e s useful for e l e c t r o n i c , optical, m a g n e t i c a n d / o r catalytic uses. W h e n light m e e t s p a r t i c l e s this small, it b e h a v e s differently. One e x a m p l e is TiO 2 ( t i t a n i u m dioxide), w h i c h h a s b e e n u s e d as an ultra-violet a b s o r b e r for s u n - s c r e e n p r o d u c t s . The usual p r o d u c t is a p p l i e d to t h e skin as a w h i t e - r e f l e c t i n g c r e a m . The p r o c e s s for m a k i n g t i t a n i u m dioxide varies b u t usually e m p l o y s TiC14 a n d its h y d r o l y s i s u n d e r c o n t r o l l e d c o n d i t i o n s . When particles

of 50 n m .

are formed,

the

sun-screen

cream

now is

t r a n s p a r e n t since the p a r t i c l e s absorb a n d s c a t t e r visible light m u c h less t h a n t h e l a r g e r p a r t i c l e s p r e v i o u s l y u s e d . However, t h e ultraviolet light a b s o r p t i o n is n o t c h a n g e d , only the reflection of w h i t e light. As we

shall see

in t h e

next

chapter,

particles

are

formed

first

as

"embryos" w h i c h are m i n u t e p a r t i c l e s of t h e n a n o - p a r t i c l e class. T h e s e t h e n grow into "nuclei" w h i c h t h e n grow into particles. The

science of

p a r t i c l e g r o w t h h a s b e e n a m a j o r s o u r c e of o u r u n d e r s t a n d i n g of p a r t i c l e s . As we have a l r e a d y s h o w n , lattice defects, d u e to t h e r m a l effects, are t h e n o r m w h e n a c r y s t a l g r o w s to sizable p r o p o r t i o n s . However, w h e n n a n o -

111

2.11 Nanotechnology and the solid state

crystals are formed, the n u m b e r s of e m b r y o s a l l o w e d to form, w i t h c o r r e s p o n d i n g nuclei, are controlled. The nuclei growth is t h e n c o n f i n e d to atomic d i m e n s i o n s . Much of this growth forms by " S p o n t a n e o u s Assembly". T h a t is, w h e n n a n o - p a r t i c l e s are formed, a t o m s are a d d e d o n e at a time to form the embryo a n d t h e n the nucleus. It is the size of t h e n u c l e u s t h a t is r e s t r i c t e d . I s u b m i t t h a t the p r e d i c t i o n given in the previous section, i.e.- see p. 107, h a s already b e e n realized. T h a t is, n a n o p a r t i c l e s form by self-assembly of a t o m s (ions) into defect-~ree crystals. It is this lack of intrinsic d e f e c t s t h a t give s u c h particles their u n i q u e c h e m i c a l a n d physical p r o p e r t i e s . Note t h a t if n o r m a l growth were allowed to p r o c e e d further, t h e n w e w o u l d have the n o r m a l d e f e c t - c r y s t a l . Suggested Reading 1. A.C. D a m a s k a n d G.J. Dienes, Point Defects in Metals, Gordon

&

Breach, New York ( 1 9 7 2 ) . 2. G.G. Libowitz, "Defect Equilibria in Solids", Treatice

on Solid State

Chem.- (N.B. Hannay- Ed.), I, 3 3 5 - 3 8 5 , (I 9 7 3 ) . The Chemistry of Imperfect Amsterdam (1964). 3. F.A. Kra~ger,

Crystals, N o r t h - H o l l a n d ,

4. F.A. K r u g e r & H.J. Vink in Solid State Physics, Advances in Research and Applications (F. Seitz & D. Turnbull-Eds.), pp. 3 0 7 - 4 3 5 (I 9 5 6 ) . 5. J.S. A n d e r s o n in Problems of Non-Stotchtometry (A. R a b e n a u - E d . ) , pp, 1-76, N. Holland, A m s t e r d a m ( 1 9 7 0 ) . 6. W. Van Gool, Principles of Defect chemistry Academic Press, New York ( 1 9 6 4 ) .

of Crystalline Solids,

112

The point defect

7. G. Brouwer, "A General A s y m m e t r i c Solution of Reaction Equations C o m m o n in Solid State Chemistry", Philips Res. Rept., 9 , 3 6 6 - 3 7 6 (1954) 8. A. B. Lidiard, "Vacancy Pairs in Ionic Crystals", Phys. Rev., I 1 2 , 5 4 - 5 5 (1958). 9. J.S. A n d e r s o n , "The Conditions of E q u i l i b r i u m of N o n s t o i c h i o m e t r i c C h e m i c a l C o m p o u n d s , Proc. Roy. Soc. ( L o n d o n ) , A185, 6 9 - 8 9 (1946). I0. N.N. Greenwood, Ionic Crystals, Lattice Defects & Non-Stotchiometry, Butterworths, London (1968). 1 I. Hayes a n d S t o n e h a m , "Defects a n d Defect P r o c e s s e s in Non-Metallic Solids"- J. Wiley & Sons, New York ( 1 9 8 5 ) .