Zentralbl. Mikrobiol. 146 (1991), 131-135 Gustav Fischer Verlag lena
[University of Agriculture, Nitra, CSFR]
The Rate and the Direction Parameters of Humus Transformation in Intensively Cultivated Orthic Luvisols SONA SOTAxovA With 2 Figures Key words: Green manure, humus transformation parameters, trends, rate, approximative and stable values, time of stabilization
Summary The transformations of organic substances and soil humus are running in stages, consequently their intensity, rate and direction change. Inhibition and acceleration of the rate of the main components of mineralization and humification are closely connected with biorythm and soil organisms activity, with changes of soil moisture, temperature and aeration, with the presence of active organic compounds and humus substances. The increased amount of water soluble sugars, "non-matured" lignin and fulvic acids are an indicator of the labile system characterized by rapid course of changes and longer period of stabilization or dynamic equilibrium aquirement in the process of mineralization and humification.
Zusammenfassung Der TransformationsprozeB organischer Stoffe im Boden und im Bodenhumus geht etappenweise voran. Dabei andert sich seine Intensitat, Gesehwindigkeit und Riehtung. Die Dampfung und Beschleunigung seiner Hauptkomponenten, der Mineralisierung und Humifizierung, hangen eng mit dem Biorhythmus und der Aktivitiit der Mikroorganismen im Boden, mit der Feuehtigkeit, der Temperatur und Beltiftung, mit der Anwesenheit aktiver organischer Verbindungen und Humusstoffe zusammen. Die erhiihte wasserliisliehe Zuckermenge des "nieht ausgereiften" Lignins und der Fulvosauren ist Indikator seines labilen Systems mit sehnellem VeranderungsprozeB aber mit langerer Stabilisierungszeit, oder Indikator der Erreichung eines dynamischen Gleichgewichts im ProzeB der Mineralisierung und Humifizierung.
The transformations of organic substances and soil humus were doubtless directly connected with the development of soil organisms and the alteration of their activities. The green manure was most effective. Noy AK (1958) described the marked of different types of green manure on the multiplication of soil microorganisms and the total respiration of soil. The legumes were found to exert the most stimulative effect. MARSHALL (1976) described many possibilities of the relationship between bacteria and other microorganisms and the features of soil and the trophic effect of added organic substances on the mineralization - humification relationship in soil. ULEHLOY A et al. (1988) described many possibilities how to control the microbial process through the organic matter inputs. The easily decomposable organics like root exudates increase the overall activity of microorganisms and enable the rapid increase of their counts, but contribute little to the humus formation. The opposite is fact for the hardly decomposible substrates like straw or roots of mature plants. Green manure exerts an intermediate effect (LYNCH 1983), it enables the rising of almost all microbe groups and causes also the slight humification. 9*
132
S. SOTAKovA
Our paper aimed to add some analytical date to the knowledge of the green manure effect on the soil humus and its dynamics. These analytical dates are the results acquired in the course of model laboratory and field experiments.
Material and Methods In this paper field experiments results in two meteorologically different years are presented, winter wheat fertilized by green manure and commercial fertilizers. Variants: HM - orthic luvisol of the loess in Zitava Hilly country of Danube Lowland, HM + ZH - soil supplied with green manure, HM + ZH + NPKCa - soil supplied with green manure and NPKCa fertilizers. Green manure (bean-oats) - amount in t· ha- t of dry matter, carbon (C), water soluble sugars (WSS), hemicellulose (HC), cellulose (CE), lignin (L), and proteins (P) in %: Season 1982183 1983/84
Amount ZH 5,75 5,90
C 36,5 37,1
HC 8,98 12,84
WSS 7,27 13,50
CE 18,42 16,63
L 42,40 35,56
P 10,90 11,00
Commercial fertilizers: 110 kg' ha- I N (NH4 N0 3), 38,4 kg· ha- I P (superphosphate and double superphosphate), 91,3 kg· ha- t K (50 and 60% KCI), 200 kg· ha- 1 Ca (CaC03 ). Meteorologicall conditions: Average yearly air temperature and sum of precipitation in the years 1982 -10,1 °c, 483 mm, 1983 -1O,4°C, 510,3 mm, 1984 -9,15°C, 529,6 mm. In vegetation season 1982/83 (450 days) -10,5 °c, 736,8 mm (average soil temperature 13, 1°C), and 1983/84 (428 days) -11,4 °c, 662 mm (soil temperature 12,5 0C). Table. I. Parameters of humus state in orthic luvisols (in the year 1982/83). Variante
Date
%N,
% Cox
HA % Cox
FA % Cox
Orthic luvisols (HM)
M A S DS R
0.14 0.14 0.10 226 0.88
1.17 1.17 1.01 126 0.69
24.73 24.70 19.39 214 0.40
27.23 27.19 21.95 134 0.39
M
0.14 0.13 0.10 372 0.73
1.18 1.18 1.03 123 0.72
23.99 25.43 19.39 851 0.48
28.24 28.12 21.95 112 0.38
0.14 0.14 0.09 330 0.56
1.21 1.21 1.03 120 0.69
24.48 24.46 19.39. 180 0.44
27.95 27.83 21.9 111 0.35
Orthic luvisols (HM + ZH)
+ green
manure
Orthic luvisols + green manure (HM + ZH + NPKCa)
A S DS R
+
NPKCa
M
A S DS R
Values: M = measured, A = approximative, S = stable, DS = days of stabilization, R = coefficient of correlation
The analytical dates were obtained from seven sequential soil sampling in vegetation season of beans-oats and winter wheat (Cox - according to Tyurin in Simakov modification, humus fractions - according to Tyurin in Ponomareva-Plotnikova modification). To determine the rate and the direction of humus transformation in orthic luvisol supplied with green manure, mathematic analysis has been used. This analysis is based on results acquired in the course of field experiments, including approximation (by linear least square estimations), relation of experimental value to approximational one is expressed by coefficient of correlation. Determination of stable levels, time of stabilization, trend and averige daily rate, elements of harmonic analysis and differential calculus were used (regressive analysis by exponential, polynomial function and trigonometric series).
Rate and Direction Parameters
1982/83
TREND
RATE
. ,.
: U/4,
.., .:
I
Q05
%Cox HM
.
~
.FA
,:' HA " .t.: / ~FA
0,2'
:
251 V l_---AA--b.----- - - A---bHA
t-...
0 - 0 COX
0
1,1 ,
Ii
j
015
l U i
110 116 162
397
DAYS
6(\17: '0.19 r-
15
116
0~5
HM+ZH
30
0,10
....................__
__
2S-f
/
\~
l :'
~7"'~ ;
~--- ••- _ . - - - - - - - . - - ... HA
1,2i'-.. 1,1 r-'
1"T
015
0----0
I
(ox
397
HM+ZH+NPKCo
---- ------- ---.~
, .. ,
--
1,1 o15 ~
110
Q05
•
I
~<>-:4 ~
\
// ~/i \ : \
\\
Fig. I. Field experiment-trend and rate 1982/83.
-,------,
397
450
/'
'
......a;
•
\
I
/
' '
I "~".,.HA ' \\I
:
'
•C
ox
I
I
•
I
\! I'
/
",I I,
0,15
DAYS
fFA
•
:~ \
0-0(0)(
I
450
r. !\
0,10
110 116 162
162 397 DAYS
116
,\
0.0
II
• Cox
•
0.10
_ _ or_-.-------4--_HA
--
20 12
~\fil
\i
(ox
,t'
251 \ /
\ /1
\:
.
15
0,1
,........
11
:1
.\:
\I V
450 %
1
HA
: :'
I \
\ 1 \ I \ I
DAYS
~,1
i
:
f "
\
0,15
~
~
:
FA
------..-.---.-----~
110 116 162
% Cox
:
~,
j"*"O
,
\
0.10
---,
20
Q05
:
. ' 1\,:
......'
\
I
I
/1l. l
/
0.05
.'
, /
FA
...... '"
"
,--------r---. 162 397 450 DAYS
r -
J
110
% Cox
°/0 Cox
(ox
'
1:'
~
o
450
/
•
:,~
:
I
A
V
'~: 1\
0.05
I
'
6
't ,/ '
.J-
...
\! ~
0.25 e---
:
\ ~:' \
20 1,2
:
,,
lO
_
I
I
%Cox
i
133
Y
"
o
15
,~--------.,
110
116
162 3'11 DAYS
,
450
134
S. SOTAKOVA
1983/84
TREND HM
%Cox 35
"-"',,
.... _.- ••••-.-••-••---•••-...... FA
//,' 304
t' /
I ,
1
115 122 169
HM+ZH
,.,..
3'
0 _ _0
-------"
(ox
_
379
428
~
_ FA
"\
i
....,! 0.38 6
I
115
C
., ,, .
..' !
{
"
\
0----0
00--0
Cox
•i \
0,1
\\ I:
'' \
'' '"
-r---
---11
115122 169
7'
I
DAYS;/9
0,2-
\~ V :f
,
\
I
HM+ZH+NPKCa
/
..
%
FA
"M
I
(ox
0,1
1,1·'
1_ _ I I
- -C - - - - - - - - , Cox
'0<
II
r -
I
115 122 169
DAYS
379
I
428
Fig. 2. Field experiment-trend and rate 1983/84.
r--~
169 379 DAYS
428
.
.'
.~
"
\\
,:
,
: \ t ..... i.....'
I
:\ I
HA
I
122
" '. .... ',.
\
•
../
115
-
__..--.----------.
C
:
0,1
,,I'
,/ ~' \ ~~~\I/,.
0,2
,I
I
0.54 I 15
o
428
.. FA
~
\ \ I: ••
015
\
I" /"'-;=--/- HA '...:' (ax J.1""•/
f-""#,
,'i.
I
428
,
'A
25i \ _ - -..... - - - - - - - - - - . - - . H A 1.2t:. . ;
I
169 379 DAYS
/,
,l'
:
,, ,,, \' ,,
015
122
I
0,1
r
I
I
15
0.2
"",
.
"J
(.
: \I
I
FA
"'''4 Cox , : HA
i \ /: \
l
,/
d;~
i\'
o %
\'
'\
!
:J
I '
DAYS
II
30
\
\~,:1
...---------
%C ox 35
"
l :.. _
015
II
,t'
,I ,
:'
I
30
,/"\
0,2
..-
Cox
RATE
Cox
0,1
00_ _ 0
0/0
%
c
">.... ,Cxr~(ox V ",/
...
:\
\\ :\
FA
d:::.' HA
t r.
\ \0341:
0.2
\ 0:1,5:
o
'--'~I-~
15
115
122
169 379 DAYS
428
Rate and Direction
P~rameters
135
Table. 2. Parameters of humus state in orthic luvisols (in the year 1983/84). % Cox
HA % Cox
FA % Cox
0.13 0.13 0.05 343 0.22
1.09 1.09 1.04 230 0.97
25.54 25.51 24.67 193 0.82
33.02 33.13 26.64 206 0.52
M A S DS R
0.13 0.13 0.08 832 0.26
1.07 1.07 0.99 244 0.88
25.35 25.32 23.64 292 0.60
33.74 33.84 24.67 117 0.61
M A S DS R
0.17 0.17 0.11 1455 0.76
1.10 1.10 1.01 815 0.77
26.01 26.03 23.05 129 0.75
32.65 32.73 25.76 190 0.50
Variante
Date
Orthic luvisols (HM)
M A S DS R
Orthic luvisols (HM + ZH)
+ green
manure
Orthic luvisols + green manure (HM + ZH + NPKCa)
+
NPKCa
%N,
Results and Discussion The transfonnations or organic substances and soil humus are running in stages, consequently their intensity, rate and direction change. Inhibition and acceleration of the rate of the main components of mineralization and humification are closely connected with biorythm and soil organisms activity, with the changes of soil moisture, temperature and aeration, with the presence of active organic compounds and humus substances. The increased amount of water soluble sugars, "non-matured" lignin and fulvic acides are an indicator of the labile system characterized by rapid course of changes and longer period of stabilization or dynamic equilibrium acquirement in the process of mineralization and humification. As seen from the tables, graphs of trends and average daily rate, fonnation and decomposition of humus substances, temperature variation, moisture, activity of soil organisms, even in case of less marked changes in carbon content, has influence on the humus acids content changes, fulvic acids above all. The supplementation the soil with green manure extends the period of dynamic equilibrium acquirement in humus content and its component up to 80-120 days.
Literatur LYNCH, J. M.: Soil Biotechnology. Microbial factors in Crop Productivity. Oxford-London-Edinburgh-BostonMelbourne, Blackwell Scientific Publications, 1983. MARSHALL, K. C.: Interfaces in Microbial Ecology. Cambridge, Massachussets, Harward University Press, 1976. NOVAK, B.: The green manure from the microbial point of view. Rostl. Vyroba (1958),6-7,791-798. SOTAKOVA, S.: Organicka hmota a urodnost p6dy. Bratislava, Priroda, 1982. SOTAKOVA, S.: Vplyv zelenej hmoty miesanky viky a ovsa na dynamiku humusu a tvorbu huminovych kyselin v hnedozemi. Rostl. Vyroba, 32 (1986), 9, 905-911. ULEHLOVA, B., KUNC, F., VANCURA, V.: Nutrition and energy sources of microbial populations in ecosystems. In: Soil Microbial Associations. Control of Structures and Functions. (Eds.: VANCURA, V., KUNC, F.) Academia, Praha 1988. Aufhor's address: Prof. Ing. SONA SOTAKOVA, DrSC., University of Agriculture, Lomonosova 2,94967 Nitra, Czechoslovakia.