IN H E ~ T A N D M ~ S S ~ R A N S F ~ Vol. 4, pp. 185 - 192, 1977
Perga~onPress Printed in Great Britain
THE RATE OF mASS TRANSFER IN A SOLAR REGENERATOR
V. Sriramulu and R.C. Gupta Dopsrtsant of Mechanical Engineoring Indian Institute of Technology
P. Gandhldasan,
Phldras,
India
(Ctzm~nicatsd by J.H. Nhitelaw) ABSTRACT A study o f the e f f e c t o f s moving l i q u i d f i l m and an a i r stream on gas-phase c o n t r o l l e d c o n v e c t i v e heat and mass t r a n s f e r has been aads,whl©h would f i n d widespread a P p l i c a t i o n I n devices which u t i l i z e s o l a r energy. The governing equations f o r a i r phase have been solved f o r v a r i o u s v a l u e s of' the r a t i o o f l i q u i d t o a i r v e l o c i t y . Profiles o f v e l o c i t y , toapsrature~and c o n c e n t r a t i o n as w e l l ae t h e i r g r a d i e n t s are p:esanted. The r e s u l t s , c o m p a r e d w i t h experimental f i n d i n g s obtained v i t h mass t r a n s f o r beln 9 extended to the l i q u i d phaee as w e l l , s h ~ an encouraging trend.
Introduction
W i t h l n c r e a e l n g importance b s l n 9 given to the u t i l i z a t i o n o n o r o y , s i a p l e and r e l i a b l e
of solar
methods o f o p e r a t i o n o f devices t h a t convert
s o l a r energy t o u s e f u l fotnm are ve~f much at a the main o b j e c t i v e s o f the u t i l i z a t i o n
of solar
premium.
For, one o f
energy, I s to
the dwelopmont o f 8uch devices and t h i s i e l i n k e d w i t h f i n d i n g but e f f e c t i v e and economical processes.
185
hasten siaplop
The present work considers the
186
P. Gandhidasan, V. Sriram/lu and M.C. Gupta
Vol. 4, No. 3
processes that govern the per?crashes or • solar ccll ootor-Qun-raganerator , an i m p o r t a n t component o f a s o l a r a i r o o n d i t i o n s r c a l vlew point.
~ 1,2
~ from a t h e o r e t i -
In such a u n i t , the absorbent solution flows down the
c o l l e c t o r and an a i r stream that f l o r a
past i t ,
removes moleturs from the
solution thereby ooncontrotlng i t . Statement or Problem In t h e p r o b l e m d i s c u s s e d above, am i n t i m a t e the solution
end t h e a i r
tion
flov
as a t h i n
unit
s i m p l e [ 3,4 ] .
film
has been found t h a t
ever the collector
film,
making t h e s o l u -
renders the operation of the
with the letter
energy.
flowing over n flat
Since t h e thtckMOee Of t h e l i q u i d
r e g a r d e d ee n e g l i § i b I y s m a l l , solely
It
between
The p r o b l e m c o n s i d e r e d I s one o f • s o - c u r r e n t
s t r e a m and • s o l u t i o n which a b s o r b s s o l a r
stream.
contact exists
from t h e gem phase.
the r e s i s t a n c e
Tks i n s o l a t i o n
t o ames t r a n s f e r
foiling
air
plato, film
la
atoms
on t h e a b s o r b e r i s
assumed c o n s t a n t s The e f f e c t for
tirol
o f a mevimg I R t o r f e o o on c o n v e c t i v e h e a t and osss t r i n e -
betmamn l i q u i d
investigated
to • limited
o f h e a t and mass t r a n s f e r Intezeetingl~t be s u c c e s s f u l l y
and 9 e l has boon t h e o r e t i c a l l y extent [ S,4,7]
Is a related
s t u d y an analysis
h a s boon made s s i o g an a p p r o x i m a t e method [ 8 ].
rot s problem of this employed.
•
and e x p e r i m e n t a l l y
nature the Slaoiue tronefoz~atien
The g o v e r n i n g d i f f e r e n t i a l av
-
- y
san
equations a:a
C1)
O
02. 2
(2)
oy aT
aT
(3) ~T 2
- B
02q aT =
(4)
Vol. 4, NO. 3
M~SS~]NAS(XARRBG~2~%~TC~
These equations with the following boundary conditions are to be y
~
O.
U t Ue~
T n Te~
q t
qe
u =uod
T . Too, Cl =
qm
187
aolvedl
(s) y-..~.ao,
The above set of pertLel d l f r e r e n t L a l equatLons are reduced t o o r d i nsry dLfferentLal equstLons by def/nLng a dLmmeLonlees vezLeble
and a
stzsam runctLon as I'ollows! J' ual
It
oan
be shown that these functLone s a t S s f y thm ¢ontLnu£ty equations.
Rolmrltum, anez~jy~and dSffueLon equations ere reduced to the follouLng dLmonslonlsss forms I rr t + 2r'*
e" + ~
"v" + ~ r
.
o
(?)
r e, . 0
(8)
"v'" o
(9)
The boundary c~ndLtLons ere reduoed to the roZlo~Lng dLaeneLonlese foz~s8 u
r(o)
-
o,
r,(o)
.
_s~,
e(o)
.
o,
e(m)
.
1
%(o)
.
o,
"vCa=)
.
1
r,(m).l (lo)
Rweulto and OlmouamJont The above dLfl'erer~LI1 squat/one v£th theL: ~©omanying boundary randLtLone wez~ solved on an ZBR 370/155 Compute: by Con~Lnuous System IqodellLng P : o g : l l (c.qflP).
Figure 1 Ihaue typ£cel valrJ.atJ.ons Ln velocLty~
188
Vol. 4, No. 3
P. Gandhidasan, V. Sriramulu and M.C. Gupta
08
/.0
:.
010.2
-"
0
2
0
4
6
8
FIG.1 P r o f i l e s o f V e l o c i t y , Temperature, C o n c e n t r a t i o n ,
and thelr gtadlents for
o.t5
1
i
I
u/uao= 0.2
I
1
F
I
~1
Air- Woter 5yMern Plote Temperoture : 50"C
0.4
Us~Urn
=0.2
~ o.3 E
0.2
2
0.;
o 0
I
I 0.2
I
l
1
0.4
1 G6
I
I OJI
Gr FIG.2 V a r i a t i o n o f k w i t h Gwaetz number
Vol. 4, NO. 3
~%SSTRANSFI~ IN A S C E A R ~ T Q R
189 u
tmparature
and c o n c e n t r a t i o n
as wall ae thoir
gradianto
for
a
u
= 0.2.
~D
The average mass t r a n s f e r : o a f J ' i o l o n t given b e l ~
k
Am e v aluat ed from t he equatian
far 5c = 0 . 6 . So
oq
[ r"(o)]
(--)
0y
.
.
(q~-ql)
y.o
f
m
[r']
x = _ y
sc
(.)
o
Figure 2 ohowo the v a r i a t i o n o? putad f o r • t e s t p l a t e
1 •
k
2ono and
ated mbovI t h e absorber aur~aoI. two e u r f a o I I and t h i absorber.
wll;h G~iotz number, which h a l been oom0.3 m wade, w i t h 8 0 1 a u p l a t o s i t u -
The o£r s t r u m 18 o o n f l n o d between
thrum
o b N r b o n t s o l u t i o n (CaloJ~Jm C h l o r i d e ) ?2owI over
Figure 3 d e p l o r e the v a r i a t i o n o f
I t h a n o l - ~ a r b o n d l o x £ d e :yotom.
k
t he
w i t h Craotz number f o r an
This I I p a z ~ l o u i l r i y ohoaen i n view o f the
f a c t t h a t both e x p e r i m e n t a l and ~hoorotlc81 : o e u l t o have boon zl)ozt;ed [ 8 , 7 ] f o r t h e case o f t h e ZLquid stream o f f e r i n g r e s i s t a n c e owing t o Ate f i n i t e t h i c k n e e l | hence, i t
a f f o r d s a roman: o f oomparlann w i t h t h e pr as o n t
obtained for a thin film.
I t i s d i s c e r n i b l e t h a t w i t h t he l i q u i d flmd£no
as a t h i n ? f i n , t h e M a l l t r a n l f o r expoot I n t u i t i v e l y .
da~,s
c ~ a f f l o L e n t 11 hLOhor, as one
~ouid
The l n © : e a N i s me muoh e l 200 per l e n t , • oon~lLuelon
which would a i d th e development o f a #molar 14~enerarl~or.
I r l g u r l 4 ottawa
u
k
ploL~md a o a i n e t
water,
I uGo bflth l r m r o o e i n 0
f o r the expected r a t e o f o p e r a t i o n el* a rogenou
~
,
k
ol
t o d e t e z u l n e the optimum v a /u o o f inmalotlon.
lnoroalml.
F u r t h e r wed( 18 i n pro|Items
u u
#m f o r given oondlt£ona of' am
190
P. ~ s a n , 0.4
V. Sriranlllu ard M.C. Gupta
l
i
l
I
I
I
C02-Ethano/ 5ystem Plate Temperature = 25°C - 0.3
EcJ "- 0.2
0.1
o
1 0
l
I
0.2
I
I
0.4
I 0.6
Gr
FI~.3 Va~latlon of k v l t h G~aotz number
o.5
i
I
I
Re = 1.645 x I0 5
t ~¢ 0.4
o.~
o.
I i o.%/:~
I o.,
FIG.4
Va=i=tl=. =f k vith v / v
Vol. 4, No. 3
Vol. 4, NO. 3
K%SS~I~ANmrER IN A S C ~ A R ~ T O R
191
N~men:l~u~
0
dlrrusLon o o e f r t e i e n t
r(~ )
d£eensLonle88 v a r i a b l e
(;it
Graetz nuabo~
k
ma88 t~ert8~er o o e r r i c i o n t
Pit
P : a n d t l ntmber
qoo~qs the concentratLon or the s o l u t e outoide the boundary l a y e r , and at the l i q u i d 8urfa©e r e s p e c t i v e l y Re
Reynolds ntmber
Sc
Schmldt number
Too ,T O temperature o f f r e e o t r stream end l i q u i d 8urfaoo ]respectively uW , u a v e l o c i t y or al~ or:earn outside the boundary l a y e r and at 1LquLd eurPaoe : e e p e o t i v e l y u, v
gas phase v e l o c i t y ~mponento i n the
x
and
y
dLrectLon
~oopootLvoly x
the dLotanco pare t l e l
to the 11quLd outface
y
the dLotance noz~al to the 11qutd surface
G
d£monoLonleoo tampor~u~op
T-T T-T 8 10
ii ¥
dimme/onleoo ooncentrskLon, qo-q qm'q~
"(
klnemetlo v l o o o e l t y
"1;
thel~al dLPfuolvlty
?
eklmam funot :Lon
Superscript prime ( e ) denotee d i f f e r e n t i a t i o n
e i t h :aspect to l~
192
P. GaIKihidasan, V. Sriramllu and M.C. Gupta
Vol. 4, No. 3
Refezences 1. G.O.G. Lof, "House heating and cooling with solar energy", Solar Energy Research, Univezsity of Wisconsin Press, Madison, Wisconsin, 1955, pp. 33-46. 2. S.C. Mullick, "Solar airconditioning: Regeneration of absorbent s o l u t i o n " , Ph.O. Thesis, I I T , Madras, 1976. 3. S.C. Mullick and M.C. Gupta, "Solar desorption of absorbent solutions", Solar Energy, Vol. 16, 1974, pp. 19-24. 4. P. Gandhidasan and M.C. Gupta, "A new method of sun powered airconditioning", Paper presented at International Institute of R e f r i g e r a t i o n , Melbourne, Sept. 6-10, 1976.
5. C. Prasad, C.S. Chert and 3.T. Beard, "Forced convection heat and mass tcansfer From a moving gas-liquid intecfacs", Presented at the Winter ~nnual meeting of the Pmerican Society of Mechanical Engineers, Washington, O.C., Nov. 30, 1971. 6. C.H. myers and C.3. King, "Gas-liquid mass transfer with a tangentially moving interface: Pazt I - Theory", A.I.Ch.E. 3ournal, 3uly 1967, pp.628-636. 7. C.H. Bye=s and C.3. King, "Gas-liquid mass transfer with a tangentially moving interfaoss Part II - Experimental studies", A.I.Ch.E. 3ournal, 3uly 1967, pP.637-644.
B. A. Activos, "On the r a t s of mass tzansfor from a gas to a moving l i q u i d f i l m " , Chemical Engineering Science, Vol.9, 1958,pp.242-249.