Progress in Nuclear Energy Vol. 31, No. 3, pp. 229-252, 1997
Pergamon
Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0149-1970/97 $32.00 + 0.00
0149-1970(95)00094-1
THE REFLECTED SLAB AND SPHERE CRITICALITY PROBLEM WITH ANISOTROPIC SCATTERING IN ONE-SPEED NEUTRON TRANSPORT THEORY
M. A. ATALAY
Institute for Nuclear Energy, Maslak,
Istanbul Technical University
Istanbul,
80626, Turkey
~ecei~dl6Mayl~5) Abstract
-- The
homogenous,
one-speed
transport
one-dimensional
equation
multiplying
is
medium
applied with
to
a
linearly
anisotropic scattering. Case's singular eigenfunction method is used to formulate the criticality conditions. In addition to available biortogonality relations in the literature,
some parallel relations are
derived to obtain the solution. In a previous study dealing with only isotropic
scattering,
it
has
been
shown
that
the
normal-mode
expansion of Case also serves to evaluate the complete spectrum of a
critical
system.
thicknesses
As
an
and eigenvalues
extension, of a slab
the
spectrum
of
critical
(also sphere because of its
relation to the antisymmetric solution of a slab) are determined by using
the
including
formulation established here. some numerical
data relevant
The results
of this study
to the method employed are
presented. C ~ y r i ~ t © l ~ 6 ~ v i e r S c ~ n ~ L ~
i. INTRODUCTION
One of the fundamental problems
in neutron transport theory is the
determination of criticality properties of a The criticality
of
homogenous
slabs
investigated by usinq different techniques 229
multiplying
and in
spheres
system.
have
one-speed
been
theory.
M.A. Atalay
230
The significant outcome of the relevant dimensions
or
equivalently
transport operator.
the
works
eigenvalues
To study this problem,
are the Case's singular
eigenfunction
are
the
critical
of
the
neutron
the
and
basic
approaches
Carlvik's
high-order
spatial expansion methods. Most works appeared in are primarily
interested in
isotropic
the
scattering.
literature
The
singular
eigenfunction method provides an analytic treatment based normal-mode
expansion
of
isotropic
scattering,
on
monoenergetic
transport equation.
One of the applications of this theory
study the critical
slab
and
sphere
problems.
the
The
is
to
fundamental
thicknesses for different eigenvalues has been reported originally by Mitsis al.
(1963) and also Case and Zweifel
(1974)
eigenvalues
evaluated
the
fundamental
(1967). Later, Kaper et thicknesses
and
also
in benchmark quality. Workers of the latter technique,
on the other hand, calculated
the
eigenvalue
spectrum.
1991). The effect of the reflexion on the eigenvalue studied by Garis and Sj~strand
(1994).
Lately,
(Garis,
spectrum
it has
been
is
shown
that the singular eigenfunction method also serves to evaluate the complete spectrum of critical thicknesses and eigenvalues for reflected slabs and spheres
with
isotropic
scattering
the
(Atalay,
1995).
The effect of anisotropic Using Carlvik's method,
scattering
is
treated
(1978)
The work performed here is an extension of
in the previous paper
(Atalay,
1995)
to
The
extension
anisotropic scattering
of
this
include
technique
to
the
effect
of
eigenfunction
In
general order
to the
bi-orthogonality relations have been constructed by McCormick
and
Ku~der
the
Perhaps,
bi-orthogonality relations,
because
of
half-space
Kohut
problems,
(1965).
scattering
have
reported
include
is performed by Mika (1961).
solve linearly anisotropic
and
that
linear anisotropic scattering by using the singular method.
rarely.
the eigenvalue spectrum calculations
been performed primarily by Dahl and Sj~strand (1993).
rather
some
deficit
in
the critical slab problem could not be
solved as in analogous manner to
isotropic
scattering
case.
In
~ e r e f l ~ d s l ~ d s p h f f e ~NRyNoblem this
paper,
we
obtained
some
new
231
relations
parallel
to
bi-orthogonality relations and derived the criticality conditions. With the help of
these
expressions,
thicknesses and eigenvalues can
be
the
spectrum
obtained.
of
critical
However,
we
restrict our study only to detect the real eigenvalues, existence and numerical values of complex
(1978) and
multiplying
of
medium,
the
range
bi-orthogonality relations
but,
eigenvalues
reported in both Dahl and SjOstrand
the
here the
have
Kohut
been
(1993).
validity
of
In the
is restricted in terms of the parameter
of the neutron secondaries per collision,
c. In other
words,
the
bi-orthogonality relations for linearly anisotropic scattering are valid in a range that the transport operator has one-pair discrete modes. On the other hand,
the
complex
eigenvalues
are
not
in
primary importance for the range, which our study covers, although we can detect considerable number of real eigenvalues.
2. THEORY
We consider a
homogenous
anisotropic scattering,
slab
of
thickness
2d.
For
linearly
the one-speed transport equation takes the
form I
H
~(x,u) + ~(x,u) = ~c f d~'w(x,~') (i + 3fl ~ @x
)
(i)
-i
where f
is
the
mean
cosine
of
the
scattering
angle
in
a
i
collision. material
If the medium is
surrounded
by
the
same
in both side, the symmetry in the problem to
will be preserved.
reflecting be
studied
Then the boundary conditions are given by
~(-d,~)
= R w(-d,-~)
for
~>0
C2)
W(d,-~)
= R w(d,~)
for
~>0
(3)
where R is the reflexion coefficient.
Then the symmetry
condition
M. A. Amlay
52 of the problem is
~,(x,g) According
to
Mika
V,(-x,-g)
=
(1965),
if
(4) the
eigenvalue
following condition in a multiplying medium
c-~ 1 +
then the
transport
1 3f
satisfies
the
(c>l)
(5) I
equation
given
by
Eq.(1)
will
have
only
one-pair of the discrete modes. Hence the normal-mode solution can be written as in isotropic scattering case in the form
I
V~(x,,u) = ao+~O+(,u)e-X/uO + ao_4~O_(,u)eX/'uO + f d'gAO")#l., (~)e-x'%' -1 where the discrete ~0±(~) and continuum #u(g)
eigenfunctions
(6)
for
linearly anisotropic scattering are given by
d(-+~0~)
c~ o
~o±(~)
-
2 c~
~ (~)
-
(7)
u ~ 0 d (~,~) p
-
-
+ A (u)6(~-u)
(8)
u--~
2
k(~) = d(u2)(l
- cu tanh-*u)
(9)
- 3f (l-c)Zu 2 I
d(ab) = 1 + 3f (l-c)ab
(i0)
i
Another similarity to the isotropic scattering
for
the
real c eigenvalues,
the corresponding discrete eigenvalues of
the
transport operator,
±~
the
are purely imaginary 0 roots of the dispersion relation in the form
A(u) = d(u2)[1
is
and
- cu tanh-*(1/~)] - 3f (1-c)2u 2 = 0 i
that
given
by
(11)
The reflectedslaband spherecriticalityproblem This equation
can be arranged
a relation with u
in quadratic
233
form for c to establish
as follows 0
{3f,u~
[u0tanh-*(llu0)-l]}c2
- {3f,u~
[~0tanh-*(ll~0)-l]
-I
+ u0tanh The symmetry
(i/u0))c + I = 0
(12)
condition given by Eq.(4) a
= a
0+
implies that (13)
0-
A(u) = AC-u)
(14)
Since we look for a solution to the homogenous normalize convenient
a
=I and then these last conditions 0+ form
equation, put Eq.(6)
we to
can more
~(x,~) = ~o+ I
+
Here, only unknown the boundary
- x/V
fod~A(~') [Ol~(/~)e
is the expansion coefficient
condition given by Eq.(3),
~0+(~)(Re-d/~0
+ #_u(~)e "~]
- e
0) + ~0_(~)
A(u).
If
(15)
we
use
we obtain
0 - e
0)
+ f s duA(u) [~ u(~)(Re -d/u - e d/u) + ~ _~(~) (Red/~ - e -d/~
I] =0
0
(161
In order to obtain this equation,
we have used the identities
(17) Eq.(16)
is
a
coefficient, linearly
singular
for
we need some half-range
anisotropic
bi-orthogonality Ku~6er
equation
(1965).
scattering,
A(~).
To
orthogonlity these
take
determine relations. the
form
this For of
relations and have been obtained by McCormick and
In our work, we need these expressions
234
M.A. Atalay
./
(~) ['~o+ (~')+Bc"o/2]a'(~') ("o -~) = -
~o+
x(~o)a(':)
(18)
0
; d/a4~o (~)[~o+(~)+gcuo/21g(~ )(uo_/J ) =
X(_uo)
o
(19)
d(uo~)
0 1
f dJu~u(~) [~O+(~)+Bcuo/2l¥(h~)(uo-'u)
= 0
(20)
o
2
, f d~# w(~)
c
[~0 (N)+Bcuo/2]¥(/~) (UO-'U) -
-
0
uOv 4
d(Uo)d(-uu)
(21)
X(-u) d(~o~' )
+
where
B =
3f l (1-c) (uO -~)
(22)
d (uOu')
a'(~)
- c~ 2
i
(1-c)(1-cfs.)(u
(23) 2
0 - h~Z)x(-,u)
= ~ (1)/(o)
(24)
1
¥
= f d~ ~"a'(,~)
(25)
0
, X(~)
= f
g(u)d(u 2) du
~ _ ~
(26)
o
We
next
multiply
Eq. (16)
by
[q~0+ (~)+Bc~0/2]F(~) (u0-~)
and
integrate over ~. With the expressions above, one obtains
uoX(~'o)d(Uo~) (Re-d/uo
- e d/~ o)
-
v 0X(_uo)d(
.~O~)(Red/~
o
-
e
O)
1
- f d~ v A ( v ) X ( - v ) d ( - ~ ) ( R e d/u - e -d/P ) = 0
(27)
0 This equation is an exact statement of the
criticality
condition
under arbitrary reflexion coefficient R. However, we still need an additional relation for A(~) that an iterative solution
for
this
Tbereflec~dslab~dspb~ecfidc~ity~oblem problem
can be found.
Eq.(16)
be c o n v e r t e d
Thus
far,
However, the
we have with
To apply
this
to a F r e d h o l m
proceeded
procedure
we
required
integral
complete
our
can
as
not
equation
formulation.
one
that
requires
equation.
in
the help of a v a i l a b l e
literature,
235
isotropic
scattering
bi-orthogonality
obtain
a
for A(u) Therefore,
relations
convenient
that
it would
we
case.
form
of
provide
suggest
the
d (]2op)
1
in the
us
to
following
relations 2
c PO]2
1
f dN~0+ (~u) [~]2(~)+cul2P]~(;~)
-
X(u o)
4
0
2 1
C
-
~
]2
o
X(-u o
[
] 1
d(-~o]2) +
]2o+ p
-
(28)
'1
/
-
(29)
J
L
0 It
(30)
6(~-]2') ]2 0 2 t
C
; d~¢_p, (p) [q~]2(U)+c]2/2"~]~,(/J)
d(-]2'u)
]2']2
-
1
X(-]2 ' ) [ ]2'+ ]2 + - -5]
4
(31)
0
These
relations
half-range
bi-ortogonality
make
use of the
and
Ku~er
identities
(1965).
[~u(~)+cu/2p]~(~) above
can be proven
and
in the same
relations given
Hence,
that derives
and thus one
by M c C o r m i c k we
integrate
fashion
now
needs
(1964)
also
the to
and M c C o r m i c k
multiply
Eq.(16)
over ~ and use the relations
by given
to obtain
~A(~)
-
~(c~12)
Z
a'(w)N(~) (Re -d/~
{
- e d/~)
[,
+ UoX(-P o) d(-UoS") %u uo
[ H_ + Uo + ~. .] (Rea/po u
+ ( du /~ - -+ u X(-p)d(-uU) ) 0
- e-d/uo)
5"d(-UoU) - +
]2
- e
~d (-u~)
(32)
M.A. Amlay
236
This gives the
required
Fredholm
integral
equation
for
A(u).
Hereafter, the usual approach is an iterative procedure
that
one
can continue with definite order approximation starting
from
the
zeroth order.
(See
Mitsis,
1961
or
Case
and
Zweifel,
However, we here skip the zeroth order and proceed the first order
approximation.
This
provides
us
1967).
directly the
with
required
optimum accuracy.
The
first
order
approximation
integral term in Eq.(32) and
necessiates
substitute
the
that
we
omit
resulting
the
equation
into Eg.(27). Using the definition Re d/~ - e -d/~
T(R,~) =
(33)
Re-d/~ _ ed/~ and also the expression of F(~) given by Eq.(23), we obtain X(~0)d(u0~) - X(-u0)d(-u0~)T(R,u0)
,
g, (c,u)
+ f du
(cu/2)xZ(-u)A(~)d(-uS)T(R,u)
5
o
z
d(uoD) u'dC-u ~) + u ~ + u ~ d ( u : ) - u: ] } _ X(_u0)d(_u05)T(R,u0) [
0
0
= 0
a(-~05)
(34)
where gi(c'w)
-
N(w)
(35)
N(w)
= ~,
(
X,=(u)
+
~
d(u =)
].)
A(~) = (l-c)(l-cf,)
(36) (37)
In Eq.(34), we take ,
Kj = f d~ u ~ 0
g
(c,w)
* 5
(cu/2)X z (-u)A(~)d (-~)T(R,u)
(38)
Themfl~tedslab~dsphe~'e~ficalityprob~m and
find
linearly
condition
anisotropic
scattering
237 slab
criticality
in the form
X(~o)d(~o~) T(R,v0)
=
X(-u0)d(-u0~)
( l + K 2 ) d ( u o ~ ) d ( - U o u)+d(- -~Ou)[K*~d(u~)+Ko (~0 ~ - uo)]z (39) (l+Kz)d(uau)d(-u0~)+d(u0~)[K,vd(~)+K0 We
note
that
the
appropriate
importance for half-range calculations. numerical
X-functions
treatment
in
Thus, we give more useful
calculation
(c
(-u0 ~ - u0)]z
instead of Eq.(26)
,
the
are
fundamental
relevant
expression
of
transport X(~)
for
in the form
}
2
X(~)=exp - ~ f dug, (c,u) [d z(;2) (I+ cu )+3fi(l-c)Zu2d(-p2)]in(~-~) l-u 2 8
(40) This expression
is required primarily
the integrand of Eq.(38) that (McCormick,
in numerical
in our procedure.
calculation
of
The Milne problem gives
1964)
x(-~ )d(-~ : ) o 0
= - e
-2z /v O 0
(41)
X(u0 )d(uo 5) We here introduced extrapolated for l i n e a r l y
(41),
anisotropic
the z Q is defined
z0-- - (u0/2)in
endpoint,
scattering.
z
0
of the Milne
Then c o m b i n i n g
problem
Eqs.(40)
and
by
0
d(~05) t + 4c I dk~g* 0
2
(~2)(I+
c,2
)+3f,(l-c)2k~2d(-~ 2) ]u O
I-~
Using Eq.(41) and the explicit expression of T(r,u Q ) on
0
(42)
0
the
left
M.A. Amlay
238
and somewhat
arranging
on
expressions
the
right
the
Eq~(39)
becomes
Re-~d-'0)llW0 I - e ' Re~Id-z0>llv01
~,d+z 0 ,tlwol
- e -~(d+z
o >/luol
K + Ki ~d(v:)-K ,~'d(~ ~) - ~ o o o o
~-
3f i (,-c)~
tz ~ d ( v : ) - L , ~ : J t l v o l i (43)
where
K = (l+Kz)d(v0~)d(-u0~)
(44)
~o : t~ol i
(4s)
and
It can be seen conjugate
easily
that
of the numerators
the
denominators
in both side of
anisotropic
_+,,
scattering
criticality
slab problem
the
Eq.(43).
fact, we take logarithm of both side of this obtain the final form of the
are
Using
this
and
then
equation,
condition
complex
of
linearly
in the form
,{ Rsin[(d-z o )/Iv o l]+sin[(d+z o)/Iv o I] } - iv- Rc°s [(d-z0)ll~0 1]-c°s [(d+z0)/Iv0 I] {KS-
3f (i-c)5
= tg-,{ __i0 ___, ..... (I+K)d(v 2
[K
5d(uZ)-K wz])Iv
i
±__/0__0_~0_]_o_:
}
(46)
~)d(-u ~) + E ud(vZ)-K uZd(~ z) 0
This form of the criticality
0
1
o
o
o
condition and hence the last step
our procedure are based on the fact that we are interested real eigenvalues
(c) which correspond to purely
eigenvalues
as stated before.
(v) 0
of
in only
imaginary discrete
3. THE SPHERE PROBLEM
The procedure described above and the criticality
condition
by Eq.(46)
and
provides us critical
slab thicknesses
given
eigenvalues
The~fl~tedsl~dspherecfificalityproblem for only even modes
depending
Eq.(4).
On the other hand,
related
to the slab
condition
on
the
the critical
problem
(Case and Zweifel,
239
symmetry
requirement
sphere problem
(odd
modes)
1967).
Hence,
with
an
instead of
of
is d i r e c t l y antisymmetry Eq.(4)
we
require
W(x,~) =-VJ( - x , - p ) Thus,
this
(47)
implies a
= -a O+
(48)
O-
A(u) = - A ( - p )
We then proceed exactly
(49)
in the same manner as above
and
use
the
definitions Re d/~ Re -d/p
, Lj
du
+ e -d/Ju
(50)
T (R,~) = 1
g (c,u) *
pJ
+ e d/p
(cp/2)XZ(-p)A(~)d(-uu)T
(51)
(R u)
0 and to obtain the c r i t i c a l i t y
Re
-
L(d-=o)/lUoi
Re~d-ZO>/i~O
i
~(d÷z
0
,/lu
0
(
-~(d+,
0
,/lu
0
J
+ e + e
condition
given by
i i (52)
where (53)
L = (l+Lz)d(u0~)d(-u0p)
Finally,
if we are
take logarithm
interested
in only real
of both side of this e q u a t i o n
eigenvalues, to find
we
will
240
M.A. Atalay sin[(d+z0)/lw01]-Rsin[(d-za)/lu01] cos[(d+z0)/lu01]+Rcos[(d-z0)/l~01]
(54)
This gives the criticality condition for a sphere corresponding to the odd modes of a slab.
4. NUMERICAL RESULTS
The first results of this study is given in first to zeroth order endpoint value, collision
z
moments
as
0
a
ratio
function
(c) have been tabulated.
of
Table ¥(H)
of
neutron
These results
for the rest of calculations and also quite
i.
and
Here,
the
extrapolated
secondaries are
per
fundamental
important
for
other
applications of the theory employed here. As far as we know, data has not been given in the literature
(except z
this
values in the 0
form of z c, for 0
isotropic
Plazcek and Hofmann,
scattering
are
presented
by
Case,
1961).
In Tables 2 through 5, the critical thicknesses for various values of c eigenvalue,
reflexion coefficient,
the
angle,
scattering
R
and avarage
cosine
of
are given. For these results, a i comparison is can be made considering only isotropic scattering.
Mitsis
f
(1963), Case and Zweifel
(1967), and Kaper
et
al.
(1974)
give only fundamental thicknesses.
Our results for the fundamental
mode agree very well with theirs.
On
the
report the first three critical thicknesses mfp.
Although
the
expressions
of
the
other
hand,
isotropic
here
if these are under criticality
obtained in this paper can not be reduced trivially the study considered only
we
scattering
to
80
conditions those
(Atalay,
of
1995),
there is good agreement between these two study results also.
Therefl~tedslab~dsph~e~c~i~oblem Table 1.
The ratio of the first function
~(u),
for various
per collision,
f
c
?
to zeroth order moments
u, and extropolated
values
241
endpoint,
of the mean number
(mfp) 0 of secondaries
z
~
7'
c.
c
1
0.0
of the
z
c
1.001
0.710274
0.709736
5.50
0.492957
0.132251
1.01
0.708733
0.703413
5.60
0.491525
0.129927
i.i0
0.694172
0.645971
5.70
0.490133
0.127684
1.20
0.679619
0.592392
5.80
0.488781
0.125517
1.30
0.666526
0.547144
5.90
0.487465
0.123423
1.40
0.654682
0.508410
6.00
0.486186
0.121399
1.50
0.643911
0.474869
6.10
0.484940
0.119439
1.60
0.634071
0.445536
6.20
0.483727
0.117543
1.70
0.625042
0.419659
6.30
0.482546
0.115706
1.80
0.616723
0.396659
6.40
0.481394
0.113926
1.90
0.609033
0.376078
6.50
0.480272
0.112200
2.00
0.601898
0.357551
6.60
0.479177
0.110526
2.10
0.595259
0.340784
6.70
0.478109
0.108901
2.20
0.589063
0.325535
6.80
0.477067
0.107324
2.30
0.583265
0.311607
6.90
0.476050
0.105792
2.40
0.577827
0.298833
7.00
0.475.056
0.104303
2.50
0.572715
0.287076
7.10
0.474086
0.102856
2.60
0.567899
0.276218
7.20
0.473138
0.101448
2.70
0.563352
0.266158
7.30
0.472211
0.100079
2.80
0.559052
0.256813
7.40
0.471304
0.098747
2.90
0.554978
0.248107
7.50
0.470418
0.097449
3.00
0.551112
0.239977
7.60
0.469551
0.096186
3.10
0.547437
0.232368
7.70
0.468702
0.094954
3.20
0.543940
0.225231
7.80
0.467871
0.093755
3.30
0.540607
0.218522
7.90
0.467058
0.092585
3.40
0.537426
0.212205
8.00
0.466262
0.091444
3.50
0.534386
0.206246
8.10
0.465482
0.090331
242
M. A. Atalay
T a b l e E.
Slab c r i t i c a l
R--O
R=
thicknesses for f =0.0. I
0.25
R=
0.50
R = 0.75
R =0.99
16.65904 52.79076
15.74156 51.87328
14.00221 50.13393
9.89338 46.02510
0.46986 36.60158 72.73331
i. I0
4.22674 15.26411 26.30148
3.51332 14.55069 25.58805
2.50594 13.54331 24.58068
1.24756 12.28493 23.32230
0.04582 11.08319 22.12056
1.20
2.57968 10.10860 17.63752
2.01041 9.53933 17.06825
1.32730 8.85622 16.38514
0.62088 8.14980 15.67872
0.02234 7.55126 15.08018
1.30
1 .87766 7 .82155 13 .76545
1.40621 7.35010 13.29400
0.89317 6.83706 12.78096
0.40758 6.35148 12.29537
0.01456 5.95846 11.90235
1.40
1 .47688 6 .46427 ii .45166
1.07602 6.06342 11.05081
0.66764 5.65503) 10.64243
0.30064 5.28803 10.27543
0.01070 4.99810 9.98549
1.50
.21523 .54516 .87510
5.19754! 9.52747
0.52993 4.85986 9.18980
0.23665 4.56659 8.89652
0.00841 4.33834 8.66828
1.60
.03039 .87331 .71623
0.724231 4.56715 8.41007!
0.43740 4.28032 8.12324
0.19423 4.03715 7.88007
0.00689 3.84981 7.69273
1.70
.89275 .35689 .82104
0.61975 4.08389 7.54803
0.37113 3.83528 7.29942
0.16413 3.62827 7.09241
0.00582 3.46996 6.93410
1.80
0.78630 3.94554 7.10478
0.54037 3.69961 6.85885
0.32146 3.48070 6.63994
0.14172 3.30096 6.46020
0.00502 3.16426 6.32350
i .90
.70157 .60902 .51646
0.47811 3.38555 6.29300
0.28292 3.19036 6.09781
0.12442 3.03187 5.93931
0.00440 2.91185 5.81930
63257 3. 32792 6. 02327
0.42805 3.12339 5.81874
0.25219 2.94754 5.64289
0.11069 2.80604 5.50138
0.00392 2.69926 5.39461
1.01
2.00)
l
O.
0.86760:
The reflected slab and sphere criticality problem
T a b l e 3.
Slab
critical
thicknesses
243
for f =0.I0. I
R = 0.25
R = 0.50
R = 0.75
R = 0.99
17 .48929 55 .59653
16.47157 54.57881
14.55300 52.66024
10.11262 48.21986
0.46978 3~.57702 76.68427
1.10
4 .40260 16 .09869 27 .79478
3.62049i 15.31658 27.01267
2.54580 14.24189 25.93798
1.25103 12.94712 24.64321
0.04574 1i.74183 22.43792
1.20
2 .67529 10 .69187 18 .70845
2.05681 10.07339 18.08997
1.33920 9.35578 17.37236
0.62064 8.63722 16.65380
0.02227 8.03885 16.05543
I .30
1 .94146 8 .29796 14 .65447
1.43265 7.78915 14.14566
0.89831 7.25482 13.61132
0.40688 6.76338 13.11989
C.01451 6.37101 12.72751
1.40
1 .52389 6 .87870 12 .23350
1.09347 6.44828 11.80308
0.67043 6.02523 11.38004
0.29999 5.65479 11.00959
0.01066 5.36547 16.72027
1.50
1 .25221 5 .91801 i0 .58380
0.88042 5.54621 10.21201
0.53184 5.19764 9.86344
0.23619 4.90199 9.56778
6.00838 4.67418 9.33997
1.60
1.06094 5.21574 9.37053
0.73450 4.88929 9.04409
0.43905 4.59384 8.74864
0.19399 4.34879 8.50358
0.00687 4.16167 8.31646
1.70
0.91901 4.67576 8.43250
0.62858 4.38532 8.14207
0.37281 4.12955 7.88630
0.16412 3.92087 7.67761
0.00581 3.76255 7.51930
1.8oi
O. 80961 4. 24538 7. 68115
0.54839 3.98416 7.41993
0.32330 3.75907 7.19483
0.14194 3.57770 7.01347
0.00502 3.44079 6.87656
O. 72281
0.48572 3.65592 6.82612
0.28499 3.45519 6.62538
0.12485 3.29505 6.46525
0.00441 3.17461 6.34481
0.43549 3.38154 6.32759
0.25454 3.20059 6.14664
0.11132 3.05737 6.00342
0.00393 2.94998 5.89604
=
1.01
1.90
0
3. 89301 7. 06321 O. 65236
2.00
3. 59841 6. 54446
244
M. A. AUday T a b l e 4. Slab critical thicknesses for f =0.20. i
R=0
R=
0.25
R=
0.50
R=
0.75
R
=
0.99
18.46196 58.90880
17.31947 57.76630
15.18058 55.62742
10.349441 50.79628
6.46971 46.91655
i.I0
4 .60486 17 .09464 29 .58442
3.73955 16.22932 28.71910
2.58786! 15.07764 27.56741!
1.25442 13.74419 26.23397
6.04565 12.53542 25.02520
1.20
2 .78406 II .39974 20 .01543
2.10703 10.72272 19.33840
1.35124 0.62022 9.96693 ; 9.23590 18.58261 17.85159
0.02220 E.63788 17.25357
1.30
2 .01346 8 .88675 15 .76004!
1.46072 8.33401 15.20730
0.90325 7.76654 14.64983
0.40599 7.27927 14.15256
6.01445 6.88773 13.76102
1.40
1 .57676! 7 .40052{ 13 .22428
1.11182 6.93558 12.75934
0.67300 6.49676 12.32052
0.29918 6.12294 11.94671
0.01062 5.83438 11.65814
1.50!
1.29391 6.39636 11.49880
0.89396 5.99640 11.09885
0.53366 5.63610 10.73854
0.23564 5.33809 10.44053
0.00835 5.11079 10.21323
Z .60!
1. 09579 5. 66332 i0. 23084
0.74564 5.31316 9.88069
0.44081 5.00834 9.57587
0.19377 4.76130 9.32883
0.00686 4.57438 9.14191
1.70
O. 94959 5. 10026 9. 25092
0.63862 4.78929 8.93996
0.37488 4.52555 8.67621
0.16427 4.31493 8.46560
0.00581 4.15648 8.30714
1.80
0.83758 4.65182 8.46606
0.55812 4.37236 8.18660
0.32587 4.14011 7.95435
0.14245 3.95669 7.77093
0.00503 3.81927 7.63351
1.90
0.74930 4.28486 7.82042
0.49563 4.03119 7.56675
0.28818 3.82374 7.35930
0.12575 3.66131 7.19687
.00444 .54000 .07556
2.00
0.67815 3.97817 7.27819
0.44589 3.74591 7.0459,3
0.25841 3.55843 6.85845
0.11260 3.41262 6.71264
.00398 .30400 .60402
1.01
The reflected slab and sphere criticality problem
Table 5.
c
Slab critical
thicknesses
245
for f =0.30. !
R = 0.25
R=
0.50
R = 0.75
P =0.99
19.62374 62.90185
18.32167 61.59978
15.90535 59.18346
10.60644 53.88455
6.46963 4~.74774
i.i0
4.84124 18.31306 31.78489
3.87306 17.34489 30.81672
2.63239 16.10422 29.57604
1.25773 14.72956 28.20138
L.04555 i~.51738 2£.98921
1.20
2.90947 12.28589 21.66232
2.16165 11.53807 20.91450
1.36337 10.73979 20.11621
0.61959 9.99601 19.37244
0.02211 9.39854 I~.77496
1.30
2.09571 9.64304 17.19037
1.490561 9.037891 16.58522i
0.90789 8.45522 16.00255
0.40487 7.95220 15.49953
t.01438 7.56171 15.10904
1.40
1.63694 8.08942 14.54191
1.13109 7.58358 14.03606
0.67526 7.12775 13.58023
0.29818 6.75067 13.20315
0.01056 6.46305 12.91553
1.50
1.34169 7.04618 12.75067
0.90838 6.61286 12.31735
0.53537 6.23986 11.94434
0.23501 5.93950 11.64399
6.00831 5.71280 11.41729
1.60
1.13657 6.28961 11.44266
0.75808 5.91112 11.06417
0.44286 5.59591 10.78495
0.19364 5.34669 10.499.73
C.00684 5.15989 10.31293
i .70
0.98679 5.71266 10.43854
0.65081 5.37668 10.10256
0.37780 5.10367 9.82955
0.16474 4.89062 9.61650
0.00582 4.73169 9.45757
1.80
0.87360 5.25689 9.64019
0.57121 4.95451 9.33780
0.33005 4.71334 9.09664
0.14364 4.52693 8.91023
0.00507 4.38837 8.77166
1.90
0.78595 4.88738 8.98882
0.51050i 4.61194 8.71337
0.29394 4.39538 8.49681
0.12774 4.22917 8.33061
0.00451 4.10594 8.30738
2.00
0.71692 4.58189 8.44686
0.46329 4.32826 8.19323
0.26606 4.13103 7.99600
0.11550 3.98046 7.84543
0.00407 3.86904 7.73401
1.01
R=0
M.A. Atalay
246 To evaluate
the
criticality
eigenvalues,
first,
the
discrete
eigenvalue of the transport operator ~ criticality conditions.
is determined by using the 0 corresponding c eigenvalue is
Then the
obtained to be the smallest root of the quadratic expression given by Eq.(12).
For even modes,
these eigenvalues are given in
6 through 9 for different slab thichnesses,
reflection
Tables
ratio
and
avarage cosine of the scattering angle to represent anisotropy. the other hand,
On
for odd modes the calculations must be carried out
by using rather the formulations given in section 4 and,
in
this
paper only the results of f =0.i case are given in Table I0. We i can compare these results with those of Garis (1991), Garis and Sj~strand Dahl
(1994) and Atalay
and
Sj~strand
(1979)
anisotropic scattering. closely with thickness
(1995) for
other
and
isotropic
Kohut
scattering
(1993)
for
linearly
Then it can be seen that our result
study
results,
especially,
is greater than 1 mfp. However,
in
when
terms
of
and
agree
the
slab
accuracy,
the potential of this method is more than the results presented in this paper.
Because
approximations.
As
we in
isotropic scattering, better convergence
here the
presented
work
Then
we
Kaper
the
et
first
al.
order
(1974)
for
one may consider to iterate further until
is
obtained,
linearly anisotropic scattering complex.
of
only
expect
although for
some
this
the
formulation
purpose
improvement
in
for
becomes the
a
more
accuracy
especially for the small slab thicknesses.
Finally, we remark some points about the calculations. tables, we have not presented any
for
R=I.
Because,
criticalitiy conditions become independent of
slab
thickness
this method, Second,
the
conditions,
when
the
integral
reflection expressions
except X-function
Gauss quadrature and extrapolated
integration. endpoint
subdivision of the integral
value
First,
is
perfect
involved
integrals, are
in
(Atalay, the
evaluated
The numerical values
z
of
in the in
1995).
criticality by
using
X-function
are evaluated by the succesive 0 interval near the right endpoint due
to improper behavior of the integrand at this point.
The reflected slab and sphere criticality problem
Table 6.
Eigenvalues
2d
Eigenvalue no.
0.20
1
20.0
0.0
R = 0.25
R=
3.798
2.954
1.277104
slab
(even mode~j
0.50
for f =0.0. I
R = 0.75
}~ = 0.99
2.235
1.602
1.024
1.203660
1.132324
1.064193
1.002487
2.873321
2.754703
2.651489
2.563145
2.490907
4.784651
4.676340
4.585603
4.509950
4.449126
6.748132
6.646529
6.561840
6.491478
6.435054
8.728176
8.630808
8.549558
8.482066
8.428020
1.007136
1.006578
1.005670
1.003962
2
1.061954
1.057880
1.051987
1.043422
1.032556
3
1.161612
1.153553
1.143461
1.131791
1.120480
4
1.292969
1.282199
1.270198
1.258050
1.247412
5
1.445171
1.432946
1.4204051
1.408624
1.398756
6
1.610866
1.597981
1.585493
1.574266
1.565066
7
1.785435
1.772321
1.760109
1.749421
1.740766
8
1.966002
1.952886
1.941012
1.930800
1.922585
9
2.150754
2.137747
2.126212
2.116407
2.108550
i0
2.338512
2.325667
2.314450
2.304990
2.297427
11
2.528490
2.515828
2.504899
2.495734
2.488417
12
2.720147
2.707673
2.697002
2.688090
2.680980
13
2.913100
2.900812
2.890372
2.881679
14
3.107074
3.094964
3.084730
3.076227
15
3.301864
3.289922
3.279874
3.271538
16
3.497317
3.485533
3.475652
3.467464
17
3.693314
3.681678
3.671947
3.663891
18
3.889764
3.878266
3.868672
3.860735
19
4.086597
4.075225
4.065755
4.057924
20
4.283750
4.272500
4.263144
4.255410
2.0
R=
(c) of multiplying
247
M.A. Auday
248
Table 7. Eigenvalues
(c) of multiplying
slab
(even mod.-s) for f =0.i0 I
2d
Eigenvalue
R=0.0
R = 0.25
R = 0.50
R=
0.75
R = 0.99
1
3.762
2.955
2.239
1.602
1.024
1
1.288864
1.209353
1.134469
1.064643
1.002487
2
3.103674
2.977924
2.868689
2.774869
2.697681
1
1.007816
1.007148
1.006082
1.004151
2
1.068076
1.063260
1.056538
1.047267
1.036159
3
1.178463
1.169124
1.157985
1.145755
1.134328
4
1.325259
1.313039
1.300110
1.287579
1.276851
5
1.496720
1.483110
1.469818
1.457746
1.447769
6
1.684606
1.670485
1.657385
1.645896
1.636544
7
1.883564
1.869375
1.856638
1.845679
1.836815
8
2.090173
2.076120
2.063766
2.053249
2.044761
9
2.302271
2.288424
2.276407
2.266233
2.258027
i0
2.518238
2.504646
2.492951
2.483078
2.475108
11
2.737230
2.723877
2.712443
2.702"800
2.695009
12
2.958498
2.945369
2.934154
2.924697
2.917049
13
3.181544
3.168617
3.157585
3.148278
14
3.406003
3.393256
3.382376
3.373191
15
3.631602
3.619014
3.608260
3.599172
16
3.858133
3.845683
3.835032
3.826026
17
4.085436
4.073107
4.062539
4.053598
4.290660
4.281771
no.
0.20
2.0
20.0
18
The reflected slab and sphere criticality problem Table 8.
Eigenvalues
2d
Eigenvalue no.
0.20
1
2.0
1
20.0
T a b l e g.
(c) of m u l t i p l y i n g
R = 0.0
R = 0.25
-
slab
(even modes)
for f = 0 . 2 0 I
R = 0.50
R = 0.75
R = 0.99
2.240
1.603
1.024 1.002488
1.301849
1.215398
1.136682
1.065097
1.008641
1.007826
1.006558
1.004357
1.075680
1.069889
1.062152
1.052086
1.040719
1.200267
1.189268
1.176880
1.164016
1.152421
1.369070
1.354975
1.340919
1.327882
1.316949
1.570086
1.554670
1.540389
1.527819
1.794405
1.778630
1.764600
1.752527
2.035884
2.020174
2.006474
1.994767
2.290353
2.274852
2.261414
2.249924
2.554948
2.539659
2.526373
2.514962
Eigenvalues
(c) of m u l t i p l y i n g
slab
2d
Eigenvalue no.
0.20
1
--
--
--
2.0
1
1.316289
1.221826
1.009662
20.0
249
R=
0.0
R=
0.25
R=
(even modes)
0.50
R=
0.75
for f =0.30. I
R = 0.99
1.603
1.024
1.138965
1.065557
1.002488
1.008645
1.007111
1.004583
1.085458
1.078341
1.069331
1.058359
1.046703
1.230305
1.217027
1.203067
1.189410
1.177524
1.435167
1.418356
1.402684
1.387770
1.377303
1.693396
1.674996
1.658831
1.644945
1.633599
2.003646
1.984334
1.967594
1.953197
250
M.A. Amlay
Table 10. Eigenvalues
(c) of multiplying slab (odd modes)
for f =0.I0 i
2d
Eigenvalue no.
0.20
i
2.0
20.0
R=
0.0
.
R = 0.25
.
.
R=
0.50
.
R = 0.75
R=
0.99
.
i
2.078849
1.929864
1.808212
1.711851
1.638876
2
4.207739
4.046303
3.933215
3.860274
3.819606
1
1.030872
1.028245
1.024297
1.018230
1.009516
2
1.117863
1.110058
1.100211
1.088991
1.078460
3
1.248125
1.236119
1.223189
1.210971
1.201104
4
1.408500
1.394042
1.380163
1.368364
1.359466
5
1.589000
1.573310
1.559411
1.548334
1.540317
6
1.782950
1.766700
1.7530981
1.742720
7
1.986072
1.969595
1.956364
1.946587
8
2.195621
2.179076
2.166199
2.156923
9
2.409802
2.393267
2.380701
2.371832
10
2.627411
2.610904
2.598596
2.590067
Ii
2.847614
2.831148
2.819050
2.810799
12
3.069824
3.053390
3.041467
3.033448
13
3.293616
3.227211
3.265424
3.257594
14
3.518678
3.502282
3.490604
3.482935
15
3.744761
3.728377
3.716778
3.709241
16
3.971697
3.955310
3.943766
3.936342
17
4.199335
4.182938
4.171433
4.164094
5. CONCLUSIONS
In the literature,
the
singular
eigenfunction
method
had
been
already extended to solve linearly anisotropic scattering problems using the
half-range
bi-orthogonality
application of this theory has been problems.
As a summary,
the work
relations.
limited
performed
to here
However,
only has
the
half-space aimed
two
T h e ~ f l ~ d ~ ~ds~ecri~c~ypr0bMm purposes.
First,
the
missing
treatment
of
251
the
critical
problem by the singular eigenfunction method in the literature performed
for linearly anisotropic
scattering.
The
use
method for the problem required the derivation of some half-range relations. bi-orthogonality
Constructing
relations,
some
parallel
of
slab is this
additional
relations
to
we applied this theory to the study of
finite multiplying medium criticality problems.
Second,
the criticality
conditions
obtained
detect the criticality spectra of a
here
multiplying
are
used
medium.
We
to had
already showed in a previous paper that the criticality conditions derived here could be
used
to
determine
not
only
fundamental
thicknesses and eigenvalues of a critical system but also complete spectrum of these quantities. detected eigenvalues Eq.(5),
is
In this study, however,
limited
given
by
because of the form of the solution and validity range
of
the bi-ortogonality relations. considering anisotropy
with
The
a
the range of
restriction
results
indicated that the
of
this
singular
paper
by
eigenfunction
method is also quite effective tool for this problem
in
addition
to Carlvik's method.
REFERENCES Atalay M.A.
(1995)
The
Boundary Conditions NucL.
En.
Critical
Slab
Problem
for
Reflecting
in One-Speed Neutron Transport Theory. Ann.
Accepted for publication.
Case K.M., de Hofmann F., Placzek G. TAeor~ o/ Neutron D6//~s~on.
(1953)
Introduction
to
tAe
U.S. Government Printing Office,
Washington D.C.
Case K.M. and Zweifel P.F.
(1967) t~neur
Transport Theorw. Addison
Wesley, Reading. Mass.
Dahl E.B. and Sj~strand N.G.
(1979) Nuc£.
Sc~.
En s. 6Q,
114.
~2
M.A. Atalay Garis N.S.
(1991) NutS. Sc~. EnM. 107, 343.
Garis N.S. and Sj6strand N.G.
(1994) Ann.
Kaper H.G., Lindemann A.J., and Leaf G.K.
Nuc~,
En, El, 67.
(1974) NutS. Sc£, En S.
54, 94.
Kohut P. (1993) NucL. S¢6.
McCormick N.J.
(1964)
En 8, 115, 320.
One-Speed
Neutron
Transport
Problems
Plane Geometry. Ph.D. Thesis, The University of Michigan.
McCormick N.J. and Ku~6er I. (1965) 3. Ma6A. PAys. 8, 1939.
Mika J.R. (1961) NucL. Sc~.
Mitsis G.J.
(1963) Nuc~,
En 8. 11, 415.
Sc~. En 8. 17, 55.
in