The role of methionine in glutathione biosynthesis by isolated hepatocytes

The role of methionine in glutathione biosynthesis by isolated hepatocytes

Vol. 77, No. 4, 1977 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS THE ROLE OF M E T H I O N I N E BIOSYNTHESIS Donald IN G L U T A T H I ...

379KB Sizes 4 Downloads 86 Views

Vol. 77, No. 4, 1977

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

THE

ROLE OF M E T H I O N I N E

BIOSYNTHESIS

Donald

IN G L U T A T H I O N E

BY I S O L A T E D

J. R e e d I

HEPATOCYTES

and Sten O r r e n i u s

D e p a r t m e n t of F o r e n s i c Medicine, K a r o l i n s k a Institutet, Stockholm, S w e d e n and i D e p a r t m e n t of B i o c h e m i s t r y and Biophysics, O r e g o n State University, Corvallis, O r e g o n 97331 Received

June

22,1977

Summary: H e p a t o c y t e s freshly i s o l a t e d from d i e t h y l m a l e a t e - t r e a t e d rats have b e e n shown to p e r f o r m net b i o s y n t h e s i s of i n t r a c e l l u l a r g l u t a t h i o n e at a p p r o x i m a t e l y an in vivo rate. 3SS from I 3SSIcys teine or 1 3 5 S l m e t h i o n i n e each c o ~ r i b u t e d to the f o r m a t i o n of g l u t a t h i o n e to about the same extent, up to 75 and 61%, r e s p e c t i vely, d e p e n d i n g u p o n the amino acid c o n c e n t r a t i o n in the medium. The sulfur a t o m of m e t h i o n i n e m a k e s a s i g n i f i c a n t c o n t r i b u t i o n to the s y n t h e s i s of the thiol of g l u t a t h i o n e p r o b a b l y via the formation of c y s t a t h i o n i n e . Glutathione, portant sent

role

L-y-glutamyl-L-cysteinyl-glycine,

in hepatic

in r e l a t i v e l y

depletion

the

plenishment in regards

of the c y s t e i n e

to and m e t a b o l i s m cursors

include

This

pool

extracellular protein

about

turnover

such as

2-

about

3 hrs

interest

(4) during

or c y s t i n e

which

is pre-

of liver being

of chemicals.

cysteine

an im-

(1). A f t e r

the p r e c u r s o r s

is of keen

variety

within

content

conjugation

of a w i d e

and i n t r a c e l l u l a r ly in liver

cysteine

knowledge

to g l u t a t h i o n e

agents

can be c o m p l e t e d

intracellular (1,3),

and as such

(4 to 6 mM)

in rat liver w i t h

resynthesis

ly 0.2 to 0.3 m M

detoxification

concentrations

of g l u t a t h i o n e

chloroethanol, (2). W i t h

high

drug

plays

is known

on-

for re-

especially

human

exposures

Possible

pre-

and m e t h i o n i n e to occur

rapid-

(5,6).

report

describes

thione

in h e p a t o c y t e s

thione

with

after

diethylmaleate.

Copyright © 1977 by Academic Press, Inc. All rights of reproduction in any form reserved.

the rate of net b i o s y n t h e s i s in v i v o

depletion

The c o n t r i b u t i o n

of liver

of glutagluta-

of e x t r a c e l l u l a r

1257 1SSN 0006-291X

Vol. 77, No. 4, 1977

cysteine

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

and m e t h i o n i n e

sulfur

to the thiol of g l u t a t h i o n e

was

evaluated. METHODS

AND MATERIALS

Hepatocytes. One hr prior to h e p a t o c y t e isolation, m a l e SpragueD i w i e y rats, 210 to 230 g m body wt., w e r e a d m i n i s t e r e d i.p. 0.6 m m o l e / K g body wt. of d i e t h y l m a l e a t e (Aldrich) as a 20% s o l u t i o n in corn oil (7). The i s o l a t i o n p r o c e d u r e and cell v i a b i l i t y mea s u r e m e n t s w e r e those p r e v i o u s l y d e s c r i b e d (8). I n c u b a t i o n procedures w e r e as p r e v i o u s l y d e s c r i b e d except that the m e d i u m was a K r e b s - H e n s e l e i t b u f f e r s u p p l e m e n t e d w i t h 2 m M Hepes, p e n i c i l lin (500 I.U./ml), h e p a r i n (i0 I.U./ml) and an amino acid mixture (i X concentration) (9). In all experiments the serine c o n c e n t r a t i o n was 0.35 mM. W h e n 135Slmethionine was the substrate, c y s t e i n e in the m e d i u m was 0.2 m M and w h e n 13SSlcysteine was the substrata, m e t h i o n i n e in the m e d i u m was 0.i mM. All other amino acids w e r e p r e s e n t at the c o n c e n t r a t i o n s s p e c i f i e d (9). Total 13SSleysteine or 13SSlmethionine uptake by h e p a t o c y te s u s p e n s i o n s was d e t e r m i n e d a c c o r d i n g to a f i l t r a t i o n procedure p r e v i o u s l y d e s c r i b e d (10) except that 47 m m glass fiber filters (Whatman GF/C) w e r e c o u n t e d in a toluene fluor. Incorp o r a t i o n of 35S into p r o t e i n was m e a s u r e d by the same p r o c e d u r e except that 3 x 6 ml w a s h e s of the cells w i t h 10% t r i c h l o r o a c e tic acid w e r e used to remove a c i d - s o l u b l e 3SS. P r e p a r a t i o n of 2 ~ 4 - d i n i t r o p h e n y l derivatives. Hepatocytes, l0 G C elis/ml, w e r e r e m o v e d f r o m i n c u b a t i o n m i x t u r e s by c e n t r i f u g a tion (50 x g for 2 min) and w a s h e d once by r e s u s p e n s i o n in K r e b s - H e n s e l e i t b u f f e r c o n t a i n i n g 2% bovine serum a l b u m i n followed by a second c e n t r i f u g a t i o n . The cell p e l l e t was t r e a t e d w i t h 1.0 ml of 3.3% p e r c h l o r i c acid and the p r o t e i n r e m o v e d by c e n t r i f u g a t i o n . A 0.5 ml a l i q u o t of the s u p e r n a t a n t was reacted w i t h i0 Z1 of p e r f o r m i c acid (20:1 V / V of 98% formic acid, 30% HzO 2 at room t e m p e r a t u r e for 1 hr prior to use) for 15 m i n and the excess p e r f o r m i c acid d e s t r o y e d w i t h 5 ~i of 48% hydr o b r o m i c acid. The r e a c t i o n m i x t u r e was s a t u r a t e d w i t h s o d i u m b i c a r b o n a t e and r e a c t e d w i t h an a l c o h o l i c s o l u t i o n of l-fluoro2,4-dinitro-benzene (FDNB] for 4 hrs in the dark (ii). H i g h - p e r f o [ m a n c e !iquid c h r o m a t o g r a p h y . A n a l i q u o t of the F D N B r e a c t i o n m i x t u r e was i n j e c t e d onto a 4 x 250 m m Micro B o n d a p a k amine c o l u m n (Waters) and the DNP d e r i v a t i v e s i s o l a t e d by gradient elution (0.05 to 0.4 M sodium acetate, pH 4.6, in 80% methanol) using a Spectra Physics model 3500 liquid c h r o m a t o g r a p h e q u f p p e d w i t h a UV d e t e c t o r (350 nm) and a Spectra Physics S y s t e m I integrator. A p p r o p r i a t e fractions were c o l l e c t e d and a s s a y e d for 35S w i t h A q u a s o l (New E n g l a n d N u c l e a r Co.) in a liquid s c i n t i l l a t i o n counter. G l u t a t h i o n e sulfonic a c i d DNP was q u a n t i t a t e d by internal s t a n d a r d i z a t i o n and c o m p a r i s o n w i t h a u t h e n t i c g l u t a t h i o n e s u l f o n a t e (12) after c o n v e r s i o n to the DNP derivative. Cysteic a c i d DNP (Sigma) was u s e d as a reference to q u a n t i t a t e cysteic acid formed by p e r f o r m i c acid o x i d a t i o n of i n c u b a t i o n m e d i a c o n t a i n i n g cysteine. F u r t h e r details of these p r o c e d u r e s including the s e p a r a t i o n of DNP d e r i v a t i v e s of g l u t a t h i o n e disulfide, c y s t e i n e g l u t a t h i o n e m i x e d disulfide, and y - g l u t a m y l cysteic a c i d will be d e s c r i b e d e l s e w h e r e (13).

1258

Vol. 77, No. 4, 1977

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

60- 5S] CYSTEINE UPTAKE / 10B CELLS 50

40-

'°'~'o~O~o

30, c 20-

/o/m~o~m

TCA INSOLUBLE/ 106CELLS

10-

T..E I.RSl

T,ME IHRSI

Figure 1. Uptake of 3SS during the i n c u h a t i o n of k e p a t o c y t e s w i t h [3Ss]cysteine. The nmoles of 35S w e r e c a l c u l a t e d from the specific a c t i v i t y of the [35S]cysteine in the mediLzm. [35S]cysteine c o n c e n t r a t i o n s in the m e d i u m were A-A, 0.2 ~ ; ~-~, 1.0 mM; o-o, 3.0 ng~; e-o, 5.0 ~M.

RESULTS The c r i t e r i a ne or m e t h i o n i n e

used for a s s e s s i n g

the c o n t r i b u t i o n

sulfur to net g l u t a t h i o n e

tocytes was the rate of amino acid uptake, soluble

~SS i n t r a c e l l u l a r

sis and the

ass specific

pool,

biosynthesis

rate of net g l u t a t h i o n e

activity

of g l u t a t h i o n e

amino acid in the medium.

take of

at 0.2 m M by h e p a t o c y t e s

acid-soluble

3SS pool that did not exceed

by hepa-

the size of the acid-

that of the substrata 135Slcysteine

of c y s t e i -

synthe-

relative

to

The limited upresulted

5 nmoles/106

in an cells

w h i l e more that 20 nmoles of g l u t a t h i o n e

were being s y n t h e s i z e d

(Fig. i, T a b l e

ratio of i n t r a c e l l u l a r

i). The specific

J 3SSJglutathione

relative

to

activity

J35Slcysteine

in the m e d i u m did not

exceed 0.19 w h i c h agreed very well with the cysteine lues

(Fig. i). A similar r e l a t i o n s h i p

J3 ~ S J g l u t a t h i o n e cysteine

specific

incubations

between

3SS uptake and

a c t i v i t y was o b s e r v e d

(Fig. i, Table

1259

i).

uptake va-

for 1.0 ~

j3SSJcysteine

L3SsI

at 3.0 and

Vol.

77,

No.

4,

1977

BIOCHEMICAL

AND

BIOPHYSICAL

COMMUNICATIONS

R O

,rJ

4J

r~

~. O

p~. O

.q~ O

~ O

O +1 L~

O +1 ;.~

O +1 ,~

O +1 00

O +l

~

;--I

,-"1

;--I

O

.'4

~1~ I"~ 0

~ oh 0

~ [~0

oh L~ 0

O

O

O

O

+l

0

(I/

0

0 .'4

4~ r)

4-) r~ 4-)

rn

0

0

0

0

O

+i

+I

+I

+l

'~D

~

O

.

0

L~ 0

~ •



0

.

0



RO -~

~

~

0

0 r~

-r-I ..~ 4J ~ ~ ~-'4

m

.'4 ~

~

.

R~

~

~

RESEARCH

C'~

O0

O0

0

~0

+I L~

+I r-I

÷I Lf3

+I ~0

"I-I 0

~

m r~ 4-~

•..~ m~

+i

+I

+I

+I

+i

oh

£~q

C~I

%0

Lr3

~

~

O0

O

.'4

~ , ~ .'4 0~..~ O

-'4 1 ~ - ' 4 m ~0 ~ o ~ ~ 0 ~ O~r~ r~ Ill ~ , - t r~ ~

-'4 ..~ 0

.,~

~-I

~

~

Lr~

m

~

r..)~

r~ ~



0

0

~ ~

~ -'4 -,4 0 -'4 ~ ) 4-1 ~ I..t

0 .'4



r~

L~ ~1 O

~1~ ~ O

L~ ~ O

oh I~ O

÷I CO 0

q-I CO O0 CXl

+I ~I £'4 ~

0

0

0

0

~

~

r'~

O0

C'~ rq

0

0

0

0

0

+I "~ P'~'~

-kl 0

0 +1 O0

0 -kl ~

0 +1 0

0 '+l L~

0 -FI r~

0

0

.

4-) -'4

-~



0 0''4 0-'4 ~4

O0

~

oh

LO

¢'0

0

0

0

0

0 +I ~ oh L~

0 +I 0 oh I.~

0 +I ~ r-4 kO

0 +I oh If) L~

0

0

0

0

~

L~

L~

~'~

0 ÷I ',,.0 (') ~'4

0

0

0

0

0

0

~0

~-I

~

'~

0

oh •





~

~0

O0

LO

cr~

c,q

i---

[--,-

+l

-{-i

+l

-kl

-I-i

¢---i r-t -{-i

u,3

¢0

[-~

cq

oh

o

r--]

t--q

c~

("3

-'4 O N 0 ~ O,-4 .'4 ~-I

0

c,4

c,q

c,3 .

.~I 0 - -

u)

+l If)

+1 "~

+1 £'q

+1 C)

+1 ?0

÷1

+1

+1

+1

rO

t"-

,--I

0

L~

L~

~

~

0

LFI

oh ,'--i

O0 ('4

£'xl ?"1

C'-,I

,--I

C',1

?r)

L~

Lr~

C'q 0

0 4~ 0 44

m m

~

0

1260

0

o

,-H

c~

cr) •

Vol. 77, No. 4, 1977

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Z0 ,5 .[30% "I,M O ]/EoTH O I/N N IO EUP 'T ~AKE1/0%ELLS 30 "6

20

TCA N ISOLUBLE1/0BCELLS

/ a / " ~ a

TIME (HRS)

TIME (HRS)

F i g u r e 2. Uptake of 3SS during the i n c u b a t i o n of h e p a t o c y t e s w i t h [3SS]methionine. The nmoles of 3SS w e r e c a l c u l a t e d from the specific a c t i v i t y of the [3SS]meth~on~ne in the medin/m. [3SS]methionine c o n c e n t r a t i o n s in the m e d i u m w e r e A-A, 0.i raM; A-A, 0.3 mM; ~-~, 1.0 mM; o-o, 3.0 m M and e-e, 5.~ mM.

5.0 m M gave first hr specific respectively,

again r e f l e c t i n g

these higher c o n c e n t r a t i o n s .

not to a d e t e c t a b l e 13SSlmethionine

2, T a b l e

at 0.3,

i). Less of the

This

termediates,

about

activity

into

of

135Slcys -

25% at 0.2 mM c y s t e i n e

and formed an a c i d - s o l u b l e became

pool of

acid-soluble

13SSlglutathione

i n d i c a t e d that a s i g n i f i c a n t

trans-

13SSlglutathione

I35Slmethionine

pool of

~sS (Fig.

pool of

than that of

part of w h i c h could be thiols,

but

concentrations.

1.0 and 3.0 m M was readily

but not completely,

3SS was t r a n s f o r m e d teine.

a g r e a t e r uptake of amino acid at

amount at higher c y s t e i n e

into h e p a t o c y t e s

that rapidly,

ratios of 0.75 and 0.73

The specific

teine in the m e d i u m d e c r e a s e d

ported

activity

13SSlcys -

3Ss labeled in-

accumulated

in the

cells.

This was c o n f i r m e d by thiol analyses

using the Saville

method

(14). By the third hr of incubation,

maximum

tivity ratios were a c h i e v e d

(0.37,

and 3.0 m M

respectively).

activity

I 3SSlmethionine,

0.52 and 0.61 for 0.3,

ratios r e f l e c t the r a p i d i t y

is t r a n s f o r m e d

ac-

1.0

The one hr specific

in w h i c h m e t h i o n i n e

into the thiol of g l u t a t h i o n e

1261

specific

sulfur

by the hepatocytes.

Vol. 77, No. 4, 1977

Efflux

of g l u t a t h i o n e

was m e a s u r e d /hr/106

and found

cells w h e n

medium were values

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

to be nearly

cysteine

0.2 and

respectively.

of the e x t r a c e l l u l a r

The total

lular)

was

tration

cells.

of g l u t a t h i o n e

Efforts

glutathione

exists

cells.

plus

Increasing

activity the

glutathiextracel-

the concen-

in the m e d i u m

increased

of 7 to 8 n m o l e s / h r / 1 0 6

in p r o g r e s s

to d e t e r m i n e

and to e s t a b l i s h

as a m i x e d

in the

essentially

(cellular

to a m a x i m u m

state of this g l u t a t h i o n e

concentrations The specific

or m e t h i o n i n e

are c u r r e n t l y

at 3.8 ± 0.8 nmoles

were

synthesized

cysteine

into the m e d i u m

for the i n t r a c e l l u l a r

ii to 22 n m o l e s / h r / 1 0 6

of either

the e f f l u x

glutathione

values

glutathione

constant

and m e t h i o n i n e

0.1 mM,

same as the c o r r e s p o n d i n g one.

from the h e p a t o c y t e s

disulfide

whether

the redox

any of the

of cysteine.

DISCUSSION Freshly thione,

isolated

rapidly

22 n m o l e s / h r / 1 0 6 (8) this

rate

rate of a b o u t activity

provide

Assuming

for p e r f u s e d

liver

data

support

may

provide

the c o n c l u s i o n from p r o t e i n

nearly

source

are known (16,17)

in normal

50% of the i n t r a c e l l u l a r

derived

and each amino

rates

tely

onine

liver

one half

free amino that w i t h

turnover of the

thesis.

1262

of liver

synthesis

(2). The

of sulfur

high

(5,6,

approxima-

(5). These

hepatocytes

and the i n c u b a t i o n sulfur

In vi-

hepatocytes

contributes acid pool

may

formed.

to be very

isolated

specific

acid at low con-

and i s o l a t e d

fed rats

of ii to

w e t wt.

w i t h an in vivo of

of gluta-

at a rate

one half of the g l u t a t h i o n e

turnover

turnover

depleted

108 c e l l s / g m

that an endogenous

approximately

Protein

tripeptide

w e t wt.

of g l u t a t h i o n e

indicated

as also

(18).

cells.

this

2 ~moles/hr/gm

vo liver p r o t e i n 15)

replenished

is in good a g r e e m e n t

ratios

centration

hepatocytes, that w e r e

meth~

medium

for g l u t a t h i o n e

syn-

Vol. 77, No. 4, 1977

Studies

on intact

F o r example, methionine found

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

into rat

m a y be r e l a t e d

vatives

and m a j o r

effect

of c y s t i n e

rapid

Even

(20,21),

in rat liver

synthetase,

via

of g l u t a t h i o n e

as

caused

glutathione

of the serious

of a m a j o r

the c y s t a t h i o n i n e during

(22),

methionine-sparing

Thus,

to the c o n s e q u e n c e s

trans-sulfuration

prevented

in rats

and k i d n e y

35S

equally

for y - c y s t a t h i o n a s e

established

biosynthesis.

of

a c i d deri-

methionine

by e t h i o n i n e

I~5SI

results

was

of m e r c a p t u r i c

(24) may be an i n d i c a t i o n

be g i v e n

these

that m e t h i o n i n e

a substrate

the firmly

fraction

(19). Also,

of y - g l u t a m y l c y s t e i n e

in g l u t a t h i o n e

biosynthesis

in dogs

decreases

(23).

should

shown

this conclusion. introduced

the m a j o r

in the f o r m a t i o n

sulfoximine,

levels

tion

with

of liver g l u t a t h i o n e

as an i n h i b i t o r

thionine

tissue

has b e e n

with bromobenzene

and m e t h i o n i n e

rapid

liver

with

of p a r e n t e r a l l y

to the o b s e r v a t i o n s

as c y s t i n e

the d e p l e t i o n

well

are c o n s i s t e n t

the t r a n s f o r m a t i o n

in g l u t a t h i o n e

effective

rats

extensive

role

of me-

considerarole

pathway

of

for the

glutathione

con-

jugation. ACKNOWLEDGEMENTS The w o r k r e p o r t e d in this paper was u n d e r t a k e n during the tenure of one of us (D.J.R.) on an A m e r i c a n C a n c e r S o c i e t y Eleanor Roosevelt-International C a n c e r F e l l o w s h i p a w a r d e d by the I n t e r n a t i o n a l U n i o n A g a i n s t Cancer. The a u t h o r s w i s h to thank the S w e d i s h M e d i c a l R e s e a r c h C o u n c i l for f i n a n c i a l support (grant no. 03X-2471) and Spectra Physics Co. for the loan of a liquid c h r o m a t o g r a p h and a S y s t e m I i n t e g r a t o r for use in this study. We thank Dr. J o h a n H ~ g b e r g for very f r u i t f u l discussions, Mrs. G u n - B r i t t Sundby and Mrs. A n n i k a K r i s t o f e r s o n for e x c e l l e n t t e c h n i c a l a s s i s t a n c e and Dr. D e a n Jones and D o c e n t Sten Jakobsson for s u g g e s t i o n s d u r i n g m a n u s c r i p t p r e p a r a t i o n . REFERENCES i. 2. 3. 4.

Meister, A. and Tate, S.S. (1976) Ann.Rev. Biochem. 45, 559604. White, I.N.H. (1976) C h e m . - B i o l . Interactions, 13, 333-342. T a t e i s h i , N., Higashi, T., Shinya, S., Naruse, A. and Sakamoto, Y. (1974) J.Biochem. 75, 93-103. Boyland, E. and Chasseaud, L.F. (1969) A d v . E n z y m o l . 32, 173-219.

1263

Vol. 77, No. 4, 1977

5. 6. 7. 8. 9. i0. ii. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Gan, J.C. and Jeffay, H. (1971) Biochim.Biophys.Acta, 252, 125-135. Glass, R.D. and Doyle, D. (1972) J.Biol.Chem. 247, 5234-5242. Boyland, E. and Chasseaud. L.F. (1967) Biochem.J. 104, 95-102. H~gberg, J. and Kristoferson, A. (1977) Eur.J.Biochem. 74, 77-82. Seglen, P.O. (1976) Biochim. Biophys.Acta, 442, 391-404. Czech, M.P. (1976) Molecular and Cellular Biochem. ii, 51-63. Kesner, L., Muntwyler, E., Griffin, G.E. and Quaranta, P. (1967) Methods of Enzymol. ii, 94-108. Calam, D.H. and Waley, S.G. (1962) Biochem.J. 85, 417-419. Reed, D.J. (1977) Manuscript in preparation. Saville, B. (1958) Analyst, 83, 670-672. Scornik, O.A. and Botbol, V. (1976) J.Biol.Chem. 251, 28912897. Mortimore, G.E. and Mondon, C.E. (1970) J.Biol.Chem. 245, 2375-2383. Woodside, K.H. and Mortimore, G.E. (1972) J.Biol.Chem. 247, 6474-6481. Seglen, P.O. (1975) Biochem. Biophys.Res.Commun. 66, 44-52. Shtutman, Ts.M. and Biber, A. (1973) Ukr. Biokhim. Zh. 45, 439-443. White, A. and Lewis, H.B. (1932) J.Biol.Chem. 98, 607-624. Stekol, J.A. (1937) J.Biol.Chem. 117, 147-159. Glaser, G. and Mager, J. (1974) Bioehim.Biophys.Acta, 372, 237-244. Palekar, A.G., Tate, S.S. and Meister, A. (1975) Biochem. Biophys.Res.Commun. 62, 651-657. Finkelstein, J.D. and Mudd, S.H. (1967) J.Biol.Chem. 242, 873-880.

1264