The spectrum of HNO3 in the region 550–800 GHz

The spectrum of HNO3 in the region 550–800 GHz

JOURNALOFMOLECULAR SPEaROSCOPY 104, 417419(1984) The Spectrum of HNOB in the Region 550-800 GHz’ In two previous papers on HN03 we have reported ...

181KB Sizes 3 Downloads 40 Views

JOURNALOFMOLECULAR

SPEaROSCOPY

104, 417419(1984)

The Spectrum of HNOB in the Region 550-800

GHz’

In two previous papers on HN03 we have reported the measurement of 111 transitions by Caxzoli and De Lucia in the millimeter region (I), and 44 transitions by Bowman et al. in the submillimeter region (2). In this paper we report the measurement of 45 additional submillimeter wave transitions and the extension of the range of the data set by more than 250 GHz to beyond 800 GHz. We have combined the 200 millimeter and submillimeter wave transitions with the 20 centimeter wave transitions reported by Millen and Morton (3, 4), and produced a new analysis of the spectrum of HN03.

’ This work supported by NASA Grant NSG-7540.

TABLE I Observed Transitions of HNOs (MHz) TRANSITION 25( 22 9)- 29( 22 2S( 21 a)- 29( 21 t6( 21 6l- 25( 21 95( 0 9S)- 44( 0 99t 193)- 93( 1 93( 2 91)- 92( 2 32( I4 18)- 3I( 14 31( IS 16)- 30( 15 27( 20 Bb- 26( 20 28( IB lo)- 27( 19 28t IS IO)- 27( 13 2Bt I8 lOI- 27( 18 28( 13 lo)- 27( IB 26( 20 6)- 2St 20 27( 13 8)- 264 13 SO{ 0 SO)- 43( 0 PE( 2 46)- 97t 2 97( 3 94)- 46( 3 96( 9 92)- 9S.t 9 9S.c 5 40)- 44( 5 99( 6 3E)- 931 6 93( 7 36)- 92( 7 92( E ZIP)- 91( 8 41( 9 32)- 90( 3 40( 10 30)- 39( 10 3S( 15 20)- 39( 15 33( I7 16)- 32( 17 sot 5 PS)- 99( 5 49( II 33)- 93( 11 93( 12 31)- 92( 12 93( IS 28)- 424 IS 92( I6 26)- 41t 16 9I( I7 24)- 90( 17 93( 17 26)- 92( 17 921 I8 24)- 91( 18 PS( I7 28)- 44t I7 99( I8 26)- 93( 18 92( 20 22)- 91( 20 90( 22 la)- 39( 22 98( 16 32)- 97( 16 96( I8 28)- 9S( IB 95( 13 26)- 99( 19 93f 21 22)- 92( 21 42( 22 2Ol- 91( 22 911 23 Ia)- 40( 23

3) 3) 5) 94) 42) 90) 17) 1s) 7) 9) 9) 3) 9) 5) 7) 99) 95) 43) 91) 33) 37) 35) 33) 31) 29) 13) IS) 99) 32) 30) 27) 2s) 23) 25) 23) 27) 25) 21) 17) 31) 27) ZS) 211 19) 17)

OBSERVED

CALCULATED

O.-C.

536913.20 s43409.09 566581.30 S69231.86 569262.20 569287.19 S821S3.33 582335.56 583781.01 589980.69 584571.76 s8so18.99 58s110.02 583113.15 S99692.60 631654.53 631706.90 631725.45 631739.73 631750.80 631759.91 631766.69 631779.09 631782.59 631794.39 632039.30 632448.11 699121.18 69413S.33 639195.10 731565.97 731612.28 731686.23 756539.07 7S6621.03 781384.63 701949.03 781705.98 782393.56 806205.78 806279.72 806354.83 806651.75 806933.23 807386.93

536913.16 543409.01 S66581.28 569232.16 569262.29 563287.21 582153.36 582335.91 s83780.33 589480.62 SE4571.69 58s016.35 58s110.02 5e9113.06 594642.62 6316S4.39 631706.99 631723.90 631733.71 631750.79 631759.91 631766.78 631774.05 631702.65 631799.37 632034.76 632448.05 694121.23 634135.21 699145.03 73IS65.35 731612.32 731686.90 756S34.91 756621.30 781304.69 701949.10 781705.64 782343.38 806205.63 806279.79 806359.37 806651.75 806933.12 807386.82

0.04 0.03 0.02 -0.30 -0.04 -0.02 0.03 0.15 0.02 0.02 0.07 0.09 0.00 0.07 -0.02 0.19 -0.09 0.0s 0.08 0.06 0.00 -0.03 0.09 -0.11 0.02 0.12 0.06 -0.11 0.18 0.07 0.12 -0.09 -0.17 -0.09 -0.29 -0.06 -0.07 -0.16 0.18 0.15 -0.07 -O.OR 0.00 0.17 0.17

417

0022-2852184 $3.00 Copyright@ 1984by Academic Prus,Inc. Allrightsofrepnductionin anyformra+rvcd

418

NOTES

The experimental apparatus has been discussed recently (5). A l-m, 2Scmdiameter absorption cell, coated on the inside with clear Krylon, and closed on the ends with Teflon windows, was used. The techniques used to analyze the data have been discussed in a series of papers on HDS (6), HDO (7), and DrS (8). A Watson-type Hamiltonian (9) is employed to calculate energy levels, and a least-squares procedure (10) is used to adjust the rotation and distortion parameters in the Hamiltonian to fit the observed spectrum. Table I shows the frequencies of the newly observed transitions, together with the frequencies calculated in the least-square analysis. Table II shows the results of the new analysis, which has an overaIl rms error of 0.122 MHz. The errors indicated in Table II for the spectral constants represent 95% confidence limits. The data set used in this new analysis is a representative cross-section of the many transitions in HNOr through 800 GHz. The spectral constants given in Table II can be used to accurately predict the spectrum of HNO, throughout the region covered by the data set. In the region covered in this study, the spectrum is dominated by strong AJ = 1 transitions that are quadruply degenerate. These transitions are of the form s - n(n, s - 24 - s - 1 - n(n, s - 1 - 2n) J’-n(n+l,J’-2n)-J’-1-n(n+l,J’-1-2~1) J’-n(n,J’-2n)-SS-n(n+

1 -n(n+

l,J’-2n)-S-

1 -n(n,J’-

l,J’-

l-24

1 -2n),

where J’ is the maximum J value for the branch and where n = 0, 1, 2, . . . Thesebranches have the interesting and useful feature illustrated in Fig. 1 for J’ = 50, 53, 55, and 58. This near degeneracy of a number of strong lines may be especially important for remote sensing applications. Since there are many TABLE II Results of Analysis (MHz) constant

ValW

A

13011.0394

B

12039.8719

0.0036

6260.6468

0.0032

0.1411597

0.000038

-0.2016856

0.000074

0.738618

(X10') "J HJK (x10')

20

0.0036

0.00063

0.118281

0.000074

-0.205481

0.000091

0.1893

0.0122

-0.90360

0.1012

0.90382

0.2408

HKJ (x10') HK (x10')

-0.2289

0.1534

hJ

-0.9277

0.0240

hJK (~10~)

-0.1249

0.0060

(x105)

0.1157

0.0054

0.5011

0.3180

hK

MO*)

-0.35170

0.0900

0.68194 -0.36974

0.0960 0.0380

419

NOTES

so-

J

. J’=55 .

.J’=se

:

. . .

. . 45-

. J’=53

.

. . . .

. .

. .

. .

. .

.

l

.J:50

.

.

. . . .

.

. .

40Ic 100 MHZ +I

I

713560

j--t

694140 669180 FREOUENCY (GHr)

.

631730

FIG. 1. Examples of regions of concentrated line density.

of these, branches that match the resolution of the instrument and that are compatible with other system parameters can be selected. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9.

W. C. ROWMAN,F. C. DE LUCIA, AND P. HELMINGER,J. Mol. Spectrosc.88,431-433 (1981). G. CAZZOU AND F. C.. DE LUCIA, J. Mol. Spec~rosc. 76, 13 I- 141 (1979). D. J. MILLEN AND J. R. MORTON, Chem. bid. (h’. Y.) 954 (1956). D. J. MILLEN AND J. R. MORTON, J. C/tern. SOC.. 1523-1528 (1960). P. HELMINGER,J. K. MESSER,AND F. C. DE LUCIA, Awl. Phys. Lett. 42,309-310 (1983). P. HELMINGER, R. L. COOK, AND F. C. DE LUCIA, J. Mot. Spectrosc.40, 125-136 (1971). F. C. DE LUCIA, R. L. COOK, P. HELMINGER,AND W. GORDY, J. Chem. Phys. 55.5334-5339 (197 I). R. L. COOK, F. C. DE LUCIA, AND P. HELMINGER,J. Mol. Specfrosc. 41, 123-136 (1972). J. K. G. WATSON, J. Chkm. Phys. 45, 1360-I 36 I (1966). 10. W. C. HAMILTON,“Statistics in Physical Science,” Ronald, New York, 1964. J. K. MESSER F. C. DE LUCIA

Department of Physics Duke University Durhum, North Carolina 27706 P. HELMINGER

Department of Physics University of South Alabama Mobile, Alabama 36688 Received December 1I 1983