The successive approximation method and Padé approximants for solutions the non-linear boundary value problem

The successive approximation method and Padé approximants for solutions the non-linear boundary value problem

Applied Mathematics and Computation 146 (2003) 681–690 www.elsevier.com/locate/amc The successive approximation method and Pade approximants for sol...

113KB Sizes 3 Downloads 54 Views

Applied Mathematics and Computation 146 (2003) 681–690 www.elsevier.com/locate/amc

The successive approximation method and Pade approximants for solutions the non-linear boundary value problem Hakan S ß imsßek *, Ercan C ß elik € niversitesi, T-025240 Erzurum, Turkey Fen-Edebiyat Fak€ultesi, Matematik B€ol€um€u, Atat€urk U

Abstract In this paper, we suggested an successive approximation method and Pade approximants method for the solution of the non-linear differential equation. First we calculate power series of the given equation system then transform it into Pade (approximants) series form, which give an arbitrary order for solving differential equation numerically. We compare our results with the result obtained by successive method for the non-linear equation. Ó 2002 Elsevier Inc. All rights reserved. Keywords: Successive approximation method; Non-linear equation; Pade approximants

1. Introduction Let us consider the non-linear boundary value problem x00 ðtÞ ¼ aðtÞxðtÞ þ f ðx; tÞ;

xð0Þ ¼ x0 ;

xðT Þ ¼ xT

ð1Þ

In this case, f ðx; tÞ ¼ f ðtÞ which has been investigated by many authors [1–3]. There are many theorems on existence of a unique solution to problem (1) [4– 6]. In this study, we construct the special approximations and Pade approximants for Eq. (1).

*

Corresponding author. E-mail address: [email protected] (H. S ß imsßek).

0096-3003/$ - see front matter Ó 2002 Elsevier Inc. All rights reserved. doi:10.1016/S0096-3003(02)00612-4

682

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690

2. Semi-linear operator equations Definition. Let E be a Banach space with the distance q, and let A be a mapping of E onto itself. Then A is said to be a contracting mapping if there exists a constant a (0 6 a 6 1) such that the inequality qðAx  AyÞ 6 aqðx; yÞ holds for every pair of points x; y 2 E. In this section, we will consider the semi-linear operator equation x ¼ A0 x þ A1 ðxÞ

ð2Þ

in the E-Banach spaces, where A0 x is a linear bounded operator defined in E 1 such that ðI  A0 Þ is a bounded operator, A1 ðxÞ is a non-linear operator defined in E and I is an identity operator. The successive approximations for Eq. (2) are defined by xn ¼ A0 xn þ A1 ðxn1 Þ;

n ¼ 1; 2; . . .

ð3Þ

for the arbitrary x0 2 E. The approximations (3) can be written as xn ¼ ðI  A0 Þ1 A1 ðxn1 Þ;

n ¼ 1; 2; . . .

ð4Þ

First of all we will give the following theorem. 1

Theorem 1. Let us assume that the operator ðI  A0 Þ exists and is bounded for linear operator A0 x, which is defined in E-Banach space and the operatorA1 ðxÞ satisfies Lipschitz condition kA1 ðxÞ  A1 ðyÞk 6 Lkx  yk 1

Also, suppose that b ¼ LkðI  A0 Þ k < 1. Therefore Eq. (2) has a unique solution x and this solution is limit of the successive approximations (4). The speed of the convergence is determined by the inequality. Proof can be found [6]. Now, let us apply this theorem to problem (1). It is easy see that problem (1) equivalent to the non-linear Fredholm–Volterra integral equation Z Z t 1 T xðtÞ ¼ uðtÞ  ðT  sÞaðsÞxðsÞ ds þ ðt  sÞaðsÞxðsÞ ds t 0 0 Z t Z T t  ðT  sÞf ðs; xðsÞÞ ds þ ðt  sÞf ðs; xðxÞÞ ds T 0 0

ð5Þ

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690

683

or xðtÞ ¼ uðtÞ þ

Z

T

Gðt; sÞaðsÞxðsÞ ds þ

0

Z

t

ðt  sÞf ðs; xðsÞÞ ds

ð6Þ

0

where uðtÞ ¼

T t t x0 þ xT T T

and

8 sðT  tÞ > < ; T Gðt; sÞ ¼ > : tðT  sÞ ; T

06s6t t6s6T

Green function Gðt; sÞ is a negative and continuous function that satisfies the conditions Z T T T2 jGðt; sÞj 6 and jGðt; sÞj 6 4 8 0 On the other hand, we set, Z T F0 x  ðT  sÞaðsÞxðsÞ ds;

V0 x

0

t F1 ðxÞ  T

Z

t

ðt  sÞaðsÞxðsÞ ds

0

Z

T

ðT  sÞf ðs; xðsÞÞ ds;

V1 ðxÞ 

0

F ðxÞ ¼ F1 ðxÞ þ V1 ðxÞ ¼

Z

t

ðt  sÞf ðs; xðsÞÞ ds

0

Z

T

GðT ; sÞf ðs; xðsÞÞ ds;

AðxÞ ¼ F ðxÞ þ V0 x

0

Eq. (5) or (6) can be written as xðtÞ ¼ hðtÞ þ

t F0 x þ AðxÞ T

This integral equation is equivalent to problem 1. F0 x Fredholm operator is defined from C½0; T to R. That means that, yðtÞ ¼ h ðtÞ þ

t F0 y T

operator is degenerated kernel-Fredholm operator. If we take K0 ðt; sÞ ¼ Gðt; sÞaðsÞ and K1 ðt; s; xðsÞÞ ¼ Gðt; sÞf ðs; xðsÞÞ, then from Eq. (6) we can write Z T Z T xðtÞ ¼ hðtÞ þ K0 ðt; sÞxðsÞ ds þ K1 ðt; s; xðsÞÞ ds ð7Þ 0

0

Pm where K0 ðt; sÞ degenerated kernel with K0 ðt; sÞ ¼ i¼0 ai ðtÞbi ðsÞ [6] and for continuous K1 ðt; s; xðsÞÞ (0 6 s, t R6 T , 1 < x < 1) functions Rholds the Lipschitz T T condition. If we set, A0 x 0 K0 ðt; sÞxðsÞ ds and A1 ðxÞ 0 K1 ðt; s; xðsÞÞ ds þ f ðtÞ then Eq. (7) can be written as x ¼ A0 x þ A1 ðxÞ.

684

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690 1

In order to obtain the operator ðI  A0 Þ , we solve x ¼ A0 x þ F ðtÞ or # Z T "X m xðtÞ ¼ ai ðtÞbi ðsÞ ds þ F ðtÞ ð8Þ 0

i¼0

Pm Let us investigate the solution Eq. (8) in following form xðtÞ ¼ i¼0 ai ðtÞci þ F ðtÞ. We write Z T m Z T X bi ðsÞaj ðsÞ ds cj þ bi ðsÞF ðsÞ ds; i ¼ 1; 2; . . . ; m ci ¼ 0

j¼0

0

Suppose that the determinant of the coefficient matrix D 6¼ 0 and Dij strands for the algebraic complement of determinant D with the subscripts ij, then we obtain Z T m 1X ci ¼ Dij bj ðsÞF ðsÞ ds ð9Þ D j¼1 0 Now Eq. (8) can be written as Z T m 1X ai ðtÞDij bj ðsÞF ðsÞ ds þ F ðtÞ xðtÞ ¼ D i;j¼1 0

ð10Þ

and we obtain the inequality

Z T m X

Dij kai k



jbj ðsÞj ds þ 1 kðI  A0 Þ1 k 6 D 0 i;j¼1 We can write Eq. (7) as xðtÞ ¼ hðtÞ þ

m X i;j¼1

þ

Z

ai ðtÞ

Dij D

Z

T

bj ðsÞ 0

Z

T

K1 ðt; s; xðsÞÞ ds ds 0

T

K1 ðt; s; xðsÞÞ ds 0

hðtÞ ¼

Z m X Dij T ai ðtÞ bj ðsÞf ðsÞ ds þ f ðtÞ D 0 i;j¼1

considering Eq. (9). Now, it is easily shown that A1 ðxÞ operator holds Lipschitz condition in E ¼ C½0; T for arbitrary xðtÞ; yðtÞ 2 C½0; T . Theorem 2. Suppose that ai ðtÞ, bi ðsÞ, K1 ðt; s; xÞ (0 6 t, s 6 T , 1 < x < 1) are continuous functions and K1 ðt; s; xÞ is uniformly Lipschitz in its their variable with the Lipschitz coefficient L. Also, let

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690

685

" #

Z m  X  Dij T aij  b ¼ LT jbj ðsÞ dsj þ 1 < 1

D 0 i;j¼1 Therefore, Eq. (9) has unique solution and this solution is the limit of the successive approximations: Z Z T m X Dij T xn ðtÞ ¼ hðtÞ þ ai ðtÞ bj ðsÞ K1 ðt; s; xn1 ðsÞÞ ds ds D 0 0 i;j¼1 Z T K1 ðt; s; xn1 ðsÞÞ ds þ 0

for n ¼ 1; 2; . . . The speed of the convergence determined by inequality kxn  x k 6 bn kx  x k.

3. Successive approximations method In this section, we establish the successive approximates for the solution of problem (1). Our aim in this section not to give a theorem concerning the existence of a unique solution to Eq. (1). But we investigate only approximate methods in order to find the solution. Most theorems on the existence of a unique solution to Eq. (1) can be found in Ref. [6]. The following theorem can be proved by using simple approximation method. Theorem 3. Suppose that the function /ðt; xÞ (0 6 t 6 T , 1 < x < 1) is continuous and satisfies Lipschitz condition with respect to x and let q ¼ LT 2 =8 < 1. Then the problem x00 ¼ /ðt; xÞ;

xð0Þ ¼ xt ;

xðT Þ ¼ xT

ð11Þ

has unique solution in ½0; T and this solution is the limit of simple successive approximates Z T Gðt; sÞ/ðs; xn1 ðsÞÞ ds; n ¼ 1; 2; . . . ð12Þ xn ðtÞ ¼ hðtÞ þ 0

Furthermore convergence speed is determined by jxn ðtÞ  x ðtÞ 6 jqn kx  x0 k

ð13Þ

where x ð0 6 t 6 T Þ is a solution to the problem (11) [6]. If the function /ðt; xÞ satisfies the Lipschitz condition for jxj 6 r then we assume that T 2 M=8 < r, M ¼ max0 6 t 6 T ; jxj
686

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690

change the interval ð1; 1Þ, where the non-linear functions satisfy the Lipshitz condition with interval ½r; r [6]. Theorem 4. Suppose that the function /ðt; xÞ (0 6 t 6 T , 1 < x < 1) satisfies x/ðt; xÞs2 P jxj2 þ f ðtÞ ðs ¼ constantÞ where f ðtÞ (0 6 t 6 T ) is a given continuous function. Then, 2

2

jxðtÞj 6 r ¼ jx0 j þ jxT j þ

cosh sT2  1 kf k s2 cosh sT2  1

holds for the solution (if there exists one) to problem (11). Remark. Suppose that the function f ðx; tÞ satisfies 2

x/ðt; xÞ 6 L0 jxj þ f ðtÞ

ðL0 > 0Þ

ð14Þ

then r is 2

cosh

2

r ¼ jx0 j þ jxT j þ

T

pffiffiffiffiffiffiffiffiffiffiffi L0 þkak 2

ðL0 þ kakÞ cosh

T

1 pffiffiffiffiffiffiffiffiffiffiffi kf k L0 þkak 2

ð15Þ

for the solution of Eq. (1). Now we establish the successive approximates for the solution to problem (1) or integral Eqs. (5) and (6) by xn ðtÞ ¼ hðtÞ 

t F0 xn ðtÞ þ V0 ðxn1 ðtÞÞ þ F1 ðxn1 ðtÞÞ þ V1 ðxn1 ðtÞÞ T

ð16Þ

xn ðtÞ ¼ hðtÞ þ

t F0 xn ðtÞ þ Aðxn1 ðtÞÞ; T

ð17Þ

or n ¼ 1; 2; . . .

where x0 ðtÞ (0 6 t 6 T ) is an arbitrary continuous function. It can be easily seen from Eqs. (16) and (17) that one needs to solve Eq. (14) to find xn ðtÞ if xn1 is already known. If we let Z T a¼T þ ðT  sÞsaðsÞ ds 6¼ 0 ð18Þ 0

then the solution to Eq. (14) is given as [6]. t y ¼ h þ F0 h a

ð19Þ

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690

687

Namely setting h ¼ hðtÞ þ V0 xn1 þ F1 xn1 ;

hðtÞ ¼ hðtÞ þ Aðxn1 Þ

in Eq. (19) we find from Eqs. (16) and (17) that t t t xn ðtÞ ¼ h þ F1 xn1 þ F0 V0 ðxn1 Þ þ F0 F1 ðxn1 Þ þ F0 V1 ðxn1 Þ a a a þ V0 xn1 þ V1 ðxn1 Þ xn ðtÞ ¼ h ðtÞ þ Aðxn1 Þ þ

t F0 Aðxn1 Þ; T

n ¼ 1; 2; . . .

ð20Þ ð21Þ

where h ðtÞ ¼ hðtÞ þ ðt=aÞF0 hðtÞ. We assume that xn ðtÞ defined by Eq. (21) is an approximate solution of problem (1). As we proved in the introduction if the function f ðt; xÞ satisfies Eq. (13) then the solution to problem (1) also satisfies jxðtÞ 6 rj, where r defined in Eq. (15). Our aim in writing Eq. (16) (or Eq. (1)) is to use is estimating of convergence speed to the solution the Eq. (1) of the sequence fxn ðtÞg defined by Eq. (16). The difference between the iterations made by Eqs. (16) and (17) is to be F ðxÞ in Eq. (17) though Eq. (16) has F1 ðxÞ þ V1 ðxÞ in it. An important advantage of this that the convergence speed can be evaluated in some cases more precisely using the Volterra operator V1 ðxÞ. Therefore, the sequence fxn ðtÞg defined by Eq. (15) converges the solution to problem (1). Now, we are in a position to estimate the convergence speed. If we assume that hðtÞ ¼ hðtÞ þ F ðxÞ and use this in Eq. (19), then we get the integral equation xðtÞ ¼ h ðtÞ þ F ðxÞ þ

t F0 AðxÞ T

ð22Þ

which is equivalent to Eq. (10). We assume that en ðtÞ ¼ xn ðtÞ  xðtÞ to get from Eqs. (16) and (17) that en ðtÞ ¼ F en1 þ

t F0 Aðen1 Þ; T

n ¼ 1; 2; . . .

ð23Þ

Let f ðt; xÞ be continuous and satisfy the Lipschitz condition with respect to x; L > 0. From Eq. (23) we have Z T Z T T en ðtÞ jGðt; sÞjjf ðs; xn1 ðsÞÞ  f ðs; xðsÞÞj ds þ ðT  sÞjaðsÞj jaj 0 0 Z T Z T T  jGðs; rÞjjf ðr; xn1 ðrÞÞ  f ðr; xðrÞÞj dr ds þ ðT  sÞjaðsÞj jaj 0 Z0 s jaðrÞjjxn1 ðrÞ  xðrÞj dr ds;  0

688

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690

Z T Z T T T4 kakL en ðtÞ 6 L jen1 ðsÞj ds þ jen1 ðsÞj ds 4 8jaj 0 0 Z T T4 2 kak jen1 ðsÞj ds; þ 2jaj 0 jen ðtÞj 6 A

Z

T

jen1 ðsÞj ds;

n

jen ðtÞj 6 ðAT Þ ke0 k

0

where  A¼T

L T3 þ 4 2jaj



 L þ kak kak 4

ð24Þ

Therefore, n

jxn ðtÞ  xðtÞj 6 ðAT Þ kx0 ðtÞ  xðtÞk

ð25Þ

is definitely correct. In the case of AT < 1, the sequence fxn ðtÞg defined by Eq. (21) converges to the solution to problem (1). Convergence speed is given by Eq. (25).

4. Pade (approximants) series The power series can be transformed into Pade series easily. Pade series is defined in the following a0 þ a1 x þ a2 x 2 þ    ¼

p0 þ p1 x þ    þ pM xM 1 þ q1 x þ    þ qL x L

ð26Þ

Multiply the both side of (26) by the denominator of right side in (26) and compare the coefficients of both sides in (26). We have al þ

m X

alk qk ¼ pl ;

l ¼ 0; . . . ; M

ð27Þ

alk qk ¼ 0;

l ¼ M þ 1; . . . ; M þ L

ð28Þ

k¼1

al þ

L X k¼1

Solve the linear equation in (28), we have qk (k ¼ 1; . . . ; L). And substitute qk into (27), we have pl (l ¼ 0; . . . ; M). The coefficients in (28) are Toeplitz matrix. Although a fast algorithm developed by Levinson for Toeplitz Matrix [6, p. 43] is known, Gaussian elimination is used to solve above linear equations.

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690

689

If M 6 L 6 M þ 2, where M and L is the degree of numerator and denominator in Pade series respectively, then this Pade series gives an A-stable formula for an ordinary differential equation [5,7].

5. An example As an example, let us consider the boundary value problem x00 þ sinð2tÞxðtÞ ¼ 2t sinðxðtÞÞ; xð0Þ ¼ 0;

06t61

ð29Þ

xð1Þ ¼ 2

The solution to problem (29) by using successive approximations and Eqs. (3) and (4) is given in x1 ðtÞ ¼ 1:682941970t þ 0:244191632t2 þ 0:1666666667t4 þ 0:02418301171t5  0:01111111111t6  0:001612200780t7 þ 0:0002976190476t8 þ 0:00004318394946t9 x1 ðtÞ can be transformed into Pade series s ¼ ½4=4 ¼

1:682941970t  0:03813066411t2 þ 0:1017216709t3 þ 0:1641246225t4 : ð1:000000000  0:1677552175t þ 0:08478372620t2  0:01381243155t3 þ 0:004247960733t4 Þ

We show Table 1 for solution of (13) by numerical method. The numerical values in Table 1 obtained above are in full agreement with the exact solutions of Eq. (23). The Pade approximants that often show superior performance over series approximants, provide a promising tool for using in applied fields. Table 1 Values at some points of x1 ðtÞ the interval in ½0; 1 ti

xðti Þ

x1 ðti Þ

jx  x1 j

Pade app.

jx  Padej

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2

0.1707530105 0.3466297337 0.5282601703 0.7167138036 0.9135063193 1.120596544 1.340373302 1.575632091 1.829541656 2.105600772

0.0292469895 0.0533702663 0.0717398297 0.0832861964 0.0864936807 0.079403456 0.059626698 0.024367909 0.029541656 0.105600772

0.1707530105 0.3466297336 0.5282601706 0.7167138046 0.9135063203 1.120596549 1.340373332 1.575632213 1.829542082 2.105600559

0.0292469895 0.0533702664 0.0717398294 0.0832861954 0.0864936797 0.079403451 0.059626668 0.024367787 0.029542082 0.105600559

690

H. Sß imsßek, E. C ß elik / Appl. Math. Comput. 146 (2003) 681–690

References [1] J.D. Mamedov, G. Berger, H. D€ orner, Eine Methode zur naherrungsweisen einer Randwertaufgabe einer linearen gew€ ohnlichen Differentialgichund 2, Ordnung Zeitschrift f€ ur Analysis und ihre Anwendungen, Bd. 2 (1) (1983) 11–23. [2] J. Casti, R. Kalaba, Imbedding Methods in Applied Mathematics, Adison-Wesley, London, 1973. [3] H. S ß imsßek, An approximate solution of a non-linear boundary value problem, J. Fac. Sci. Ege Univ. 20 (1997) 77–88. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1988. [5] A.M. Wazwaz, Analytical approximations and Pade approximations for VolterraÕs population model, App. Math. Comput. 100 (1999) 13–25. [6] Y.C. Memmedov, Approximate Methods, Atat€ urk Uni., Erzurum, 1994 (in Turkish). [7] E. C ß elik, M. Bayram, On numerical solution of differential-algebraic equations by Pade series, App. Math. Comput., in press.