Chaos, Solitons and Fractals 40 (2009) 1467–1474 www.elsevier.com/locate/chaos
The tanh–coth method combined with the Riccati equation for solving non-linear equation Ahmet Bekir Dumlupinar University, Art-Science Faculty, Department of Mathematics, Ku¨tahya, Turkey Accepted 10 September 2007
Abstract In this work, we established abundant travelling wave solutions for some non-linear evolution equations. This method was used to construct solitons and traveling wave solutions of non-linear evolution equations. The tanh–coth method combined with Riccati equation presents a wider applicability for handling non-linear wave equations. Ó 2007 Elsevier Ltd. All rights reserved.
1. Introduction The investigation of the travelling wave solutions for non-linear partial differential equations plays an important role in the study of non-linear physical phenomena. Non-linear wave phenomena appears in various scientific and engineering fields, such as fluid mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics and geochemistry. Non-linear wave phenomena of dispersion, dissipation, diffusion, reaction and convection are very important in non-linear wave equations. In recent years, new exact solutions may help to find new phenomena. A variety of powerful methods, such as inverse scattering method [1,11], bilinear transformation [8], the tanh– sech method [9,10,13], extended tanh method [2,5,17], sine–cosine method [16,20,21], homogeneous balance method [4], Exp-function method [6,7] and improved tanh-function [3] method were used to develop non-linear dispersive and dissipative problems. The pioneer work Malfiet [9,10] introduced the powerful tanh method for a reliable treatment of the non-linear wave equations. The useful tanh method is widely used by many such as in [13–15] and by the references therein. Later, the tanh–coth method, developed by Wazwaz [17], is a direct and effective algebraic method for handling non-linear equations. Various extensions of the method were developed as well. Our first interest in the present work is in implementing the tanh–coth method combined with Riccati equation method to stress its power in handling non-linear equations, so that one can apply it to models of various types of non-linearity. The next interest is in the determination of exact travelling wave solutions for Benjamin–Bona–Mahony (BBM) equation. Searching for exact solutions of non-linear problems has attracted a considerable amount of research work where computer symbolic systems facilitate the computational work.
E-mail address:
[email protected] 0960-0779/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2007.09.029
1468
A. Bekir / Chaos, Solitons and Fractals 40 (2009) 1467–1474
2. The tanh–coth method Wazwaz has summarized for using tanh–coth method. A PDE P ðu; ut ; ux ; uxx ; utt ; uxxx ; . . .Þ ¼ 0
ð2:1Þ
can be converted to on ODE QðU ; U 0 ; U 00 ; U 000 ; . . .Þ ¼ 0
ð2:2Þ
upon using a wave variable n ¼ x bt. Eq. (2.2) is then integrated as long as all terms contain derivatives where integration constants are considered zeros. Introducing a new independent variable Y ¼ tanhðnÞ or Y ¼ cothðnÞ
n ¼ x bt;
ð2:3Þ
leads to change of derivatives: d d ¼ ð1 Y 2 Þ ; dn dY d2 d d2 ¼ ð1 Y 2 Þ 2Y þ ð1 Y 2 Þ 2 ; 2 dY dY dn 3 2 3 d d 2 2 2 d 2 2 d : ¼ ð1 Y Þ ð6Y 2Þ Þ þ ð1 Y Þ 6Y ð1 Y dY dY 2 dY 3 dn3
ð2:4Þ
The tanh–coth method [17,18] admits the use of the finite expansion U ðnÞ ¼ SðY Þ ¼
m X
ak Y k þ
k¼0
m X
bk Y k ;
ð2:5Þ
k¼1
where m is a positive integer, for this method, that will be determined. Expansion (2.5) reduces to the standard tanh method [9] for bk ¼ 0; 1 6 k 6 m. The parameter m is usually obtained, as stated before, by balancing the linear terms of the highest order in the resulting equation with the highest order non-linear terms. If m is not an integer, then a transformation formula should be used to overcome this difficulty. Substituting (2.5) into the ODE results is an algebraic system of equations in powers of Y that will lead to the determination of the parameters ak ðk ¼ 0; . . . ; mÞ, bk ðk ¼ 1; . . . ; mÞ and b. The function Y satisfies the Riccati equation Y 0 ¼ A þ BY þ CY 2 ;
ð2:6Þ
where A, B and C are constants [19], and Y0 ¼
dY ðnÞ ; dn
n ¼ x bt:
ð2:7Þ
3. The Riccati equation method The Riccati equation Y 0 ¼ A þ BY þ CY 2 ;
ð3:1Þ
has specific solutions for B ¼ 0 given in [12] by 1 A¼ ; 2 1 A¼ ; 2 A ¼ 1; A ¼ 1; A ¼ 1; A ¼ 1;
1 n n C ¼ ; Y 1 ¼ tanh ; coth ; 2 2 2 1 n n C ¼ ; Y 2 ¼ tan n sec n; tan ; cot ; 2 2 2 C ¼ 1; Y 4 ¼ tanh n; coth n; C ¼ 1; Y 5 ¼ tan n; cot n; 1 1 C ¼ 4; Y 7 ¼ tanh 2n; coth 2n; 2 2 1 1 C ¼ 4; Y 8 ¼ tan 2n; cot 2n: 2 2
ð3:2Þ
A. Bekir / Chaos, Solitons and Fractals 40 (2009) 1467–1474
1469
Other values for Y can be derived for other arbitrary values for A and C. To show the efficiency of the method described in the previous part, we present some example.
4. Benjamin–Bona–Mahony equation Benjamin–Bona–Mahony equation (BBM) ut þ ux þ uux uxxt ¼ 0:
ð4:1Þ
Using the wave variable n ¼ x bt, the system (4.1) is carried to a system of ODEs ð1 bÞu0 þ uu0 þ bu000 ¼ 0;
ð4:2Þ
by once time integrating we find ð1 bÞu þ
u2 þ bu00 ¼ 0: 2
ð4:3Þ
Balancing u00 with u2 in (4.3) gives m þ 2 ¼ 2m;
ð4:4Þ
so that m ¼ 2:
ð4:5Þ
The tanh–coth method admits the use of the finite expansion U ðnÞ ¼ SðY Þ ¼ a0 þ a1 Y 2 þ
b1 : Y2
ð4:6Þ
Substituting Eq. (4.6) in (4.3), collecting the coefficients of Y i ði ¼ 0; . . . ; 8Þ and set it to zero we obtain the system 12ba1 C 2 þ a21 ¼ 0; 10ba1 BC ¼ 0; 4ba1 B2 þ a0 a1 þ a1 þ 8ba1 AC ba1 ¼ 0; 6ba1 AB ¼ 0; 2a1 b1 þ a20 2ba0 þ 2a0 þ 4bb1 C 2 þ 4ba1 A2 ¼ 0; 6bb1 BC ¼ 0;
ð4:7Þ
4bb1 B2 þ b1 þ a0 b1 bb1 þ 8bb1 AC ¼ 0; 10bb1 AB ¼ 0; b21 þ 12bb1 A2 ¼ 0: Solving this system by Maple gives B ¼ 0 and the following six sets of solutions: (i) The first set: a0 ¼
4AC ; 4AC 1
a1 ¼ 0;
b1 ¼
12A2 ; 1 4AC
b¼
1 : 1 4AC
ð4:8Þ
a1 ¼ 0;
b1 ¼
12A2 ; 1 þ 4AC
b¼
1 : 1 þ 4AC
ð4:9Þ
a1 ¼
12C 2 ; 1 4AC
b1 ¼ 0;
b¼
1 : 1 4AC
ð4:10Þ
a1 ¼
12C 2 ; 1 þ 4AC
b1 ¼ 0;
b¼
1 : 1 þ 4AC
ð4:11Þ
(ii) The second set: a0 ¼
12AC ; 4AC þ 1
(iii) The third set: a0 ¼
4AC ; 4AC 1
(iv) The fourth set: a0 ¼
12AC ; 4AC þ 1
1470
A. Bekir / Chaos, Solitons and Fractals 40 (2009) 1467–1474
(v) The fifth set: a0 ¼
8AC ; 1 16AC
a1 ¼
12C 2 ; 1 16AC
b1 ¼
12A2 ; 1 16AC
b¼
1 : 1 16AC
ð4:12Þ
a1 ¼
12C 2 ; 1 þ 16AC
b1 ¼
12A2 ; 1 þ 16AC
b¼
1 : 1 þ 16AC
ð4:13Þ
(vi) The sixth set: a0 ¼
24AC ; 16AC þ 1
This in turn gives the following general set of solutions 4AC 12A2 1 ; Y 2 ðnÞ; b ¼ 4AC 1 1 4AC 1 4AC 12AC 12A2 1 Y 2 ðnÞ; b ¼ uII ¼ ; 4AC þ 1 1 þ 4AC 1 þ 4AC 2 4AC 12C 1 Y 2 ðnÞ; b ¼ uIII ¼ ; 4AC 1 1 4AC 1 4AC 2 12AC 12C 1 Y 2 ðnÞ; b ¼ ; uIV ¼ 4AC þ 1 1 þ 4AC 1 þ 4AC 2 2 8AC 12C 12A 1 Y 2 ðnÞ Y 2 ðnÞ; b ¼ uV ¼ ; 1 16AC 1 16AC 1 16AC 1 16AC 24AC 12C 2 12A2 1 Y 2 ðnÞ Y 2 ðnÞ; b ¼ ; uVI ¼ 1 þ 16AC 16AC þ 1 1 þ 16AC 1 þ 16AC
uI ¼
ð4:14Þ ð4:15Þ ð4:16Þ ð4:17Þ ð4:18Þ ð4:19Þ
where A and C are arbitrary constants and Y takes many trigonometric and hyperbolic functions as shown in (3.2). Case I: We first consider uI ðx; tÞ. We use the first result of (4.8). We then apply the related Y functions for this choice of A and C. Using the first case in (3.2) where A ¼ 12 and C ¼ 12 gives the solution 1 n u1 ¼ 1 þ 3coth2 ; ð4:20Þ 2 2 and soliton solution 1 n u2 ¼ 1 þ 3tanh2 ; 2 2
ð4:21Þ
where b ¼ 12. For A ¼ 1 and C ¼ 1 we find b ¼ 15, and we therefore obtain the solution 4 u3 ¼ ½1 þ 3coth2 ðnÞ; 5
ð4:22Þ
and the soliton solution 4 u4 ¼ ½1 þ 3tanh2 ðnÞ: 5
ð4:23Þ
For A ¼ 1 and C ¼ 1 we find b ¼ 13, and we therefore obtain the solutions 4 u5 ¼ ½1 þ 3cot2 ðnÞ; 3 4 u6 ¼ ½1 þ 3 tan2 ðnÞ: 3
ð4:24Þ ð4:25Þ
For A ¼ 1 and C ¼ 4 we find b ¼ 171 , and we therefore obtain the solution u7 ¼
16 ½1 þ 3coth2 ð2nÞ; 17
ð4:26Þ
and the soliton solution u8 ¼
16 ½1 þ 3tanh2 ð2nÞ: 17
ð4:27Þ
A. Bekir / Chaos, Solitons and Fractals 40 (2009) 1467–1474
1471
For A ¼ 1 and C ¼ 4 we find b ¼ 151 , and we therefore obtain the solutions 16 ½1 þ 3cot2 ð2nÞ; 15 16 u10 ¼ ½1 þ 3 tan2 ð2nÞ: 15
u9 ¼
ð4:28Þ ð4:29Þ
Case II: We first consider uII ðx; tÞ. We use the second result of (4.9). Using the first case in (3.2) where A ¼ 12 and C ¼ 12 gives the solutions 3 n u11 ¼ 1 cot2 ; ð4:30Þ 2 2 3 n u12 ¼ 1 tan2 ; ð4:31Þ 2 2 " # 3 1 ; ð4:32Þ u13 ¼ 1 2 ðtan n sec nÞ2 where b ¼ 12. For A ¼ 1 and C ¼ 1 we find b ¼ 13, and we therefore obtain the solution u14 ¼ 4½1 þ coth2 ðnÞ:
ð4:33Þ
and the soliton solution u15 ¼ 4½1 þ tanh2 ðnÞ: For A ¼ 1 and C ¼ 1 we find b ¼
ð4:34Þ 1 , 5
and we therefore obtain the solutions
12 u16 ¼ ½1 cot2 ðnÞ; 5 12 u17 ¼ ½1 tan2 ðnÞ: 5
ð4:35Þ ð4:36Þ
For A ¼ 1 and C ¼ 4 we find b ¼ 151 , and we therefore obtain the solution u18 ¼
48 ½1 þ coth2 ð2nÞ; 15
ð4:37Þ
and the soliton solution u19 ¼
48 ½1 þ tanh2 ð2nÞ: 15
ð4:38Þ
For A ¼ 1 and C ¼ 4 we find b ¼ 171 , and we therefore obtain the solutions 48 ½1 cot2 ð2nÞ; 17 48 u21 ¼ ½1 tan2 ð2nÞ: 17
u20 ¼
ð4:39Þ ð4:40Þ
Case III: We next consider uIII ðx; tÞ. We use the third result of (4.10). Using the first case in (3.2) where A ¼ 12 and C ¼ 12 gives the soliton solution 1 n u22 ¼ 1 3tanh2 ; ð4:41Þ 2 2 and the solution 1 n u23 ¼ 1 3coth2 ; 2 2
ð4:42Þ
where b ¼ 12. For A ¼ 1 and C ¼ 1 we find b ¼ 15, and we therefore obtain the soliton solution 4 u24 ¼ sech2 ðnÞ: 5
ð4:43Þ
1472
A. Bekir / Chaos, Solitons and Fractals 40 (2009) 1467–1474
and the travelling wave solution 4 u25 ¼ csch2 ðnÞ: 5
ð4:44Þ
For A ¼ 1 and C ¼ 1 we find b ¼ 13, and we therefore obtain the soliton solution u26 ¼
4 sec2 ðnÞ; 3
ð4:45Þ
and the travelling wave solution 4 u27 ¼ csc2 ðnÞ: 3
ð4:46Þ
For A ¼ 1 and C ¼ 4 we find b ¼ 171 , and we therefore obtain the soliton solution u28 ¼
16 ½1 3tanh2 ð2nÞ; 17
ð4:47Þ
and the solution u29 ¼
16 ½1 3coth2 ð2nÞ: 17
ð4:48Þ
For A ¼ 1 and C ¼ 4 we find b ¼ 151 , and we therefore obtain the solutions u9 and u10 . Case VI: We next consider uVI ðx; tÞ. We use the fourth result of (4.11). Using the first case in (3.2) where A ¼ 12 and C ¼ 12 gives the solutions u11 and u12 and the solution 3 u30 ¼ ½1 ðtan n sec nÞ2 Þ; 2
ð4:49Þ
where b ¼ 12. For A ¼ 1 and C ¼ 1 we find b ¼ 13, and we therefore obtain the solutions u14 and u15 . For A ¼ 1 and C ¼ 1 we find b ¼ 15, and we therefore obtain the solutions u16 and u17 . For A ¼ 1 and C ¼ 4 we find b ¼ 151 , and we therefore obtain the solutions u18 and u19 . For A ¼ 1 and C ¼ 4 we find b ¼ 171 , and we therefore obtain the solutions u20 and u21 . Case V: We next consider uV ðx; tÞ. We use the fifth result of (4.12). Using the first case in (3.2) where A ¼ 12 and C ¼ 12 gives the solution 1 n n u31 ¼ 4 þ 3tanh2 þ 3coth2 ; ð4:50Þ 5 2 2 where b ¼ 15. For A ¼ 12 and C ¼ 12 we find b ¼ 13, and we therefore obtain the solutions 4 n n u32 ¼ 1 3 tan2 3cot2 ; 3 2 2 4 u33 ¼ ½1 3ðtan n sec nÞ2 3ðtan n sec nÞ2 : 3
ð4:51Þ ð4:52Þ
For A ¼ 1 and C ¼ 1 we find b ¼ 171 , and we therefore obtain the solution u34 ¼
4 ½2 þ 3tanh2 ðnÞ þ 3coth2 ðnÞ: 17
ð4:53Þ
For A ¼ 1 and C ¼ 1 we find b ¼ 151 , and we therefore obtain the solution u35 ¼
4 ½2 3 tan2 ðnÞ 3cot2 ðnÞ: 15
ð4:54Þ
For A ¼ 1 and C ¼ 4 we find b ¼ 651 , and we therefore obtain the solution u36 ¼
1 ½32 þ 48tanh2 ð2nÞ þ 3coth2 ð2nÞ; 65
For A ¼ 1 and C ¼ 4 we find b ¼ 631 , and we therefore obtain the solution 1 u37 ¼ ½32 48 tan2 ð2nÞ 3cot2 ð2nÞ; 63
ð4:55Þ
ð4:56Þ
A. Bekir / Chaos, Solitons and Fractals 40 (2009) 1467–1474
1473
Case VI: We next consider uVI ðx; tÞ. We use the sixth result of (4.13). Using the first case in (3.2) where A ¼ 12 and C ¼ 12 gives the solution n n u38 ¼ 2 þ tanh2 þ coth2 ; ð4:57Þ 2 2 where b ¼ 13. For A ¼ 12 and C ¼ 12 we find b ¼ 15, and we therefore obtain the solutions 3 n n u39 ¼ 2 þ tan2 þ cot2 ; 5 2 2 3 2 2 u40 ¼ ½2 þ ðtan n sec nÞ þ ðtan n sec nÞ : 5
ð4:58Þ ð4:59Þ
For A ¼ 1 and C ¼ 1 we find b ¼ 151 , and we therefore obtain the solution u41 ¼
12 ½2 tanh2 ðnÞ coth2 ðnÞ: 15
ð4:60Þ
For A ¼ 1 and C ¼ 1 we find b ¼ 171 , and we therefore obtain the solution u42 ¼
12 ½2 þ tan2 ðnÞ þ cot2 ðnÞ: 17
ð4:61Þ
For A ¼ 1 and C ¼ 4 we find b ¼ 631 , and we therefore obtain the solution u43 ¼
12 ½8 4tanh2 ð2nÞ coth2 ð2nÞ; 63
ð4:62Þ
For A ¼ 1 and C ¼ 4 we find b ¼ 651 , and we therefore obtain the solution u44 ¼
3 ½32 þ 4 tan2 ð2nÞ cot2 ð2nÞ; 65
ð4:63Þ
5. Conclusion The tanh–coth method combined with Riccati equation was successfully used to establish solitary wave solutions. Many well known non-linear wave equations were handled by this method. The performance of the this method is reliable and effective and gives more solutions. The applied method will be used in further works to establish more entirely new solutions for other kinds of non-linear wave equations. The availability of computer systems like Mathematica or Maple facilitates the tedious algebraic calculations. The method which we have proposed in this letter is also a standard, direct and computerizable method, which allows us to solve complicated and tedious algebraic calculation.
References [1] Ablowitz MJ, Segur H. Solitons and inverse scattering transform. Philadelphia: SIAM; 1981. [2] El-Wakil SA, Abdou MA. New exact travelling wave solutions using modified extended tanh-function method. Chaos, Solitons & Fractals 2007;31(4):840–52. [3] El-Wakil SA, Abdou MA. New exact travelling wave solutions of two non-linear physical models. Nonlinear Anal, doi:10.1016/ j.na.2006.10.045. [4] Fan E, Zhang H. A note on the homogeneous balance method. Phys Lett A 1998;246:403–6. [5] Fan E. Extended tanh-function method and its applications to non-linear equations. Phys Lett A 2000;277:212. [6] He JH, Wu XH. Exp-function method for non-linear wave equations. Chaos, Solitons & Fractals 2006;30:700–8. [7] He JH, Abdou MA. New periodic solutions for non-linear evolution equations using Exp-function method. Chaos, Solitons & Fractals 2007;34:1421–9. [8] Hirota R. Direct method of finding exact solutions of non-linear evolution equations. In: Bullough R, Caudrey P, editors. Backlund transformations. Berlin: Springer; 1980. p. 1157–75. [9] Malfliet W. Solitary wave solutions of non-linear wave equations. Am J Phys 1992;60:650–4. [10] Malfliet W, Hereman W. The tanh method. I: Exact solutions of non-linear evolution and wave equations. Phys Scripta 1996;54:563–8. [11] Vakhnenko VO, Parkes EJ, Morrison AJ. A Ba¨cklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos, Solitons & Fractals 2003;17(4):683–92.
1474
A. Bekir / Chaos, Solitons and Fractals 40 (2009) 1467–1474
[12] Wang TY, Ren Y-H, Zhao Y-L. Exact solutions of (3+1)-dimensional stochastic Burgers equation. Chaos, Solitons & Fractals 2006;26:920–7. [13] Wazwaz AM. The tanh method for travelling wave solutions of non-linear equations. Appl Math Comput 2004;154(3):713–23. [14] Wazwaz AM. The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd– Bullough equations. Chaos, Solitons & Fractals 2005;25(1):55–63. [15] Wazwaz AM. Compactons, solitons and periodic solutions for some forms of non-linear Klein–Gordon equations. Chaos, Solitons & Fractals 2006;28(4):1919–2005. [16] Wazwaz AM. A sine–cosine method for handling non-linear wave equations. Math Comput Modelling 2004;40:499–508. [17] Wazwaz AM. The extended tanh method for abundant solitary wave solutions of non-linear wave equations. Appl Math Comput 2007;187:1131–42. [18] Wazwaz AM. The extended tanh method for new compact and noncompact solutions for the KP–BBM and the ZK–BBM equations. Chaos, Solitons & Fractals 2008;38(5):1505–16. [19] Wazwaz AM. The tanh–coth method combined with the Riccati equation for solving the KdV equation. Arab J Math Math Sci 2007;1:1–8. [20] Yusufog˘lu E, Bekir A, Alp M. Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method. Chaos, Solitons & Fractals 2008;37(4):1193–7. [21] Yusufog˘lu E, Bekir A. Exact solutions of coupled non-linear evolution equations. Chaos, Solitons & Fractals 2008;37(3):842–8.